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Abstract—Modern GPUs are true power houses in every
meaning of the word: While they offer general-purpose (GPGPU)
compute performance an order of magnitude higher than that
of conventional CPUs, they have also been rapidly approaching
the infamous “power wall”, as a single chip sometimes consumes
more than 300W. Thus, the design space of GPGPU microar-
chitecture has been extended by another dimension: power.
While GPU researchers have previously relied on cycle-accurate
simulators for estimating performance during design cycles, there
are no simulation tools that include power as well. To mitigate this
issue, we introduce the GPUSimPow power estimation framework
for GPGPUs consisting of both analytical and empirical models
for regular and irregular hardware components. To validate this
framework, we build a custom measurement setup to obtain
power numbers from real graphics cards. An evaluation on a
set of well-known benchmarks reveals an average relative error
of 11.7% between simulated and hardware power for GT240 and
an average relative error of 10.8% for GTX580. The simulator
has been made available to the public [1].

I. INTRODUCTION

With processor designs becoming ever more complex and
chip manufacturing processes becoming harder to control, the
inability of computer architects to produce working prototypes
of their designs for testing is a more pressing problem than
ever before. With chips rapidly approaching (and, nowadays,
touching) the power wall, the conventional design space of
processor architecture has been extended by another dimen-
sion: Energy consumption.

Over the past years, it has become apparent that the chips
consuming the most energy by far are modern Graphics
Processing Units (GPUs). With GPUs turning into major
devices for general purpose computations, so-called general-
purpose computation on GPUs (GPGPU), this trend has only
accelerated as more and more parties are striving to drive GPU
performance up. The inability to manufacture chips to evaluate
architectural design choices, however, remains, as does the
looming power wall.

So how do the design of new GPU architectures, the inabil-
ity to manufacture chips just for testing, and the requirement
to not only estimate a chip’s performance, but also its power
during development come together? On the one hand, if we
disregard power and only consider performance, this question
has been answered by several researchers over the past years:
GPU architects now must rely on building cycle-accurate

architectural simulators in high-level languages and evaluate
novel designs using these simulators. On the other hand,
there are several accepted tools and frameworks to model and
estimate power consumption for CPUs such as Wattch [2]. To
the best of our knowledge, however, no one ever combined
architectural GPU simulators with power models to create
GPU power simulators before.

In this work, we seek to mitigate this issue by introducing
GPUSimPow, a power simulation framework for contemporary
GPGPU architectures. GPUSimPow is able to estimate mul-
tiple characteristics of a hypothetical GPU architecture such
as chip area, gate leakage, and peak dynamic power, as well
as precisely simulate the power consumed during execution
of GPGPU workloads. With this power simulator, computer
architects can evaluate design choices early from a power
perspective, and GPGPU programmers gain an effective way to
investigate their GPGPU codes, so-called kernels, to optimize
power consumption from a software perspective. To make
GPUSimPow flexible enough that architectural design choices
can easily be carried out while still maintaining reasonably
high accuracy of the power predictions compared to real
hardware, we model the components of a GPU architecture in
two ways: Regular components such as memories are modeled
analytically using the well-known McPAT [3] tool (which, by
itself, integrates CACTI6.5 [4]). Irregular components such
as address generation units (AGUs) or special-function units
(SFUs), on the other hand, are modeled empirically by ac-
quiring measurement data on real hardware. To obtain accurate
measurements, we propose a specialized measurement testbed.

In summary, we make the following contributions:

• We develop the GPUSimPow power simulator that is able
to generate area, power and runtime power estimations for
contemporary GPGPU micro-architectures and GPGPU
kernels.

• We propose a novel measurement methodology to be able
to accurately measure GPU power consumption on real
hardware down to the individual kernel.

This paper is organized as follows: First and foremost,
Section II introduces related work. Then, in Section III, we
introduce our power simulator, describe its structure and the
simulated architecture. Then, Section IV presents the measure-



ment setup we used to estimate component power and validate
the simulator results, as well as the rest of our experimental
setup for simulator runs. Section V presents the simulator
results and compares them with power measurements on real
hardware. Finally, we draw conclusions in Section VI.

II. RELATED WORK

Relevant related work for this paper can be classified into
two categories: First, work on GPU power modeling in gen-
eral, and second, previous attempts at reliable measurements
of GPU power consumption.

For general GPU power modeling, the available body of
previous work is rather small. On the one hand, there have
been approaches such as the ones from Hong and Kim [5]
or Ma et al. [6] which are based entirely on measured data.
While this type of power model is able to deliver superior
accuracy for the architecture it was built from, it lacks the
capability to make accurate predictions about GPUs with
other architectural parameters and designs. On the other hand,
several researchers have built purely analytic power models,
such as Ramani et al. [7] and Wang [8]. While such approaches
generally show strong correlation between different simulated
and hardware GPU architecture configurations, they typically
cannot provide reasonable absolute accuracy due to the lack of
either industrial or measured anchor data. Our power simulator
improves upon all these prior approaches by combining both
empirical and analytical component models to create a system
that is both architecturally flexible and shows reasonable
absolute accuracy. A similar approach to ours has previously
been used to estimate CPU power consumption by the well-
known McPAT tool [3].

In terms of measuring GPU power consumption, many
previous approaches have made strong assumptions about the
hardware they measure, leading to inaccurate measurement
methodologies. For example, Hong and Kim [5] assume the
GPU power can be calculated from measuring the power
of the entire PC under load and subtracting the power of
the PC in idle state. This assumption is highly naive since
the power used by the remaining PC components is usually
not constant and the measurement results will include ATX
power supply losses. Large bypass capacitors inside the ATX
power supply prevent the accurate measurement of power
for kernels which run fewer than 50 ms. Other papers [9],
[10], [6] use improved measurement methodologies, but still
exhibit multiple weaknesses. To the best of our knowledge,
all these published methodologies either fail to measure all
power sources, e.g. do not measure the power provided via
the graphics card slot [9], measure only current and assume
constant voltages [10], or use low sampling frequencies that
prevent them from measuring short-term power variations [6],
[9]. Our methodology improves upon all of these aspects (see
Section IV-A).

III. THE GPUSIMPOW TOOL

In this section, we present our power simulation frame-
work called GPUSimPow. An overview over GPUSimPow’s

structure is given in Section III-A. In Section III-B we are
providing information about the power model and its link to
the performance simulator. The baseline architecture details
are explained in Section III-C. Finally, Section III-D gives
details on how the empirical parts of the model have been
derived.

A. Overview

GPUSimPow is a power simulator for GPGPU workloads,
i.e. given a configuration of a particular GPU architecture
and a GPGPU kernel written in CUDA [11] or OpenCL [12],
GPUSimPow is capable of producing both architectural infor-
mation such as static power, peak dynamic power, and area,
as well as runtime dynamic power for the kernel at hand. The
simulator is designed to be flexible regarding the architecture
that is simulated to allow architects to utilize the simulator as
a high-level tool to explore the GPU architecture design space.
Therefore, the key parameters of the simulated architecture are
supplied using a simple XML-based interface. For example,
GPUSimPow is able to coherently simulate an architecture
with a varied number of cores.

B. Power Model

In general, power for switching circuits is described by the
well-known Eq. 1 [3].

Ptotal = αCVdd∆V fclk + VddIShort-circuit + VddIleakage (1)

The first term is the dynamic power that is spent charging
and discharging capacitive loads when the circuit switches
state. An important factor for this paper is the activity factor
α that describes the percentage of the circuit’s capacitance
being charged during switching. The second term of Eq. 1
is the short-circuit power being consumed when both pull-up
and pull-down networks in a CMOS circuit are on for a short
amount of time. Thus, the total power consumed by a circuit
during switching is the sum of the dynamic and short-circuit
power terms. Finally, the third term of Eq. 1 is the static power
consumed due to leakage current through the transistors, where
leakage consists of two distinct types: Subthreshold leakage,
where a transistor that is switched off leaks current between
its source and drain, and gate leakage, where current leaks
through the transistor’s gate terminal.

Structurally, GPUSimPow consists of two main parts, visu-
alized in Figure 1: First, a cycle-accurate GPGPU simulator
that simulates the given kernel and thereby generates utiliza-
tion information and activity factors α for all components
of the GPU architecture, and second, a chip representation
with a power model for each component that uses the activity
information from the simulator to produce power numbers for
a particular kernel. From the chip representation, statistics
about area and peak, leakage, and short-circuit power are
inferred as well.

For the cycle-accurate GPGPU simulator, we employ a
modified version of the most recent GPGPU-Sim [13] that
has been altered to produce access counts and other activity
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Fig. 1: Overview over the GPUSimPow simulation framework.

information for all parts of the simulated architecture. GPGPU-
Sim has been developed for an architecture that is not equal
but comparable to many current off-the-shelve GPUs such as
NVIDIA’s Fermi [14] or AMD’s GCN [15]. Further details
about the architecture are given in the next section.

The chip representation and power model are provided by a
heavily modified variant of McPAT [3] we name GPGPU-Pow.
McPAT integrates three different modeling tiers hierarchically
to provide a flexible and highly accurate power model for
CPUs: The architectural tier, where a processor is broken
down into major components such as cores, caches, and
memory controllers, the circuit tier, where the architectural
components are mapped to basic circuit structures such as
arrays or clocking networks, and the technology tier, which
provides the physical parameters, such as current densities and
capacitances, of the circuits. Besides this hierarchy, a unique
advantage of McPAT is its combination of analytical and
empirical models for the individual components. We embrace
both the hierarchical as well as the combined nature of McPAT
and develop a McPAT-based model for GPUs. On the one
hand, this requires many modifications to McPAT, as multiple
components that are present in the CPU architecture model
such as register alias tables cannot be reused for GPUs, and
various core components of GPU architectures, such as stacks
to handle thread divergence, are not present in CPUs. On the
other hand, using McPAT enables us to utilize all the integrated
low-level technological information, e.g. to scale the GPU
power model for a specific manufacturing process node, we
can use the ITRS roadmap scaling techniques within McPAT.

C. Modeled Architecture

The GPU micro-architecture we designed our power model
for is comparable to the one given in GPGPU-Sim to ensure
a good “fit” between GPGPU simulator and power model.
Generally, it is a single-instruction multiple-thread (SIMT)
architecture that uses a stack-based divergence handling mech-
anism, well representative of many current GPUs.

On the highest level, a GPU chip in our model consists
of a memory controller (MC), a Network-on-Chip (NoC), a
PCIe controller (PCIeC), and a collection of cores. Besides
the actual chip, we model the GDDR5 graphics DRAM
as well. For NoC, MC, and PCIeC, we re-used the highly
configurable models already present in McPAT and adjusted
their parameters to fit the different requirements of a GPU. The

internal structure of a core consists of a Warp Control Unit
(WCU), a highly banked register file, a set of SIMD execution
units (INT, FP, SFU), and a load/store unit (LDSTU). In the
following, each of these components as well as our GDDR
model are briefly introduced.
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Fig. 2: High-level overview over the internals of the GPU’s
frontend, in our model called warp control unit.

1) Warp Control Unit: The WCU represents the front-
end of a single core. As such, the WCU is responsible for
keeping the execution back-end, i.e. the functional units and
the load/store hardware, supplied with instructions at all times.
Thus, the WCU handles thread management (i.e. formation of
warps from threads and the relation of per-thread control flow
under warp constraints), warp scheduling, warp instruction
fetching, decoding, dependency resolution, and renaming. An
overview over our WCU model is depicted in Figure 2.

The information needed for each warp to fetch instructions
and manage the warp threads is contained in a single multi-
ported RAM table, the Warp Status Table (WST). The WST
contains one entry for each in-flight warp the core can handle.
To select a warp to fetch an instruction for, a rotating-priority
(round-robin) warp scheduler is modeled. Such schedulers
consist of a set of inverters, a wide priority encoder, and a
phase counter. These components have been modeled from



appropriate circuit plans [16] using McPAT’s circuit and tech-
nology layers. After instructions have been fetched from the
I-Cache, they are decoded. For this, we re-use the instruction
decoder hardware models already present in McPAT.

As is common for most GPGPU applications on modern
GPU architectures, the individual in-flight threads often ex-
ecute different dynamic instruction paths. The grouping of
threads into SIMD bundles (warps) implicitly forces the thread
PCs to have the same value at all times, however. If this is not
the case due to the threads branching into different dynamic
execution paths, the execution of threads in a single warp but
with different PCs is serialized. To achieve this serialization
and keep track of the thread IDs that have to execute certain
branch outcomes, the hardware uses a stack memory called the
reconvergence stack [17]. For each individual in-flight warp,
the hardware maintains a separate stack. In our model, a stack
consists of tokens, each of which contains an execution PC, a
reconvergence PC, and an active mask for that warp and code
block.

Once an instruction has been decoded, the WCU places the
instruction into an instruction buffer (IB) slot. The instruction
resides in its buffer slot until it is ready to execute, that is, if
its register dependencies have been resolved (in scoreboarded
architectures) or the previous instruction from the same warp
has been committed (in blocking barrel-processing architec-
tures). The instruction buffer is a cache-like structure that is
tagged by the warp ID and has an associativity greater than
one, i.e. each instruction can be buffered in one of several
slots tagged by its parent warp ID.

For resolving register dependencies, GPUs (e.g. NVIDIA
Fermi) use simple approaches based on scoreboarding [18].
In our models, a scoreboard is a cache-like table tagged by
the warp ID.

2) Register File: The GPU register file model is based on
an NVIDIA patent [19] and built from multiple single ported
RAM banks. Operands are collected over multiple cycles to
simulate a multi-ported register file. Different threads will
have their registers stored in different banks. This scheme
increases the area density of the register file. A crossbar is
used to connect the different register banks to a set of operand
collector units which are two-ported four-entry register files.

3) Execution Units: The basic unit of execution flow in
the SIMT core is the warp. The GPU has a set of SIMD
execution units which execute the warp threads in lock step.
For example, the SIMT core in the NVIDIA GT240 has eight
fully pipelined floating point units (FPUs), eight pipelined
integer units (IUs) and two special function units (SFUs)
to execute transcendental instructions such as sine, cosine,
reciprocal, and square root. In our power model, we used the
area numbers published by Sameh et al. [20] for FPUs, the
results of Caro et al. [21] for power and area of the SFUs
with scaling for the desired process technology, and our own
measurements for power of integer units and floating point
units (see Section III-D).

4) Load/Store Unit: The load-store unit (LDSTU) is func-
tionally responsible for handling instructions that read or
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Fig. 3: High-level overview over the internals of the GPU’s
load/store unit.

write any kind of memory. In the power model, the LDSTU
encapsulates the top-tier memory structures of the core, i.e.
L1/SMEM, the constant caches and the L2 caches. In a future
variant of the model, the LDSTU will contain the texture
caching subsystem, i.e. texture caches and texture mapping
units, as well. An overall overview of the LDSTU is depicted
in Figure 3.

As the figure shows, a memory access instruction for an
entire warp is first passed to the address generators. Given
base addresses as well as strides and offsets, the address
generation unit (AGU) generates one memory address per
thread in the warp. Given reasonable warp sizes of 32/64
threads in modern architectures, this requires very high band-
width address generation units that supply the later stages of
the memory subsystem with 32/64 memory addresses each
cycle. We model the complete AGU as an array of parallel
high-bandwidth sub-AGUs (SAGU), each of which is able
to generate 8 memory addresses per cycle [22]. Given the
memory address bundle for all threads in the warp, the address
bundle is further analyzed depending on the type of memory
the instruction accesses.

If the instruction accesses constant memory, the addresses
are checked for equality. The number of generated constant
cache / constant memory accesses is equal to the number of
different addresses in the address bundle, e.g. if all addresses
are equal, the memory access can be serviced with a single
constant memory request, allowing for high-bandwidth oper-
ation. The constant memory segment is cached in an entire
hierarchy of constant caches [23].

If the instruction accesses global memory, it is first coa-
lesced before being passed to the L1/L2 caches and/or DRAM.
The coalescing system is modeled after a corresponding
NVIDIA patent [24] and consists of an input queue, output
queue, pending request table, and a finite state machine. The
goal of coalescing is to service the addresses requested by
the memory access in as few memory requests as possible.
As our research revealed, CACTI cannot be used to model
buffers with few but very large entries such as the pending



request table and input queue of the coalescer. Instead, we
compute the total amount of bits which must be held in the
coalescing system at any time and model the required storage
using D-FlipFlops.

In several modern GPUs, shared memory (SMEM) and the
L1 data cache are portions of the same physical memory
structure. The distribution of physical memory to L1 and
SMEM is configurable. Therefore, we model L1 and SMEM as
an integrated physical memory structure and convert accesses
to SMEM and L1 hits to accesses to that memory structure.
The physical memory consists of multiple banks to be able
to supply multiple accessing threads with data at a high rate.
Besides the physical memory banks, the SMEM/L1 consists
of interconnects for addresses and data, both modeled as
crossbars, and a bank conflict checking unit [25]. The L2
cache is shared over the entire GPU and connected to the
cores through the NoC.

5) Global Memory: The global memory in GPUs has
high bandwidth but long latency. The current generation of
GPUs such as Fermi use either DDR3 SDRAM or GDDR5
SGRAM chips to implement the global memory. The power
consumed by typical DDR or GDDR chips can be divided
into background, activate, read/write, termination, and refresh
power [26]. We extract numbers for each of these components
from industry data sheets [27].

D. Deriving Power Empirically

Using our custom power measurement setup described
in Section IV-A, we were able to build an empirical,
measurement-based model for the INT and FP execution units
by running custom microbenchmarks to estimate the energy
per INT/FP operation. As described earlier in Section III-C,
todays GPUs use an SIMT approach to execute multiple
threads at the same time on SIMD hardware.

We can use this SIMT-style of execution to our advantage by
enabling different numbers of execution units while keeping
the activity of all other units, except for the register files,
constant. This way, we can estimate power for the execution
units with reasonably high accuracy. For both integer and
floating point operations, we launch one thread block for
each core and use 512 threads per block to ensure all cores
and targeted execution units are busy. We used unrolling to
make the loop overhead of our testing loops negligible. In
the loop nest of our integer test code, we are simulating
Linear Shift Feedback Registers while for the floating point
case we are using Mandelbrot set iterations. In both cases,
we are alternately configuring the test kernels to use 31
enabled threads per warp and 1 enabled thread per warp. Both
configurations have the same execution time. We then calculate
the energy difference between these two kernel launches and
divide the result by the number of executed instructions,
number of cores and difference in execution units enabled to
arrive at an estimate for the energy used by a single execution
unit executing a single instruction.

Our measurements show that integer instructions are using
approximately 40 pJ while floating point instructions are using

about 75 pJ per instruction. NVIDIA reports 50 pJ per floating
point instruction [28]. The power model of the execution units
is based on our measurements.
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Fig. 4: Power measurement results of a GT240 card running
the same kernel 12 times with increasing number of thread
blocks. The GT240 features 12 cores distributed evenly over
4 core clusters.

While we developed all component models to the best of
our knowledge, there are areas of GPU architecture where
publicly available information is especially scarce, such as
the raster operations pipelines (ROPs) or fixed-function video
decode hardware, which consume power due to leakage even
if they are not used in GPGPU applications. While we cannot
model such components accurately because of the lack of
information, we know nonetheless that these components are
part of the chip. To be able to account for the amount of
power they contribute, we used our measurement equipment
to build empirical models of “base power” for cores and core
clusters (called TPCs1 or, more recently, GPCs2 in NVIDIA
terminology). These base power numbers are derived by
measuring core/cluster power and subtracting the power of all
components we know about. An example of a measurement
used to estimate cluster power is shown in Figure 4. The figure
shows that increasing the number of thread blocks used for
computation gradually increases the power, up to a certain
limit when the entire chip is occupied (not shown). More
interestingly, the figure shows that up to 4 blocks, adding
another thread block to the computation increases power by
a larger margin than beyond 4 blocks. The reason for this
is the way the hardware scheduler distributes thread blocks:
Until the entire chip is occupied, blocks are distributed first
not only to unoccupied cores, but also to unoccupied clusters,
i.e. when a second thread block is added after the first one, it
is placed on a core in another cluster than the first one. As we
see in the figure, the activation of such a core cluster consumes
0.692W additional power. Once all clusters are activated, in
this case after the fourth block, adding more thread blocks
increases power only by the power of the additional core. On

1“Thread Processing Cluster”
2“Graphics Processing Clusters”



another note, the figure also illustrates how the activation of the
very first core/cluster consumes even more power than for the
remaining clusters. This extra power (3.34W) can be attributed
to the activation of the global scheduler which distributes
thread blocks to cores.

IV. EXPERIMENTAL METHODOLOGY

Fig. 5: A photograph of the power measurement testbed
running the GT240 graphics card.

To validate our GPUSimPow power models for contem-
porary GPUs, we must compare the simulator output to the
power consumption of real hardware for various GPGPU
workloads. Thus, in this section, we present our experimental
methodology, i.e. our test setup to measure power consumption
both for validation of the simulator output as well as to infer
power models for some of the irregular components. Besides
the test setup, we also describe our test system configuration
and the benchmark suite we used for evaluation.

A. Measurement Equipment

We developed our own measurement setup to validate the
simulator against real GPUs. Figure 5 shows the hardware part
of this setup with a GT240 card. Overall, the measurement
setup consists of hardware and software components. On the
hardware side, we are using a riser card with 20mΩ probing
resistors on the 12V and 3.3V rails to probe voltages and
currents going to the GPU via the PCIe slot. The GTX580
also has two external PCIe power connector, to measure the
power transmitted via these connectors we inserted 10mΩ
probing resistors into the PCIe power cables going to card.
We designed a custom signal conditioning board to convert
the voltages into signals that can be easily measured by off-
the-shelf data acquisition (DAQ) hardware. A resistive divider
is used to scale the voltages into the 0−5V range. The voltage
drops over the sensing resistors are amplified and shifted into
a usable common mode range using Analog Devices AD8210
Current Shunt Monitors. After this signal conditioning, the
signals are sampled using a NI USB-6210 USB DAQ at a rate
of 31.2kHz. Our resistive voltage divider was built from 1%
resistors and has a gain accuracy of ±1.7% and no offset error.

The AD8210 has a gain accuracy of ±0.5% and an offset error
of ±1mV at its output. At 12V , this offset error translates to
an error of up to 60mW in power measurements. The error
range of signal conditioning and measurement is thus ±1.5%
for currents and ±1.7% for voltages. In the relevant −5 to
5V range, the DAQ has a specified gain accuracy of 0.0085%
and an offset error of 0.1mV . Not taking the small offset
errors into account, overall, our system thus measures power
within ±3.2%. We developed a custom measurement tool that
controls the DAQ and calculates power and energy from the
measured voltages and currents. This tool is capable of using
the GPU profiler to get start and end timestamps of the kernels
running on the GPU. Using this information and the measured
power waveform, the average power and amount of consumed
energy can be calculated for each kernel execution.

Feature GT240 GTX580
#Cores 12 16

#Threads per core 768 1536
#FUs per core 8 32
Uncore clock 550 MHz 882 MHz

Shader-to-Uncore 2.47× 2×
#Warps in-flight 24 48

Scoreboard × X
L2-$ size × 768KByte

Process node 40nm 40nm

TABLE II: Summary of the key features of the GPU architec-
tures used in experimental evaluation.

B. System Configurations

For evaluating the output of the power simulator, we chose
two real GPUs, the NVIDIA GT215 chip on a GeForce
GT240 graphics card and the GF110 chip on a GeForce
GTX580. Core parameters for both chips are given in Table II.
The GT215 GPU is based on the GT200 Tesla design from
2009 and provides a good insight into many key features
of modern GPUs. An initial advantage of using a GT200-
based architecture is that the GPGPU-Sim simulator shows
the highest correlation to real hardware for such architectures.
The GF110 is based on the more recent Fermi architecture
from 2010. The GT240 is a low-end card while the GTX580
is high-end enthusiast market card.

Feature Measurement Simulation
OS Ubuntu 10.10 Ubuntu 10.10

Kernel 2.6.35-22 2.6.35-22
NVIDIA driver 304.43 -
CUDA version 3.1 3.1

GPGPU-sim base version - 3.1.1
McPAT base version - 0.8

TABLE III: Summary of our experimental setup.

We performed both measurements and simulations for a
series of kernels selected from recent GPGPU benchmark
suites (see next Section IV-C) for each of the two GPUs
presented in Table II. For each kernel and GPU, we recorded
hardware dynamic and static power, simulated dynamic and
static power, and simulated as well as hardware execution



Name #Kernels Description Origin
backprop 2 Multi-layer perceptron training Rodinia
heartwall 1 Ultrasound image tracking Rodinia
kmeans 2 k-means clustering Rodinia

pathfinder 1 Dynamic programming path search Rodinia
bfs 2 Breadth-first search Rodinia

hotspot 1 Processor temperature estimation Rodinia
matmul 1 Matrix-matrix multiplication CUDA SDK

blackscholes 1 Black-Scholes PDE solver CUDA SDK
mergesort 4 Parallel merge-sort CUDA SDK
scalarprod 1 Scalar product of two vectors CUDA SDK
vectoradd 1 Addition of two vectors CUDA SDK

TABLE I: Overview over the various GPGPU benchmarks used for experimental evaluation.

time. Table III details the parameters of our experimental
environment used to acquire the results. To estimate hardware
static power, we ran the same benchmark at stock frequency
and at a 20% lower frequency. Then, we performed linear
extrapolation from the two data points to estimate the power
the chip would consume at a frequency of 0 Hz. As Eq. 1
shows, there is no dynamic power consumption at 0 Hz and
therefore, the result of the extrapolation must be equal to the
static power of the chip. Unfortunately, using this methodology
was only possible on the GT240 card, as the NVIDIA Linux
drivers do not yet support changing the clock speed for the
GTX580. Therefore, we estimate hardware static power for
the GTX580 by measuring the idle power between two kernel
executions and multiplying it by the ratio between idle power
and static power we found on the GT240.

C. Benchmarks

The benchmarks whose kernels are used in our evaluation
are shown in Table I. As the table reveals, all benchmarks
originate either from the popular Rodinia benchmark suite [29]
or from the CUDA SDK [11]. These 11 benchmarks span not
only a variety of application domains, but, as Section V-B
will show, an equally wide variety of algorithmic (and thus,
dynamic power) characteristics. As our analysis focuses on the
power consumed by the graphics card and GPU, we are only
interested in the GPGPU kernels contained in each benchmark.
The second column of Table I shows the number of different
kernels in each benchmark. In some benchmarks, there are
kernels with very short execution times (less than 500µs).
Because these kernels are too short for reliable measurements,
we modified such benchmarks to execute the same kernels 100
times.

V. RESULTS

In this section, we present the simulation results for the
benchmarks described in the previous section and compare
these results to measurements. In Section V-A, we describe
the results from a per-benchmark perspective. Then, in Sec-
tion V-B, we show how modeling the GPU on the architectural
level enables code developers and chip architects to generate
power profiles that break down the power to the individual
components on the chip.

A. Simulated and Measured Power
For each individual benchmark, we measured the total

power consumed by the cards during the execution of each of
the benchmark’s kernels. For kernels that are executed multiple
times during one benchmark run, we calculated arithmetic
averages of all relevant power numbers. In the end, the power
numbers we obtain are simulated and measured dynamic
power and runtime for each kernel as well as simulated
and measured static power for the GPU. As static power is
consumed regardless of the circuit’s switching activity, it is
the same for each kernel. Table IV shows the results from the
static power and area estimation for both GPUs.

Static [W] Area [mm2]

GT240 Simulated 17.9 105
Real 17.6 133

GTX580 Simulated 81.5 306
Real 80 520

TABLE IV: Static Power and Area for GT240 and GTX580

The results of our experiments on the GT240 card are shown
in Figure 6a. The figure shows total measured and simulated
power for all benchmark kernels. Each total power bar in the
figure is divided into a static power part common to all kernels
and a kernel-specific dynamic power amount. Using the static
power measurement technique explained in Section IV-B, we
estimate the static power for GT240 to be 17.6 W. The card
seems to do some power gating to reduce static power while
no kernels are being executed. If no kernel was executed the
card is using around 15 W, while for some milliseconds before
and after the execution of a kernel the card consumes 19.5 W.
About 90% of the power consumed by the card in this state
thus seems to be static power. The GTX580 is using 90 W in
the same state, so we estimate its static power to be 80 W.

In general, the figure shows strong similarity between the
measurement and simulation results for most benchmarks. For
all benchmarks but BlackScholes and scalarProd the
simulator overestimates the power used by the card. When
averaging errors, we always average the absolute value of
errors, so that under- and overestimates can not cancel out.
On average the simulation is 11.7% off from the real power
consumed by the GPU, we call this average relative error.
The maximum relative error of 35.4% occurs in the third
mergeSort kernel. This is likely a measurement artifact. The
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(b) GTX580

Fig. 6: Measurement and simulation results for all benchmarks. Bars with the same benchmark name but different number,
e.g. bfs1 and bfs2, correspond to different kernels of the same benchmark. Each bar shows the total runtime power, i.e. the
sum of static and dynamic power.

execution time of the kernel is short (1 ms) and the benchmark
could not easily be changed to call it multiple times because
the kernel does in-place processing of its data.

In nearly every benchmark kernel, the simulator slightly
overestimates the true power consumed by the chip. This trend
is mostly caused by the estimation of dynamic power, while
the simulation result of static power is just 0.3W (1.7%) larger
than the real hardware power. Interestingly, the estimated chip
area is slightly smaller than the actual chip area (105.0mm2 vs.
133mm2). Not considering static power, the average relative
error in runtime dynamic power is 28.3%.

Figure 6b shows the results of our experiments using the
GTX580 GPU. Again a strong similarity between measure-
ments and simulations can be seen. Our empirically derived
models also work well on this card even though they were
obtained using the GT240 card. The average relative error
for GTX580 is 10.8%. scalarProd is the kernel with the
largest relative error (25.2%) on GTX580. The average relative

error for the runtime dynamic power on GTX580 is 20.9%.
GPUSimPow estimates the static power of GTX580 to be
81.5 W which almost completely matches our measurement
result from the real hardware (80 W). As already explained in
Section IV we could not use measurements at different clock
speeds on GTX580 to estimate the static power. As a result
of this limitation we used a different method to estimate the
hardware static power. The better match of hardware static
power with simulated static power could be a result of a more
accurate static power estimate from GPUSimPow or it could
be caused by the different hardware static power estimation
methodology we used for GTX580.

B. Power Profiling

While relatively accurate estimations of dynamic and total
power for the execution of a particular benchmark are helpful
tools, in some cases, the distribution of power consumption
over the hardware components on the GPU matters. As
GPUSimPow contains hardware models for the internals of



each core, interface and controller on the GPU, it automatically
produces detailed power statistics for these internals. There-
fore, it is possible to generate a power profile for a particular
benchmark kernel that breaks the overall power down to
individual components with the desired level of accuracy.
Table V shows such a power profile for the blackscholes
benchmark. Please note that this table does not include the
power consumed by the external DRAM (4.3 W).

Static [W] Dynamic [W] Percent

GPU

Overall 17.934 19.207 100
Cores 15.393 15.132 82.2
NoC 1.484 1.229 7.3

Memory Controller 0.497 1.753 6.1
PCIe Controller 0.539 0.992 4.1

Core

Overall 1.283 1.031 100
Base Power 0 0.199 8.6

WCU 0.042 0.089 5.65
Register File 0.112 0.173 12.3

Execution Units 0.0096 0.556 24.43
LDSTU 0.234 0.014 10.7

Undiff. Core 0.886 0 38.3

TABLE V: Blackscholes benchmark power breakdown on
GT240 for the individual components on the entire GPU (top)
and a single GPU core (bottom).

In the top part of the table, both static and dynamic power
for the top-level components on the GPU are shown. It can
be seen that by far the largest fraction of total power is,
as one would expect, consumed by the GPU cores (82.2%).
Previous researchers have reported similarly high percentages,
for example, in [30], the authors employed a simple, high-
level power model to estimate the total core power to be 70%
of the entire chip. According to the output of GPUSimPow,
the next-most power after the cores themselves is consumed
by the network on chip (7.3%), followed by the memory
controllers (6.1%) for memory access and PCIe interfacing
(4.1%). Note that some other top-level GPU structures such
as the global scheduler and video decoder hardware are not
modeled in detail and are therefore included in the (per-core)
undifferentiated core and base power.

Increasing the level of detail, it is possible to look at the
power consumed by the individual parts of a single core
(bottom of Table V). Overall, the core consumes 2.31 W. As
the table reveals, surprisingly, the largest fraction of the total
power is attributed to the core base power and undifferentiated
core (8.6% and 38.3%). While the former includes all the per-
core components we can only model empirically due to lack
of information (see Section III-D), the latter includes a per-
core fraction of the global GPU components that can only
be modeled empirically. Naturally, as we have no detailed
models for undifferentiated components, we cannot generate
any activity factors for them in GPGPU-Sim and thus the entire
power consumption for the undifferentiated core is attributed
as static power. Taking base power and undifferentiated core
aside, the most power is consumed by the execution units
(24.43%). After the execution hardware, the next-most power
is used in the register file (about 12.3%). This number has
been confirmed by previous research [30]. As one might

expect from a SIMD architecture, the smallest part of the core
power is consumed by the fetch and decode frontend, warp
management, and schedulers (5.65%). GPUSimPow enables
even more detailed analysis, e.g. investigating the power
consumed by the different memories in the warp control unit or
investigating the power impact of code sections with branch
divergence on each hardware unit in detail. For reasons of
conciseness, however, no such investigations are presented in
this paper.

VI. CONCLUSION

Modern GPGPU designs are pervading many areas of
research and industry because of the massive compute power
they offer. While the development of such designs is trying
to drive performance further, GPU chips are increasingly
limited by the power they consume and dissipate as heat. With
this problem of the power wall, the design of new GPGPU
architectures has become even more complex than before as
consumed power is now an additional variable in the design
space.

In this work, we have demonstrated a novel power sim-
ulation framework entitled GPUSimPow. With GPUSimPow,
programmers and computer architects can accurately estimate
the static and dynamic power consumed by a given GPGPU ar-
chitecture when executing a particular kernel without building
the actual chip. As our evaluations on a set of well-known
benchmarks have shown, the average relative error of our
power simulation results compared to measurements on real
hardware is 11.7% for GT240 and 10.8% for GTX580. The
simulator is also able to generate the distribution of power
consumption over the hardware components of the GPU, and
also of the different components of each core. These power
profiles can be used to drive architecture of application power
optimization. However, as a power breakdown for a selected
benchmark revealed, a large fraction of the simulated power
is currently attributed to components that are not modeled in
detail, i.e. “undifferentiated transistors”. More research needs
to be done for creating accurate models of these components.

We conclude that in its current state, the GPUSimPow simu-
lator is a helpful tool for both processor architects and GPGPU
programmers to gain valuable insights into where power is
consumed in the GPU. We hope that as architectural research
with the tool begins to get started, the component power
models will be further refined and new components added.
It would also be interesting research to evaluate many of the
recent extensions and enhancements to GPGPU architectures
(such as simultaneous branch/warp interweaving [31], two-
level scheduling [32] and dynamic warp subdivision [33]) from
a power perspective.
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