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Abstract— Sampling-based motion planning discovers the im-
plicit connectivity of a configuration space by selecting and
connecting sets of configurations. The structure of every con-
figuration space dictates a number of optimal sets of samples
whose selection by a sampling-based planner results in a complete
roadmap of the space. Though it is generally computationally
impractical to develop complete knowledge of configuration
space, each individual sample provides information about the
configuration space. We propose a new utility-guided sampling
strategy that accumulates this information into an approximate
model of the configuration space. The model is an approximation
of both the state (obstructed or free) of individual configurations
and the connectivity of the configuration space. Our proposed
sampler uses the approximate configuration space model to select
samples that are maximally relevant to the planning task. The
relevance of a sample is measured by its expected utility to
the further coverage of the configuration space roadmap. The
utility metric blends information from both configuration s pace
state and connectivity. The planner incorporates the information
obtained from each sample into its approximation and uses these
improved models for subsequent sampling. Experimental results
with an implementation of this approach to motion planning
indicate that it is capable of significantly reducing the runtime
required to construct a complete roadmap for configuration
spaces with arbitrary degrees of freedom.

I. I NTRODUCTION

The efficiency of multi-query, sampling-based motion plan-
ning results from its implicit representation of configuration
space connectivity. Computing the exact boundary of config-
uration space obstacles is avoided by using a single sample to
capture a large region of configuration space. The performance
of a sampling-based motion planner derives from the set of
samples it requires to construct a roadmap that represents
the complete connectivity of the configuration space. With
complete knowledge of configuration space structure it is
possible to identify an optimal set of samples whose union
of captured regions covers the entire free configuration space.
In most cases, the size of such a minimal set is quite small. A
sampling-based planner that selects one of these optimal sets
constructs a complete roadmap of configuration space with
minimal computation. For a simple two dimensional world,
this set is illustrated in Figure 1.

Unfortunately, complete knowledge of configuration space
structure is generally unavailable to a motion planner and
computing this structure is tantamount to solving the original
motion-planning problem. Despite the absence of a priori
complete knowledge of configuration space structure, we will
see that an approximation of this structure can be constructed
from a planner’s past experience and that this approximation
can guide the selection of samples toward the optimal set.

Fig. 1. A simple configuration space for a point robot and a minimal set of
samples which completely represent it

Currently, sampling-based planners use one of two funda-
mentally different approaches to select configurations. The
first, used by probabilistic roadmap (PRM) techniques, uses
uniform random sampling [16]. Every sample is generated
uniformly at random, independent of previous samples. The
second, used by rapidly-expanding random trees (RRT) plan-
ners, places samples by wavefront expansion using a Voronoi-
bias [17] which progresses the wavefront more quickly toward
large unexplored regions.

Each of these strategies is designed around its particular
goal. Uniform sampling, designed for multi-query planning,
attempts to explore all of configuration space. In contrast,
wave front expansion is aimed at single-query planning. It
makes the heuristic assumption that regions near the initial and
final configuration are more likely to contain a solution path.
We propose an alternative to both of these fixed strategies:
an adaptive approach that selects configurations by actively
examining their relevance to the current state of the motion
planner.

Our approach to sampling begins with the insight that each
observed configuration provides information about configura-
tion space structure. Neither uniform nor wavefront sampling
make use of observed information to select configurations.
Because they ignore this information, sampling-based motion
planners using such strategies expend computational resources
on regions that are either already well represented by previous
samples, known to be obstructed from past experience, or
less relevant to configuration space connectivity than optimal
samples. Using information from past experience to guide
sampling significantly improves the relevance of the samples



selected.
Results from active learning [8], [9], [21] show that using

past experience to intelligently select future samples cansig-
nificantly improve the performance of approximate modeling
tasks. These results inspire us to apply similar approachesto
sampling-based motion planning. In the past we have directly
applied active learning to sampling based motion planning [7],
however active learning is not a perfect fit to sampling-based
motion planning.

The goals of sampling-based motion planning differ from
those of machine learning. In the context of configuration
spaces, active learning selects samples in an attempt to max-
imally understand the decision boundary between obstructed
and free space. This focus is different from sampling-based
motion planning which only wants to maximally understand
configuration space connectivity. A detailed understanding
of the boundary between obstructed and free space is only
important to a sampling-based motion planner in so much as it
aids understanding of configuration space connectivity. Further
detail is wasted computation. Because of this distinction,
traditional methods of active learning are inappropriate for
motion planning. To intelligently use past experience to guide
future sampling a new method for selecting configurations is
necessary. We call this new methodutility-guided sampling.

This sampler is not interested in optimizing model accuracy,
but rather usefulness to motion planning. There are two types
of structure in the configuration space that provide the sampler
with a measure of a configuration’s utility: the obstructed or
free state of the configuration space and configuration space
connectivity.

Because there is regularity in the distribution of obstructed
and free configuration space an approximate predictive model
can be constructed from past experience using statistical
modeling techniques. A model,M , built from past experience
can predictP (q = i|M), the probability that an unobserved
configurationq has the statei.

The planner’s current understanding of configuration space
connectivity provides a second type of structure. Samples that
expand the planner’s understanding of this connectivity are
obviously more useful to the planner than those that simply
confirm what is already known. This structure is used to com-
pute the utility functionU(q = i, R) of some configuration
q to a roadmapR. Utility-guided sampling brings these two
forms of structure together in the formulation of expected
utility [3], [25].:

Uexp(q|M) =
∑

i∈{obs,free}

P (q = i|M) · U(q = i, R)

and selects configurations that maximize this value.
Details of modeling configuration space and calculating the

utility of a configuration are given in Section III. Experimental
results (Section IV) comparing the utility-guided motion plan-
ner to existing sampling-based motion planners indicate that
it is capable of significant improvements in planner runtime.

II. RELATED WORK

A. Motion Planning

There have been many extensions to the uniformly random
sampling strategy used by the initial PRM algorithm [16].
Generally, these extensions attempt to improve performance
by reducing the number of samples required to construct a
complete configuration space roadmap.

The Gaussian sampling strategy [4] and the bridge test [11]
select configurations that are thought to be close to obstacles or
inside narrow passages, respectively. Other heuristic sampling
strategies modify obstructed configurations to discover nearby
free configurations. These heuristic samplers use obstacle
surface properties [1] or dilating and contracting obstacles
[12] to modify colliding samples into free ones. All of these
strategies are based on uniform random sampling and require
additional computational effort to filter configurations tofind
those thought heuristically to be valuable. Despite this extra
computation, only a subset of configurations selected by the
heuristic are truly relevant to roadmap construction.

Visibility-based PRM planners [24] label configurations
that act as “guards.” Such configurations capture a region of
configuration space containing every configuration that hasa
straight line path to the guard. Only configurations that are
not in a captured region, or connect two guards are inserted
into the roadmap. The roadmaps that are constructed are
significantly smaller, but the visibility region is quite expensive
to compute.

Two approaches calculate and use the medial axis to min-
imize the probability that a configuration is obstructed [10],
[26]. A significant challenge to these approaches is the dif-
ficulty of finding configurations near the medial axis for
articulated robots.

In all of these approaches, samples are chosen based on
local, fixed, criteria chosen a priori and designed to heuris-
tically estimate the relevance of a configuration. In contrast,
the utility-guided sampling strategy directly estimates acon-
figuration’s relevance and selects configurations that maximize
this value. Further the estimate of relevance is adapted as the
planner’s state changes.

By focusing on a single path from start to goal configura-
tions, the rapidly-expanding random tree family [17] of single-
query motion planners can heuristically bias sampling toward
regions of configuration space nearby to these start and goal
configurations. The wavefront expansion away from both of
these locations insures a focus on finding that particular path.
While this approach uses information from the start and goal
configurations and the likely path between them to influence its
sampling, it does not use information obtained as the planner
operates. The practical result of this is repeated attemptsto
moves through regions that have previously been found to be
obstructed. The RRT method has been extended [27] to adjust
the sampling distribution used for exploration in an effortto
limit attempted exploration of obstructed paths. This approach
does not make use of information obtained from sampling
but rather heuristically limits the radius within which to allow



connection for points near obstacles.
Several other guided sampling strategies use information

obtained from previous experience to guide their behavior.
The entropy-guided [5] approach to sampling adapts sampling
to find configurations that offer maximal information gain,
however, the approach does not calculate maximalexpected
information gain and thus does not make full use of informa-
tion from previous experience and can exhibit pathological
behavior. The model-guided [7] sampling strategy chooses
configurations that maximize the decrease in variance of
an approximate model of configurations space. While these
configurations are relevant to building a model with maximum
accuracy they are not necessarily relevant to successful motion
planning. Morales et al. [20] propose a method that splits
configuration space into regions and selects different planners
depending on the features of the regions. The selection is
guided by a decision tree that is learned offline. While the
selection of planners is guided by observation of configuration
space, the methods themselves are not adaptive. Hsu et al. [13]
propose sampling using an adaptive mixture of sampling
strategies. The mixture of strategies is adapted based on the
past success of each strategy. Finally, Jaillet et al. [14] pro-
poses an adaptive approach to RRT that limits the connectivity
domain of points in the roadmap where previous connection
attempts have failed.

B. Active Learning

Our belief that information from past samples can guide
current selections to improve planner performance is supported
and inspired by results from the field of active learning.
The term “active learning” first appeared in Cohn, Atlas and
Lander [8] and encompasses a variety of techniques in ma-
chine learning that use the state of their current classification
model to select training examples expected to maximize the
resultant improvement in the model. Cohn, Gharamani and
Jordan [9] showed that a planner which selects configurations
that maximize the reduction in variance of the resulting model
construct optimally accurate classifiers for the number of
samples examined. Further experimental evidence [21] shows
that models built using active learning guided by model vari-
ance significantly outperform models constructed by uniform
random sampling in most domains where different examples
carry varying information (as is the case in configuration
spaces).

C. Expected Utility

The formalization of expected utility was originally pro-
posed by Danuel Bernoulli [3]. This theory was popularized,
in slightly different form, by von Neumann and Morgen-
stern [25], it is their approach we present here. Expected utility
presents a formal approach to specifying and evaluating an
agent’s preferences regarding actions with non-deterministic
outcomes. In utility theory, these actions are referred to as
lotteries.

A lottery consists of a set of outcomesX . There is a
distribution over the lottery, which provides a probability P (x)

for each of the outcomesx ∈ X . This type of lottery is termed
a simple lottery. A compoundis formed from a probabilistic
combination of a set of lotteries.

Given a set of lotteries, an agent has a preference function
which provides an ordering of lotteries in terms of the agent’s
desire to participate in the lottery. This function is called the
utility function. Theexpected utilityof a lottery l is given by
the expected value summation over the utility of the individual
outcomes:

Uexp(l) =
∑

x

P (x)U(x)

This expected value can then be used to choose an individual’s
preferred lottery.

The role of the utility function is to establish an maintain
a preference ordering on the set of outcomes such that any
outcome can be judged as preferential to some other out-
come. Further the utility function must satisfy several axioms
regarding the preference ordering of a mixture of outcomes
[15] gives a thorough explanation of Bernoulli-von Neumann-
Morgenstern utility theory.

III. U TILITY GUIDED SAMPLING

To represent all possible paths, a motion planning algorithm
must develop a global understanding of the connectivity of a
robot’s free configuration space. To be efficient, the planner
must minimize the exploration required to develop such an
understanding.

It is clear that if a planner perfectly understands the structure
of a configuration space it can sample optimally. It is also clear
that this perfect understanding is generally unavailable to the
planner. It is desirable then, to use knowledge of configuration
space structure without requiring perfect a priori knowledge.
The key observation behind utility-guided sampling is thatan
approximate model of configuration space structure can be
incrementally constructed from past experience and that this
approximation can guide future exploration.

Structure in configuration space derives from two sources.
First, there is regularity in the distribution of obstructed and
free configuration space. Knowing that a configuration’s neigh-
bors are obstructed implies a probability that it is obstructed as
well. The same is true of a configuration with neighboring free
configurations. This regularity means we can learn a predictive
approximate model of the configuration space from samples.
Second, the planner’s current roadmap, partially representing
the connectivity of configuration space, provides additional
structure. The state of the roadmap suggests regions were
further exploration is useful and shows what is already well
understood. By examining its current approximation of this
configuration space structure, the sampler can select samples
with maximal expected benefit. The formulation of expected
utility is used to estimate this expected benefit because it
merges both elements of configuration space structure. Recall
that the expected utility of a configuration space sample is:

Uexp(q|M) =
∑

i∈{obs,free}

P (q = i |M) · U(q = i, R)



In this formulation, the structure captured by the approx-
imate predictive model of configuration space is used to
estimateP (q = i|M) the probability that a configuration
is obstructed or free while the structure represented by the
planner’s approximation of configuration space connectivity
providesU(q = i, R) the utility of a particular sample. In
the following section we will explore each of these terms in
more detail and develop a concrete implementation of a utility-
guided sampling strategy.

A. Modeling configuration space

Configuration space can be viewed as a binary classification,
C(q) = 0, 1, which takes some configurationq and returns
whether or not that configuration is obstructed. Because of the
topological properties of configuration space, if someq is ob-
structed, it is more likely that its neighbors are also obstructed.
The same is true of free configurations. Given a collection of
sampled configurations that have been labeled with their state,
we can use classification methods from machine learning [19]
to construct an approximation of the functionC which we call
C̃. This approximation function returns a number between zero
and one, estimating the likelihood that a particular configura-
tion is obstructed or free. This approximation function is the
approximate model of configuration space.

There are numerous methods for constructing an approx-
imate model of the configuration space functionC. In other
work [6], [7] we have explored the use of mixture of Gaussian
models and locally weighted regression [2]. In this work, we
use a simpler k-nearest neighbor model.

Given a collection of configuration space samplesQ, which
have been labeled with their state, a query configurationq,
which has not been observed, andN(q, k), the function that
provides the k-nearest neighbors inQ, we calculateC̃ as
follows:

C̃(q) =

N(q,k)∑

i

C(qi)

Note that although we don’t we have a complete definition of
C, it is defined for the configurations in the setQ, that we
have already observed.

We take the output ofC̃ to be the probability that a
configuration is free.

P (q = free|M) = C̃(q)

P (q = obs|M) = 1 − C̃(q)

Nearest-neighbor problems have known problems as the
dimensionality of the problem expands. To counteract this
we use a distance metric first applied to motion planning by
Leven [18] that measures the maximum workspace distance
between a set of reference points located along the robot. This
metric achieves significantly higher model accuracy, especially
as dimensionality increases. Because of its simplicity, the
nearest-neighbor model offers better computational efficiency
than more complex models. This efficiency is an attractive
property for motion planning.

B. Utility Functions

We have seen how an approximate model,M , of config-
uration space can be used to estimate the probability that a
configuration has a particular state (P (q = i|M)). It remains
to define a the utility function for a configurationU(q = i, R).

The choice of utility function is critical to the performance
of the sampling strategy. It must adequately characterize the
relevance of a configuration to successfully guide sampling.
We can conceive of many ways to measure this relevance.
Configurations that lie in unexplored regions near to existing
roadmap components, for example. Or configurations that are
maximally distance from existing components in unexplored
regions of configuration space. Alternatively, the utilityfunc-
tion could be used to create a single-query sampling strategy
by defining the utility of a configuration in reference to a
particular path.

To develop a concrete implementation of a utility-guided
motion planner, we choose to use roadmap information gain
as our measure of utility. Information gain for roadmap motion
planning is a component of entropy-guided sampling [5]
which uses information theory [22], [23] to formalize the
contribution that any particular sample makes to the task of
motion planning.

Information gain represents the change in the entropy of a
system as a result of gaining knowledge related to the system.
Given some systemS, some new knowledgeK, the entropy
of the system prior to observingK (H(S)), and the entropy
of the system after observingK, (H(S|K)). The information
gain resulting fromK is:

IG(S, K) = H(S) − H(S|K)

For motion planning, the system is the roadmapR and
the new information is the observation of some unobstructed
configurationq. The information gain provided by the config-
uration is the definition of our utility function:

U(q, R) = IG(R, q)

In order to do this in practice, we must define a distribu-
tion which has minimal entropy when the roadmap is fully
connected. This distribution is described as follows:

At any time, a configuration space roadmap consists of a
number of disconnected components. Each of these compo-
nents has a visibility region containing all free configurations
with an unobstructed straight-line path to a node in the
component. For our purposes we restrict these regions to be
a strictly disjoint set by assigning any configuration in the
visibility region of multiple components to the visibilityregion
of the nearest component. Given this set of configuration space
regions, we use the probability distribution that a particular
free space sample drawn uniformly at random will lie in a
particular component’s visibility region. It is easy to seethat
this distribution has the desired characteristics for defining
roadmap entropy. When the roadmap is fully connected, there
is only a single component and the entropy of the distribution
is zero. When there are a large number of different connected
components, the entropy is large.



(a) The fixed arm workspace with 12-DOF robot (b) The mobile workspace with 6-DOF robot

Fig. 2. The two experimental workspaces

This distribution is used to calculate roadmap entropy.
Roadmap information gain is calculated by examining the
changes in the roadmap that the addition of a particular sample
might produce. The utility of a particular sample is set equal
to the roadmap information gain of that sample. Since an
obstructed configuration can’t modify the state of the roadmap
it offers no information and thus no utility.

C. Sampling algorithm

Given the predictive model and utility function, the expected
utility of some configurationq is:

Uexp(q|M) =
∑

i∈obs,free

P (q = i|M) · U(q = i, R)

Uexp(q|M) = P (q = obs|M) · U(q = obs, R) +

P (q = free|M) · U(q = free, R)

Uexp(q|M) = P (q = free|M) · U(q = free, R)

Uexp(q|M) = C′(q) · IG(M |q)

In practice, the computation of utility for each potential
sample in the configuration space is computationally im-
practical. However, an analysis [5] of roadmap information
gain shows that utility can be heuristically maximized by
sampling configurations likely to connect two large disjoint
components. Thus samples on the border region between two
components are likely to provide maximal information gain.
This border region is difficult to compute exactly but can
be approximated using hyper bounding-boxes around each
connected component [5] or by selecting configurations from
the area surrounding the midpoint of the line connecting
a random node from each component. We use this second
approach for our experiments with utility-guided sampling,
but we have not observed significant differences between the
two approximations. Other heuristic approximations such as
trees of bounding boxes or oriented hyper-ellipses or clustering
algorithms are also possible and bear future exploration.
Since we equate information gain and utility, heuristically
maximizing information gain, maximizes expected utility as
well. Pseudo-code for the utility-guided sampling algorithm is
shown in Figure 3.

UtilityGuidedSampling (M : Model, Roadmap : R) : q
q := nil
do k times

q′ = EntropyGuidedSample(R)
if (P (q′ = free|M) > P (q = free|M))

q = q′

returnq

EntropyGuidedSample(R : Roadmap) : q
do

C1 := random component in R
C2 := random component in R,C1 6= C2

while (distance(C1, C2) ¡ Threshold)
q1 := random node inC1

q2 := random node inC2

qn := midpoint(q1, q2)
for each d in D

qr[d] := qn[d]± UniformRandom(τ )
returnqr

Fig. 3. The utility-guided sampling algorithm

IV. EXPERIMENTS

To validate our new sampling strategy we ran a set of
experiments in two workspaces with robots of varying degrees
of freedom. The first workspace consists of a fixed articulated
arm situated in a constrained environment. Each joint in the
robot has three degrees of freedom, we ran experiments with
robots with either three or four links, resulting in nine and
twelve degrees of freedom respectively. The workspace with
the twelve degree of freedom arm is shown in Figure 2a.

The second workspace contains a mobile robot in a world
separated by a wall containing a doorway. The mobile base is
holonomic, providing two degrees of freedom. On top of the
mobile base there is a two link arm. One experiment had one
degree of freedom at each joint, the other each joint had two
degrees of freedom. Thus, the robots had four and six degrees
of freedom respectively. The workspace with the six degree of
freedom robot is shown in Figure 2b.



We compare our algorithm against uniform sampling, bridge
sampling, entropy-guided sampling and model-based sam-
pling. The identical roadmap construction algorithm was used
for all experiments, only the sampling strategy was changed. In
both cases, the workspace is split in two by a narrow passage.
In the first workspace, this passage consists of folding the
arm underneath the table. In the second it is passing through
the doorway. For all of the experiments the planner was run
until a roadmap which lead through this narrow passage was
found. The algorithm and strategies were implemented in the
Java programming language and all experiments ran on a 3Ghz
Pentium 4 running the Linux operating system.

The utility-guided sampling strategy incurs some overhead
both in sampling to construct a model of configuration space
and in evaluating the expected utility in order to select con-
figurations. This overhead is included in all of the reported
runtimes. In order to examine the influence of this overhead,
we ran additional experiments in which we profiled the behav-
ior of the various implementations using a sampling profiler.
In the runtime graphs, each runtime is broken down into four
categories:

Collision checking
The examination of individual configurations to de-
termine if they are obstructed or free,

Edge Checking
The examination of a series of an interpolated series
of connections between two configurations to deter-
mine if a straight line path is possible,

Guided Sampling
The calculation and selection of configurations
guided by information from previous experience
(note that this only pertains to the entropy-guided,
model-based and utility-guided motion planners),

Roadmap Construction
All other activities pertaining to constructing a
roadmap (e.g. finding neighbors, inserting ver-
tices/edges, etc).

It is instructive to note that although a significant portionof
the runtime of the guided sampling strategies is consumed by
selecting configurations. The configurations chosen are more
relevant to the motion-planning process. The resulting com-
putational savings in edge checking and roadmap construction
outweighs all overhead from selecting samples.

For each robot in each workspace we ran ten experiments.
These average runtime for these experiments are given in
graphically in Figure 4. In the graphs we also show profiling
information which shows the percentage of time the algorithm
spends performing particular pieces of the roadmap construc-
tion process.

In the graphs it is also interesting to compare the per-
formance of utility-guided sampling with entropy-guided [5]
and model-based [7] sampling. Entropy-guided sampling uses
roadmap structure, while model-based sampling uses an ap-
proximation of the state of the configuration space. Each of
these approaches does well in one environment and poorly in
the other. This shows that they are highly depended upon the

value of the structure they use to the solution of the motion
planning problem. Model-based sampling does poorly in the
mobile robot environment because it is uniformly interested in
the wall, not just in the opening that is crucial for the solution
of the problem. On the other hand entropy-guided sampling
does poorly in the fixed arm world where its greedy attempts to
connect disjoint configuration space components generallyend
in failure. By blending together both sources of configuration
space information the utility-guided sampling strategy isable
to achieve strong improvements in both environments. An
important consideration for motion-planning is sensitivity to
degenerate behavior in particular types of configuration space.
The fact that utility-guided planning avoids the degenerate
behavior exhibited by its component pieces (entropy-guided
and model-based sampling) shows that it is significantly more
robust and significantly reduces the probability that the planner
will exhibit degenerate behavior.

We also ran a series of experiments where we interrupted the
roadmap construction process at timed intervals and testedthe
coverage of the roadmap which had been constructed so far. To
test these partial roadmaps we selected twenty paths at random
and recorded the fraction of paths that were successful. For
each algorithm and experimental domain we ran ten of these
series. The average of these ten runs is shown in Figure 5.
These graphs are instructive because they demonstrate the
rate at which each algorithm provides coverage of the entire
configuration space.

The results of these experiments clearly demonstrate that
the utility-guided sampling strategy improves the performance
of the PRM algorithm. In all cases the utility-guided strategy
reduces the average runtime by at least a factor of two.
In several worlds the improvement is even more dramatic.
The graphs illustrating coverage as a function of time also
show that the utility-guided sampling strategy results in a
planner which achieves greater coverage more rapidly than
other sampling strategies.

V. CONCLUSIONS

In the preceding we have proposed a novel approach to
multi-query motion planning which uses information from its
previous experience to guide sampling to more relevant con-
figurations. Every exploration of configuration space provides
information to a motion planner. To be maximally efficient, a
motion planner must exploit all available information in order
to proactively choose configurations with maximal expected
benefits.

Our proposed approach begins by constructing an approxi-
mate model of configuration space. This model captures and
maintains information from each configuration and allows the
prediction of the state of unobserved configurations. In con-
junction with a utility function which measures the relevance
of a configuration the model enables a sampling strategy which
selects configurations that have maximal expected utility or
importance to the motion planner.

To demonstrate the effectiveness of this approach we im-
plemented a utility-guided motion planner using a nearest-



(a) 4-DOF mobile manipulator (b) 6-DOF mobile manipulator

(c) 9-DOF arm (d) 12-DOF arm

Fig. 4. Runtimes for various sampling strategies as a percentage of the runtime using the uniform sampling strategy

neighbor approximate model and roadmap information
gain [5] as the utility function. Experiments run with two
robots with varying degrees of freedom indicate that the
utility-guided approach to motion planning results in faster
runtimes compared to existing state of the art approaches. The
experiments also show that the utility-guided approach is not
sensitive to specific features in the workspace environment
which caused degenerate behavior in other sampling strategies.
These experimental results indicate that the proposed utility-
guided sampling is both a more efficient and more robust
sampling strategy than existing approaches.
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(a) 4-DOF mobile manipulator
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(b) 6-DOF mobile manipulator
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(c) 9-DOF arm
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(d) 12-DOF arm

Fig. 5. Fraction of configuration space covered as a functionof runtime for various sampling strategies and workspaces
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