
Evaluating multi-stream networks for
self-supervised representation learning

by

Lars Niklas Schröder

Matriculation Number:

A Bachelor’s Thesis in Computer Science
submitted to

Technische Universität Berlin
Faculty IV - Electrical Engineering and Computer Science

Department of Computer Engineering and Microelectronics
Computer Vision & Remote Sensing Lab

March 31, 2022

First examiner:
Prof. Dr.-Ing. Olaf Hellwich

Second examiner:
Prof. Dr. Henning Sprekeler

Supervised by:
Manuel Wöllhaf

Eidestattliche Erklärung / Statutory Declaration
Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und eigenhändig sowie ohne
unerlaubte fremde Hilfe und ausschließlich unter Verwendung der aufgeführten Quellen und
Hilfsmittel angefertigt habe.

I hereby declare that the thesis submitted is my own, unaided work, completed without any
unpermitted external help. Only the sources and resources listed were used.

Berlin, den 31. März 2022 Lars Niklas Schröder

I

Abstract
This thesis tries to answer the question: Can visual representation-learning neural networks
profit from adding privileged information, such as semantic segmentation, instance segmenta-
tion, optical flow, or depth estimation to the RGB frames? A video-based sequence-to-sequence
model was implemented, which was trained to predict future video frames. A dataset genera-
tor, which uses the CARLA simulator, was created. With this dataset generator, a 10-hours-long,
multi-modal video dataset was created. The dataset was used to train the proposed model in
a self-supervised fashion. The results suggest that the models can indeed profit from some
privileged information. However, further research is necessary, as this work shows that the re-
sults are highly dependent on the model’s architecture. This work also shows that a weighted
binary cross-entropy (WBCE) is a better loss function than mean squared error (MSE) for eval-
uating binary image similarities. Furthermore, Peak Signal Noise Ratio (PSNR) and Structural
Similarity Index Measure (SSIM) should not be used as metrics for this task.

II

Zusammenfassung
In dieser Bachelorarbeit wird versucht die Frage zu klären, ob neuronale Netzwerke, welche
Videos komprimieren, davon profitieren können, wenn zusätzliche Informationen zu den RGB
Videodaten bereit gestellt werden z.B. Tiefeninformation, optischer Fluss, Instanzsegmentierung
und semantische Segmentierung. Dafür wurde ein neuronales Netzwerk entwickelt, welches
die nächsten Bilder eines Videos vorhersagen soll. Zudem wurde ein Datensatzgenerator er-
stellt, welcher die Simulationsumgebung CARLA nutzt. Mit Hilfe eines daraus generierten, 10
Stunden langen Datensatzes, der diese zusätzlichen Informationen enthält, konnten die Exper-
imente dieser Studie mittels selbstüberwachten Lernens durchgeführt werden. Die Ergebnisse
dieser Arbeit legen nahe, dass das Bereitstellen von verschiedenen der o.g. zusätzlichen Infor-
mationen zu Erfolgen führen kann, die Ergebnisse allerdings auch von der gewählten Netzw-
erk Architektur abhängen. Auch wurde festgestellt, dass die Metriken Peak Signal Noise Ratio
(PSNR) und Structural Similarity Index Measure (SSIM), sowie die mittlere quadratische Ab-
weichung (MSE) als Verlustfunktion nicht für die Beurteilung von Bildähnlichkeiten zwischen
Binärbildern genutzt werden sollte. Daher müssen weiter Experimente durchgeführt werden,
um eine abschließende Antwort auf diese Frage zu finden.

III

Contents
1. Introduction 1

1.1. Motivation . 1
1.2. Overview . 1
1.3. Background . 2

1.3.1. Visual modalities and visual cues . 2
1.3.2. Artificial neural networks . 3
1.3.3. Convolutional neural networks . 3
1.3.4. Encoder-decoder architecture . 3
1.3.5. Skip connections . 4
1.3.6. Long short-term memorys . 4
1.3.7. Multi-stream convolutional neural networks 4
1.3.8. Self-supervised learning . 4

1.4. Related work . 5
1.4.1. Datasets . 5
1.4.2. Reinforcement learning . 6
1.4.3. Action classification . 6
1.4.4. Architecture . 7

1.5. Outline of this thesis . 7

2. Main contribution 8
2.1. Methodical approach . 8
2.2. Implementation . 8

2.2.1. Tools used for development . 9
2.2.2. Dataset . 9
2.2.3. Model . 10

2.3. Experiments . 12
2.3.1. Loss function and metrics . 12
2.3.2. Hyper-parameter search . 13
2.3.3. Experiment setup . 13

2.4. Results . 14
2.5. Interpretation . 17

3. Conclusion 18
3.1. Discussion . 18
3.2. Statement of problems left solved . 19

4. List of Tables 20

5. List of Figures 21

IV

6. Bibliography 22

Appendices 25

A. Additional figures and data 26
A.1. Difference between training with WBCE and MSE 26
A.2. Training and validation curves for the instance segmentation model 26
A.3. Metric data for different spatial encoder-decoder networks and modalities 27

A.3.1. ResNet . 27
A.3.2. UNet . 27
A.3.3. DCGAN . 27

A.4. Metric data for different losses and modalities . 28
A.4.1. MSE . 28
A.4.2. WBCE . 28

B. Code and dataset access 29
B.1. Code . 29
B.2. Experiment results . 29
B.3. Dataset . 30

V

1. Introduction
The aim of this thesis is to answer the question if a representation-learning neural network,
which compresses RGB videos, profits from adding a second visual input modality, such as
depth estimation, segmentation information, or optical flow.

This work starts by laying out the relevance of this research question in 1.1. In 1.2 an
overview is given on how this thesis tries to answer this question. In section 1.3 all relevant
terms for this work are explained. Related literature is then discussed in 1.4. Last, this chapter
ends by giving an outline of this thesis in 1.5.

1.1. Motivation
Agents in deep reinforcement learning (RL) perform their actions based on a learned policy.
Therefore, the agents need to extract only the necessary information from the sensory input,
compress the input, and map it to a policy in order to perform helpful actions. Oftentimes,
vision-based RL agents are only equipped with an RGB camera and therefore have to perform
their actions from this high-dimensional spatio-temporal data. During the learning process,
these agents must learn which information is relevant to the task and map it into a feature
representation themselves. Prior research has shown that adding other visual modalities like
depth estimation and segmentation, which were learned in a supervised way, can lead to a
better performance in the downstream task. But this approach has two flaws: Firstly, these
visual modalities first need to be labeled, which is a tedious and costly process. Secondly, not
all of these visual modalities are relevant for all tasks, and the visual modalities have a high
level of redundancy in them. Selecting the best visual modalities for a certain task can e.g.
be realized by a feature selection agent, which only selects the visual modalities that are most
relevant for the current downstream task.

Work in the action classification literature showed that results almost always improve by
adding optical flow to the RGB input video. Optical flow, however, can directly be derived
from the RGB video. This means these neural networks, which only received RGB as an input,
do not yet fully leverage the information that is present in their inputs.

Both findings bring up the question if a visual representation-learning system would also
profit from additional visual modalities if the representations were learned in a self-supervised
way.

1.2. Overview
A model was implemented, which takes a combination of different input videos (RGB, depth,
optical flow, and segmentation) and learns to compress them into a representation vector. To

1

achieve this in a self-supervised way, the model was trained to decode the representation vector
and predict the input frames, as well as the next future frames in the domain of a simplified
instance segmentation. The aim is to evaluate if such a representation learning system profits
from adding additional visual modalities to the RGB input. The focus lies on segmentation
in this thesis because it has been proven to improve the results in reinforcement learning (see
1.4.2).

1.3. Background
In the following all relevant terms and concepts used for this work are introduced briefly.

1.3.1. Visual modalities and visual cues

The proposed dataset consists of sequences of RGB images and their corresponding depth, opti-
cal flow, instance segmentation, instance edges, and semantic segmentation images. Examples
of these image types can be seen in Figure 1.1.

DepthOptical Flow Instance Seg. Instance EdgesSemantic SegRGB

Figure 1.1.: Visual modalities extracted from the proposed dataset, which was generated in CARLA.

RGB

Each pixel of an RGB image consists of three values. Each value represents the brightness of
the respective color red, green, and blue. All values of the same color are stored in a channel i.e.
an RGB image has three channels, whereas a grayscale image only needs one channel.

Depth

The distance between the RGB camera sensor and an object is encoded in the depth image. The
depth images in this work are grayscale images with a linear scale.

Optical flow

An optical flow image represents the movement between two consecutive RGB images. The
color of a pixel indicates the relative direction and speed of all visible objects to the camera.

Instance segmentation

Instance segmentation is a mapping between an RGB pixel and the instance it belongs to. In
other words, all pixels that belong to the same instance have the same color in the instance
segmentation image. The instance segmentation images mentioned in this work also include a

2

semantic identifier for the instance’s class e.g. pedestrian, sky, car.

Instance edges

An image type called instance edges was extracted, which is a binary image showing only the
edges of the instances from the instance segmentation image.

Semantic segmentation

An image that only includes the semantic identifier is called a semantic segmentation image.

Visual modalities and cues

In this thesis, the term "visual modalities" is used to summarize the different image types and
"visual cues" to point to the information that is contained within a visual modality. The optical
flow image e.g. is a visual modality and contains visual motion cues.

1.3.2. Artificial neural networks

Artificial neural networks (here: neural networks) are computational models that are inspired
by biological neural networks and can be trained. Neural networks are trained by providing an
input and a corresponding target that should be reached. During the training process, neural
networks should minimize their loss. The loss is calculated with a loss function that takes the
target and the model’s output into account. The training process is – mathematically speaking
– a gradient descent on a non-convex surface. If designed carefully and provided with good
and enough training data, artificial neural networks can be extraordinarily good at detecting
correlations among the training data and can apply the gained "knowledge" to unseen data[1].

1.3.3. Convolutional neural networks

Convolutional neural networks (CNNs) are – also biological inspired – neural networks that are
specialized for data that has a grid-like structure e.g. two-dimensional data types like images.
At least in one layer, these neural networks must use the mathematical convolution operation,
instead of general matrix multiplication, to be considered "convolutional"[2]. CNNs have be-
come especially ubiquitous in deep learning computer vision applications. In this work, CNNs
are used to compress images into fixed-length vectors and to decode these vectors back into
images.

1.3.4. Encoder-decoder architecture

An encoder-decoder network is a neural network architecture in which the encoder transforms
an input, of variable length, into a fixed-size state (here: representation vector). A decoder takes
this state as its input and transforms it into an output sequence of variable length. A network
in which the encoder’s input is the same as the decoder’s target is called an "autoencoder".
Thus, autoencoders effectively should compress the input[3]. An encoder-decoder architecture

3

is sometimes also referred to as a sequence-to-sequence architecture[4]. The proposed model
uses an encoder-decoder architecture e.g. to map a series of input frames of a video to a series
of the next few frames.

1.3.5. Skip connections

In an ordinary feedforward neural network, the output of one layer is fed into its succeeding
layer. Skip connections are connections between two layers that are not consecutive in the first
place. In other words, skip connections are connections between layers that skip one or more
layers. The inputs at the receiving layer of a skip connection can be added together, as in the
convolutional encoder network ResNet[5], or concatenated, as in the convolutional encoder-
decoder U-Net[6]. In this work, skip connections as in the ResNet encoder architectures, which
only skip two or more layers within the encoder, are considered "short" skip connections. Skip
connections in U-Net, which skip the representation state by connecting layers from the en-
coder with layers from the decoder, are considered "long" skip connections. The proposed
model uses both, U-Net, and a ResNet encoder-decoder variant with long skip connections as
spatial encoder and decoders.

1.3.6. Long short-term memorys

A long short-term memory (LSTM) is a neural network specialized for time-series data. Its core
ability is to model dependencies within the data over a long period of time[7]. The proposed
model uses LSTMs for two purposes: one is to encode a series of spatial encoding vectors
into one fixed-length representation vector, and the other purpose is to decode representation
vectors back into a series of spatial encodings.

1.3.7. Multi-stream convolutional neural networks

A CNN that receives more than one visual input modality can be described as having a multi-
stream architecture. Here, a stream refers to a part of a network that one input modality goes
through before it gets fused with streams of other input modalities. Four different fusion meth-
ods can be summarized: early, middle, late, and multi-level fusion[8]. The proposed model
uses the early fusion method, which directly concatenates the input images along the channel
dimension.

1.3.8. Self-supervised learning

Self-supervised learning (SSL) is a method to train neural networks with automatically gener-
ated labels [9]. This means, unlike supervised learning, SSL does not depend on humans to
annotate the data manually, but that labels are extracted from e.g. a simulator as it is done in
this work.

4

1.4. Related work
In the following, existing datasets are described and discussed, which were considered to be
used for this thesis (see 1.4.1). Then related literature from the fields of reinforcement learning
(see 1.4.2) and action classification (see 1.4.3) is presented. Last, literature about successful
representation learning model architectures is presented (see 1.4.4).

1.4.1. Datasets

Multiple datasets and simulators were considered in preparation for this work. For the method
described, a dataset has to meet the following three requirements.

Firstly, it is crucial to have an RGB video dataset that also includes the corresponding depth,
segmentation, and optical flow data. Although predicting these modalities from RGB with e.g.
pre-trained neural networks for depth is possible[10], this method was not chosen for the thesis.
It has been shown that training a neural network on action recognition from optical flow is
highly dependent on the quality of the images[11]. It can be expected that such predictions from
RGB always include noise and errors, as they are just estimates. Since the downstream task of
predicting future video frames is already complex enough by itself, these input inaccuracies
would propagate through the network and may further hinder it from learning the actual task.
Manually labeled datasets are also not accurate enough. As a first step, it is therefore preferred
to isolate the model from such inaccurate data and only use ground-truth labels for all visual
modalities. Thus, real-world datasets are omitted. Therefore, synthetic datasets seem to be the
only suitable option. These also have the additional advantage that theoretically, they are not
limited by the number of samples because more data can be produced at a low cost.

Secondly, to evaluate whether the learned representations contain any underlying physical
concepts of the dataset e.g. the camera’s speed, it is crucial that the dataset also includes ego-
motion data. Even though this thesis does not cover such an evaluation, this requirement was
kept for future research.

Thirdly, in order to be able to predict video frames at all, the video clips must be predictable.
This may seem obvious, but datasets like SceneNet RGB-D [12] do not meet this requirement.
They introduced a synthetic video dataset for random 3D camera trajectories through arbi-
trarily generated static indoor environments, including ground truth data for depth, semantic
segmentation, instance segmentation, optical flow, as well as per-frame camera positions. This
almost suits the needs for a dataset. However, random camera trajectories make it impossible
to predict the next frames.

Synthetic video datasets can be obtained through most 3D graphical software. Not only does
this include 3D simulators, which were created for the purpose of generating datasets but also
video games. [13] e.g. used Microsoft DirectX® rendering API to extract ground truth labels for
instance segmentation, semantic labeling, depth estimation, optical flow, intrinsic image de-
composition and instance tracking from the video games GTA V, The Witcher 3, FarCry Primal
among others.

On one hand, these game-based solutions can produce a very rich dataset. The worlds they
play in are usually very large and allow for a diverse set of scenarios with highly realistic
graphics. On the other hand, these games are usually not open source and not developed with

5

data readout in mind, so it is quite tedious to gather datasets from them. The data is also not
reproducible in case some data was forgotten to be collected in the first place.

No dataset was found that fulfilled all the above-mentioned requirements. Therefore, gener-
ating a new dataset was necessary. For that, a dataset generator with CARLA[14], which is an
open-source urban driving simulator, was designed. Details about the dataset are described in
2.2.2.

1.4.2. Reinforcement learning

In deep RL an agent must learn a policy from which it performs its next action. A policy, in
other words, is a representation that must be learned by compressing the input and extract-
ing the task-relevant information from it. In several works, vision-based deep RL agents were
used to train the policies directly from raw images[15, 16]. [17] names two drawbacks of this ap-
proach: first, training these agents is very inefficient and requires massive amounts of data, and
second, the learned policies are not robust for even modest visual changes in the environment
i.e. a change in lighting may result in significantly worse results. To mitigate these problems,
[17] first used a set of 24 pre-trained neural network feature encoders from [18] to get different
visual modalities from the RGB input video e.g. depth estimation, object classification, and sur-
face normals. Training the policy on sensorimotor agents for different indoor navigation tasks
with these 24 feature encodings outperformed the StoA RGB-only agents significantly, which
were trained from scratch in terms of performance, generalization, and learning speed[17].

[19] made the same observation. They further showed that using ground-truth visual modal-
ities improved the performance against visual modalities generated from pre-trained U-Nets,
even further. They also evaluated the relevance that each of the tested modalities albedo, op-
tical flow, depth, and semantic segmentation have on different tasks and found that semantic
segmentation and depth estimation provide the highest boost across all tasks[19].

1.4.3. Action classification

Action classification is the task of predicting an action that is shown in a video. It has become
a wide-used practice to either predict the action directly from optical flow or to augment the
RGB video with optical flow. It was shown that optical-flow-only networks can outperform
RGB-only networks in action classification[11]. Intuitively, this makes sense because an action
can usually be determined by just the movement, and optical flow represents these motion
cues. Optical flow is also invariant to appearance i.e. the color of clothing of a person kayak-
ing does not matter for the classification of the action "kayaking" [20] argues, and thus using
RGB exclusively as input can be a hurdle for the network’s ability to generalize. But one can
also imagine that combining RGB and optical flow can further improve both RGB-only and
optical-flow-only approaches because a network could then detect similarities between the ap-
pearance across the different action samples from the RGB input. In the kayaking example
from above, the network may recognize water in the RGB video and associate that with all
water sports, which is one first valid step toward the kayaking class. For example [21] argues
that 3D ConvNets should be sufficient enough to learn these motion cues directly from RGB in-
puts, they have made the observation that using two-stream networks (RGB and optical flow)
outperformed the single-stream ones (RGB or optical flow).

6

1.4.4. Architecture

The task of the developed model is to encode an input video, of one or more visual modalities,
into a fixed-length representation vector and later use the representation to generate a predic-
tion video of another visual modality. Therefore, the input video needs to be compressed and
decompressed in both spatial and temporal domains.

3D CNNs can be used to do this. These networks use 3D convolutional kernels to encode and
decode the input in the spatial and temporal domain simultaneously. However, [22] concludes
3D CNNs tend to overfit on small datasets like UCF[23], ActivityNet[24], and HMDB51[25].
Only datasets like Kinetics[21] were large enough to prevent the models from overfitting. The
proposed dataset has 10 hours of video data, and thus does not come close to Kinetics-400’s
444 hours[26].

With an LSTM-based Seq2Seq model [27] proposed an architecture to learn fixed-length rep-
resentations from videos. To learn these representations in a self-supervised way, they used
input reconstruction i.e. an autoencoder and future frame prediction, as their pretext tasks.
They were able to use their pre-trained encoder networks to improve results in action classi-
fication on different unrelated datasets and tasks. This shows that their models were able to
extract useful representations out of the videos.

The developed model architecture is based on the "composite" archtiecture of [27]. Detailed
implementation details can be found in 2.2.3.

1.5. Outline of this thesis
The methodical approach this thesis uses for trying to answer the research question is explained
in 2.1. For this approach a dataset and a model framework had to be developed, which are
described in 2.2. Then, multiple experiments had to be conducted, which are defined in 2.3.
The results are summarized in 2.4 and analyzed in 2.5. The thesis ends with a conclusion of
the results in 3, including a discussion and a set of problems that could not be covered by this
thesis.

7

2. Main contribution
In this chapter, an answer to the research question "Does a visual representation learning sys-
tem profit from additional visual input modalities?" is tried to be found. First, the approach to
answering this question is formulated in which the used dataset, model, and evaluation meth-
ods are briefly described (see 2.1). The implementation is described in 2.2, where details about
the develpment tools (see 2.2.1), the proposed dataset (see 2.2.2), and the proposed model (see
2.2.3) are described. The experiments are described in section 2.3, which consists of an intro-
duction to the used loss functions and metrics (see 2.3.1), a hyper-parameter search (see 2.3.2),
and the experiment setup (see 2.3.3). The results of the experiments are presented in section
2.4. An answer to the research question is formulated in section 2.5.

2.1. Methodical approach
The aim of this thesis is, to evaluate if and to what extent a representation learning network can
profit from providing additional visual modalities as input. For this purpose, a model with a
sequence-to-sequence architecture was designed. Specifically, it takes T video frames as input,
compresses them into a fixed-length representation vector, and decodes this vector back to a
video of another modality with T + p frames, where p is the number of future frames the model
should predict. A visualization of an example experiment where T = 6 and p = 4 is shown in
Figure 2.1.

As a baseline experiment, RGB was used as the input. For all experiments, instance edges
was used as the target. To evaluate if the model profits from a second input modality, this
modality was concatenated with RGB along the channel dimension. These results are then
compared to the results of the baseline experiment. Last, the findings are quantified and eval-
uated using different metrics.

The used dataset was generated within CARLA, an open-source urban driving simulator [14].
It contains ground-truth labels for RGB, depth, optical flow, semantic segmentation, instance
segmentation, and instance edges. With this, the network could be trained in a self-supervised
way.

2.2. Implementation
With this work, a parameterizable dataset generator that uses CARLA[14] as a simulation en-
vironment was implemented. Furthermore, a sequence-to-sequence model framework was
implemented, which predicts an output sequence based on a learned representation whereby
the visual input and output modalities can differ.

In the following, the design decisions for the chosen dataset and the model’s architecture

8

Figure 2.1.: An example visualization of an experiment from the hyper-parameter search. The model was
trained with MSE and received 6 input frames of RGB and depth. It had to predict the input
timesteps, as well as the next 4 timesteps in the domain of instance edges. Visual modalities top
to bottom: RGB (input), depth (input), instance edges (target), output.

are described. Concrete parameters are replaced by variables because these varied across the
different experiments (see 2.3). In-depth details about the implementation, however, should be
derived from the code (see B).

2.2.1. Tools used for development

Both the dataset generator and the proposed model were written using Python 31. The model
was written with the machine learning library TensorFlow[28] in combination with Keras[29].
Docker2 containers were used for managing dependencies and running the code independently
on different machines. All experiments were executed on the conjoined high-performance clus-
ter from TU Berlin3 and Science of Intelligence4, as well as on some machine from the Computer
Vision and Remote Sensing department of TU Berlin5. For managing the experiments Yet Another
simple, stupid ML toolkit6 was used.

2.2.2. Dataset

A dataset was generated with CARLA[14].

Generating the dataset

The dataset was produced by generating 224 5-minute-long sequences of a car driving around

1 https://www.python.org/
2 https://www.docker.com/
3 https://www.tu.berlin/
4 https://www.scienceofintelligence.de/
5 https://www.cv.tu-berlin.de/menue/computer_vision_remote_sensing/
6 https://git.tu-berlin.de/cvrs/mltk

9

https://www.python.org/
https://www.docker.com/
https://www.tu.berlin/
https://www.scienceofintelligence.de/
https://www.cv.tu-berlin.de/menue/computer_vision_remote_sensing/
https://git.tu-berlin.de/cvrs/mltk

in one of seven maps. CARLA provides eight official urban maps: "Town01" - "Town07" and
"Town10"7. However, the latter did not run stable and was excluded. The car has four forward-
facing cameras attached at its front: RGB, depth, instance segmentation, optical flow. Addition-
ally, semantic segmentation and instance edges were computed from the instance segmentation
camera output. All cameras recorded at 25 frames per second, which a commonly chosen fram-
erate for video datasets like Kinetics[26] or UCF101[23]. The cameras’ resolution is 128 × 128
pixels and they have a 90 degree field of view. The recorded videos were saved as sequences
of PNGs with values between 0 and 255. Furthermore, the car’s current speed, its effecting
speed limit, and traffic light state, as well as the transformation of all cars and pedestrians,
were saved at the same framerate. Each sequence was captured in one of the seven maps in 15
different weather and daylight conditions8. After analyzing the 224 samples, one sample from
the training set had to be excluded due to rendering problems. This resulted in 209 training, 7
validation, and 7 testing samples. Besides that, the number of sequences per map is distributed
equally.

Technical details

The dataset generator can be parameterized with a CSV file that contains a seed, the split name
(train, test, validation), map name, framerate, duration, number of cars, number of pedestri-
ans, weather and daytime, a speed limit factor, the cameras’ position, orientation, field of view,
and resolution. It took 120 hours (with a GTX 1050 and an i7-7700 CPU) to gather the 224
5-minute samples. The dataset generator was designed to be fully deterministic to be able to
reproduce the dataset and to add additional sensor data on demand. However, CARLA 0.9.13
is still a beta version in which some minor details e.g. tree animations are still not reproducible.

Preprocessing the data

For training and inference, the images were normalized to a range of [0, 1]. The 5-minute long
sequences had to be split into subsequences of 80 frames – or 3.2 seconds – in order to efficiently
load and shuffle the samples in the RAM. Due to traffic jams, pedestrians standing on the road,
and red traffic lights, subsequences with an average speed of less than 0.1 km/h were discarded
(which made out 45% of all subsequences) because in these subsequences the differences be-
tween the frames are too small, which could make the model overfit to these situations. This
resulted in 11582 (10819 train + 385 test + 378 validation) subsamples – or about 10 hours of
video data.

2.2.3. Model

The model is a cascade of multiple networks, similar to the composite model of [27].

Model overview

The model is an autoencoder while simultaneously predicting frames for the next p timesteps.
It is visualized in Figure 2.2. A spatial encoder first compresses each frame into a spatial encod-

7 https://carla.readthedocs.io/en/0.9.13/core_map/
8 https://carla.readthedocs.io/en/stable/carla_settings/#weather-presets

10

https://carla.readthedocs.io/en/0.9.13/core_map/
https://carla.readthedocs.io/en/stable/carla_settings/#weather-presets

ing vector. The compression in time of these spatial encodings is done by a temporal encoder,
which outputs a representation vector. One temporal decoder reconstructs the spatial encod-
ings from the representation vector. Another temporal decoder predicts spatial encodings for
the succeeding timesteps. A spatial decoder concatenates the outputs of the two temporal de-
coders and predicts the output frames.

Detailed model description

Let (x1, . . . , xT) be a sequence of frames, extracted from a video. The model’s task is to compress
these frames into a representation vector w of size R and output the frames (y1, . . . , yT+p) where
p is the number of future frames the model should predict. The model’s input frames xi can be
an early fusion (see 1.3.7) of multiple visual modalities, and the target frames yj can also be of
a different modality.

v1 v2 v3

v̂3 v̂2 v̂1

v3 v2

v̂4 v̂5

v4

Skip connections of last frame

RGB

Depth

Instance Edges

Future Decoder

Reconstruction Decoder

early
fusion

Temporal Encoder

concatenate

Figure 2.2.: An example of the model’s architecutre, when it takes 3 frames of depth and RGB as an input
and outputs 5 frames of instance edges. Green: sequence of image frames; Blue: spatial en-
coder/decoder; Gray: spaital encoding vector (vj: ground-truth; v̂j: predictions); Orange: LSTM;
Purple: fully connected layer; Red: hidden state of the temporal encoder’s last LSTM step (here:
representation vector); The network is unfolded in time inside the dotted boxes.

11

As shown in Figure 2.2 the spatial encoder first encodes each frame xi individually into a
spatial encoding vector vi of size S. This results in T spatial encoding vectors (v1, . . . , vT). The
spatial encoder also outputs four skip connections per frame. Only the skip connections si of
the last input frame xT will later be used to preserve visual details of the input sequence. The
spatial encodings are then fed into the encoder LSTM (here: temporal encoder) that outputs a
representation vector w of size R. This vector is simply the hidden state output from the last
time step of the temporal encoder.

The temporal encoder-decoder follows the composite architecture [27] has presented and
thus has two separate temporal decoders. One reconstruction decoder for reconstructing the
temporal encoder’s input (v1, . . . , vT), and one future decoder for generating the next p spatial
encodings (vT+1, . . . , vT+p). In principle, both decoders work the same. Both use the represen-
tation vector as their initial state, but the reconstruction decoder is trained to generate its output
sequence in reverse order i.e. it first generates the spatial encoding for the timestep that was
last inputted to the temporal encoder. Teacher forcing is used for the decoder LSTMs i.e. they
receive the spatial encoding vector of the last time step as an input for the next one. During
training, the vj’s are used, which were generated from the ground-truth input frames. Dur-
ing inference, the predictions v̂j’s are used. For the first-time steps, they receive a beginning-
of-sequence tensor that is initialized with zeros. The decoders’ outputs are (v̂1, . . . , v̂T) and
(v̂T+1, . . . , v̂T+p) respectively. The spatial decoder then decodes each spatial encoding v̂j to-
gether with the skip connections sT back into a frame ŷj of the output modality. Using two
stacked LSTM layers instead of one inside the temporal encoder and decoders, is also possible.

Different spatial encoder-decoder networks

We have implemented the model in such a way that the spatial encoder-decoder network can
be selected with a parameter. The following models are integrated: VGG[30], DCGAN[31],
ResNet[5], U-Net[32], and LinkNet[32]. VGG and ResNet were originally proposed as spatial
encoders, DCGAN as a spatial decoder. Therefore, implementations of these three networks
were used, which include the corresponding counterpart with long skip connections9. U-Net
and LinkNet were originally designed as encoder-decoder networks for semantic segmenta-
tion.

2.3. Experiments
Multiple experiments with the above-mentioned dataset and sequence-to-sequence network
were conducted to find an answer to the research question. First, the utilized losses and metrics
are described (see 2.3.1), then a hyper-parameter search was done to find parameters that lead
to good metrics scores (see 2.3.2). Last, the conducted experiments are described (see 2.3.3).

2.3.1. Loss function and metrics

Different metrics were used to quantify the results. These were calculated after each training
epoch, as well as after the training on samples from the validation and testing set. Structural
Similarity Index Measure (SSIM) [33] and Peak Signal Noise Ratio (PSNR) [34] are two com-

9 These networks were implemented by Manuel Wöllhaf.

12

monly used metrics for image similarity[35]. For both metrics a higher score is better.

Mean squared error (MSE) was used as a loss function for most of the experiments. Since
instance edges, which is a binary classification problem (edge or non-edge pixel), was used as
the target modality throughout all experiments, also binary cross-entropy (BCE) was tested as
a loss function. However, the two classes are highly imbalanced. The edge-pixels only make
out a small portion of the entire image. Therefore, a weighted version of BCE (WBCE) was
implemented, which first balances the two classes[36].

2.3.2. Hyper-parameter search

Every experiment is defined by a set of more than 30 parameters specifying the input, output,
optimizer, encoding dimensions, spatial encoder and decoder networks etc. Therefore, 170
short10 experiments were conducted, to search for parameters that lead to better metric scores
(PSNR and SSIM). Subjective image similarity between the output and the target was also used
to choose the hyper-parameters for the next iterations. Thus, the approach and main findings
are briefly summarized.

R seed PSNR SSIM
32 45616 14.334 0.5552
32 290845 14.264 0.5521
512 45616 14.328 0.5430
512 290845 14.375 0.5469

S seed PSNR SSIM
32 45616 14.198 0.5024
32 290845 14.374 0.5079
128 45616 14.287 0.5201
128 290845 14.319 0.5095
512 45616 14.192 0.4841
512 290845 14.317 0.5171

Table 2.1.: Left : Comparison of different representation vector sizes R with two different random seeds. Eval-
uated after 120 epochs on the test set.
Right : Comparison of different spatial encoding vector sizes S with two different random seeds.
Evaluated after 45 epochs on the test set. The top two scores are marked bold.

All hyper-parameter search experiments had RGB and depth as inputs and instance edges
as output modality and, unless otherwise specified, used MSE as loss function. A batch size of
70 was just small enough to not cause out-of-memory errors. Then, different learning rates and
different spatial encoder and decoder networks were tested: DCGAN, LinkNet, ResNet, U-
Net, VGG. LinkNet and VGG had lower metric scores and were excluded. ResNet performed
best. Only ResNets were used for the following hyper-parameter search experiments. Switch-
ing from one to two stacked LSTM layers inside the temporal encoder and decoders did not
result in better metric values. Changing the size R of the representation vector w in a range
of [32, 512] and the size S of the spatial encoding vectors vi in a range of [32, 512] also seem to
have no significant effects on the results in this early stage of training (see Table 2.1). Long skip
connections improved the results significantly (see 2.2).

2.3.3. Experiment setup

The same hyper-parameters were used across all experiments. Throughout all experiments,
RGB was provided as one input modality and instance edges as the target modality. The base-
10 three hours on a Tesla v100s with 32GB

13

Skips PSNR SSIM
No 13.152 0.2576
Yes 14.103 0.4724

Table 2.2.: Comparison between using and not using long skip connections. Evaluated after 120 epochs on
the test set. The top scores are marked bold.

line experiment is the one in which RGB is the only input modality. Four other experiments
were conducted, in which one of the following four modalities was added to the input: opti-
cal flow, depth, semantic segmentation, instance segmentation. In addition, for all five input
modality combinations, three different encoder-decoder networks were tested: ResNet, U-Net,
DCGAN. Another set of experiments was conducted in which WBCE was used as a loss func-
tion instead of MSE.

The experiments were backed in regular intervals, are reproducible by setting a random seed,
and can be continued.

Hyper-parameters used

For the main experiments, 128 was used as the size of the spatial encodings vi, 512 as the size
of the representation vector w, single LSTM layers for the temporal encoder and decoders, long
skip connections between the spatial encoder and decoder and adam optimizer with an initial
learning rate of 0.002 which is divided by two every 100 epochs. All frames got resized to
64 × 64 pixels. The model received 8 input frames (x1, . . . x8) and outputted 8 future frames,
resulting in 16 output frames (ŷ1, . . . , ŷ16) in total. These 16 frames were randomly chosen
sequences from the 80-frames-long subsequences that were extracted from the dataset.

2.4. Results
In the following the results of the main experiments are summarized.

Comparing spatial encoder-decoder networks

To find the best encoder-decoder network, the top three performing networks from the hyper-
parameter search experiments were chosen. These were ResNet, U-Net, and DCGAN. All three
models were trained with all five input modality combinations RGB, RGB+depth, RGB+optical
flow, RGB+instance segmentation, RGB+semantic segmentation. The target was to predict in-
stance edges. The results for all 15 experiments are visualized in Figure 2.3.

ResNet achieved the highest PSNR scores for RGB+depth, RGB+instance segmentation, and
RGB+semantic segmentation. The PSNR baseline scores of ResNet and U-Net are almost iden-
tical. DCGAN performed worst except for the optical flow experiment. As for the SSIM score,
ResNet also achieved the best scores for three out of the five experiments: RGB, RGB+depth,
RGB+instance segmentation. ResNet performed worst in the optical flow experiments. Since
no overfitting could be observed after these experiments, ResNet was chosen for further train-
ing.

14

Depth InsSeg SemSeg OptFl
14.4

14.6

14.8

15.0

15.2

15.4

15.6

15.8

16.0

P
S
N
R

Depth InsSeg SemSeg OptFl
0.48

0.51

0.54

0.57

0.60

0.63

0.66

S
S
IM

Figure 2.3.: Comparison between different spatial encoder-decoder networks and diffent modalities. Red:
ResNet; Yellow: U-Net; Blue: DCGAN. The colored horizontal lines mark the corresponding
results from the baseline experiment i.e. RGB as a single input modality. The x-axis shows the
second input modality. Evaluated after 96 epochs on the test set. See A.3 for raw values.

Comparing modalities

All models achieved higher PSNR and SSIM scores when they received depth, instance seg-
mentation, or semantic segmentation as a second input modality (see Figure 2.3). Optical flow
only improved the results of the model that used DCGAN. The models profited more from
instance segmentation and semantic segmentation than from depth.

Comparing training durations

Training the ResNet for another 98 epochs showed further improvements, except that the re-
sults for the instance segmentation model got worse (see Table 2.3). The training and validation
curves for this experiment are visualized in A.2. Due to an incorrect setting of the number of
validation steps11, the validation curve fluctuates too much to say for certain that this decrease
in the SSIM metric is the cause of overfitting.

Comparing BCE and WBCE as loss functions

For all above-mentioned experiments, MSE was used as the loss function. Using BCE and
WBCE as a loss function showed that the WBCE experiments got worse metric scores than the
BCE ones (see Table 2.4). However, the outputs from the WBCE experiments subjectively ap-
peared more accurate. In Figure 2.4 for example, the car and the tree on the right are hardly
visible in the BCE experiment, whereas with WBCE, they can be spotted easily. It appears that

11 The validation step-size was set to 1. With a batch size of 70 this means only about a fifth of the validation data
was evaluated after each training. The validation data, however, was shuffled in every epoch.

15

Modality PSNR SSIM
Baseline 0.2399 0.01890
Depth 0.1885 0.02186
InsSeg 0.1 -0.15757
SemSeg 0.2481 0.04782
OptFl 0.7364 0.09131

Table 2.3.: Difference between training the ResNet-based model 98 and 196 epochs. The values are the
differences: score196 − score98. Positive values are improvements. See A.4.1 and A.3.1 for raw
values.

loss PSNR SSIM
BCE 15.517 0.6407
WBCE 11.279 0.4901

Table 2.4.: Comparison between BCE and WBCE as loss function. Evaluated after 126 epochs on the test
set. The top scores are marked bold.

the used metrics SSIM and PSNR are not well suited for evaluating instance edges.

Comparing MSE and WBCE as loss functions

A comparison between MSE and WBCE is shown in Figure 2.5. The output of the experiment
in which WBCE was used shows that the model learned that objects tend to come closer to the
camera when the car is driving. The street light e.g. clearly gets bigger in the output towards
the end of the predicted sequence. The street light in the output of the MSE-trained model just
gets more blurry. In both model outputs, however, the street light still gets predicted in the last
frames, even though it is not present anymore in the ground-truth. Another observation can
be made when looking at the lane markings. These are clearly present in the RGB input, but
not in the depth or target sequence, but the WBCE-trained model still predicts a lane marking,
which comes closer. Despite that, the WBCE-trained models still got worse metric scores than
the MSE-trained model (see A.1).

Figure 2.4.: Comparison between BCE and WBCE as loss function. Modalities top to bottom: RGB (input),
instance edges (target), BCE (result), WBCE (result). The second input modality depth is not
shown. Evaluated after 126 epochs on the test set.

16

Figure 2.5.: Comparison between MSE and WBCE as loss function. Modalities top to bottom: RGB (input),
depth (input), instance edges (target), MSE (result), WBCE (result). Evaluated after 196 epochs
on the test set.

2.5. Interpretation
If evaluating the similarities between the models’ outputs and targets only by the metrics SSIM
and PSNR, it was shown that all models profit from receiving depth, instance segmentation, or
semantic segmentation as an additional input to the RGB input. The latter two observations
should not be surprising, as semantic segmentation and instance edges are directly derived
from the instance segmentation images. However, this confirms that the models indeed took
advantage of this privileged information.

When adding optical flow, only the DCGAN-based model improved in both metrics. It ap-
pears different spatial encoder-decoder networks do not utilize from visual modalities in the
same way. ResNet e.g. got better scores in the baseline experiment than in the RGB+optical
flow experiment.

However, these results should not be relied upon. As it was shown, when training models
with WBCE instead of BCE or MSE, the SSIM and PSNR scores get worse even though the
predictions subjectively get better.

As observed in the last paragraph of section 2.4, the WBCE-trained model predicted lane
markings, which were not visible in the target but only in the input. This could have one of
two causes: Either the model has overfitted to lane markings (such as the model from Figure
2.1) because they appear in the majority of the samples at the same pixels; Or, – since the lane
markings are visible in some samples in the instance edges images –, the model learned that if
a lane marking is visible in the RGB images, such a marking is usually also visible in the target
images. The latter case would be preferred in a real-world situation.

17

3. Conclusion
For this work, a deterministic dataset generator for CARLA was proposed, which generates
videos of a car driving around the simulation environment. Multiple different visual modalities
can be extracted, as well as the motion data of all vehicles and pedestrians at every timestep.

With this data generator, a dataset was produced which includes 10 hours of video mate-
rial, including RGB, depth, optical flow, instance segmentation, semantic segmentation, and
instance edges. Also, the speed of the recording car, as well as the positions and orientations of
all other cars and pedestrians, are included.

A highly parameterizable sequence-to-sequence model framework for video prediction is
introduced, in which the spatial encoder-decoder networks can be switched out easily.

An extensive hyper-parameter search has yielded acceptable results for predicting future in-
stance edges video frames from RGB and second visual input modalities. With a comparison
between different spatial encoder-decoder networks (VGG, DCGAN, ResNet, U-Net, LinkNet),
it was shown that ResNets seem to perform best in the task of predicting instance edges. It
could not be answered with certainty which of the tested visual modalities profited the pro-
posed model the most. However, it was shown that PSNR and SSIM are not well suited for
evaluating image similarity between instance edges video frames. Furthermore, it was shown
that models trained with WBCE as a loss function resulted in more satisfying outputs than
when trained with MSE.

3.1. Discussion
In this thesis, many design decisions had to be made, as a dataset and a model framework
for video prediction were implemented from scratch. Every decision must be chosen very
carefully. As shown, changing only one of these decisions, as the loss function, has a high
influence on the results. Working with the high-performance cluster, allowed for an extensive
hyper-parameter search for trying out some of these design decisions. However, only a small
portion of the possible parameter combinations could be tested.

A not reproducible problem on the cluster caused some experiments to kill a node of the
cluster, and blocking it for multiple days until it got restarted. An I/O error could be the cause,
however further investigation is necessary.

The models were trained with GPU support. However, the models did not utilize the GPUs
to their maximum capacity. A cause for this problem could not be identified yet.

The accidental choice of setting the number of validation steps to 1 made the validation curve
fluctuate too much to be representable. This should be corrected in future experiments.

18

3.2. Statement of problems left solved
For this work, MSE was used as the main loss function throughout the hyper-parameter search.
MSE did not prove to be a good loss function for training on binary images. WBCE led to better
results. Also, the metrics SSIM and PSNR were used for the evaluation of the results. Even
though these metrics are commonly used for image similarity, it was shown that they do not
apply well in evaluating binary image similarity. Further research is necessary to find more
suitable loss functions and metrics.

The proposed model compresses and decompresses the video in space and time indepen-
dently. As stated in 1.4.4, models like 3D CNNs exist, which compress videos in space and
time at the same time. These models may lead to better frame predictions if provided with a
larger dataset.

The generated dataset only consists of 10 hours of video material. In comparison to other
video datasets like Kinetics-400[26], this is still comparably small. A larger dataset could pos-
sibly lead to better results. However, this is only a matter of computation time if the proposed
dataset generator is used.

The raw data, coming from the dataset generator, consisted to 45% of sequences in which the
recording car did not move at all. Movement of other cars or pedestrians in those sequences
is very sparse. Predicting future frames of videos without movement is trivial. An algorithm
would be needed to balance the dataset such that a satisfying distribution of movement is
present across all sequences.

In further research, the learned representation vectors themselves could also be analyzed.
Visualization technics like T-SNE could e.g. show if the model has learned a concept of the
car’s speed. For this, the model’s predicted representation vector, as well as the current speed
of the recording car, would be needed. Both already get saved when evaluating the proposed
model.

19

4. List of Tables
2.1. Comparison of different representation vector sizes R and different spatial en-

coding vector sizes S . 13
2.2. Comparison between using and not using long skip connections 14
2.3. Difference between training the ResNet-based model 98 and 196 epochs 16
2.4. Comparison between BCE and WBCE as loss function 16

A.1. Difference between training the ResNet-based model with WBCE and MSE as
the loss function . 26

20

5. List of Figures
1.1. Visual modalities extracted from CARLA . 2

2.1. Example experiment visulaization . 9
2.2. Model’s architecture . 11
2.3. Comparison between different encoder-decoder networks and visual modalities 15
2.4. Comparison between BCE and WBCE as loss function 16
2.5. Comparison between MSE and WBCE as loss function 17

A.1. Training and validation curves for the instance segmentation model 26

21

6. Bibliography
[1] S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning: From Theory to Al-

gorithms. Cambridge University Press, May 2014, google-Books-ID: Hf6QAwAAQBAJ.
[Page 3]

[2] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016. [Online].
Available: https://www.deeplearningbook.org/ [Page 3]

[3] A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola, “Dive into Deep Learning,”
arXiv:2106.11342 [cs], Jul. 2021, arXiv: 2106.11342. [Online]. Available: http://arxiv.org/
abs/2106.11342 [Page 3]

[4] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to Sequence Learning with Neural
Networks,” arXiv:1409.3215 [cs], Dec. 2014, arXiv: 1409.3215. [Online]. Available:
http://arxiv.org/abs/1409.3215 [Page 4]

[5] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image
Recognition,” arXiv:1512.03385 [cs], Dec. 2015, arXiv: 1512.03385. [Online]. Available:
http://arxiv.org/abs/1512.03385 [Pages 4 and 12]

[6] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for Biomedical
Image Segmentation,” arXiv:1505.04597 [cs], May 2015, arXiv: 1505.04597. [Online].
Available: http://arxiv.org/abs/1505.04597 [Page 4]

[7] T. Zia and U. Zahid, “Long short-term memory recurrent neural network architectures
for Urdu acoustic modeling,” International Journal of Speech Technology, vol. 22, no. 1,
pp. 21–30, Mar. 2019. [Online]. Available: https://doi.org/10.1007/s10772-018-09573-7
[Page 4]

[8] Y. Li, J. Zhang, Y. Cheng, K. Huang, and T. Tan, “Semantics-guided multi-level RGB-D
feature fusion for indoor semantic segmentation,” in 2017 IEEE International Conference on
Image Processing (ICIP), Sep. 2017, pp. 1262–1266. [Page 4]

[9] L. Jing and Y. Tian, “Self-supervised Visual Feature Learning with Deep Neural
Networks: A Survey,” arXiv:1902.06162 [cs], Feb. 2019, arXiv: 1902.06162. [Online].
Available: http://arxiv.org/abs/1902.06162 [Page 4]

[10] H. Fu, M. Gong, C. Wang, K. Batmanghelich, and D. Tao, “Deep Ordinal
Regression Network for Monocular Depth Estimation,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018, pp. 2002–2011. [Online].
Available: https://openaccess.thecvf.com/content_cvpr_2018/html/Fu_Deep_Ordinal_
Regression_CVPR_2018_paper.html [Page 5]

[11] G. Varol, I. Laptev, and C. Schmid, “Long-term Temporal Convolutions for Action
Recognition,” arXiv:1604.04494 [cs], Jun. 2017, arXiv: 1604.04494. [Online]. Available:
http://arxiv.org/abs/1604.04494 [Pages 5 and 6]

22

https://www.deeplearningbook.org/
http://arxiv.org/abs/2106.11342
http://arxiv.org/abs/2106.11342
http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1505.04597
https://doi.org/10.1007/s10772-018-09573-7
http://arxiv.org/abs/1902.06162
https://openaccess.thecvf.com/content_cvpr_2018/html/Fu_Deep_Ordinal_Regression_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Fu_Deep_Ordinal_Regression_CVPR_2018_paper.html
http://arxiv.org/abs/1604.04494

[12] J. McCormac, A. Handa, S. Leutenegger, and A. J. Davison, “SceneNet RGB-D: Can 5M
Synthetic Images Beat Generic ImageNet Pre-training on Indoor Segmentation?” in 2017
IEEE International Conference on Computer Vision (ICCV), Oct. 2017, pp. 2697–2706, iSSN:
2380-7504. [Page 5]

[13] P. Krahenbuhl, “Free Supervision from Video Games,” in 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Jun. 2018, pp. 2955–2964, iSSN: 2575-7075. [Page 5]

[14] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA: An Open
Urban Driving Simulator,” arXiv:1711.03938 [cs], Nov. 2017, arXiv: 1711.03938. [Online].
Available: http://arxiv.org/abs/1711.03938 [Pages 6, 8, and 9]

[15] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie,
A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis,
“Human-level control through deep reinforcement learning,” Nature, vol. 518, no. 7540,
pp. 529–533, Feb. 2015, number: 7540 Publisher: Nature Publishing Group. [Online].
Available: https://www.nature.com/articles/nature14236 [Page 6]

[16] A. Dosovitskiy and V. Koltun, “Learning to Act by Predicting the Fu-
ture,” arXiv:1611.01779 [cs], Feb. 2017, arXiv: 1611.01779. [Online]. Available:
http://arxiv.org/abs/1611.01779 [Page 6]

[17] A. Sax, J. O. Zhang, B. Emi, A. Zamir, S. Savarese, L. Guibas, and J. Malik,
“Learning to Navigate Using Mid-Level Visual Priors,” Dec. 2019. [Online]. Available:
http://arxiv.org/abs/1912.11121 [Page 6]

[18] A. Zamir, A. Sax, W. Shen, L. Guibas, J. Malik, and S. Savarese, “Taskonomy:
Disentangling Task Transfer Learning,” arXiv:1804.08328 [cs], Apr. 2018, arXiv:
1804.08328. [Online]. Available: http://arxiv.org/abs/1804.08328 [Page 6]

[19] B. Zhou, P. Krähenbühl, and V. Koltun, “Does computer vision matter for action?” Science
Robotics, vol. 4, no. 30, May 2019. [Online]. Available: https://arxiv.org/abs/1905.12887
[Page 6]

[20] L. Sevilla-Lara, Y. Liao, F. Guney, V. Jampani, A. Geiger, and M. J. Black, “On the
Integration of Optical Flow and Action Recognition,” arXiv:1712.08416 [cs], Dec. 2017,
arXiv: 1712.08416. [Online]. Available: http://arxiv.org/abs/1712.08416 [Page 6]

[21] J. Carreira and A. Zisserman, “Quo Vadis, Action Recognition? A New Model and the
Kinetics Dataset,” arXiv:1705.07750 [cs], Feb. 2018, arXiv: 1705.07750. [Online]. Available:
http://arxiv.org/abs/1705.07750 [Pages 6 and 7]

[22] K. Hara, H. Kataoka, and Y. Satoh, “Can Spatiotemporal 3D CNNs Retrace the History of
2D CNNs and ImageNet?” arXiv:1711.09577 [cs], Apr. 2018, arXiv: 1711.09577. [Online].
Available: http://arxiv.org/abs/1711.09577 [Page 7]

[23] K. Soomro, A. R. Zamir, and M. Shah, “UCF101: A Dataset of 101 Human Actions Classes
From Videos in The Wild,” arXiv:1212.0402 [cs], Dec. 2012, arXiv: 1212.0402. [Online].
Available: http://arxiv.org/abs/1212.0402 [Pages 7 and 10]

[24] F. C. Heilbron, V. Escorcia, B. Ghanem, and J. C. Niebles, “ActivityNet: A large-scale video
benchmark for human activity understanding,” in 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Jun. 2015, pp. 961–970, iSSN: 1063-6919. [Page 7]

23

http://arxiv.org/abs/1711.03938
https://www.nature.com/articles/nature14236
http://arxiv.org/abs/1611.01779
http://arxiv.org/abs/1912.11121
http://arxiv.org/abs/1804.08328
https://arxiv.org/abs/1905.12887
http://arxiv.org/abs/1712.08416
http://arxiv.org/abs/1705.07750
http://arxiv.org/abs/1711.09577
http://arxiv.org/abs/1212.0402

[25] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre, “HMDB: A large video database
for human motion recognition,” in 2011 International Conference on Computer Vision, Nov.
2011, pp. 2556–2563, iSSN: 2380-7504. [Page 7]

[26] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijayanarasimhan, F. Viola,
T. Green, T. Back, P. Natsev, M. Suleyman, and A. Zisserman, “The Kinetics Human
Action Video Dataset,” arXiv:1705.06950 [cs], May 2017, arXiv: 1705.06950. [Online].
Available: http://arxiv.org/abs/1705.06950 [Pages 7, 10, and 19]

[27] N. Srivastava, E. Mansimov, and R. Salakhutdinov, “Unsupervised Learning of Video
Representations using LSTMs,” arXiv:1502.04681 [cs], Jan. 2016, arXiv: 1502.04681.
[Online]. Available: http://arxiv.org/abs/1502.04681 [Pages 7, 10, and 12]

[28] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,
J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,
R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore,
D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke,
Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous
systems,” 2015. [Online]. Available: https://www.tensorflow.org/ [Page 9]

[29] F. Chollet et al., “Keras,” 2015. [Online]. Available: https://keras.io [Page 9]

[30] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale
Image Recognition,” arXiv:1409.1556 [cs], Apr. 2015, arXiv: 1409.1556. [Online]. Available:
http://arxiv.org/abs/1409.1556 [Page 12]

[31] A. Radford, L. Metz, and S. Chintala, “Unsupervised Representation Learning with Deep
Convolutional Generative Adversarial Networks,” arXiv:1511.06434 [cs], Jan. 2016, arXiv:
1511.06434. [Online]. Available: http://arxiv.org/abs/1511.06434 [Page 12]

[32] P. Iakubovskii, “Segmentation Models,” Mar. 2022, original-date: 2018-06-05T13:27:56Z.
[Online]. Available: https://github.com/qubvel/segmentation_models [Page 12]

[33] A. H. Abdulnabi, B. Shuai, Z. Zuo, L.-P. Chau, and G. Wang, “Multimodal Recurrent
Neural Networks with Information Transfer Layers for Indoor Scene Labeling,” IEEE
Transactions on Multimedia, vol. 20, no. 7, pp. 1656–1671, Jul. 2018, arXiv: 1803.04687.
[Online]. Available: http://arxiv.org/abs/1803.04687 [Page 12]

[34] M. Mathieu, C. Couprie, and Y. LeCun, “Deep multi-scale video prediction beyond mean
square error,” arXiv:1511.05440 [cs, stat], Feb. 2016, arXiv: 1511.05440. [Online]. Available:
http://arxiv.org/abs/1511.05440 [Page 12]

[35] R. Rane, E. Szügyi, V. Saxena, A. Ofner, and S. Stober, “PredNet and Predictive
Coding: A Critical Review,” Proceedings of the 2020 International Conference on
Multimedia Retrieval, pp. 233–241, Jun. 2020, arXiv: 1906.11902. [Online]. Available:
http://arxiv.org/abs/1906.11902 [Page 13]

[36] R. Deng, C. Shen, S. Liu, H. Wang, and X. Liu, “Learning to predict crisp
boundaries,” arXiv:1807.10097 [cs], Jul. 2018, arXiv: 1807.10097. [Online]. Available:
http://arxiv.org/abs/1807.10097 [Page 13]

24

http://arxiv.org/abs/1705.06950
http://arxiv.org/abs/1502.04681
https://www.tensorflow.org/
https://keras.io
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1511.06434
https://github.com/qubvel/segmentation_models
http://arxiv.org/abs/1803.04687
http://arxiv.org/abs/1511.05440
http://arxiv.org/abs/1906.11902
http://arxiv.org/abs/1807.10097

Appendices

25

A. Additional figures and data
A.1. Difference between training with WBCE and MSE
This data is referred to in 2.4.

Modality PSNR SSIM
Baseline -4.305 -0.14
Depth -4.211 -0.1452
InsSeg -5.439 -0.1580
SemSeg -4.39 -0.1580
OptFl -3.995 -0.1161

Table A.1.: Difference between training the ResNet-based model with WBCE and MSE as the loss function.
The values are the differences: scoreWBCE − scoreMSE i.e. negative values indicate that the
WBCE-trained model achieved a lower score than the MSE-trained model. See A.4 for raw data.

A.2. Training and validation curves for the instance
segmentation model

This figure is referred to in 2.4.

0.02

0.022

0.024

0.026

0.028

0.03

0.032

0.034

0.036

0 20 40 60 80 100 120 140 160 180 200 220

Figure A.1.: Training and validation curves for the instance segmentation model. The x-axis is the MSE loss.
The y-axis are the training epochs. Pink: training curve; Blue: validation curve. Both curves
were smoothened to counteract the fluctuations of the validation curve. The "pale" curves show
the original training and validation losses.

26

A.3. Metric data for different spatial encoder-decoder
networks and modalities after 98 epochs

This data is used in Figure 2.3.

A.3.1. ResNet

This data is used in Table 2.3.
ResNet PSNR SSIM
RGB 15.118666648864746 0.5891214609146118
Depth 15.340457916259766 0.614318311214447
InsSeg 15.628207206726074 0.6533489227294922
SemSeg 15.90740966796875 0.6405366063117981
OptFl 14.537500381469727 0.5311346650123596

A.3.2. UNet

UNet PSNR SSIM
RGB 15.125197410583496 0.5694199800491333
Depth 15.26447582244873 0.6068575978279114
InsSeg 15.608999252319336 0.6403436660766602
SemSeg 15.708322525024414 0.6485517024993896
OptFl 15.06726360321045 0.5779425501823425

A.3.3. DCGAN

DCGAN PSNR SSIM
RGB 14.90750789642334 0.49102887511253357
Depth 15.132073402404785 0.5795562267303467
InsSeg 15.385443687438965 0.4974871873855591
SemSeg 15.69117259979248 0.6198152899742126
OptFl 14.97403621673584 0.5396600365638733

27

A.4. Metric data for different losses and modalities after
196 epochs

This data is used in A.1.

A.4.1. MSE

This data is used in Table 2.3.
ResNet PSNR SSIM
RGB 15.358552932739258 0.608020007610321
Depth 15.528942108154297 0.6361757516860962
InsSeg 15.728174209594727 0.49578016996383667
SemSeg 16.155529022216797 0.6883578300476074
OptFl 15.273910522460938 0.6224478483200073

A.4.2. WBCE

ResNet PSNR SSIM
RGB 11.05336856842041 0.46804699301719666
Depth 11.317829132080078 0.490978479385376
InsSeg 10.288700103759766 0.2579684853553772
SemSeg 11.765873908996582 0.5303319692611694
OptFl 11.278923988342285 0.506332278251648

28

B. Code and dataset access
B.1. Code
Detailed explanations on how to use the code can be found in the README.md files. The code
is available at TubCloud, which is password protected:

URL:

Password:

The code is also available on GitLab of TU Berlin. However, access permission must be re-
quested:

URL:

E-Mail: l.schroeder@campus.tu-berlin.de

B.2. Experiment results
To access the experiment results (486 GB including the code and checkpoints), you need to have
access to .

All experiments conducted in this thesis can be found at:

29

B.3. Dataset
To access the porposed dataset (382 GB unzipped; 112 GB zipped; 44 GB TFRecords), you need
to have access to .

A sample of the training set can be found at:

URL: https://tubcloud.tu-berlin.de/s/5ygs7dbMjDJWtqX

The entire dataset can be found at:

and

30

https://tubcloud.tu-berlin.de/s/5ygs7dbMjDJWtqX

	Introduction
	Motivation
	Overview
	Background
	Visual modalities and visual cues
	Artificial neural networks
	Convolutional neural networks
	Encoder-decoder architecture
	Skip connections
	Long short-term memorys
	Multi-stream convolutional neural networks
	Self-supervised learning

	Related work
	Datasets
	Reinforcement learning
	Action classification
	Architecture

	Outline of this thesis

	Main contribution
	Methodical approach
	Implementation
	Tools used for development
	Dataset
	Model

	Experiments
	Loss function and metrics
	Hyper-parameter search
	Experiment setup

	Results
	Interpretation

	Conclusion
	Discussion
	Statement of problems left solved

	List of Tables
	List of Figures
	Bibliography
	Appendices
	Additional figures and data
	Difference between training with WBCE and MSE
	Training and validation curves for the instance segmentation model
	Metric data for different spatial encoder-decoder networks and modalities
	ResNet
	UNet
	DCGAN

	Metric data for different losses and modalities
	MSE
	WBCE

	Code and dataset access
	Code
	Experiment results
	Dataset

