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Abstract— Robots need to understand articulated objects,
such as drawers. The state of articulated structures is commonly
estimated using vision, but visual perception is limited when
objects are occluded, have few salient features, or are not in
the camera’s field of view. Audio sensing does not face these
challenges, since sound propagates in a fundamentally different
way than light. Therefore we propose to fuse vision and audio
sensing to overcome the challenges faced by vision alone. We
estimate motion in several drawers and show that an audio-
visual approach estimates drawer motion more reliably than
only vision – even in settings where the purely visual approach
completely breaks down. Additionally, we perform an in-depth
analysis of the regularities that govern how motion in drawers
shapes their sound.

I. INTRODUCTION

Doors creak and make loud thuds, drawers rumble while
opening, and even twisting lids off jars produces distinct
sounds. Different articulated mechanisms produce different
sounds. But the sound they make also varies with their
motion—a quickly opened drawer sounds different from the
same opened slowly. Thus, we can infer motion of articulated
objects by their characteristic sounds.

In this paper, we introduce auditory perception of kine-
matic structures to robotics. We analyze the regularities
that govern how moving drawers emit sound and find that
drawers’ velocity correlates positively with amplitude and
pitch of sound. We show how to use these regularities in an
audio-visual kinematic structure estimation system.

Our system enables a robot to perceive the kinematic
structure of its environment in a wider range of experimental
settings. This is because sound is complementary to vision—
sound propagates in a fundamentally different way than light.
It is less affected by occlusions and bad lighting conditions.
It works even when there is no light at all. This allows us
to use sound to estimate object motion in settings that are
challenging to purely vision-based methods.

II. RELATED WORK

We will first review approaches to robotic object per-
ception that are based on sound in Section II-A. Then we
review existing approaches to kinematic structure estimation
in Section II-B. Our main evaluation criterion is going to
be how robust these approaches are to adverse experimental
conditions.
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Fig. 1. We use audio-visual information to robustly estimate the kinematic
state of a drawer. By fusing vision (RGB-D camera) and audio (two
microphones), our method is able to track the state of the drawer even
when we switch the light off or visually occlude the drawer. We evaluate
the estimation using MOCAP tracking.

A. Estimating Object Properties From Sound

Sound can be used to recognize and classify objects [1],
[2], [3], [4], [5], as well as to estimate the properties of
objects such as their material [6], shape, height [7], as well
as the contents’ of a container [8]. The velocity of cars
can also be estimated from sound [9]. These works show
that audio is a useful sensor modality to make inference
about objects, their motion and their properties. However,
inferring motion of articulated objects from sound is rather
unexplored. Our paper shows that sound can indeed provide
useful information for kinematic structure estimation.

B. Sensor Modalities in Kinematic Structure Estimation

Articulated mechanisms are constrained in their motion ac-
cording to their kinematic structure. This constrained motion
becomes apparent in many sensor modalities, such as force
feedback, vision, and sound. In the following, we explain
the strength and weaknesses of approaches using different
combinations of sensor modalities.

Force and proprioceptive sensing can be used when robots
directly manipulate articulated objects [10], [11]. But this
requires the robot to be physically in contact with the
kinematic structure—remote estimation is not possible.

Approaches based on vision, estimate kinematic structures
either from a single image [12], [13], [14], or integrate
information over time [15], [16]. While visual estimation
works well in favorable conditions, it fails in adverse settings,
such as in bad lighting conditions or due to visual occlusions.

More robust results can be achieved with multi-modality,
i.e., fusing proprioception, force and vision [17] [18] [19].
Such fusion makes estimation robust to adverse lighting
conditions [18] or missing physical contact [19]. But such
approaches fail when visual and force-torque limitations



coincide, i.e. when a remote kinematic structure needs to be
estimated under bad visual conditions. In contrast, acoustic
sensing works in bad visual conditions and when the robot
passively, remotely estimates a kinematic structure.

III. ESTIMATING MOTION FROM SOUND

We aim to infer the motion of articulated mechanisms from
sound. However, the relationship between sound and motion
is complex, and varies between different instances of the
same category of objects. Thus, we present a flexible learning
approach that can obtain such a mapping from little data, to
enable quick adaptation to novel objects.

Note, sound may be used to perceive different kinds of
articulated mechanisms. We focus on drawers (prismatic
joints) as a representative type of articulated object. Drawers
are a common class of mechanisms and feature significant
intra-class variance regarding their acoustic properties.

In Section III-A we explain how we estimate the speed
of drawers from sound. For a full estimate of velocity, we
need to augment this estimate of speed with a measure
of direction. In Section III-B we estimate the direction of
drawer movement using a microphone array. Section IV-B
then explains how we fuse these estimates into an existing
vision-based framework.

A. Estimating Speed of Kinematics Actuation

To estimate the speed of prismatic joints, we first divide
the input sound signal into segments of length 0.064 seconds.
Then we perform Fast Fourier Transform on each sample,
only preserving positive frequencies, which yields a vector
of length 512. We predict the drawer’s speed from this feature
vector using Principle Component Regression (PCR). For
this, we perform Principal Component Analysis (PCA) and
reduce the dimensionality of the feature vector to 50 by
preserving only the projection onto the largest 50 principal
components. This audio feature vector xaudio is the input to
a linear regression model that predicts speed as a scalar. We
train this model using supervised learning and minimize the
least squares error. For training, we measure ground-truth
speed of drawers in a motion capture system. The result is
an estimator g which can estimate the absolute velocity vabs
of a drawer as in

vabs = g(xaudio). (1)

B. Estimating the Direction of Kinematics Actuation

We estimate the direction of motion in prismatic joints
based on sound-source localization. We use the ODAS
software [20], which localizes sound sources as coordinates
on a unit sphere smt = (xt, yt, zt) in a microphone ar-
ray’s coordinate system m. Since we will later fuse sound-
based estimates with vision-based estimates, we transform
the sound-source localization estimates to camera frame c
by a known homogeneous transform T c

m such that sct =
T c
ms

m
t . This transformation is theoretically not correct, but

it is sufficient in practice, because the microphone array
and camera are spatially close, and because we are solely
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Fig. 2. The existing vision-based framework estimates kinematic joint
motion from visual cues. It is based on several interconnected recursive
estimators. Our work extends this model with additional velocity measure-
ments derived from audio.

interested in the relative position of consecutive sound
source localizations. To estimate the direction of motion, we
compute the difference between consecutive sound source
localization estimates, as in

dt =
sct − sct−1

‖sct − sct−1‖
. (2)

We combine this direction of motion along with the speed
estimate (Section III-A) to produce an estimate of velocity.
We use this resulting quantity in a kinematics estimation
framework described in the next section.

IV. SOUND IN KINEMATIC STRUCTURE ESTIMATION

The full kinematic structure estimation problem requires
to estimate the poses and velocities of rigid bodies, as well
as of the kinematic joints that connect them. We do not try to
solve this full problem just based on sound. Instead, our work
builds on an existing vision-based framework for kinematic
structure estimation, extending it by the aforementioned
audio-based velocity estimator.

A. Vision-Based Interactive Perception Framework

The existing, vision-based framework [15] we extend is
depicted in Figure 2. It consists of three interconnected
recursive Bayesian estimators, implemented as Extended
Kalman Filters (EKF). One filter tracks 3d feature points
based on RGB-D input. It interacts with a second filter, which
tracks rigid body hypotheses based on the first filter’s feature
points. A third filter estimates kinematic joints between these
rigid body hypotheses.

Because each estimator implements a Bayes filter, they
can interact by using such filters’ common update functions
– measurement and prediction updates. The belief of the
rigid body estimator is used in the prediction step for feature
motion, and conversely, it uses the belief over feature motion
as a measurement. Likewise, the kinematic joint estimator
is used in the prediction step of rigid body motion, and
conversely, it uses the belief about rigid body motion as a
measurement.

The kinematic joint tracker consists of multiple EKF fil-
ters, one filter for each pair of rigid bodies and each possible
joint type (revolute, prismatic, rigid and disconnected). The
state of a prismatic joint xjoint is defined by the joint’s



orientation, azimuth and elevation (φ, θ), the actuation offset
(q), and the velocity of the joint (q̇).

xjoint = (φ, θ, q, q̇) (3)

In the prediction step, a state prediction is made for each
filter based on the current joint-space velocity, performing
velocity integration. Then, in the update step, the belief over
the state is corrected using measurements from the rigid-body
tracker. This vision-based measurement zvision is the change
in relative pose between the two rigid bodies connected by a
joint. In the following section we will present an additional,
audio-based measurement for velocity in joint-space for the
prismatic joint filter. For further details on the visual part of
the architecture we would like to refer the reader to [15].

B. Audio-Vision Fusion

The sound-based estimator we explained in Section III
estimates the velocity of a kinematic joint. We add this
estimator to the recursive filter framework as an additional
measurement on a tracked kinematic joint’s velocity.

To incorporate the audio-based velocity estimate, we need
to transform the direction vector dt from camera-frame
to joint space. Thus, we project the audio-based direction
estimate dt onto the prismatic joint axis estimate of the
kinematic joint filter, estimated from vision. We only retain
the sign of this projection. Because the sign estimate is noisy,
we filter it using a simple Hidden Markov Model (HMM).
This HMM assumes the sign remains identical between time-
steps with a probability of 0.7 and conversely assumes that
it changes with probability 0.3. We multiply the maximum
likelihood sign with the speed estimate vabs to produce an
estimate for the joint velocity, v.

We then fuse this joint velocity estimate v, with the current
estimate of the joint parameters from vision. We use the
following as the audio-based measurement model for the
joint filter EKF mentioned in the previous section:

haudio =
[
0 0 0 q̇

]
(4)

where the joint velocity q̇ from xjoint simply maps to v.
The measurement noise is gaussian with standard deviation
estimated as the regression model’s average training error.

Finally, we perform a post-processing step to avoid drift
due to velocity integration. As we only use audio to estimate
joint velocity, small errors accumulate over time. To address
this problem, we constrain the mean of the filter’s joint
position estimate to lie between the maximum and minimum
joint limits that are updated in time-steps when vision-based
measurements were available.

V. EXPERIMENTS

Our analysis comprises two parts. In Section V-A we
analyze the regularities that govern how motion in drawers
shapes the sound they emit. Then, in Section V-B we evaluate
the performance of our proposed approach.

Fig. 3. We use four drawers in our experiments. From left to right and
from top to bottom these drawers are referred to as IKEA small, IKEA large,
cabinet top and cabinet bottom throughout this paper. The drawers are of
different size and material, and are mechanically mounted in different ways.

The data for the experiments was generated by a human
experimenter actuating the different drawers shown in Fig-
ure 3. To record sensor input, we used an ASUS Xtion PRO
LIVE camera as the RGB-D sensor, two ReSpeaker Mic
Array v2.0 microphone arrays1. Ground truth data for the
evaluation was recorded by tracking the drawers in a motion
capturing system. This setup is also depicted in Figure 1.

A. Data Analysis – The Sound of Moving Drawers

We aim to show that audio holds intrinsic information
about the motion of articulated objects in general, and
drawers in particular. Thus, in this section we analyze how
properties of sound relate to the motion of drawers.

As a first step of this analysis, in Figure 5 we visualize the
spectogram of sound recorded while the drawer cabinet top
was being repeatedly opened and closed. In this visualization
it becomes apparent that we can distinguish at least three
different types of events from sound: the drawer sounds
differently when it is static, in motion, and when it hits a
joint limit. The latter yields an especially salient event in
the spectogram. This qualitative result suggests the velocity
of a drawer indeed shapes the sound it emits, but to exploit
this insight we need to inquire further how a drawer’s sound
depends on its actuation velocity.

Two of the most important and distinct properties of sound
are its loudness and pitch. In Figure 4 we visualize how
these properties change with varying speeds of the four
drawers. Loudness is measured as the mean amplitude of the
sound spectrum and pitch is measured as the most dominant
frequency in the sound spectrum at that point in time. We
measure reference speed in a motion capturing system. The
data shows that both, loudness and pitch coarsely increase
with higher speeds in each drawer. There are also data-points

1For technical reasons these microphone arrays could not record audio
and perform sound source localization at the same time.



Fig. 4. The pitch (dominant frequency) and loudness (mean amplitude) of sound plotted against the speed of four different drawers while they are being
actuated. Data-pairs of mean amplitude plotted against sound seem to follow a bimodal data-distribution. While higher speeds generally lead to louder
sound, there are also data-points with high amplitude at zero speed. This is likely because the drawers make a loud sound when they are hitting their
joint-limits, yet at that instant they stop moving. For cabinet top and cabinet bottom pitch also coarsely increases with speed, which for IKEA large and
IKEA small such a relation is less visible.

Fig. 5. Sections of the sound spectrogram correspond to distinct phases
of an articulated drawer’s motion. The spectrogram is extracted from a
recording session of the cabinet top drawer. Sections with higher intensity,
thus higher amplitude, correspond to states where the joint was in motion.
In contrast, sections with lower intensities and lower amplitude correspond
to no motion in the joint. The short streaks of high intensity correspond to
events when the drawer hits its joint limit and emits a loud bang noise.

with high amplitude at zero speed. This is likely because the
drawers make a loud sound when they are hitting their joint-
limits, yet at that instant they also stop moving. Figure 4 also
reveals that the regularities that connect sound to velocity
are different for each drawer, which makes generalization
between drawers challenging.

This analysis shows that sound carries information useful
to estimate motion in kinematic structures in general, and
particularly motion in drawers. Sound is a rich source of
information, and even when we substantially simplify the
signal to just pitch and loudness, we still see a strong relation
between sound and motion. Next we will evaluate if this
information is sufficient to track the state of an articulated
drawer over time.

B. Audio-Visual Drawer Motion Estimation

As described in Section IV-B, we track the actuation state
of drawers using a system of interconnected Bayes filters,

augmented by an audio-based velocity estimator. We first
evaluate the estimator’s performance in Section V-B.1 and
then evaluate the performance of the full recursive estimation
system, using that estimator, in Section V-B.2.

1) Instantaneous Velocity Estimation from Audio: The
data analysis in the previous section showed that both,
loudness and pitch of sound carry information about the
speed of a drawer. Now we assess the performance of
different regression models that aim to estimate speed from
both these features, as well as from a more powerful feature
representation obtained by PCA. In Figure 6 we plot the Root
Mean Squared Error (RMSE) of different regression models,
separately for each of the drawers. We compute RMSE for
test-data splits using 7-fold cross-validation, preserving the
data’s temporal order. The results show that amplitude and
frequency are useful features to predict speed from sound,
especially in combination. However there is useful infor-
mation in the sound signal beyond these two features. The
PCR model (Section III-A) outperforms the other estimators,
including polynomial regression of degree p = 3 on the
combined feature vector of frequency and amplitude.

One strength of the PCR model is that its simplicity allows
us to investigate what it learned. The model first performs
PCA for dimensionality reduction, then linear regression on
the reduced, 50-dimensional feature vector. Figure 7 plots the
20 largest eigenvalues on a logarithmic scale, which shows
that the majority of variation in the data is captured in the
first few principal components. In Figure 7 we also plot the
eigenvectors to the four largest principal components. This
reveals a relevant insight. The eigenvector that corresponds
to the largest eigenvalue has an almost constant value for
all frequencies. This indicates that it captures the overall
loudness of sound, irrespective of frequency. The eigenvector



Fig. 6. We tested five different models to estimate drawer speed from sound.
Here we analyze their Root Mean Squared Error (RMSE). The PCR model
outperforms the other approaches. This indicates that also other features than
loudness and pitch of sound are helpful to estimate motion in a drawer.

to the second largest eigenvalue has a largely linear, inclining
shape. This indicates that higher frequencies produce larger
responses, similar to the relationship of dominant frequency
in Figure 4. The PCR model thus operates on similar features
as the other models, but further principal components allow
for more fine-grained estimation results. We can assess which
eigenvectors contribute most strongly to speed estimates
on average, by plotting the product of eigenvalues and
corresponding linear regression weights (Figure 7, middle).
This reveals that only the four first principal components
significantly influence estimation results, but the strongest
contribution by far comes from the first principal component,
which we interpret as loudness of the sound.

Along with speed it is also necessary to know the direction
of motion. In Section III-B we presented an engineered esti-
mator for this task. Its classification performance is shown in
Table V-B.1. The classification rates are not very high, due to
the noisy input from sound-source localization. However, our
framework that integrates this estimator can still utilize the
estimator’s noisy predictions. It could still be worthwhile to
denoise this input further. Next we evaluate the performance
of the full estimation system.

TABLE I
SIGN OF VELOCITY – CLASSIFICATION RATE PER DRAWER

Drawer Classification rate
IKEA small 58.1 %
IKEA large 56.8 %
cabinet top 59.6 %

cabinet bottom 63.4 %

2) Filtering Drawer Motion With Sound Input: In Sec-
tion IV-A we explained a vision-based framework [15] to
estimate kinematic structures. In this section we compare
the performance of that purely vision based approach to our
suggested audio-visual approach presented in Section IV-B.
Figure 8 shows an example sequence where a drawer is
being actuated repeatedly, together with the joint position
estimate of both models. The estimation quality is repre-
sentative of both model’s average estimation performance.

Fig. 7. Top: we plot the 20 largest eigenvalues on a log-scale. This show
that the majority of variance is captured by the largest components, but that
smaller components also expain some variance. Middle: the eigenvalues
multiplied by their linear regression weights show that only variation in
the four first principal components contributes significantly to velocity
estimation. Bottom: We plot the eigenvectors that correspond to the 4
largest eigenvalues. Plotted in frequency-space, the eigenvectors are jagged
on a short time-scale, but follow long range trends. The eigenvector that
corresponds to the largest eigenvalue has an almost constant value for all
frequencies. This implies that it captures the overall loudness of sound. The
eigenvector to the second largest eigenvalue has a largely linear, inclining
shape. This indicates that the second-largest degree of variation corresponds
to the overall pitch of sound.

Fig. 8. We plot the belief about the configuration of the prismatic joint in a
drawer. The top plot shows a purely visual approach [15] and the bottom plot
shows our approach that extends it by fusion with auditory perception. The
shaded light blue region indicates an initial phase in the experiment when
the light in the experimental compartment was on, but after this phase it was
turned off. Purely visual perception breaks down when the light is turned
off, while our proposed audio-visual approach is largely able to maintain
good estimates.



In the beginning of the experiment there are no occlusions
and lighting conditions are ideal. In this initial phase, both
approaches can properly estimate the actuation state of the
drawer while it is being opened and closed. However after
about t = 40 seconds we turn off the light in the experimental
compartment. Then, the vision-only estimate can no longer
perform state updates, since it does not receive measure-
ments of visual features. Contrarily, the audio-visual model
continues to maintain estimates that are largely correct,
except for a short time-span at around t = 120s, when
the velocity sign estimates are erroneous. But critically, the
audio-visual approach is functional in a condition where
the purely visual approach completely breaks down. This
shows that multi-modal perception approaches can overcome
challenges that are fundamental limitations to single sensor
modalities. Multi-modality is then not only a means to reject
noise, it opens up categorically new application scenarios.

The results in Figure 8 are repeatable and similar for the
4 different drawers we used in our experiments. In order
to obtain numerical results we recorded 7 to 9 sessions per
drawer. We computed the RMSE between the mean belief
of our approach and the ground truth joint actuation state of
the drawers, averaged over all time-steps and all recording
sessions. The RMSE is plotted in Figure 9. We show the
RMSE for the full time-series (total), but also separately for
the phase of the task when the light is turned on (light on) and
when it is turned off (light off ). For all four drawers we can
see the same ordering of estimation performance. Compared
to the vision-only approach [15], our audio-visual approach
performs better, except for phases of the task where the visual
conditions are ideal (light on). We suspect that, also in this
condition, the audio-visual approach could reach the same
performance as the purely visual one if we properly tuned
the measurement noise for each of the sensor models.

This analysis confirms our hypothesis that sound is a
powerful sensor modality that augments and complements
vision-based kinematics estimation. Although the sound-
based approach is less precise than the visual one, it can be
applied in situations that are challenging for purely vision-
based perception. Using sound in kinematics estimation
enables perception in categorically different, more challeng-
ing conditions. Further, the audio-visual fusion approach is
precise and robust, which provides further evidence that
multimodality is a key ingredient for robust perception.

C. Limitations

While our work confirms that we can track the state of a
drawer using audio, this work is still subject to limitations.

The approach assumes that a single, well trackable sound-
source is in the scene. We informally observed that the
system is robust against light background noise, like audible
footsteps, but a principled analysis of its sensitivity to noise is
still pending. Denoising the input could increase robustness.

Related, the system cannot disambiguate sound from
different kinematic joints. This would be necessary to
solve complex kinematic problems, such as mechanical puz-
zles [21]. We could enable multi-joint tracking by performing

Fig. 9. RMSE of the joint position estimate calculated for all sessions per
drawer. By fusing audio with vision measurements (blue), we are able to
decrease the error when there is no vision support.

probabilistic data association [22].
Further, the system currently needs to be bootstrapped

by vision. We only track the articulation state of a known
prismatic joint that the system could first visually perceive.
We expect that it will be difficult to completely alleviate
this restriction, but by actively moving the directional micro-
phone we may be able to extract more spatial information.

Another challenge is generalization between different
kinematic structures, which we do not address in this work.
Assessing and improving the system’s generalization capa-
bilities would be an important next step.

VI. CONCLUSION

We analyzed the regularities that govern how the speed of
a drawer shapes its sound and used these regularities in a
model that tracks the motion of drawers. Our analysis shows
that drawers sound louder and higher in pitch when they are
actuated with higher velocity. We trained a regression model
to predict motion from sound, and our analysis shows that it
is also tuned to use these features. We then fused this sound-
based motion estimate into an existing vision-based kinemat-
ics estimation framework. The resulting system bolsters the
vision-based estimation framework with increased robustness
to conditions with deteriorated visual inputs. This shows that
sound is a promising sensor modality that can complement
visual estimation of motion in articulated objects. Such
complementarity of sensor modalities is a key ingredient to
make robotic perception systems robust. It will be interesting
to explore the limits of sound-based kinematics estimation in
future work.
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