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Abstract—As the structure of the environment plays an im-
portant role for a motion planners success we introduce the
environment design problem into the motion planning process.
This problem requires the environment designer to plan for
adding features to the environment to e.g. reduce uncertainty,
shorten paths etc. without blocking the path to the goal. A contact
based motion planner from our previous work serves as baseline
algorithm. We demonstrate the advantages of environmental
design in simulation through manual landmark insertion in
identified map areas. As result of our proposed strategy to modify
the environment, paths are found faster and with higher goal state
and overall certainty as well as we achieve a better free-space
map exploration rate.

I. INTRODUCTION

Environment design planning is common practice and ap-
plied to multiple areas. Industrial automation is a good exam-
ple for highly engineered environments through part feeders
[2, 3, 4], fixtures [5] and conveyor belt systems [10]. And there
are further real life examples of natural and less structured
environments in which the environment contains consequences
of thoughtful investigation and planning to provide ideal con-
ditions for a particular task. We refer to them as Environmental
Constraints (ECs) as defined by Eppner et al. [7]. Especially
in environments designed for humans, we find manufactured
ECs to fulfill diverse expectations on safety (safety rail), ease
(coin slots), guidance (traffic signs), comfort (room divider),
productivity (office compartmentation) and feedback (coloring
of a pressed button). It is hardly surprising that in robotics
where we mainly aim for safety and high precision we are in
the need of similar environment features. To satisfy regulations
on safety robots operate in cages or behind shatterproof glass,
get equipped with more and more sensors or get softer and
more compliant. If feasible, high precision can be achieved
by improving sensorization or actuation. However, not always
can we change those, as we can not change humans, and
can alternatively facilitate the reduction of uncertainty by
modifying the environment.

Environmental design can range from modifying to adding
or removing parts in the environment up to the extreme of
designing an environment from scratch. Various research areas
investigated modifying ECs. A common issue of motion plan-
ning has been addressed in the literature under the question:

Both authors are with the Robotics and Biology Laboratory, Technische
Universität Berlin, Germany. We gratefully acknowledge the funding provided
by the Alexander von Humboldt foundation and the Federal Ministry of
Education and Research (BMBF) and by the European Commission (EC,
SOMA, H2020-ICT-645599).

(b) Without landmark insertion

(c) With landmark insertion in uncertain map areas

Fig. 1. With the targeted landmark placement strategy proposed in this paper
1(c) we are able to reduce the uncertain map areas in size or eliminate them
completely. Furthermore, the tree generated by the planner is much sparser
since the solution is found quicker than without landmark insertion 1(b).
The landmarks are placed based on the uncertainty map (grey blobs). The
environment is colored in grey, the goal configuration in yellow and landmarks
in pink.

”What to do when no plan can be found?” [8] and it got an-
swered by multiple papers with Minimal Constraint Removal
(MCR) [9], which proposes to remove the fewest geometric
constraints such that the planner can find a path from the start
to the goal. In a biological context Denarie et al. [6] formulated
the simultanous design and path planning problem (SDAP)
based on the Transition-based Rapidly-exploring random tree
(T-RRT). They explored all possible environment designs and
their cost-functions and aim to solve for the best path-design
pair. In swarm theory Becker et al. insert obstacle mazes into
an environment to transform an unsorted swarm of particles
into a target configuration [1]. To our knowledge, the idea of



adding to a motion planner that exploits contact deliberately
placed ECs which serve as landmarks to ensure uncertainty
reduction in a particular dimension is not discussed in any
prior work.

Why do we refer to them as landmarks, are they not simply
additional obstacles that the planner has to cope with? Well,
inserting an obstacle into the map of a motion planner that
needs contacts to reduce state uncertainties is like throwing a
sugar cube into a bacteria culture. The objective of this paper
is to illustrate the benefits of targeted obstacle placement and
to get you instead of questioning the success, start wondering
how much and in which form and distribution the sugar
should be added. So back to our landmark problem we want
to guide you to the following questions:

How many landmarks are helpful to add, and when is it too
many? Where should the landmark be placed? What shape
should a landmark have?

II. ENVIRONMENT DESIGN PROBLEM

We make a first analysis of the Environment Design Prob-
lem in context of a motion planning algorithm that exploits
contact. A motion planner that is aware of its weak spots
in the environment such as impasses, detours or high state
uncertainties could suggest environment modifications such as
closing impasses, removing walls for direct paths or adding
features to reduce uncertainties. The Environment Design
Problem can be arbitrarily complex. The spectrum of envi-
ronment design ranges from not changing to fully changing
the environment. However, neither extreme is favorable. If
we are not modifying the environment we can not optimize
it for planning. On the other hand, engineering the optimal
motion planner environment by iterating over all possible
scene designs is not efficient. Therefore the target of our work
lies within this spectrum but with the focus on the lower end
as we are seeking for minimal invasive solutions.

We define the overall Environment Design Problem as the
search for the minimal set of landmarks L = {l1, . . . lN}
such that their removal or placement to a scene optimizes
planning either in speed, quality or quantity of solutions. In
this abstract however we concentrate on adding landmarks to
limit the design space and therefore we seek for the minimum
set of L.

III. ENVIRONMENT DESIGN FOR MOTION PLANNING
WITH CONTACT

We are investigating the environment design in the context
of a planner that models the state uncertainties as particle
sets such as the one proposed by Philips-Grafflin et al.
[11] which showed that contact can be used in the RRT to
reduce uncertainty. Moreover, our previous work (CERRT, by
Sieverling et al. [12]) demonstrated that integrating contact
exploiting actions in the planner increases the robustness. Sen-
sors such as simple force-torque sensors turn surfaces, walls
and edges into landmarks that guide the robot through the map
and ensure the robot to reach its task constraints with high

certainty. However, in large maps or in maps of insufficient
or unfavorable EC availability additional contacts are needed
to prevent the motion planner from dropping the states of low
certainty. In the context of our previous work and motivated
by our daily life EC experience we consider the environment
as a fully controllable variable that can be designed arbitrarily,
by adding constraints while aiming for a minimally invasive
solution that optimizes a given environment for planning with
low uncertainties.

A. Contact-Exploiting RRT (CERRT)

The concept behind the Contact-Exploiting RRT (CERRT)
is that free-space motion, connect steps, on which the classical
RRT depends are very costly when considering uncertainty.
In CERRT each state of the RRT tree is modeled as a
set of particles Q = {q1, . . . qN} which can be simplified
with an ellipsoid shape defined by the covariance matrix Σ.
While free-space motions increase the state uncertainty, con-
tact with the environment decreases it. CERRT defines three
additional actions (see Fig. 2) that make use of this fact
under the assumption that contact sensing is reliable and
contact information is available to the planner at any time.
The three actions: guarded-move, slide and guarded-slide can
be sequenced with connect actions to ensure the exploitation
of contacts to reduce uncertainty.

(a) Connect (b) Guarded move

(c) Guarded slide

Fig. 2. S1 indicates the uncertainty ellipsoid before and S2 after a CERRT
action is applied. Whereas connect increases the uncertainty a guarded move
and guarded slide decrease the uncertainty in each case in the motion direc-
tion. The slide action itself is not shown explicitly but implicitly illustrated
in the guarded slide - while in contact with the surface the uncertainty in the
opposite direction to the moving direction is not increasing. (figures adjusted
from [12])

B. State Uncertainty Map

CERRT is aware of the uncertainty at each state that is
inserted in the tree, but the overall uncertainty distribution
of the states is not considered during the planning process.
To detect areas in which high uncertainties appear during the
planning we extended the CERRT algorithm with a state un-
certainty map. In an offline process we build the CERRT tree
and construct a state uncertainty map where the uncertainty at
each state is the trace of the covariance matrix tr(Σ) which



represents the state uncertainty ellipsoid. The uncertainty map
can be seen as mirror of the explored scene and is therefore
dependent on a particular start and end configuration.

The right column of Fig. 1 shows the uncertainty map - only
states with tr(Σ) > 0.1 are plotted to emphasize the uncertain
areas.

C. Modifying the Environment

We want to place landmarks such that the planner is
able to receive feedback frequently while exploring the map.
Therefore we have to address the three initial questions that
we raised regarding landmark placement, shape and quantity.

As we are aiming to reduce uncertainties in the contact
motion planning process we base our landmark placement
on the map of uncertainty described in the previous section.
Whereas hitting the wall decreases the uncertainty only in
one of the dimensions, hitting a corner or edge decreases
the uncertainty in both dimensions. We identify regions of
high uncertainty, and cluster the particle sets accordingly:
c = {Q1, . . .QN}, c ∈ c. In each cluster region we place
a landmark with varying size proportional to the size of the
uncertain area. Since in CERRT corners and edges result in
the most effective uncertainty reduction we use box shaped
landmarks, such that a landmark li(dima,b,c, T ) ∈ L is fully
defined by its dimensions dima,b,c and pose T . However,
only if an uncertain area is surrounded by free space we
place a landmark in the center of the uncertain cluster. For
clusters that align with an EC we have to ensure that we are
not blocking passages to the goal by decreasing the passage
width or generating additional narrow passages. Furthermore
the direction of the landmark placement matters as we are
considering uncertainty in both dimensions. In the experiment
shown in Fig. 3, in the unmodified environment, most of the
paths end up with a high uncertainty ellipsoid which simply
does not allow for entrance to the narrow passage in which the
goal configuration is located. In this case adding landmarks
to the uncertain areas reduces the overall uncertainty and
decreases the runtime. However, placing the obstacle such as
it closes the impasse which is not relevant to the planner
leads to even better results. This information however, is
not encapsulated in the uncertainty map and needs further
investigation.

Experiments in which we investigated if it is rather
favourable to add multiple objects into an uncertain area than
simply one object did not lead to clear results yet.

D. Environment Design Problem

We now can formulate our goals of Sec. II in context of
CERRT as the following minimization problems regarding
uncertainty, invasiveness and map exploration rate.

min


|c|∑
j=1

|Q|∑
i=1

tr(ΣQicj )

 (1)

min


|Qgoal|∑
i=1

tr(ΣQgoali
)

 (2)

We define Q as the set of all beliefs Q explored by CERRT
and with Qgoal the set of all beliefs with µ < εgoal, where εgoal

is the allowed distance to the goal configuration, such that
Qgoal ⊂ Q. Both equations (1), (2) formulate minimization
problems which target the reduction of the CERRT exploration
uncertainty in the map. Here it should be noted that Eq. (1)
can follow the same objectives as Eq. (2), but (1) 6= (2).

min {|L|} (3)

min


|L|∑
i=1

Vli

 (4)

min
{
CfreeL

CexplL
·
Cexpl

Cfree

}
(5)

The above equations (3), (4), (5) formulate that we seek for
the least invasive set L. We define the map free configuration
space as Cfree = Cmap−Cobstacles and with Cexpl the configuration
space in which CERRT explores beliefs. The volume of a
landmark box is defined with Vl = a · b · c. Therefore we
minimize over landmark (3) quantity; (4) volume; and (5) the
increment of the unreachable area after placement of L.

min
{
Cfree

Cexpl

}
(6)

Minimizing the unexplored areas in Eq. (6) is only reasonable
if we combine it with the search for the least invasive solution.

IV. EXPERIMENTS

Our expectations on the experiments discussed in this
section are that with the targeted landmark placement into
uncertain areas we achieve robuster motion plans. We were
able to show that the landmarks reduce uncertainty which leads
to sparser trees due to less computation time and higher goal
state certainty.

We considered two different scenes. In the scene of Fig.1
a small overhang allows to reduce uncertainty right before
entering the narrow passage, whereas the scene of Fig.3
contains two narrow passages without this beneficial EC. The
scene presented in Fig. 1 we consider to be a good baseline,
since the environment contains no extreme challenges for the
planner other than distance.

We run the CERRT algorithm and while building the tree,
the uncertainty map is constructed. The thresholded uncer-
tainty map (tr(Σ) > 0.1) reveals the uncertain areas in which
we manually place box-shaped landmarks scaled according to
the size of an uncertain area. We place a box shaped robot



(a) Without LM insertion (b) With LM insertion into the uncertain areas (c) With LM insertion to close the narrow passage

(d) Motion plan overlayed with (a). (e) Motion plan overlayed with (b) (f) Motion plan overlayed with (c)

Fig. 3. CERRT needs around 4 minutes to find the entrance of the narrow passage that leads to the goal and approx. 18 minutes to actually reach the goal
(left column). After multiple landmark insertion (middle column), into the uncertain areas, the planner reaches the goal in around ∼10 min and after single
landmark insertion (right column), targeted to close the narrow passage, in less than a minute.

(yellow box) into arbitrarily but fixed places. In the figures
the box is indicating the goal robot configuration. We assumed
zero initial uncertainty of the robot state and if the robot moves
through the map a high linear motion error σv = 0.2. This
motion uncertainty corresponds to 0.2 rad error increment on
1 rad distance. The CERRT planners action selection (Fig.
2) was regulated through γ = 0.5 so that it equally favors
exploiting and avoiding the environment. We chose a high
goal error threshold εgoal = 0.8 in the case of the narrow
passage experiment (Fig. 3) and a low εgoal = 0.05 in the
initial example of (Fig. 1).

For 5 iterations of the narrow passage problem (Fig. 3)
the CERRT algorithm without landmark insertion finds the
entrance to the narrow passage after ∼4 min and needs in
total an average time of ∼18.5 min to find a solution. Inserting
multiple landmarks into the identified uncertain areas, leads to
a runtime of ∼9.9 min. The planner needs only ∼0.65 min
in the single landmark insertion experiment that closes the
narrow passage identified as impasse.

The results can be explained by recalling the CERRT
actions. In CERRT a corner decreases uncertainty in two

dimensions, therefore adding the single landmark that stops
the algorithm from exploring the impasse is decreasing the
state uncertainty straight before entering the narrow passage.
This enables the ellipsoid to easily fit into the narrow passage,
whereas multiple states get dropped by CERRT without this
uncertainty reduction in the unmodified environment. Similarly
to this reasoning, the same benefits increase the planner
efficiency in terms of speed and uncertainty reduction within
the multiple landmark insertion experiment.

V. CONCLUSION AND FUTURE WORK

The purpose of this paper is to draw attention to the oppor-
tunities that lie in environment design for motion planning.
We focused on motion planning with contact and illustrated
the concepts based on a state uncertainty map of the scene and
manual landmark insertion. Through targeted landmark inser-
tion in the uncertain areas we could show that the uncertainty
in the CERRT planning process can be kept low. Our next
steps are to automate this process of uncertainty area detection
and landmark placement to achieve a general solution for
arbitrary start and goal states, therefore we are aiming for an



analytical approach which allows us to estimate the uncertain
areas automatically. Furthermore, our experiments on the ideal
landmark placement, shape and quantity are preliminary and
we are going to further investigate their effect on the planning
results.

In this work we exclusively considered adding ECs (land-
marks) to the map, however there are of course additional
features an environment design planner could aim for. Re-
moving ECs could be equally beneficial in multiple cases as
addressed with the MCR problem. In the context of CERRT
we could imagine MCR for freeing up space to avoid detours,
removing walls that block paths to the goal or shape narrow
passages. In a parallel work we are extending the CERRT
planner with reactivity for ambiguous states. However, from
an offline planning perspective we consider ambiguity as
unfavourable and started also to investigate how we can change
the environment to eliminate ambiguities.
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Maertens, and Oliver Brock. Exploitation of environmental constraints
in human and robotic grasping. The International Journal of Robotics
Research, 34(7):1021–1038, 2015.
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