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Abstract— To leverage soft hands to their full potential for
grasping, we propose to design their morphology and control
signals together. Considering both parameter domains makes it
easier and faster to find solutions compared to fixing parameters
of either domain. Additionally, the approach scales well to
high-dimensional parameter spaces, which is a precondition to
make automated co-design useful for soft hands. We further
present an efficient simulator for simulating grasps with soft
hands which is based on the SOFA framework and enables
us to simulate more than a million grasps per day. These
two complementary improvements promise a boost in the
development of competent soft hands and their control in the
future.

I. INTRODUCTION

Grasping performance of robotic hands generally increases
if the hand is able to comply to the shape of a grasped object
and to robustly exploit contact with the environment [1].
An effective way of achieving such compliance in robotic
hands is through the use of inherently soft materials [2]–
[4]. But this advantage comes at a price. As the grasping
behavior now results both from the control signal and from
the hand’s interaction with the environment, the hand design
problem gets more complicated. The performance of an
inherently soft hand is the result of explicit control combined
with the deformations that result from interactions between
hand, object, and environment. This implies that to design
a competent soft-bodied grasping system we must consider
control strategies as well as the hand’s morphology. To
complicate matters further, the specification of compliant
structures requires many design parameters, resulting in a
a very large design space.

We propose to co-design both hand morphology and
control strategy for soft hands. For a given grasping prob-
lem, co-design enables us to find suitable matches between
morphology parameters and control parameters. The goal
is to have a controller that leverages the abilities of the
morphology and to have a morphology that complements
the abilities of control. To achieve this, we must search
the combined parameter spaces for high quality solutions.
Optimization in such a high-dimensional and nonlinear space
is difficult. We present a formulation of the optimization that
implicitly provides an abundance of solutions in parameter
space, making it feasible to co-design many parameters.

To be able to co-design soft hands quickly, we develop a
simulator capable of evaluating the task success of points in
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(a) Surface-constrained grasping strategy

(b) “Flip-and-envelope” grasping strategy

Fig. 1: Co-design creates soft hands and matching control
signals that work together to generate reliable grasping
behavior on a given task. Co-design can be used to adapt
a known grasping strategy such as in (a), but it may also get
creative and invent new ones, such as in (b).

the cross-domain parameter space, which represent particular
system configurations. The simulator can simulate soft hands
and their mechanical interactions efficiently, enabling us to
evaluate 5.6 million grasp experiments for this paper.

In our experimental evaluation, we apply co-design to a
grasping problem to quantify the improvements achievable
over designing in a single domain (control, morphology)
only. We will show that co-design outperforms the decoupled
design problem in terms of success rate and convergence
rate. We demonstrate and analyze the co-design method in a
low-dimensional and a high-dimensional parameter space.

II. RELATED WORK

Co-design for grasping touches upon three different areas
of related work: soft hand design, co-design as a method,
and soft-body simulation.

a) Soft Hands and Grippers: Soft hands and grippers
have recently received significant attention [5]. They promise
to support reliable and robust grasping [1], allowing the
hardware to take over tasks from control, such as establishing
many redundant contacts [6] and keeping contacts stable [7].

b) The Co-Design Method: The development of meth-
ods for co-designing the body and the brain has been
mentioned as one of the frontiers of current soft robotics
research [8]. An example of co-design of soft robots focuses
on the evolution of walking robots [9]. Co-design in itself is
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Fig. 2: Illustration of the investigated gripper, its parameters
(left) and controller parameters (right)

not a new idea; it has been proposed under various labels,
including co-evolution and fully automated design [10]. In
the context of grasping, however, automated co-design has
not been applied yet. Existing research optimizes control
and morphology separately. Some grippers are optimized
for grasping [7], [11]–[13] but do not consider the control
part of the problem. Vice versa, automated design in the
control domain is a very active field of research, such
as learning dynamic movement primitives [14], optimizing
motion primitives with cross-entropy [15], and optimizing
pre-grasp manipulation [16]. But the hand morphology is
always assumed to be immutable.

c) Simulation of Soft Hands: In the context of co-
design, simulation offers a versatile method to assess the
quality of a combination of a specific hand and its control,
but until recently it has not been computationally efficient
enough for automated design. Improvements in simulation al-
gorithms [17] enables simulating complete grasp attempts at
about 0.1× real-time speed on a single CPU core [18]. These
algorithmic improvements are implemented in the SOFA
simulator framework [19] and used for real-time modeling
of actuation effects [20]. For modeling the main component
of pneumatic soft hands, Cosserat beams (i.e. chains of ball
joints) have proven to be a useful abstraction [4], [21], [22].
Their main disadvantage is the need of a conversion from
actuator shape to joint actuation ratios and stiffness matrices.
A popular grasp simulator for non-soft (i.e. classical rigid-
bodied) hands is GraspIt! [23]. While GraspIt! is orders of
magnitude faster than the simulator presented in this paper,
crucially it does not model soft and dynamic interactions
between hand and object.

III. EXAMPLE DOMAIN

We want to develop a co-design method and validate
it in the context of a well-defined example domain, as
optimization should always be relative to a particular task.
We consider the problem of designing a soft gripper and a
control strategy to pick up an object from a table. We chose
a gripper design that has not been built before (shown in
Fig. 2), in order to avoid the influence of prior knowledge
on the experiment. The gripper is assembled from PneuFlex
actuators [2], which are a specific type of a pneumatically
actuated soft continuum actuator. The gripper is assumed to
be mounted on a robot arm with a passively compliant wrist.
The controller commands arm position and the air pressure in
the PneuFlex actuators. Trajectories are defined by linearly
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Fig. 3: The Simulation consists of distinct phases: approach-
and-grasp, lift, disturb, and un-grasp. The function above
indicates the costs assigned to a simulation if the object is
lost at the given time.

interpolated key frames. For many grasping scenarios, an
initial grasping strategy can be imitated from observing
humans or from published examples [1]. Because of this,
we can avoid the need to evolve gripper and strategy from
scratch and can focus on adapting existing concepts. In our
case, we used the surface-constrained-grasp [1] strategy as
the starting point. The goal in this setup is to determine both
shape and trajectory parameters that lead to a robust and
reliable grasp.

IV. CO-DESIGN OF CONTROL AND MORPHOLOGY

Co-design is understood as the optimization of a robotic
system across at least one domain boundary, in this paper
it is the boundary between control and morphology. The
goal of co-design is to adapt structures on both sides of
the domain boundary to each other, so that the resulting
system performance improves. The representations in both
domains should be chosen such that it includes as many
parameters as possible that potentially help with solving the
task. Optimization works better with a smaller parameter
space though, so the representation should not include pa-
rameters where we already know that they have little or no
effect on the task (e.g. the color of the gripper). Finally,
the optimization criterion for co-design should encode that
we do not need to find the optimal system, but just one
out of many that solves the given task sufficiently well. For
grasping this can be achieved by e.g. assigning minimum
costs once a grasp is obtained. Inclusion of many parameters
and a cost function with many potential solutions probably
are the two crucial components to make co-design for
soft hands feasible. Furthermore, any solution that we find
needs to be robust against small perturbations, both in hand
morphology (to make manufacture feasible) and in control
(to make perception and planning feasible). Therefore, we
strongly favor hand-controller combinations in regions of
success, over ones in narrow local optima. Conveniently,
this simplifies the optimization problem, as we can do larger
exploration steps, which in turn means that we can co-design
with more parameters.



(a) PneuFlex actuator (b) Complete gripper

Fig. 4: Model for simulating soft hands: Large trihedra
indicate links, small, purple ones indicate joint locations in
between. The triangular mesh is used for detecting collision
and applying contact forces.

V. EFFICIENT SIMULATION OF PNEUMATIC SOFT HANDS

Co-design does not rely on simulation per se, but simula-
tion can accelerate exploration of the design space. The task
of simulation is to provide a versatile and holistic method
to measure the quality of a given set of parameters in the
co-design parameter space. For grasping with soft hands
that effectively requires a full-fledged physics simulation of
the complete grasping attempt, as large-scale deformation
leads to complex, nonlinear mechanical interactions whose
outcomes we are not able to describe and predict analytically.
This section presents a simulator which is complemen-
tary to the co-design method, but nevertheless is a crucial
component to render the co-design method computationally
tractable.

Our soft-hand simulator is based on the SOFA frame-
work [19] and its accompanying Compliant module [17].
Scenes are composed of soft hand models, objects based
on meshes, and auxiliary environmental objects such as a
simple table surface. The simulation model of the hand is
constructed from a parametric description at runtime, which
enables us to easily modify individual morphology parame-
ters. In addition to the physics simulation, the simulator also
executes a controller which determines actuator air pressures
and wrist motion during the simulation. For this paper,
the simulated scenes consist of a soft hand, a controller, a
single object, and a table surface. For modeling soft hands,
we employ a multi-model approach, where each PneuFlex
actuator [2] is modeled as both a Cosserat beam and a
collision hull. By separating the actuator into a beam model
and a collision hull, we achieve a relatively low number of
mechanical degrees of freedom while still realizing the main
deformation modes of the surface. Figure 4 illustrates the
concrete simulation model for the PneuFlex actuator and the
gripper. The locations of individual links are indicated by the
large trihedra. Adjacent links are connected by ball joints,
whose locations are indicated by the smaller trihedra. Each
ball joint is modeled as a 3D rotary spring that emulates
the passive compliances of the adjacent actuator segments,
which are estimated from the local cross section geometry
of the actuator [3], [18]. The wire frame indicates the
collision surface, which is used to detect contact forces and
to apply interaction forces to. Each mesh vertex follows
the motion of the two links closest to it. For the given
simulation we use linear blend skinning (as implemented

by the SkinningMapping component of SOFA). It enables a
crude but reasonable approximation of the actuator surface.

A soft hand is composed of several fingers with usually
one actuator each. In order to assemble actuators into a
soft hand, we connect their base link to a common wrist
frame (XA in Fig. 2) with a stiff joint, which in turn is
connected to an arm frame (XD in Fig. 2) via a passively
compliant wrist joint. The gripper structure is shown in
Fig. 4 and resembles a star-shaped kinematic chain. In all
simulations we discretized to ten links per finger, resulting in
a total of 246 mechanical degrees of freedom for the gripper.
During simulation, arm position XD and air pressures pi are
commanded by a controller. In this paper, we use a keyframe-
based open-loop controller to define the actuation pattern.

The phases of a single simulated grasp attempt are il-
lustrated in Fig. 3. First, the controller moves the gripper
towards the table. Then, it inflates the fingers to grasp. After
lifting back up to the initial height, the controller performs
a series of increasingly stronger shaking motions by rotating
the arm frame XD in order to test the grasp quality. Finally,
the controller deflates all fingers to release the object. In
total each grasp attempt lasts nine seconds in simulation
time. The simulation is able to run at about 0.1× real-time
on a standard desktop (Intel R© Core

TM
i5-6600K CPU @

3.50GHz) at 10 ms time steps. This enables us to simulate
more than a million grasp attempts per day on a moderately-
sized compute cluster with 2000 CPU cores.

VI. EXPERIMENTS

In the introduction, we laid out two main claims for co-
design. First, we claimed that it speeds up finding solutions,
as with soft hands control strategy and hand morphology
strongly influence each other. Second, we claimed that
careful selection of representation and optimization criteria
enables co-design with many parameters. To corroborate
these claims, we compare co-design against strategies that
only optimize in one domain in an example task explained
in Sec. III. We conducted two experiments, the first one
in a two-dimensional parameter space, allowing for visual
interpretability of the results. The second experiment extends
the parameter space to 23 dimensions to validate the findings
with a more realistic number of parameters, and to evaluate
the scalability of the proposed method in terms of computa-
tional costs. We do not, however, evaluate the transferability
into real hardware, which is an important but separate topic.

1) Implementation of Optimization: Co-design is not de-
pendent on a specific optimization method. For the experi-
ment we chose the particle filter optimization method [24],
as it is easily parallelizable, requires few assumptions, and
able to represent multi-modal distributions. With this method
every particle represents a concrete set of values for all
parameters of both domains to optimize. A particle filter
is then used to iteratively approximate the high-dimensional
grasp success distribution which is defined by the simulated
scenes and the particular cost function used. Optimized hands
and control patterns can then be obtained by sampling from
the filter’s particle set. This formalization is identical to the
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Fig. 5: Illustration of the steps of the optimization method
performed for each episode

particle swarm optimization method [25], except that we do
not bias the particles’ motions.

Fig. 5 illustrates the steps for each optimization episode.
The optimizer starts with a seed particle and a set of
parameter ranges as input. The optimizer moves particles
randomly in parameter space (step 1) and simulates a num-
ber of grasping trials for each particle in parallel. It then
evaluates the cost function (step 2) and assigns a correspond-
ing weight to each particle (step 3). In the last step, the
particle set is resampled using stochastic universal sampling
(step 4). To move particles, we use a normal distribution
with zero mean and variance σ = 0.05× parameter range.
This hyperparameter balances local vs. global exploration.
The cost function defining grasp success in the experiments
is illustrated in Fig 3. After a grasp attempt, disturbances to
the arm orientation are applied, which progressively increase
in amplitude (see the video attachment for details). The
costs decrease linearly with the duration the object center
stays close (<80 mm) to the hand center, defined by the
averaged position of all links of the gripper. The simulation
concludes with opening the hand to drop the object, to
catch errors in collision detection and constraint resolution.
If the simulation fails for some reason, it is excluded
from the costs evaluation. After determining the cost of
several simulations, the weight of each particle is assigned
to weight =

(
α + 1

trials ∑
trials
i cost i

)−1
. The hyperparameter

α = 0.2 discourages overfitting to the most recent episode.
2) Grasping Scene and Parameterization: The gripper

and its parameters are illustrated in Fig. 2. It consists of four
PneuFlex actuators acting as fingers around a fixed palm. The
investigated parameters of the morphology domain are height
hi, length xi and rubber hull thickness di of each finger i.
Additionally, the spread between two pairs of fingers can be
adjusted with the angle γ . Parameters in the control domain
are the nominal air pressure pi during grasping, and the pose
of the arm frame XD after the approach phase. The hand-
controller combinations are tested on three object shapes
(cuboid, cylinder, sphere), whose parameters were varied in
order to avoid overfitting. Gaussian noise was added at each
trial to object position (σpos = 5mm), orientation (σori = 5◦),
weight and size (σw,σs = 5%). The parameters to optimize

Morphology domain
Parameter 2D 23D

xi 10 mm to 180 mm 10 mm to 180 mm
hi 20 mm 15 mm to 25 mm
di 5 mm 2 mm to 7 mm
γ 45◦ 0◦ to 110◦

Control domain
Parameter 2D 23D

XD roll, yaw 0◦ −60◦ to 60◦
XD pitch 15◦ −60◦ to 60◦

XD z (vertical) −60 mm to 200 mm −50 mm to 150 mm
XD x −20 mm −60 mm to 60 mm
XD y 0 mm −60 mm to 60 mm

pi 120 kPa 0 kPa to 150 kPa
pi < di ·80kPA/2mm

TABLE I: Parameter ranges for the gripper’s morphology
and controller’s motion primitive during optimization
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Fig. 6: Example of the cost evolution of one optimization run
in 2D parameter space: Dots indicate the evaluated costs of
individual particles and the line indicates the average costs
for each episode. The threshold indicates the level used to
compare convergence speeds in Fig. 7b and 9b.

are illustrated in Fig. 2 and listed in Table I. The parameter
limits were chosen so that a gripper could actually be built,
the controller can actually be executed, and the approxima-
tions of the simulation model remain physically plausible.
The pressure was limited to avoid excessive curvature, which
would wear out the actuators. It would also cause a strong
flattening of the collision mesh, which too would make the
simulation itself increasingly unrealistic.

3) Evaluation Measures: The progress of a typical opti-
mization run is visualized in Fig. 6 as a scatter plot of particle
costs and cost average for each episode. After each com-
pleted optimization run, we evaluated the quality of the final
particles, and how fast successful particles were found. For
the two-dimensional case (Fig. 7) we evaluated 42 grasps to
estimate the quality of a particle, and for the 23-dimensional
experiment (Fig. 9) 78. Optimization was judged successful,
if at least one final particle achieved a perfect grasp success
(cost < 0.01) on the test. We additionally quantified the
convergence speed of each individual optimization run by
counting the number of episodes from which on the average
particle cost stayed below the threshold cconvergence = 1.0 for
the remaining episodes.
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Fig. 7: Experimental results for optimizing two parameters
in a single domain (s.d.), with different numbers of domain
switches (1-32), and using concurrent (conc.) optimization
strategies

4) Co-Design vs. Single-Domain Optimization: In the
two-parameter experiment, we compare eight different op-
timization strategies which also reflect common modes of
development for robot systems. On one end of the spectrum,
we optimize in a single domain (s.d.) only, and keep the
parameters of other domain fixed. On the other end of
the spectrum, we co-design in both domains concurrently
(conc.). In between, we optimize in one parameter domain
during each episode, but switch domains between episodes
for a total of (1,2,4,8,16 or 32) times during the whole
optimization. Each optimization strategy uses a set of 10
particles, optimizes for 64 episodes and evaluates 6 grasp
attempts per particle and episode. Initial seed particles where
drawn using rejection sampling (cost > 2.0) in order to
avoid spending computation time on trivial optimization runs
where the initial particle set already contains a solution.
To reduce inter-subject variance, the same seed particles
where used across all optimization setups. To avoid bias,
optimization runs were started equally often with optimizing
either of the two domains.

Fig. 7 shows the statistics over 30 runs per optimization
strategy, totaling 1,000,800 individual simulations. Fig. 7a
shows the success rate, while Fig. 7b shows the median
episode after which the particle set converges towards low
cost. When optimizing in one domain only, probability of
success is poor, but it quickly increases when interleaving
both domains. Fig. 7b also shows that switching more
often yields a strong boost in convergence speed. Success
probability and convergence speeds consistently improve,
and co-design performs best.

In addition to the statistical results, in the two-dimensional
parameter space we can visualize the actual cost landscape to
gain qualitative insights. Fig. 8 shows the average costs for a
grid of 60×60 parameter values over 36 grasp attempts each.
Please note that these results were not used for the optimiza-
tion. The white and light gray areas indicate high success
rates and therefore good hand-controller combinations. Two
distinct areas of low costs are indicated. They correspond to
two different grasping strategies that the automated co-design
found, which are also shown in Fig. 1. The first strategy
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Fig. 8: Cost landscape of the two-parameter experiment:
The optimization finds two areas that correspond to distinct
grasping strategies. An example of region (a) is shown in
Fig 1a, an example of (b) in Fig. 1b.

(a) is a surface-constrained-grasp (top-grasp), which was the
strategy the motion primitive was originally intended for. But
the second strategy (b) operates in a completely unexpected
manner. The object is contacted from the top, flipped to
expose the underside, and then wrapped by the long fingers
to secure an enveloping grasp. This outcome demonstrates
the potential of co-design to solve tasks with novel grasping
strategies.

5) Scalability to Many Parameters: The evaluation of the
two-dimensional experiment shows that co-design is faster
and more successful than iterations of single-domain ap-
proaches. For real-world application to soft hands, however,
co-design must be able to perform automated design in high-
dimensional parameters spaces. In a second experiment, we
therefore increased the number of variable parameters to 13
in the morphological domain and 10 in the control domain.
To reduce total computational costs, we only tested the most
interesting optimization variants, single domain, 1 switch,
and concurrent. The rest of the experiment was set up the
same as the two-dimensional one, but used a set of 60
particles and optimized for 128 episodes. Each optimization
strategy was run 30 times and results were averaged. In total,
we simulated 4,536,000 grasps for this experiment.

The results are shown in Fig. 9. Co-design again outper-
formed all other tested strategies. The success rate of the
1-switch strategy increased considerably, but co-design still
finds solutions faster. We additionally looked at the average
amount of simulations required for convergence, which is
6120 simulations vs. 420 for the two-dimensional parameter
space. The computational costs therefore increased about 15
times, while the number of parameters increased 11.5 times.
This provides some indication that computational costs in
co-design increase slower than the exponential increase of
the design space. We believe the cause of this behavior to be
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Fig. 9: Statistics for optimizing 23 dimensions in total, for
single domain(s.d.), one switch(1), and concurrent optimiza-
tion(conc.)

the heuristics from Sec. IV for formulating the cost function
and problem representation.

VII. LIMITATIONS

The results obtained with co-design are promising, but the
example domain addressed here was relatively simple. Future
applications should demonstrate co-design based on more
complex and diverse grasping scenarios. The optimization
algorithm used was chosen for its simplicity. It could be
replaced by algorithms that leverage the information obtained
from the expensive samples more efficiently.

This paper does not assess the size of the simulation
gap between simulated behavior and that of real soft hands.
Substantial efforts have been made though, to validate the
actuator models against real actuators [18] to improve plausi-
bility of the simulation results. The compliance of soft hands
additionally limits the effect of small errors in morphology
on contact forces, further accommodating the transferability
of solutions to real systems. Nevertheless, we expect a
subsequent optimization with real hardware to be prudent
and necessary to account for the simulation gap.

VIII. CONCLUSION

We investigated the feasibility of co-designing morphology
of soft hands and their control strategies for grasping. We
proposed guidelines for selecting parameter spaces and opti-
mization criteria that support co-design in high-dimensional
space. Complementing the co-design method, we presented
an efficient simulator for soft hands which enabled us to
simulate a total of 5.5 million grasp attempts for this paper.

We showed in a quantitative evaluation that co-design
consistently outperforms optimization limited to only one
domain, even when we switch between domains iteratively
during optimization. This behavior was observed with both
two and 23 varied parameters. An analysis of the compu-
tational costs further suggests that the effort to co-design
scales favorably, much slower than the expected exponential
increase in the number of free design parameters. These
results open up the prospect of efficiently customizing soft
grippers and strategies for specific tasks, in order to provide a
cost effective and high-performance alternative to engineered
fixtures and general-purpose robot hands.
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