
Balancing Exploration and Exploitation in Motion Planning

Markus Rickert† Oliver Brock‡ Alois Knoll†
†Robotics and Embedded Systems Lab, Department of Computer Science, Technische Universität München
‡Robotics and Biology Laboratory, Department of Computer Science, University of Massachusetts Amherst

Abstract— Computationally efficient motion planning must
avoid exhaustive exploration of configuration space. We argue
that this can be accomplished most effectively by carefully
balancing exploration and exploitation. Exploration seeks to
understand configuration space, irrespective of the planning
problem, while exploitation acts to solve the problem given
the available information obtained by exploration. We present
an exploring/exploiting tree (EET) planner that balances its
exploration and exploitation behavior. The planner acquires
workspace information and subsequently uses this information
for exploitation in configuration space. If exploitation fails
in difficult regions, the planner gradually shifts its behavior
towards exploration. We present experimental results demon-
strating that adaptive balancing of exploration and exploitation
leads to significant performance improvements compared to
other state-of-the-art sampling-based planners.

I. INTRODUCTION

Sampling-based motion planners routinely solve complex,
high-dimensional planning problems. This may seem surpris-
ing, considering that the general motion planning problem [1]
is PSPACE-hard [2]. However, the configuration spaces of
many practical problems contain considerable structure that
may help in solving a planning problem. In addition, not all
parts of configuration space have to be explored to solve
a particular motion planning problem. Today’s sampling-
based planners leverage these properties of practical motion
planning problems to achieve computational efficiency.

We cast motion planning as a state space search problem,
similar to work in reinforcement learning [3], [4], to gain
insights on how to improve the computational efficiency of
motion planners. In this formulation, there are two competing
goals of planning: exploration and exploitation.

Exploration seeks to understand the connectivity of the
configuration space, irrespective of a particular motion plan-
ning problem. Exploration thus does not assess if a region
of configuration space is relevant for a particular task;
rather, it explores to improve the planner’s understanding of
configuration space. A typical example from motion planning
is the initial roadmap building phase of the basic PRM
planner with uniform random sampling [5].

Exploitation strives to determine a valid path for a specific
task, leveraging available information. Exploitation thus as-
sumes that the information available suffices to solve the
problem and just begins to act. For example, the artificial
potential field approach performs pure exploitation [6].

Guided exploration, a technique performed by most
sampling-based motion planners, improves on pure explo-
ration by leveraging available information to guide exploita-
tion based on characteristics of the underlying state space.

(a) Roadmap obtained by ADD-RRT

(b) Roadmap obtained by EET

Fig. 1. By balancing exploration and exploitation, the EET planner
reduces the amount of configuration space search required to solve planning
problems: the roadmap obtained by the EET contains fewer branches that
are not part of the final solution path (shown in green).

This guidance is directed at achieving a complete understand-
ing of the space and not at accomplishing a particular task.

Motion planning will be most efficient if exploration and
exploitation are adequately balanced. Exploration is required
to understand the connectivity of relevant configuration space
regions. Exploitation should be used whenever greedy ac-
tions can solve sub-problems quickly. A planner can achieve
computational efficiency by employing both exploration and
exploitation when appropriate, given the local and global
properties of a particular configuration space.

We present a motion planner based on exploring/exploiting
trees (EETs). This planner leverages its understanding of the
planning problem to balance exploration and exploitation.
The planner begins by acquiring information about the
workspace. It then leverages this information for exploitation
in configuration space. If exploitation fails in difficult re-

2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

978-1-4244-1647-9/08/$25.00 ©2008 IEEE. 2812

gions, the planner gradually shifts to exploration. Our exper-
imental results show that active balancing of exploration and
exploitation results in significant performance improvements,
up to several orders of magnitude, when compared to state-
of-the-art planners (see Fig. 1).

II. RELATED WORK

We classify motion planning methods based on whether
they perform exploration, guided exploration, exploitation,
or combinations thereof.

The original PRM planner with uniform random sampling
performs pure exploration [5]. The exploratory behavior is
not affected by the task or by information obtained during
the exploration. Note, however, that the refinement step of
PRM planners constitutes guided exploration.

A large number of sampling-based multi-query motion
planners perform guided exploration. They assess properties
of regions of configuration space to guide exploration. These
properties can depend on obstacles [8], [9], visibility [10], or
narrow passages [11]. Other planners use workspace infor-
mation to adapt exploration [12], [13], [14], [15]. In another
planner, global information about the entire configuration
space is used to guide exploration [16].

Artificial potential field approaches employ pure exploita-
tion [6]. The complete elimination of exploration makes these
methods computationally efficient but also susceptible to
local minima. This is also true for potential field approaches
that are applied to entire paths [17].

Many sampling-based motion planners combine explo-
ration and exploitation. However, all of these planners
perform (possibly guided) exploration and exploitation as
distinct steps of the planning process, rather than deliberately
balancing the two within a unified framework.

Fuzzy PRM [18] and Lazy PRM planners [19] initially
perform exploitation in a random configuration space graph.
When this exploitation fails, these planners perform guided
exploration to augment the graph in difficult regions.

A number of planners alternate between exploration and
exploitation. The RPP planner combines potential field-
based exploitation with random exploratory moves [20]. RRT
planners alternate exploration based on the Voronoi bias
with exploitation in the extend step [7]. When RRT planners
employ two trees, a second exploitative step is taken when
the planner attempts to connect both trees [21]. Variants of
RRT planners replace exploration based on the Voronoi bias
with guided exploration [22], [23], [24].

Other planners combine exploration and exploitation in
workspace and configuration space. Some planners ini-
tially perform efficient exploitation in the low-dimensional
workspace and subsequently use the obtained information to
perform exploitation [25], [26] or guided exploration [27]
in configuration space. Another planner performs workspace
exploration and uses the resulting information to perform
guided configuration space exploration [28].

III. EXPLORING/EXPLOITING TREE PLANNER

We develop a tree-based motion planner, called the Explor-
ing/Exploiting Tree (EET) planner, that performs exploitation

whenever possible and gradually transitions to exploration
when necessary. The planner is based on tree expansion
in configuration space, similar to RRT methods [21]. Our
objective is to carefully balance exploratory and exploitative
behavior so as to leverage the structure inherent in the
planning problem for rendering motion planning as efficient
as possible. We want to devise a planner that behaves like a
potential field planner whenever possible and gradually turns
into a complete motion planner when necessary.

The EET planner leverages three sources of information
to perform exploitation and to balance between exploitation
and exploration. To guide exploitation, the planner acquires
global connectivity information for relevant portions of the
workspace. This is achieved with a sphere-based wavefront
expansion in workspace [25], resulting in a tree of workspace
spheres. The branches of the tree capture the connectivity
of the workspace. The size of the spheres along the paths
in the tree captures the local free workspace (see Fig. 2).
These spheres and their connectivity define an approximate
navigation function over parts of the workspace [25]. The
gradient of this navigation function defines an attractive force
for a point on the robot, which “pulls” the robot towards
the goal in the workspace. The workspace force is projected
into a direction in the robot’s configuration space using the
Jacobian matrix. Exploitation uses this direction to move in
configuration space.

Exploitation is only likely to be successful when it is based
on accurate information. We therefore attempt to augment
the information represented in the workspace spheres with
more accurate information about the best configuration space
directions for exploitation. This second source of information
is derived from repulsive forces exerted by obstacles onto the
robot [6]. We combine the repulsive forces with the attractive
force derived from the workspace navigation function. The
combined force can also be projected into a direction in
configuration space using the Jacobian matrix.

To balance exploitation and exploration, the planner lever-
ages a third source of information, namely the information
obtained during the tree expansion steps. When exploitation
fails, tree expansion will become increasingly exploratory,
while successful tree expansions will lead to increasingly
exploitative behavior.

We now describe the EET planner in detail (numbers
in parenthesis refer to lines in Algorithm 1). The planner
builds a configuration space tree, much like an RRT-based
planner [21]. However, every vertex q in this tree T is
associated with a workspace frame F , consisting of the
position and orientation of a control point on the robot. This
point can be the end-effector in the case of articulated robots,
or an arbitrary point on the robot in the case of rigid body
robots. Our EET planner requires this information to leverage
workspace-based information for exploitation.

The starting configuration qstart is added to the configura-
tion space tree T (1). The sphere-based workspace expan-
sion determines a tree S of workspace spheres to capture
workspace connectivity (2, see Fig. 2). We process the tree
of workspace spheres S in depth-first fashion, considering

2813

Algorithm 1: EET(qstart, qgoal, α, β, γ)
ADD VERTEX(T, qstart)1
S ← EXPLORE(qstart, qgoal)2
forall s on depth-first traversal of solution path in S do3

σ ← 1/γ4
repeat5

pnew ← GAUSS(s.center, σ · γ · s.radius)6
Rnew ← RAND()7
qnear ← SELECT(T, pnew, Rnew)8
if σ < β then9

R∆ ← GAUSS(0, σ ·π)10
Rnew ← RnearR∆11

if qnew ← CONNECT(T, qnear, pnew, Rnew) then12
ADD VERTEX(T, qnew)13
ADD EDGE(T, qnear, qnew)14
σ ← (1− α) ·σ15

else16
σ ← (1 + α) ·σ17
if σ ≥ 1 then18

s← i− 119

until ‖pnew − s.center‖ < s.radius20

only paths through the tree that lead to the goal location (3).
The sphere s captures the free workspace volume into which
the robot is trying to move next. If the planner fails to find
a solution based on this initial path through the tree S, we
can perform backtracking.

We attempt to expand the tree T while balancing exploita-
tion and exploration. Similarly to RRT methods, we create a
configuration towards which we want the tree to expand. In
contrast to RRTs however, we determine this configuration
based on the workspace information contained in S. We want
to “pull” either the entire robot (in the case of rigid bodies)
or the robot’s end-effector (in the case of articulated robots)
into the direction indicated by the workspace connectivity
information stored in S. This enables our planner to solve a
task frame specification in workspace in addition to a specific
goal configuration [29].

The variable σ (4) balances exploration and exploitation;
its value ranges from zero to one. A value of zero indicates
pure exploitation in which the behavior of the planner
can be compared to a potential field planner based on an
approximate global navigation function [25]. σ will be used
to scale the variances of Gaussian distributions for generating
samples. We initialize σ to the reciprocal value of the
parameter γ. γ indicates how closely our planner follows
the workspace information contained in S when generating
new samples.

We sample a workspace point pnew normally distributed
around the sphere’s center with a variance that depends on
the sphere’s radius scaled by σ and γ (6). The function
GAUSS takes two parameters: the mean of the Gaussian
distribution and the width within which 99.7% of the samples
should fall (three times the standard deviation); it returns
a random sample from this distribution. We also sample
a random orientation Rnew (7). Together these parameters
define a workspace frame F . We obtain from the tree T

the configuration qnear for which the associated frame most
closely matches F (8), using adequate sampling and distance
metrics [30]. If the planner is able to perform exploitation,
as indicated by a small σ (9), we replace the uniformly
sampled orientation Rrand with one drawn from a Gaussian
distribution centered around the orientation Rnear of qnear and
a variance that is scaled by σ (10, 11).

Next, we attempt to connect frame (pnew, Rnew) to the tree
T (12). The connect step is described in Algorithm 2; it is
identical to the connect step for RRT-based planners [21].
Upon success, we add the penultimate vertex (13) and the
corresponding edge (14) to the tree T and reduce the value
of σ (15). This reduction causes the planner to shift towards
exploitation. If the connection attempt fails, we increase σ
and shift the balance towards exploration (17). If σ reaches
the exploration limit (18), we backtrack to the previous
sphere (19). The series of expansion steps ends when the
boundary of the sphere s has been reached (20).

To complete the description of the EET planner, we
now discuss the extend step (Algorithm 3) used by the
connect algorithm (Algorithm 2). The extend step moves
the frame F associated with configuration qnear towards the
frame (pnew, Rnew) and determines the corresponding new
configuration qnew. This is accomplished by first determining
the vector ∆x, pointing from the existing frame towards
the new frame (1). This displacement is translated into a
displacement in configuration space using the pseudo-inverse
of the Jacobian (2). Based on the resulting ∆q, a new
configuration qnew is determined (3). If it is collision free,
we return qnew, otherwise we report failure. Repulsive forces
from obstacles can be translated into configuration space
directions in a similar fashion.

IV. EXPERIMENTAL RESULTS

Our goal is to demonstrate the importance of carefully
balancing exploration and exploitation in motion planning.
We validate the proposed EET planner by comparing its
performance with that of a PRM planner with uniform
sampling (abbreviated as PRM in Table I) [5], PRM with
Gaussian sampling (Gaussian PRM) [9], PRM with bridge

Algorithm 2: CONNECT(T, qnear, pnew, Rnew)
while qnew ← EXTEND(T, qnear, pnew, Rnew) do1

qnear ← qnew2

return qnew3

Algorithm 3: EXTEND(T, qnear, pnew, Rnew)
∆x← |(pnear, Rnear)(pnew, Rnew)|1
∆q ← J∗(qnear)∆x2
qnew ← qnear + ∆q3
if FREE(qnew) then4

return qnew5
else6

return7

2814

(a) (b) (c) (d)

Fig. 2. Experimental scenarios: a) free-flying, three-dimensional box in a maze; b) free-flying, three-dimensional cube in a maze with little clearance to
the walls; c) stationary, 6 degree-of-freedom manipulator arm with initial and final configurations inside a narrow passage; d) 10 degree-of-freedom mobile
manipulator UMan with similarly constrained initial and final configurations. The spheres from the sphere-based workspace expansion are shown in green.

test (Bridge PRM) [11], RRTConnect with one tree (RRT-
Connect), RRTConnect with two trees (RRTConnect2) [21],
and adaptive dynamic-domain RRT (ADD-RRT) [23]. For
these planners, we used a nearest neighbor search based on
KD trees [31], with k = 30 for all PRM variants. Our planner
uses a single tree to explore configuration space. We thus
believe that the performance increase afforded by balancing
exploration and exploitation can most accurately be assessed
by comparing the EET planner to RRTConnect with one tree.

Our experiments are performed in four scenarios. The first
scenario (see Fig. 2(a)) consists of a 30 m × 30 m × 2 m
large maze with walls that are 2 m apart from each other.
The robot is a free-flying rigid box (six degrees of freedom,
3 m × 0.5 m × 0.5 m) moving from the lower left side of
the maze to a position on the top right. Due to the length of
the robot and the distance to the walls, traveling through the
corners of the maze is difficult and requires exploration. The
straight corridors can be solved by exploitation, provided the
robot is aligned with the walls.

In the second scenario, a larger box (1.5 m × 1.5 m ×
1.5 m) moves through the same maze (see Fig. 2(b)). The
clearance to the walls is very small so that motion through
the straight corridors becomes much more difficult.

The third scenario uses a stationary 6 degree-of-freedom
manipulator (see Fig. 2(c)). The task consists of finding a
way out of the first hole and into a different hole. Both holes
represent narrow passages in the configuration space.

In the last scenario, the holonomic, 10 degree-of-freedom
mobile manipulator UMan (UMass Mobile Manipulator) is
placed in a 5 m× 5 m× 2.5 m large room (see Fig. 2(d)). It
has to perform the same task as the stationary manipulator,
but the holes are further apart and the robot has to move its
base to reach from one hole to the next.

Table I summarizes our results, averaged over 20 trials;
numbers in parenthesis indicate the standard deviation. If
a planner was not able to solve a problem within 20 min,
the experiment was aborted and we report the number of
vertices, edges and collision detections up to that point.
For the EET planner, the computation cost of workspace
information based on the sphere-based wavefront expansion
is negligible (never exceeded 0.5 s) and is included in the

total reported planning time. The parameters of the EET
planner were set to α = 0.01, β = 0.08, γ = 18.

Scenario a) All planners solve this problem within the
time limit of 20 min. The single query methods have the
advantage of focusing on the correct area of the maze, but
still spend considerable time exploring straight corridors in-
stead of performing exploitation. The multi-query approaches
waste computational resources exploring irrelevant config-
uration space regions but still perform better than classic
single-query planners in this example. The EET planner is
able to perform exploitation in the straight corridors. In the
tighter turns, it shifts towards exploration. The resulting EET
roadmap has far fewer vertices than that of any other method.
The computed path exhibits less of the zigzaggy behavior
commonly observed in sampling-based motion planning.

An interesting measure to assess the effectiveness of
exploitation is the percentage of collision checks for which
the tested configuration was in free space. For an ideal
planner this percentage would be 100%, indicating that
available information is leveraged to effectively guide the
planner through the free configuration space. In this scenario,
this percentage was 16% for RRTConnect and 26% for
RRTConnect2. In comparison, 89% of the configurations
checked by the EET planner were free of collision.

Scenario b) The EET planner is the only planner capable
of solving this task every time in less than 20 min. The
RRTConnect variants with two trees achieve success rates
between 85 and 90%. The reduced clearance around the
robot makes it difficult for other tree-based methods to move
through the straight, narrow corridors. The PRMs have diffi-
culties placing valid samples in the corridors. Again, the EET
planner benefits from its ability to balance exploitation and
exploration. In the straight corridors, it performs exploitation
using the workspace information. In the more difficult turns,
the planner increases exploratory behavior, as indicated by
the increased number of vertices and edges in the resulting
roadmap. In this scenario, only 2% of the RRTConnect2’s
collision checks were placed in free configuration space,
compared to 54% for the EET planner.

For this most difficult scenario, we tested an additional
source of information for exploitation. As described in

2815

TABLE I
COMPARISON OF PLANNER PERFORMANCE IN FOUR EXPERIMENTAL SCENARIOS (STANDARD DEVIATION IN PARENTHESES).

Scenario Planner Vertices Edges Collision Checks Time (s) %

(a)

PRM 11,783 (4,560) 11,684 (4,529) 1,410,541 (428,159) 15.2 (6.0) 100
Gaussian PRM 9,543 (2,526) 9,455 (2,508) 1,291,460 (275,173) 12.4 (3.2) 100
Bridge PRM 9,338 (2,965) 7,764 (2,469) 2,114,102 (597,712) 18.4 (5.8) 100
RRTConnect 15,973 (4,783) 15,972 (4,783) 825,590 (258,647) 130.6 (52.6) 100
RRTConnect2 10,366 (2,332) 10,364 (2,332) 441,148 (148,455) 50.0 (22.5) 100
ADD-RRT 9,916 (3,374) 9,914 (3,374) 223,749 (74,377) 39.4 (24.7) 100
EET 288 (49) 287 (49) 9,563 (919) 1.2 (0.1) 100

(b)

PRM 350,157 (3,021) 339,582 (2,943) 57,981,363 (461,026) 1,200.0 (0.0) 0
Gaussian PRM 369,347 (3,787) 358,269 (3,684) 63,948,945 (584,712) 1,200.0 (0.0) 0
Bridge PRM 277,910 (649) 202,089 (548) 97,810,673 (185,560) 1,200.0 (0.0) 0
RRTConnect 12,797 (2,522) 12,796 (2,522) 7,601,936 (349,121) 1,200.0 (0.0) 0
RRTConnect2 7,554 (3,499) 7,552 (3,499) 3,295,736 (3,984,754) 384.1 (455.1) 85
ADD-RRT 5,672 (1,554) 5,670 (1,554) 294,238 (332,154) 179.3 (352.6) 90
EET 942 (206) 941 (206) 18,874 (8,044) 4.6 (3.4) 100
EETRepulsive 329 (263) 328 (263) 7,817 (2,420) 1.9 (0.7) 100

(c)

PRM 143,934 (19,245) 143,813 (19,230) 8,948,412 (1,077,893) 1,158.3 (150.2) 10
Gaussian PRM 2,633 (1,932) 2,613 (1,924) 438,030 (266,766) 43.6 (26.7) 100
Bridge PRM 2,660 (1,989) 2,478 (1,866) 532,231 (328,777) 53.9 (33.3) 100
RRTConnect 286,521 (2,813) 286,520 (2,813) 10,282,837 (84,377) 1,200.0 (0.0) 0
RRTConnect2 642 (218) 640 (218) 30,389 (17,034) 2.8 (1.5) 100
ADD-RRT 893 (402) 891 (402) 33,109 (29,763) 3.0 (2.6) 100
EET 46 (47) 45 (47) 2,957 (2,402) 1.0 (0.7) 100

(d)

PRM 436 (617) 435 (617) 103,387 (128,881) 28.0 (34.3) 100
Gaussian PRM 802 (1,583) 801 (1,582) 187,029 (319,531) 52.8 (90.6) 100
Bridge PRM 585 (562) 543 (522) 166,499 (148,905) 45.6 (40.2) 100
RRTConnect 46,835 (16,712) 46,834 (16,712) 3,724,356 (1,276,819) 1,048.8 (371.6) 15
RRTConnect2 185 (100) 183 (100) 9,914 (7,010) 2.2 (1.6) 100
ADD-RRT 121 (66) 119 (66) 5,991 (5,309) 1.3 (1.2) 100
EET 26 (12) 25 (12) 1,269 (215) 1.2 (0.2) 100

Section III, we combine the attractive force provided by
the workspace spheres with repulsive forces from obstacles.
This additional information should further guide exploration
towards the correct direction in configuration space. Indeed,
as indicated by the results reported for EETRepulsive, this
additional information reduces the number of vertices and
edges required to solve the planning problem, relative to
EET. This demonstrates that the EET planner is able to
balance exploration and exploitation adequately. When more
accurate information is available for exploitation, the planner
shifts further towards exploitative behavior. Collision checks
performed by the EETRepulsive planner are 95% collision
free, indicating that our planner leverages the available
workspace information to perform highly effective config-
uration space search.

Scenario c) The PRMs with Gaussian and Bridge sam-
pling are the only PRM variants able to solve this scenario
reliably. The roadmap mainly covers the open configuration
space regions around the robot’s base. The resulting path
was of poor quality. In contrast, the RRT variants with two
trees are able to solve this scenario much more efficiently.
The EET planner benefits from balancing exploitation and
exploration. Exploitation enables the robot to withdraw from
narrow passage quickly. The same is true for the insertion
into the narrow passage. The resulting path is smooth,
indicating that little unnecessary exploration was performed.

Scenario d) In this scenario, the PRM with uniform
sampling succeeds in all trials. The RRTConnect variants
with two trees solve this task faster than the third scenario.

This is due to the fact that the robot has more degrees of
freedom and a suitable direction for expansion is easier to
find. The single tree variant is mostly unable to solve the
narrow passage leading to the goal configuration. Again, the
EET planner’s ability to balance exploration and exploitation
results in the best planning performance.

Summary: The behavior of PRM planners is governed by
exploration. As a result, they waste computational resources
on attempting to understand the entire configuration space.
In our test scenarios, RRTConnect planners with two trees
benefit from the fact that their exploration is seeded with the
initial and final configuration of the robot, both of which are
inside the only two narrow passages. Once the RRTConnect
planners have found a way out of the narrow passage, the
connect step (exploitation) allows them to solve scenarios 3
and 4 efficiently. However, as scenario 3 illustrates, the
exploratory behavior of RRT variants has difficulties in find-
ing paths into narrow passages. The failure of RRTConnect
with a single tree to solve scenarios 3 and 4 supports this
observation.

The EET planner outperforms all other planners in all of
the experiments. It is able to overcome the difficulties of
PRM-based and RRT-based planners by carefully balancing
exploration and exploitation. Using workspace information,
it performs exploitation without getting trapped in irrelevant
regions of configuration space. The ability to balance ex-
ploration and exploitation during tree expansion based on
the difficulty of local configuration space leads to highly
effective motion planning. The paths generated by the EET

2816

planner are of higher quality that those generated by other
sampling-based planners.

We believe that the EET planner would fail or perform
poorly for problems such as the alpha puzzle, where helpful
workspace information is difficult to obtain. This is because
the current version of the EET planner cannot perform pure
exploration; its exploratory behavior is always guided by
workspace information.

V. CONCLUSION

We propose a new categorization of sampling-based plan-
ning methods. This categorization relies on the concepts of
exploration and exploitation, commonly used to characterize
reinforcement learning techniques [3], [4]. Our discussion
reveals that existing sampling-based motion planners do not
deliberately balance between exploration and exploitation.

We argue that balancing exploration and exploitation is the
most effective way of minimizing the amount of configura-
tion space exploration required to solve a motion planning
problem. We present an exploring/exploiting tree (EET) plan-
ner that deliberately balances exploration and exploitation
based on information about the workspace and configura-
tion space. Workspace information is used to avoid getting
trapped globally. Information about specific regions of the
configuration space is acquired during configuration space
sampling. This information is used to adjust the balance
between exploration and exploitation in accordance with the
difficulty of the local planning problem. Our experimental
results demonstrate that the balancing of exploration and
exploitation performed by the EET planner leads to greatly
improved planning performance in a variety of difficult, real-
world motion planning problems.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for constructive com-
ments and Yuandong Yang for helpful discussions about
the definition of exploration and exploitation. We gratefully
acknowledge support by the EU FP6 IST Cognitive Systems
Integrated Project JAST (FP6-003747-IP) and by the Na-
tional Science Foundation under grants CNS-0454074, IIS-
0545934, CNS-0552319, and CNS-0647132.

REFERENCES

[1] S. M. LaValle, Planning Algorithms. Cambridge University Press,
2006.

[2] J. H. Reif, “Complexity of the mover’s problem and generalizations,”
in Proc. of the Symposium on Foundations of Computer Science, 1979,
pp. 421–427.

[3] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. MIT Press, 1998.

[4] S. Thrun, “The role of exploration in learning control,” in Handbook
of Intelligent Control: Neural, Fuzzy and Adaptive Approaches, 1992.

[5] L. E. Kavraki, P. Švestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Transactions on Robotics and Automation, vol. 12,
no. 4, pp. 566–580, 1996.

[6] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” Intl. J. of Robotics Research, vol. 5, no. 1, pp. 90–98, 1986.

[7] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” Iowa State University, Technical Report 98-11, 1998.

[8] N. Amato, O. Bayazit, L. Dale, C. Jones, and D. Vallejo, “OBPRM: An
obstacle-based PRM for 3D workspaces,” in Proc. of the Intl. Work-
shop on the Algorithmic Foundations of Robotics, 1998, pp. 155–168.

[9] V. Boor, M. H. Overmars, and A. F. van der Stappen, “The Gaussian
sampling strategy for probabilistic roadmap planners,” in Proc. of the
IEEE Intl. Conf. on Robotics and Automation, 1999, pp. 1018–1023.

[10] T. Siméon, J.-P. Laumond, and C. Nissoux, “Visibility-based proba-
bilistic roadmaps for motion planning,” Journal of Advanced Robotics,
vol. 14, no. 6, pp. 477–494, 2000.

[11] D. Hsu, T. Jiang, J. Reif, and Z. Sun, “The bridge test for sampling
narrow passages with probabilistic roadmap planners,” in Proc. of the
IEEE Intl. Conf. on Robotics and Automation, 2003, pp. 4420–4426.

[12] M. Foskey, M. Garber, M. C. Lin, and D. Manocha, “A Voronoi-based
hybrid motion planner,” in Proc. of the IEEE/RSJ Int. Conference on
Intelligent Robots and Systems, vol. 1, 2001, pp. 55–60.

[13] C. Holleman and L. E. Kavraki, “A framework for using the workspace
medial axis in PRM planners,” in Proc. of the IEEE Intl. Conf. on
Robotics and Automation, 2000, pp. 1408–1413.

[14] J. P. van den Berg and M. H. Overmars, “Using workspace information
as a guide to non-uniform sampling in probabilistic roadmap planners,”
Int. J. of Robotics Research, vol. 24, no. 12, pp. 1055–1071, 2005.

[15] Y. Yang and O. Brock, “Adapting the sampling distribution in PRM
planners based on an approximated medial axis,” in Proc. of the IEEE
Intl. Conf. on Robotics and Automation, 2004, pp. 4405–4410.

[16] B. Burns and O. Brock, “Toward optimal configuration space sam-
pling,” in Proc. of Robotics: Science and Systems, 2005, pp. 105–112.

[17] B. Baginski, “Local motion planning for manipulators based on shrink-
ing and growing geometry models,” in Proc. of the IEEE Intl. Conf. on
Robotics and Automation, 1996, pp. 3303–3308.

[18] C. L. Nielsen and L. E. Kavraki, “A two level fuzzy PRM for
manipulation planning,” in Proc. of the IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems, 2000, pp. 1716–1722.

[19] R. Bohlin and L. E. Kavraki, “Path planning using lazy PRM,” in
Proc. of the IEEE Intl. Conf. on Robotics and Automation, 2000, pp.
521–528.

[20] J. Barraquand and J.-C. Latombe, “A Monte-Carlo algorithm for
path planning with many degrees of freedom,” in Proc. of the IEEE
Intl. Conf. on Robotics and Automation, 1990, pp. 1712–1717.

[21] J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach
to single-query path planning,” in Proc. of the IEEE Intl. Conf. on
Robotics and Automation, 2000, pp. 995–1001.

[22] B. Burns and O. Brock, “Single-query motion planning with utility-
guided random trees,” in Proc. of the IEEE Intl. Conf. on Robotics
and Automation, 2007.

[23] L. Jaillet, A. Yershova, S. M. LaValle, and T. Siméon, “Adaptive tuning
of the sampling domain for dynamic-domain RRTs,” in Proc. of the
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, 2005, pp.
2851–2856.

[24] S. Rodrı́guez, X. Tang, J.-M. Lien, and N. Amato, “An obstacle-based
rapidly-exploring random tree,” in Proc. of the IEEE Intl. Conf. on
Robotics and Automation, 2006.

[25] O. Brock and L. E. Kavraki, “Decomposition-based motion planning:
A framework for real-time motion planning in high-dimensional
configuration spaces,” in Proc. of the IEEE Intl. Conf. on Robotics
and Automation, 2001, pp. 1469–1474.

[26] Y. Yang and O. Brock, “Elastic roadmaps: Globally task-consistent
motion for autonomous mobile manipulation,” in Proc. of Robotics:
Science and Systems, 2006, pp. 279–286.

[27] ——, “Efficient motion planning based on disassembly,” in Proc. of
Robotics: Science and Systems, 2005, pp. 97–104.

[28] E. Plaku, L. E. Kavraki, and M. Y. Vardi, “Discrete search leading
continuous exploration for kinodynamic motion planning,” in Proc. of
Robotics: Science and Systems, 2007.

[29] M. Stilman, “Task constrained motion planning in robot joint space,”
in Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems,
2007, pp. 3074–3081.

[30] J. Kuffner, “Effective sampling and distance metrics for 3D rigid body
path planning,” in Proc. of the IEEE Intl. Conf. on Robotics and
Automation, 2004, pp. 3993–3998.

[31] A. Yershova and S. M. LaValle, “Improving motion-planning al-
gorithms by efficient nearest-neighbor searching,” IEEE Trans. on
Robotics and Automation, vol. 23, no. 1, pp. 151–157, 2007.

2817

