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Abstract— Sampling-based motion planning discovers the im-
plicit connectivity of a configuration space by selecting ad
connecting sets of configurations. The structure of every oo
figuration space dictates a number of optimal sets of samples
whose selection by a sampling-based planner results in a cqiete
roadmap of the space. Though it is generally computationayl
impractical to develop complete knowledge of configuration
space, each individual sample provides information about e
configuration space. We propose a new utility-guided sampig
strategy that accumulates this information into an approximate
model of the configuration space. The model is an approximatin
of both the state (obstructed or free) of individual configuations
and the connectivity of the configuration space. Our proposg
sampler uses the approximate configuration space model tolset
samples that are maximally relevant to the planning task. Tle
relevance of a sample is meaS}Jred .by its expected utility to Fig. 1. A simple configuration space for a point robot and aiméh set of
the further coverage of the configuration space roadmap. The gamples which completely represent it
utility metric blends information from both configuration s pace
state and connectivity. The planner incorporates the infomation
obtained from each sample into its approximation and uses tbse
improved models for subsequent sampling. Experimental radts Currently, sampling-based planners use one of two funda-
with an implementation of this approach to motion planning  mentally different approaches to select configurationse Th

indicate that it is capable of significantly reducing the runtime . . .
required to construct a complete roadmap for configuration first, used by probabilistic roadmap (PRM) techniques, uses

spaces with arbitrary degrees of freedom. un?form random sampling [16]. Every sample is generated
uniformly at random, independent of previous samples. The
. INTRODUCTION second, used by rapidly-expanding random trees (RRT) plan-

The efficiency of multi-query, sampling-based motion plarf€rs, places samples by wavefront expansion using a Voronoi
ning results from its implicit representation of configioat bPias [17] which progresses the wavefront more quickly talvar
space connectivity. Computing the exact boundary of confif'ge unexplored regions.
uration space obstacles is avoided by using a single sample tEach of these strategies is designed around its particular
capture a large region of configuration space. The perfocmargoal. Uniform sampling, designed for multi-query planning
of a sampling-based motion planner derives from the set @tempts to explore all of configuration space. In contrast,
samples it requires to construct a roadmap that represewg@ve front expansion is aimed at single-query planning. It
the complete connectivity of the configuration space. Witiakes the heuristic assumption that regions near theliarith
complete knowledge of configuration space structure it fal configuration are more likely to contain a solution path
possible to identify an optimal set of samples whose unidife propose an alternative to both of these fixed strategies:
of captured regions covers the entire free configuratiosespaan adaptive approach that selects configurations by agtivel
In most cases, the size of such a minimal set is quite small.examining their relevance to the current state of the motion
sampling-based planner that selects one of these optirtsal g#anner.
constructs a complete roadmap of configuration space withOur approach to sampling begins with the insight that each
minimal computation. For a simple two dimensional worldpbserved configuration provides information about configur
this set is illustrated in Figure 1. tion space structure. Neither uniform nor wavefront sanpli

Unfortunately, complete knowledge of configuration spagaake use of observed information to select configurations.
structure is generally unavailable to a motion planner amkcause they ignore this information, sampling-basedanoti
computing this structure is tantamount to solving the oiadi planners using such strategies expend computationalnesou
motion-planning problem. Despite the absence of a priah regions that are either already well represented by guevi
complete knowledge of configuration space structure, wk wilamples, known to be obstructed from past experience, or
see that an approximation of this structure can be constiuctess relevant to configuration space connectivity thannagti
from a planner’s past experience and that this approximatisamples. Using information from past experience to guide
can guide the selection of samples toward the optimal set.sampling significantly improves the relevance of the sasple



selected. Il. RELATED WORK

Results from actiye Ie_arning [8], [9], [21] show that .usingk Motion Planning
past experience to intelligently select future samplessign ] )
nificantly improve the performance of approximate modeling There have been many extensions to the uniformly random
tasks. These results inspire us to apply similar approaches@mpling strategy used by the initial PRM algorithm [16].
sampling-based motion planning. In the past we have dyecgzenerally, these extensions attempt to improve performanc
applied active learning to sampling based motion planniig [ by reducing the number of samples required to construct a

however active learning is not a perfect fit to sampling-das€°MPplete configuration space roadmap. _
motion planning. The Gaussian sampling strategy [4] and the bridge test [11]

The goals of sampling-based motion planning differ frorﬁel_ect configurations that are thogghtto be close tp qh&gml
those of machine learning. In the context of configuratidfSide narrow passages, respectively. Other heuristipkagn
spaces, active learning selects samples in an attempt te nﬁ&ategles. modlfy obstructed conﬁlgu.ratlons to discoverime
imally understand the decision boundary between obstiuctéee conﬁguraﬂ_ons. These_ hgurlsuc samplers_ use obstacle
and free space. This focus is different from sampling-basgﬂncace pro_pert|es_ [_1] or d"a“”g and contracting obacl
motion planning which only wants to maximally understang-2l to modify colliding samples into free ones. All of these
configuration space connectivity. A detailed understagdiff'ai€gies are based on uniform random sampling and require
of the boundary between obstructed and free space is o Rpmonal computatllo_nal effort to filter conflgurat!onsﬁod
important to a sampling-based motion planner in so much adhpse tho_ught heuristically to be V"’F'“ab"?- Despite thisaex
aids understanding of configuration space connectivitstten compujtatlon, only a subset of configurations se_lected by the
detail is wasted computation. Because of this distinctioi€Uristic are truly relevant to roadmap construction.
traditional methods of active learning are inappropriate f Visibility-based PRM planners [24] label configurations
motion planning. To intelligently use past experience tadgu hat act as “guards.” Such configurations capture a region of
future sampling a new method for selecting configurations §@nfiguration space containing every configuration thatdas
necessary. We call this new methotlity-guided sampling straight line path to the guard. Only configurations that are

This Sampler is not interested in Optimizing model accura not in a captured region, or connect two guards are inserted

C
but rather usefulness to motion planning. There are t\Nostyp'}e{|t0 the roadmap. The roadmaps that are constructed are

of structure in the configuration space that provide the skampts(')ggg:gazig smaller, but the visibility region is quiteynsive
with a measure of a configuration’s utility: the obstructed o pute. . . .
Two approaches calculate and use the medial axis to min-

free state of the configuration space and configuration space - . o
connectivity 9 P 9 P imize the probability that a configuration is obstructed][10

. . N [26]. A significant challenge to these approaches is the dif-
Because there is regularity in the distribution of obstedct ficulty of finding configurations near the medial axis for

and free configuration space an approximate predictive mo‘i?iiculated robots

can be constructed from past experience using statistica
. X ) . n all of these approaches, samples are chosen based on
modeling techniques. A model/, built from past experience ' o . . :
ocal, fixed, criteria chosen a priori and designed to heuris

can predictP’(q = M), the probability that an unobservecjtica”y estimate the relevance of a configuration. In castira

configurationg has the state. the utility-guided sampling strategy directly estimatesom-

The planner's current understanding of configuration Spaggration's relevance and selects configurations that mize
connectivity provides a second type of structure. Samilas tyiq \ajye. Further the estimate of relevance is adaptetieas t
expand the planner’s understanding of this connectivity alanner’s state changes

obviously more useful to the planner than those that simplyBy focusing on a single path from start to goal configura-

confirm what is already known. This structure is used to COMons, the rapidly-expanding random tree family [17] ofglée

pute the u(;'“ty funchtl_cl)_nU(q_d: é’ R) ofl_sorri;e_ conflig_:ljuratmn query motion planners can heuristically bias sampling towa
¢ to a roadmapiz. Utility-guided sampling brings these tWoregions of configuration space nearby to these start and goal

fo!“f“s of struc.ture together in the formulation of e)(pe(:te&)nfigurations. The wavefront expansion away from both of
utility [3], [25]- these locations insures a focus on finding that particuldr. pa
While this approach uses information from the start and goal

UeplaM)= Y P(g=ilM)-U(g=1i,R) configurations and the likely path between them to influetsce i
ic{obs,free sampling, it does not use information obtained as the planne

operates. The practical result of this is repeated attenpts
and selects configurations that maximize this value. moves through regions that have previously been found to be

Details of modeling configuration space and calculating thabstructed. The RRT method has been extended [27] to adjust
utility of a configuration are given in Section Ill. Experimtal the sampling distribution used for exploration in an effirt
results (Section 1V) comparing the utility-guided motiolap-  limit attempted exploration of obstructed paths. This apgh
ner to existing sampling-based motion planners indicaé ttdoes not make use of information obtained from sampling
it is capable of significant improvements in planner runtimebut rather heuristically limits the radius within which tthoav



connection for points near obstacles. for each of the outcomes e X. This type of lottery is termed
Several other guided sampling strategies use informatiarsimplelottery. A compounds formed from a probabilistic

obtained from previous experience to guide their behavi@mombination of a set of lotteries.

The entropy-guided [5] approach to sampling adapts sagplin Given a set of lotteries, an agent has a preference function

to find configurations that offer maximal information gainwhich provides an ordering of lotteries in terms of the agent

however, the approach does not calculate maxiexglected desire to participate in the lottery. This function is cdlle

information gain and thus does not make full use of informauility function. Theexpected utilityof a lottery! is given by

tion from previous experience and can exhibit pathologictie expected value summation over the utility of the indiald

behavior. The model-guided [7] sampling strategy chooseatcomes:

configurations that maximize the decrease in variance of Ueap(1) :ZP(I)U(SC)

an approximate model of configurations space. While these x

configurations are relevant to building a model with maximumhjs expected value can then be used to choose an indivédual

accuracy they are not necessarily relevant to successfidmo preferred lottery.

planning. Morales et al. [20] propose a method that splits The role of the utility function is to establish an maintain

configuration space into regions and selects differentq#lesy 5 preference ordering on the set of outcomes such that any

depending on the features of the regions. The selectiongistcome can be judged as preferential to some other out-

guided by a decision tree that is learned offline. While theyme. Further the utility function must satisfy severaloms

selection of planners is guided by observation of configomat regarding the preference ordering of a mixture of outcomes

space, the methods themselves are not adaptive. Hsu eBl. [15] gives a thorough explanation of Bernoulli-von Neumann

propose sampling using an adaptive mixture of samplingorgenstern utility theory.
strategies. The mixture of strategies is adapted basedeon th

past success of each strategy. Finally, Jaillet et al. [1d} p [II. UTILITY GUIDED SAMPLING

poses an adaptive approach to RRT that limits the conngctivi To represent all possible paths, a motion planning algwrith
domain of points in the roadmap where previous connectigfust develop a global understanding of the connectivity of a
attempts have failed. robot’s free configuration space. To be efficient, the planne
must minimize the exploration required to develop such an
understanding.

Our belief that information from past samples can guide |t is clear that if a planner perfectly understands the stmec
current selections to improve planner performance is supgo of a configuration space it can sample optimally. It is als@cl
and inspired by results from the field of active learninghat this perfect understanding is generally unavailabléhe
The term “active learning” first appeared in Cohn, Atlas anglanner. It is desirable then, to use knowledge of configomat
Lander [8] and encompasses a variety of techniques in mgyace structure without requiring perfect a priori knowged
chine learning that use the state of their current clastifita The key observation behind utility-guided sampling is that
model to select training examples expected to maximize thgproximate model of configuration space structure can be
resultant improvement in the model. Cohn, Gharamani apftrementally constructed from past experience and that th
Jordan [9] showed that a planner which selects configuratiofpproximation can guide future exploration.
that maximize the reduction in variance of the resulting elod ~ Structure in configuration space derives from two sources.
construct optimally accurate classifiers for the number @frst, there is regularity in the distribution of obstruttand
samples examined. Further experimental evidence [21] shofee configuration space. Knowing that a configuration’ghei
that models built using active learning guided by model-vamhors are obstructed implies a probability that it is obsed@s
ance significantly outperform models constructed by uniforwell. The same is true of a configuration with neighboringfre
random sampling in most domains where different examplegnfigurations. This regularity means we can learn a priedict
carry varying information (as is the case in configuratiogpproximate model of the configuration space from samples.
spaces). Second, the planner’s current roadmap, partially reptesgn
C. Expected Utility the connectivity of configuration space, provides a_dd'alon

structure. The state of the roadmap suggests regions were

The formalization of expected utility was originally pro-further exploration is useful and shows what is already well
posed by Danuel Bernoulli [3]. This theory was popularize@nderstood. By examining its current approximation of this
in slightly different form, by von Neumann and Morgenconfiguration space structure, the sampler can select sampl
stern [25], it is their approach we present here. Expectiéityut with maximal expected benefit. The formulation of expected
presents a formal approach to specifying and evaluating @ity is used to estimate this expected benefit because it
agent's preferences regarding actions with non-detestitni merges both elements of configuration space structure.lReca

outcomes. In utility theory, these actions are referred 40 ghat the expected utility of a configuration space sample is:
lotteries

A lottery consists of a set of outcome¥. There is a Ueap(q|M) = Z Plg=i|M)-U(g=1,R)
distribution over the lottery, which provides a probalilR () ic{obs,free

B. Active Learning



In this formulation, the structure captured by the appro®. Utility Functions

imate predictive model of configuration space is used tO\we have seen how an approximate model, of config-
estimate P(¢ = i|M) the probability that a configuration yration space can be used to estimate the probability that a
is obstructed or free while the structure represented by thnﬁguration has a particular stat®(g = i|M)). It remains
planner’s approximation of configuration space connetivitg define a the utility function for a configuratiéi(q = i, R).
providesU(q = i, R) the utility of a particular sample. In  The choice of utility function is critical to the performasc
the following section we will explore each of these terms igf the sampling strategy. It must adequately charactetiee t
more detail and develop a concrete implementation of ayitili relevance of a configuration to successfully guide sampling
guided sampling strategy. We can conceive of many ways to measure this relevance.
Configurations that lie in unexplored regions near to exgsti
roadmap components, for example. Or configurations that are
Configuration space can be viewed as a binary classificatigfaximally distance from existing components in unexplored
C(q) = 0,1, which takes some configurationand returns regions of configuration space. Alternatively, the utilitnc-
whether or not that configuration is obstructed. Becauskef ttjon could be used to create a single-query sampling syateg
topological properties of configuration space, if sogis ob- py defining the utility of a configuration in reference to a
structed, it is more likely that its neighbors are also aligtd. particular path.
The same is true of free configurations. Given a collection of 1o develop a concrete implementation of a utility-guided
Sampled Configurations that have been labeled with thG-E,StE"notion p|anner’ we choose to use roadmap information gain
we can use classification methods from machine learning [184 our measure of utility. Information gain for roadmap rowti
t9 construct an apprOXimation of the functi6Ghwhich we call p|anning is a component of entropy_guided Samp]ing [5]
C. This approximation function returns a number between zefghich uses information theory [22], [23] to formalize the
and one, estimating the likelihood that a particular comigu contribution that any particular sample makes to the task of
tion is obstructed or free. This approximation functionhie t motion planning.
approximate model of configuration space. Information gain represents the change in the entropy of a
There are numerous methods for constructing an appreystem as a result of gaining knowledge related to the system
imate model of the configuration space function In other Gjven some systens, some new knowledgé, the entropy
work [6], [7] we have explored the use of mixture of Gaussiagf the system prior to observing (H(S)), and the entropy
models and locally weighted regression [2]. In this work, wgf the system after observing, (H(S|K)). The information
use a simpler k-nearest neighbor model. gain resulting fromk is:
Given a collection of configuration space samplgsvhich
have been labeled with their state, a query configuragion IG(S, K) = H(S) - H(S|K)
which has not been observed, antq, k), the function that ~ For motion planning, the system is the roadm&pand
provides the k-nearest neighbors @, we calculateC as the new information is the observation of some unobstructed
follows: configurationg. The information gain provided by the config-

A. Modeling configuration space

C(q) Nik) C(gi) uration is the definition of our utility function:
q9) = g
‘ U(g, R) = IG(R, q)

Note that although we don’t we have a complete definition of In order to do this in practice, we must define a distribu-
C, it is defined for the configurations in the 3@t that we tion which has minimal entropy when the roadmap is fully

have already observed. connected. This distribution is described as follows:
We take the output ofC to be the probability that a At any time, a configuration space roadmap consists of a
configuration is free. number of disconnected components. Each of these compo-

. nents has a visibility region containing all free configioas
P(q = freeM) = C(q) with an unobstructed straight-line path to a node in the
P(g=ob§M)=1— C’(q) component_. _F(_)r our purposes we restrict the_se re_gions to be
a strictly disjoint set by assigning any configuration in the
Nearest-neighbor problems have known problems as thisibility region of multiple components to the visibilitggion
dimensionality of the problem expands. To counteract thid the nearest component. Given this set of configurationespa
we use a distance metric first applied to motion planning brggions, we use the probability distribution that a patticu
Leven [18] that measures the maximum workspace distarfcee space sample drawn uniformly at random will lie in a
between a set of reference points located along the rob@. Tparticular component’s visibility region. It is easy to ghat
metric achieves significantly higher model accuracy, egfigc this distribution has the desired characteristics for degin
as dimensionality increases. Because of its simplicitg tlmoadmap entropy. When the roadmap is fully connected, there
nearest-neighbor model offers better computational efficy is only a single component and the entropy of the distributio
than more complex models. This efficiency is an attractive zero. When there are a large number of different connected
property for motion planning. components, the entropy is large.



(a) The fixed arm workspace with 12-DOF robot (b) The mobile workspace with 6-DOF robot

Fig. 2. The two experimental workspaces

This distribution is used to calculate roadmap entrop}tilityGuidedSampling(M : Model, Roadmap : R) : q
Roadmap information gain is calculated by examining the ¢ -= ”_'l
changes in the roadmap that the addition of a particular kamp ~ d0 K times .
might produce. The utility of a particular sample is set équa ¢ = EntropyGuidedSample(R)
to the roadmap information gain of that sample. Since an if (P(q' = freglM) > P(q = freg M)

obstructed configuration can’t modify the state of the roagm q=4q

it offers no information and thus no utility. returng

C. Sampling algorithm EntropyGuidedSample(R : Roadmap) : q
do

Given the predictive model and utility function, the exsstt
utility of some configurationy is:

C1 := random component in R
C, := random component in R}, # Cs

Usan(q| M) = P(q=i|M)-U(g=1i,R while (distance(;, C52) i Threshold)
p(alM) Z (¢=ilM)-Ulg =i, F) q1 := random node i’y

s g2 = random node irCs
Ueap(qlM) = P(g=0bgM)-U(q = obs ) + 4n = Midpointg:, gz)

Plg =freqM) - Ul(q = free R) for eachd in D
Uerp(q/M) = P(q=fredM)-U(q=free R) ¢-[d] = gn[d]+ UniformRandomf)
Ueap(q|M) = C'(q)- IG(M]q) returng,

In practice, the computation of utility for each potential
sample in the configuration space is computationally im- Fig. 3. The utility-guided sampling algorithm
practical. However, an analysis [5] of roadmap information
gain shows that utility can be heuristically maximized by
sampling configurations likely to connect two large disfoin IV. EXPERIMENTS
components. Thus samples on the border region between twdo validate our new sampling strategy we ran a set of
components are likely to provide maximal information gairexperiments in two workspaces with robots of varying degree
This border region is difficult to compute exactly but cawf freedom. The first workspace consists of a fixed articdlate
be approximated using hyper bounding-boxes around eawim situated in a constrained environment. Each joint in the
connected component [5] or by selecting configurations frorabot has three degrees of freedom, we ran experiments with
the area surrounding the midpoint of the line connectimgbots with either three or four links, resulting in nine and
a random node from each component. We use this secdngtlve degrees of freedom respectively. The workspace with
approach for our experiments with utility-guided samplinghe twelve degree of freedom arm is shown in Figure 2a.
but we have not observed significant differences between thélThe second workspace contains a mobile robot in a world
two approximations. Other heuristic approximations sush aeparated by a wall containing a doorway. The mobile base is
trees of bounding boxes or oriented hyper-ellipses oretirsy holonomic, providing two degrees of freedom. On top of the
algorithms are also possible and bear future exploratianobile base there is a two link arm. One experiment had one
Since we equate information gain and utility, heuristicalldegree of freedom at each joint, the other each joint had two
maximizing information gain, maximizes expected utility adegrees of freedom. Thus, the robots had four and six degrees
well. Pseudo-code for the utility-guided sampling alduritis of freedom respectively. The workspace with the six degfee o
shown in Figure 3. freedom robot is shown in Figure 2b.



We compare our algorithm against uniform sampling, bridgealue of the structure they use to the solution of the motion
sampling, entropy-guided sampling and model-based saptanning problem. Model-based sampling does poorly in the
pling. The identical roadmap construction algorithm wasdis mobile robot environment because it is uniformly interdste
for all experiments, only the sampling strategy was chaniged the wall, not just in the opening that is crucial for the smint
both cases, the workspace is split in two by a narrow passagéthe problem. On the other hand entropy-guided sampling
In the first workspace, this passage consists of folding tkdees poorly in the fixed arm world where its greedy attempts to
arm underneath the table. In the second it is passing througinnect disjoint configuration space components genezaltly
the doorway. For all of the experiments the planner was rim failure. By blending together both sources of configumati
until a roadmap which lead through this narrow passage wasace information the utility-guided sampling strategylide
found. The algorithm and strategies were implemented in the achieve strong improvements in both environments. An
Java programming language and all experiments ran on a 3@hportant consideration for motion-planning is sendijivio
Pentium 4 running the Linux operating system. degenerate behavior in particular types of configurati@tsp

The utility-guided sampling strategy incurs some overhedthe fact that utility-guided planning avoids the degererat
both in sampling to construct a model of configuration spatehavior exhibited by its component pieces (entropy-giliide
and in evaluating the expected utility in order to select-comnd model-based sampling) shows that it is significantlyemnor
figurations. This overhead is included in all of the reporteadbust and significantly reduces the probability that tlepkr
runtimes. In order to examine the influence of this overheadglill exhibit degenerate behavior.
we ran additional experiments in which we profiled the behav- We also ran a series of experiments where we interrupted the
ior of the various implementations using a sampling profiletoadmap construction process at timed intervals and télseed
In the runtime graphs, each runtime is broken down into fogoverage of the roadmap which had been constructed so far. To

categories: test these partial roadmaps we selected twenty paths aimand
Collision checking and recorded the fraction of paths that were successful. For
The examination of individual configurations to deeach algorithm and experimental domain we ran ten of these
termine if they are obstructed or free, series. The average of these ten runs is shown in Figure 5.
Edge Checking These graphs are instructive because they demonstrate the

The examination of a series of an interpolated serieate at which each algorithm provides coverage of the entire

of connections between two configurations to deteconfiguration space.

mine if a straight line path is possible, The results of these experiments clearly demonstrate that
Guided Sampling the utility-guided sampling strategy improves the perfante

The calculation and selection of configurationsf the PRM algorithm. In all cases the utility-guided stpte

guided by information from previous experienceeduces the average runtime by at least a factor of two.

(note that this only pertains to the entropy-guidedn several worlds the improvement is even more dramatic.

model-based and utility-guided motion planners), The graphs illustrating coverage as a function of time also

Roadmap Construction show that the utility-guided sampling strategy results in a

All other activities pertaining to constructing aplanner which achieves greater coverage more rapidly than
roadmap (e.g. finding neighbors, inserting vemther sampling strategies.
tices/edges, etc).

It is instructive to note that although a significant portafn
the runtime of the guided sampling strategies is consumed byin the preceding we have proposed a novel approach to
selecting configurations. The configurations chosen areemanulti-query motion planning which uses information frors it
relevant to the motion-planning process. The resulting -comprevious experience to guide sampling to more relevant con-
putational savings in edge checking and roadmap constructfigurations. Every exploration of configuration space piesi
outweighs all overhead from selecting samples. information to a motion planner. To be maximally efficient, a

For each robot in each workspace we ran ten experimentmtion planner must exploit all available information irder
These average runtime for these experiments are giventdnproactively choose configurations with maximal expected
graphically in Figure 4. In the graphs we also show profilingenefits.
information which shows the percentage of time the algorith Our proposed approach begins by constructing an approxi-
spends performing particular pieces of the roadmap comstrimate model of configuration space. This model captures and
tion process. maintains information from each configuration and allowes th

In the graphs it is also interesting to compare the peprediction of the state of unobserved configurations. In-con
formance of utility-guided sampling with entropy-guides] [ junction with a utility function which measures the relegan
and model-based [7] sampling. Entropy-guided sampling usaf a configuration the model enables a sampling strategytwhic
roadmap structure, while model-based sampling uses an aglects configurations that have maximal expected utility o
proximation of the state of the configuration space. Each imfiportance to the motion planner.
these approaches does well in one environment and poorly info demonstrate the effectiveness of this approach we im-
the other. This shows that they are highly depended upon tilemented a utility-guided motion planner using a nearest-

V. CONCLUSIONS
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Fig. 4. Runtimes for various sampling strategies as a p&genof the runtime using the uniform sampling strategy

and roadmap

gain [5] as the utility function. Experiments run with two
robots with varying degrees of freedom indicate that th%]
utility-guided approach to motion planning results in éast

runtimes compared to existing state of the art approaches. T
experiments also show that the utility-guided approachois n [6]
sensitive to specific features in the workspace environment
which caused degenerate behavior in other sampling steateg (7]
These experimental results indicate that the proposeidyutil
guided sampling is both a more efficient and more robuggl
sampling strategy than existing approaches.
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