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Abstract—Task-based parallel programming models with ex-
plicit data dependencies, such as OmpSs, are gaining popularity,
due to the ease of describing parallel algorithms with complex
and irregular dependency patterns. These advantages, however,
come at a steep cost of runtime overhead incurred by dynamic de-
pendency resolution. Hardware support for task management has
been proposed in previous work as a possible solution. We present
VSs, a runtime library for the OmpSs programming model that
integrates the Nexus++ hardware task manager, and evaluate the
performance of the VSs-Nexus++ system. Experimental results
show that applications with fine-grain tasks can achieve speedups
of up to 3.4×, while applications optimized for current runtimes
attain 1.3×. Providing support for hardware task managers in
runtime libraries is therefore a viable approach to improve the
performance of OmpSs applications.

Keywords—OmpSs, parallel programming models, task
dataflow, hardware task scheduler, runtime library

I. INTRODUCTION

The trend in microprocessor design has shifted from
increasing the clock frequency towards integrating an ever
increasing number of cores on chip. Nowadays, there exist con-
sumer and mobile devices with 8 cores on chip, and this trend
is expected to continue in the near future. To obtain speedups
from these new architectures, applications need to use parallel
algorithms, which are more challenging to develop than their
sequential alternatives. Many programming models have been
proposed to ease parallel programming, such as Google’s
MapReduce [1], Intel’s TBB [2], OpenMP [3], StarSs [4] and
OmpSs [5]. All parallel programming models share the goal
of decoupling the programmer from the underlying multicore
machine, but they differ from one another in the degree of
abstraction. Higher-level abstractions typically lead to higher
overheads as the runtime system needs to do more work to
bridge the gap between programming model concepts and the
machine’s specific architecture.

Task-based programming models are a class of abstractions
that require the programmer to annotate sections of code that
can potentially run in parallel (tasks) with the conditions
under which execution is allowed (dependencies). The runtime
system then organizes execution of all tasks respecting the
constraints, avoiding the need for the programmer to reason
(and potentially make difficult-to-find mistakes) about the cir-
cumstances when the dependencies are fulfilled. StarSs [4] and
OmpSs [5] are good examples of such a paradigm. The runtime
system of those programming models builds, at runtime, a task

graph based on the sequence of function calls and their in-
put/output requirements, and determines which tasks are ready
to run. This approach reduces parallel programming complex-
ity, since the task of extracting and managing parallelism
is entirely offloaded to the runtime system. The overhead
of the runtime system, however, is a particular concern [6].
Overhead can be hidden if the runtime system succeeds to
keep the cores busy and does its task graph management
responsibilities concurrently. This becomes more difficult with
larger numbers of worker cores and/or applications with fine-
grain tasks, complex dependency patterns, or both. This has
been shown in previous work [7] for the case of applications
parallelized using StarSs.
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Fig. 1. Dependency resolution and other runtime overhead for tasks with
differing numbers of arguments

In the case of OmpSs, the most time-consuming part of
the runtime system is dependency resolution. To illustrate,
Figure 1 shows the aggregate overhead measured during a run
of the c-ray benchmark (for a description, see Section V-A)
when increasing the number of tracked arguments per task. The
proportion dedicated to dependency resolution is highlighted.

Previous work ([7], [8], [9]) introduced hardware support
for task graph management, and showed significant improve-
ment in the scalability of different micro benchmarks modeled
after H.264 video decoding. In [9], it was proposed to integrate
a hardware accelerator, called Nexus++, with the OmpSs
runtime system by using a PCIe extension board housing an
FPGA. However, as the necessary support from the OmpSs
runtime was not provided, Nexus++ was evaluated, similarly
to its predecessors in [7], [8], using only synthetic benchmarks.

In this paper, we present VSs, an OmpSs runtime li-
brary supporting the Nexus++ hardware manager. We evaluate



Nexus++ and VSs performance on actual applications, both
in simulation and in practice. Performance improvements due
to Nexus++ reach up to 240% for fine-grain tasks, and 25-
30% for coarser granularity. Using an FPGA development
board, we developed a prototype PCIe extension card with the
Nexus++ hardware design, which can be put into any multicore
machine to manage task execution, showing that this approach
is functional outside of simulation.

Section II presents some background on the OmpSs pro-
gramming model as well as related work. In Section III, we de-
scribe the Nexus++ hardware manager, and Section IV explains
the VSs runtime library and how it is capable of integrating
Nexus++. The results of evaluating Nexus++ performance on
several benchmarks are presented in Section V. We conclude
in Section VI.

II. BACKGROUND

We present a brief overview of the OmpSs programming
model, and of other hardware accelerators in the literature for
OmpSs or similar task-based models.

A. OmpSs

OmpSs is a task-based programming model that extends
the OpenMP task directive. To execute OmpSs applications,
they are compiled with a source-to-source compiler and linked
against a runtime library.

1) Programming Model: In OpenMP, annotating a function
declaration with #pragma omp task means that calls to
the function are submitted to be executed asynchronously: the
call returns immediately, and the calling context can continue
execution. Meanwhile, the function is scheduled to be executed
in parallel in a separate context. The calling context can later
ascertain completion of all asynchronous function executions
using #pragma taskwait. It can also wait for completion
of only functions operating on a specific data set p using
#pragma taskwait on (*p).

OmpSs extends the task model to capture data dependen-
cies between tasks. Using the syntax #pragma omp task
in(*a,...) out(*b,...) inout(*c,...) (with a,
b, c pointers to data structures passed as arguments to the
function) the programmer can indicate which inputs a task
requires, and which outputs it produces. The runtime system
then takes care of tracking the dependencies and only launch-
ing tasks when all their inputs are ready. This removes work
both from the programmer, who no longer has to worry about
synchronisation between tasks, and from the main thread of
execution, which no longer has to manage the tasks. Work can
simply be submitted immediately when it becomes apparent
that it should be performed.

Listing 1 shows a simplified example of OmpSs program-
ming, extracted from H.264 macroblock wavefront decod-
ing [10]. The function decode() is called inside a nested
loop, processing the elements of matrix X. To process an
element, the task needs the values of the cells west and
northeast of the current cell. (Cells that would fall outside the
matrix are assumed to be 0.)

MB_type* X[NB_WIDTH][NB_HEIGHT];
//MB_type: a data str. that rep. MB dependencies.
#pragma omp task input(left, upright) inout(this)
void decode(MB_type* left, MB_type* upright, MB_type* this){...}
void main(){
int i, j;
init_matrix(X) ;
for(i=0; i<NB_WIDTH; i++)
for(j=0; j<NB_HEIGHT; j++)
decode(X[i][j-1], X[i-1][j+1], X[i][j]);

#pragma omp taskwait
}

Listing 1. OmpSs example of macroblock wavefront decoding in H.264

2) Runtime System Implementation: The official OmpSs
implementation consists of two parts: a source-to-source com-
piler, named Mercurium, that transforms pragmas into function
calls to a runtime library, and the runtime library itself, named
Nanos [5]. To integrate Nexus++, we keep the Mercurium
compiler but replace the Nanos runtime library with our own,
VSs, that supports exchanging task status information with the
Nexus++ task manager over PCIe.

B. Hardware Task Management

Nexus [7] is a basic hardware task manager for StarSs [4],
which was integrated in a simulator of the Cell processor.
Nexus++ is based on the basic table lockups of Nexus to man-
age the task graph, but in an overhauled and more efficient de-
sign [8], presented as a SystemC prototype. Nexus++ removes
the limitations on the number of inputs and outputs a task
can have (up to 5 in [7], [11]). Similarly, the number of tasks
that can depend on a certain data segment is limited in Nexus,
which limits its applicability. Moreover, Nexus++ adds support
for double buffering. Nexus++ has also been implemented in
VHDL [9]. It provided an improved search algorithm which
implements a cache-like multi-way set-associative task graph.
Furthermore, the VHDL Nexus++ prototype has presented
an interface for integration with task-based runtime systems,
which will be employed and evaluated in this paper.

In addition to Nexus++, other hardware scheduling units
have been proposed in literature. Most of them, however,
assume independent tasks and are optimized for a certain
application, a certain platform, or both. For example, Car-
bon [12] assumes independent tasks and uses hardware queues
to retrieve tasks with low latency. An example of a hardware
accelerator that targets a certain application domain is the
hardware task scheduler optimized for H.264 decoding [13].
It only supports a specific dependency pattern, and any mod-
ification to the task structure of the application would lead to
incompatibility. Etsion et al. [14] also proposed a hardware
task management unit for the StarSs runtime system, based
on the similarity between task dependency checking and the
instruction scheduler of an out-of-order processor. Although
a VHDL prototype was presented for it in [15], it was only
evaluated using high-level simulations.

To the best of our knowledge, this is the first time that
a hardware task graph manager has been integrated into a
runtime and evaluated on actual applications in practice.
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Fig. 2. Nexus++ high level system overview

III. NEXUS++

The Nexus++ [9] task manager is a hardware accelerator
for dependency resolution, to be used with task-based program-
ming models like OmpSs. Nexus++ tracks tasks input/output
information and utilizes simple table lookups to identify ready
tasks and schedule them to worker cores. Nexus++ is meant to
be integrated with real multicore systems. For this, Nexus++
was implemented in VHDL targeting the Xilinx XUPV5-
LX110T FPGA development board. The high level design is
depicted in Figure 2. The Nexus++ task manager resides on
the FPGA board, and communicates with the runtime system
on the multicore system using the PCIe bus.

As shown in Figure 2, data communication occurs between
Nexus++ and the runtime system (via the Nexus Plugin). When
the master thread creates new tasks, the runtime system (RTS)
submits them to Nexus++. Nexus++ sends ready task IDs to
the runtime system, and whenever a worker core finishes a
task, the runtime system notifies Nexus++ of that.

The FPGA board can be plugged into the host multicore
machine and the task graph management responsibilities can be
offloaded to Nexus++. In [9], the VHDL prototype of Nexus++
is presented, which thoroughly describes the design and im-
plementation as well as a trace-driven evaluation testbench.

A. Functional Overview

Figure 3 shows the block diagram of our task manager.
It is mainly composed of two units: the Nexus input/output
unit (Nexus IO) which handles communication with the host
runtime system, and the task management unit known as the
Task Maestro, which manages the task graph at runtime and
issues tasks when they are ready.

The Nexus IO unit manages communication between the
host runtime system and the Task Maestro using three FIFOs:
The New Tasks FIFO receives the incoming new tasks from
the runtime system, and buffers them for the Task Maestro.
The Task Maestro notifies the runtime system of ready tasks
by writing them to the Ready Tasks FIFO. Whenever a task is
finished, the runtime system writes its ID back to the Finished
Tasks FIFO.

The Task Maestro reads the new tasks and stores them in
(1) a temporary task storage table called the Task Buffer, which
is accessed when inserting new tasks to the task graph, and
(2) in the Task Pool, where they reside until the end of their
life cycles, and are accessed when processing finished tasks. If
a task has more inputs/outputs than can be stored in one Task
Pool entry, then the Task Maestro allocates other entries in
the Task Pool for this task. This mechanism of adding dummy
tasks [9] ensures that there is no static upper bound on the
number of inputs/outputs of the tasks handled by Nexus++.

System Parameter Value
Nexus++ (w/ PCIe) clock freq. 12.5 MHz
Task Pool size 1024 tasks * 250 bits
No. Parameters per TD 8
Task Buffer size 8 tasks * 218 bits
Dependence Table size 8-way * 256 entries * 190 bits
Dummy Kol table size 1024 entries * 96 bits
Kick-Off list size 8 tasks

TABLE I. SYSTEM PARAMETERS

The Task Maestro constructs the task graph and calculates
the Dependence Count for the task in progress. This is done
by comparing every input/output of the new task against all
inputs/outputs of all previously submitted tasks. The resulting
Dependence Count, if larger than 0 (i.e. if there are unfulfilled
dependencies), is stored in the Dependence Counts table shown
in Figure 3. Otherwise, the task is ready to run and the Task
Maestro writes its function pointer along with its Task Pool
index to the Ready Tasks FIFO of the Nexus IO unit.

The dependency information is stored in the Dependence
Table shown in Figure 3. It is designed to ensure fast lookups,
by implementing a simple hashing mechanism. This way, each
memory address can be mapped to one entry in the hash table.
In [9], it was shown that in order to reduce lookup time when
a hash collision occurs, the hash table is replicated in a set-
associative structure. This way, an input/output lookup requires
only one visit to the Dependence Table, rather than multiples of
that when implementing a linked-list structure inside a larger
hash table, as was the case in [8].

For each entry in the hash tables, a Kick-Off List is
maintained containing the task IDs that are waiting for this
memory address to be released. If for a certain memory address
the number of tasks that can be stored in the Kick-Off List is
exceeded, a new Kick-Off List will be allocated in a separate
table, the Dummy Kick off Lists table shown in Figure 3.

Whenever a task is finished, the runtime system communi-
cates its ID to the Nexus IO, which writes the incoming data to
the Finished Tasks FIFO. The Task Maestro reads said FIFO,
looks up the finished task info from the Task Pool and updates
the task graph. Finally, the Task Maestro deletes the finished
task entry from the Task Pool.

B. Design Space Exploration

A VHDL test bench was implemented to simulate a config-
urable multicore system. Among the configurable parameters
are the number of cores, core clock frequency, Nexus++ table
sizes, etc. The test bench simulates parts of the runtime system
and the Nexus Plugin. It submits new tasks to Nexus++,
receives ready tasks information from it, schedules ready tasks
to worker cores and simulates their execution, and finally
notifies Nexus++ of finished tasks.

Tasks are based on experimental traces which include task
input/output information and task execution times. Thus, task
execution is simply modeled by waiting for a certain time.
The traces were generated after running the benchmarks as
described in Section V-A. The list of configurable parameters
and their experimental values are shown in Table I. The sizes
of the different tables and lists in the Task Maestro were
empirically determined, enlightened by previous work ([8],
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[9]), and by noticing the scalability behaviour when simulating
the runs of the different benchmarks described in Section V-A.

IV. VSS RUNTIME

To integrate Nexus++ into OmpSs, we implemented a
runtime library that provides the same API as the Nanos
runtime, named VSs.

A. Structure

Our implementation is based on the proto-runtime whose
basic principles are described in [16]. This proto-runtime
provides the basic management of tasks: creation, switching
and destruction. It also provides callback interfaces for imple-
menting the programming model’s synchronization directives.
This means that to implement the OmpSs functionality, only
the following logic had to be added:

Dependency resolution: At the beginning and end of each
task, the runtime checks which dependencies are fulfilled.
Each data structure has an associated queue that saves pending
access requests in the order they were made. New tasks are
added to the back of the queue, while finishing tasks free the
task(s) at the front of the queue to execute. Multiple tasks
that only read a data structure (argument of type in) may
be launched simultaneously, but only one task (type out or
inout) may have write access to a given data structure at any
time. Tasks that have gained access to all their arguments are
put into the pool of ready tasks.

Taskwait: Taskwait requests suspend the thread until all
child tasks have finished execution. As suspension is already
taken care of by the proto-runtime, only a check for the
number of remaining child tasks at the end of each child
task is necessary. When this number reaches 0, the thread is
unsuspended.

Taskwait on (*p): Taskwait on suspends the thread, the
same as taskwait. The continuation of the thread is added to
the access request queue of p, as a special type of task that is
neither reader nor writer and thus does not block subsequent
writers. When the last write access finishes, the thread reaches
the front of the queue and is resumed.

Scheduling policy: The policy for selecting a task from
the pool of ready tasks is also customizable. In this case
a work-first policy was chosen that prefers running existing

tasks before the continuation of the master thread, which might
create new tasks.

The proto-runtime also contains instrumentation that allows
measuring overhead and its decomposition into the various
steps of the runtime’s core scheduling loop.

B. Comparison with Nanos

The choice of developing a separate implementation of the
runtime library means we first have to confirm that Nanos and
VSs are equivalent in terms of performance.
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Fig. 4. Execution time comparison between Nanos and VSs, for various
benchmarks on a 4-core machine
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Fig. 5. Scaling behaviour comparison between Nanos and VSs, for the c-ray
benchmark

We ran two sets of experiments to test the relative perfor-
mance of the two runtimes. The first, mirroring the conditions
in which the FPGA implementation will later be evaluated, was



to run several applications from the Starbench benchmark suite
for OmpSs [17] on a machine with an Intel Core i5-2500K 4-
core CPU. The applications were compiled using the same
flags, with optimization level -O3, using Mercurium 1.3.5.8
and gcc 4.6.3, and linked either against the Nanos runtime or
our own replacement VSs runtime.

Figure 4 shows the relative performance of the VSs-linked
binary over the Nanos-linked binary for each application.
Values below 1 indicate that VSs is faster, values greater than
1 that Nanos is faster. Execution time using either runtime is
nearly identical in all cases. Differences are mostly in favour of
VSs, except for rot-cc. Substituting the Nanos library with our
own runtime should therefore not have any significant impact
on performance in subsequent experiments beyond allowing us
to more easily interface with and instrument the runtime.

To look for differences that may not appear in this setting,
we also examined the scaling behaviour of the runtime in
a second experiment. On a 40-core Xeon E7-4870 machine
running at 2.40GHz, we ran the c-ray benchmark, again linked
once against Nanos and once against VSs, making different
numbers of cores available to the application.

Figure 5 shows the relative performance of the Nanos-
and VSs-linked runs of c-ray for 1 to 32 cores. Execution
times are virtually identical for both versions. Substituting VSs
for Nanos in our experiments to evaluate Nexus++ scaling
performance should thus not affect the results negatively.

C. Nexus++ Integration

To exploit the Nexus++ hardware accelerator, the VSs
runtime library had to be modified to accomodate a Nexus
Plugin that communicates the relevant information about tasks
to the extension board.

Communication is implemented via memory-mapped I/O
over PCIe. A Linux driver module was built that provides a
device file handle for the board and allows the application
to map it into its memory space for direct access. The file
read and write operations were also implemented but are not
used by the runtime because system calls were found to have
significantly larger overheads, doubling communication time.
Writing to and reading from mapped memory is performed by
the CPU using 32-bit or 64-bit mov instructions as appropriate.
Both instructions take the same amount of time to perform:
writing one word over PCIe takes approximately 250ns in
our setup, and reading one word takes 400ns. Hence it is
preferable to move 64 bits of data at once if they are available.
(It is also possible to use the larger mov instructions from
the SIMD instruction set extensions, but they do not provide
further performance boosts: moving 128 bits takes twice as
long as moving 64 bits.)

In the PCIe memory space reserved for Nexus++, the
NexusIO unit provides as interface three FIFO queues: When a
new task is created, its descriptor has to be written to the New
Tasks FIFO by the runtime; available tasks can be read from
the Ready Tasks FIFO; and when a task finishes, the runtime
should notify Nexus++ by writing to the Finished Tasks FIFO.
Each FIFO has an associated status word also mapped to
memory. The runtime system has to read this status word to
ensure that there is space in the FIFO before writing to either

the New Tasks or the Finished Tasks FIFO, and to ensure that
there is data available before reading the Ready Tasks FIFO.
The status word also reports the current queue occupancy.
This allows an optimization to the flow control mechanism
also evaluated in Section V-C, where the runtime keeps a
conservative estimate of the queue status and completes a
number of operations before issuing another read of the status
word.

When a new task is submitted and Nexus++ is present
in the system, instead of running the dependency resolution
algorithm described in Section IV-A, the runtime formats the
information about the task’s arguments into a Nexus++ task
descriptor and writes it to the New Tasks FIFO. Similarly, at
the end of a task, it will write a finished task notification packet
containing the task’s identifier to the Finished Tasks FIFO. In
addition to these modifications to the runtime, a function call
is also inserted into the scheduling function to read the Ready
Tasks FIFO to obtain the tasks that Nexus++ has determined to
have all their dependencies fulfilled and may now be executed.

For a task with n ≥ 0 arguments, a (n + 1)-word task
descriptor is sent to Nexus++, followed by reading 1 word
from the Ready Tasks FIFO, and then writing a finished task
notification of 1 word. So in total, n + 2 words are written
and 1 word is read for a task with n arguments. Ideally, this
would lead to a communication overhead of 1150-2150ns for
tasks with 1-5 arguments. However, to communicate with the
current Nexus++ implementation, the processor also needs to
read the status registers to ensure flow control, and change the
endianness to conform to the PCIe protocol. These steps incur
additional overhead.

V. PERFORMANCE EVALUATION

To evaluate the performance of Nexus++, we run a series
of trace-based simulations as well as execute the benchmarks
using the Nexus++ FPGA implementation on a PCIe extension
board.

A. Benchmarks

The benchmarks used for the evaluation are for the most
part taken from the Starbench benchmark suite [17]. These
include c-ray (ray tracing), h264dec (H.264 video decoding),
rot-cc (image rotation and color conversion) and streamcluster
(k-median clustering). In addition, two benchmarks from other
sources were selected: emptytask (a synthetic benchmark) and
sparselu (sparse LU matrix factorization).

# tasks total work (ms) avg task size (µs) # deps
c-ray 1200 7381 6151 1
emptytask 1000 1 1 2
h264dec 57051 833 15 2-6
rot-cc 16262 8150 501 1
sparselu 54814 38128 696 1-3
streamcluster 652776 237908 364 1-3

Durations obtained from traces collected on Xeon E7-4870

TABLE II. OVERVIEW OF BENCHMARKS

c-ray and rot-cc have simple dependency patterns, with
tasks working on each line of the input image independently.
For c-ray, there is only one task per line, which means that all
tasks are independent. For rot-cc there are two tasks per line,
one for rotation and one for color conversion, with the second



depending on the first. All pairs are independent from each
other. c-ray is our best case as it has long tasks and ample
parallelism, thus most runtime overhead can overlap with task
execution.

emptytask is a synthetic benchmark consisting of a se-
quence of 1000 tasks of minimal length (one addition) each
dependent upon the previous. In effect, this represents a worst
case, as there is no parallelism in the application at all, and
runtime overhead cannot be hidden behind task duration either.
Together with c-ray this benchmark gives an idea of the
performance range of the different runtimes.

streamcluster is a streaming data analysis kernel with fork-
join-style parallelism. It consists of a chain of groups of about
400 tasks followed by a taskwait.

sparselu and h264dec have more complex dependency
patterns. sparselu is a sparse matrix LU factorization kernel
from the developers of OmpSs. It scales well, as the granularity
is designed to match Nanos overheads. The H.264 decoder, on
the other hand, has small tasks with many dependencies. This
fine-grain parallelism is especially challenging to manage.

B. Simulations

1) Experimental Setup: We collected traces from the exe-
cution of each benchmark on a 40-core Xeon E7-4870 machine
running at 2.40GHz. These traces include the task descriptors
(which specify the inter-task dependencies) and the execution
time of each task. Using the information from the traces, we
performed three sets of simulations:

No Overhead: To determine the lower bound for the
execution time of the benchmarks, we simulated the execution
of an application without any overhead. In this simulation,
the simulation time does not advance while dependencies are
resolved. Only the execution time of the tasks is taken into
account. This allows us to determine when the lack of available
parallelism in the application is the limiting factor.

Nexus++ only: This simulation additionally accounts for
the dependency resolution overhead incurred by the Nexus++
core. Failure to scale in this simulation indicates a bottleneck
inside the design. In this simulation free worker cores start
executing tasks directly after they are reported as ready by
Nexus++. No communication or other non-dependency reso-
lution overhead is accounted for.

Nexus++ and runtime: Here, an additional delay of (n +
1) ∗ 250 + 400ns is introduced between Nexus++ reporting a
task as ready and the start of execution of the task by the
worker core, as well as a delay of 250ns between the end
of the task and the reception of the finished task notification
by Nexus++. This represents the overhead of communication
between the processor cores and Nexus++, as described in
Section IV-C. Additionally, we measured the overhead due
to runtime features that Nexus++ does not replace (such as
setting up the stack for the task and switching execution to it)
in VSs to be approximately 5µs per task. In this simulation,
task length is increased by this constant, to account for all
necessary parts of execution.

The VHDL testbench is set up to run Nexus++ at 12.5MHz
and the Nexus IO FIFOs at 100MHz, to match the speeds at
which we run the FPGA implementation.

These simulations are compared to the actual runs of the
benchmarks on the same machine that the traces were collected
on, compiled using the Mercurium compiler version 1.3.5.8
and linked to the accompanying Nanos runtime library.

Of special note is the h264dec benchmark, which is the
only benchmark to use the #pragma taskwait on (*p)
construct, which is not currently supported by Nexus++.
A taskwait instructs the issuing thread to suspend until
all child tasks have finished execution, and taskwait on
(*p) requires to wait only for those child tasks that access
data structure p. It is thus functionally correct to replace
instances of taskwait on (*p) with taskwait, as our
runtime does in the presence of Nexus++, but it will decrease
the available parallelism of the application. We report both the
No Overhead simulation with taskwait on (*p), which
represents the parallelism available when executing with the
Nanos runtime library, as well as the No Overhead simulation
with taskwait on (*p) replaced by taskwait, which
is the parallelism that remains available to Nexus++.

2) Results: Figure 6 shows the scaling behaviour of the
three simulations, as well as the Nanos-linked run for com-
parison. Performance is reported as speedups relative to the
No Overhead simulation on one core (origin of the solid red
line), which corresponds to the total amount of work in the
application.

a) Performance of Nexus++: First, we discuss the
results of the Nexus++ only simulations.

For three of the four benchmarks with sufficient available
parallelism to scale linearly to 32 cores (c-ray, rot-cc and
sparselu), we observe that Nexus++ itself adds overheads of
less than 1% in all cases. In comparison, Nanos adds at least
2% overhead in the best case (c-ray, rot-cc), and up to 194%
for the benchmarks with complex inter-task dependencies
(sparselu).

The emptytask benchmark allows us to evaluate the re-
sponse to lack of parallelism, as well as estimate the overhead
in absolute terms. In this benchmark, only a single task is ready
at a time, so additional cores cannot improve the performance,
but should avoid degrading it. Both Nexus++ and Nanos deal
with this case well. In absolute numbers, we see an average
overhead per task of 3µs for Nexus++ and 10µs for Nanos.

The final two benchmarks, h264dec and streamcluster, are
applications with limited parallelism. For the H.264 decoder,
using the taskwait on (*p) construct, a speedup of up
to 13× could theoretically be achieved (solid red line). The
Nanos runtime, however, is incapable of using this parallelism,
achieving less than sequential performance no matter how
many cores it uses. Because it does not support taskwait
on (*p) and instead replaces it with taskwait, the par-
allelism available to Nexus++ is bounded at 3.5× speedup
(dashed red line). Even with this limitation, Nexus++ performs
much better than Nanos, achieving 2.8× speedup. This shows
that for fine-grained tasks, hardware task management is of
great benefit.

streamcluster in theory continues to scale linearly beyond
8 cores. In practice, some bottlenecks intervene to limit scaling
at 8× for Nexus++, and performance degrades even worse for
Nanos when run on more than 4 cores. One peculiarity of the
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streamcluster benchmark is that it has many tasks demanding
read access to the same memory location, potentially leading
to contention of the resources used to manage it. We suspect
this may be the reason for the failure to scale beyond 8 cores,
with either Nanos or Nexus++.

b) Impact of communication and other overhead: The
decision to move dependency resolution away from the worker
cores leads to communication, as information about task status
is exchanged between cores and the Nexus++ board. In the
previous simulation, this information is transmitted in one
cycle (10ns), which to realize would necessitate very tight
integration into the processor core. In practice, the Nexus++
design will be off-chip, connected via PCIe, which has much
higher transmission latencies (1150-2150ns), as noted above.

In addition to the overhead of resolving dependencies, the
runtime also has to perform some other functions that Nexus++
cannot replace, such as setting up the stacks and launching the
tasks. These functions were measured in VSs to take up to 5µs
per task.

If we apply these values to the Nexus++ and runtime
simulation, we obtain the results shown in black in Figure 6.
Although not much space for improvement remains for simple
benchmarks like c-ray or emptytask, an efficient Nexus++-
enabled runtime could provide some small benefits compared
to Nanos, even when the relatively high PCIe transmission
latency is taken into account. For non-trivial benchmarks (rot-
cc, sparselu, streamcluster), more significant benefits, up to
3.75×, are indicated. For the fine-grained h264dec, despite
the fact that a Nexus++-enabled runtime cannot access the
full parallelism in the application, it can nevertheless provide
3.34× speedup over Nanos performance on 32 cores.

In summary, we see the following speedups from Nexus++
and runtime compared to Nanos:

c-ray emptytask h264dec rot-cc sparselu streamcluster
1-1.01× 0.9-1.2× 2.61-16.75× 1.02-1.29× 1.21-3.75× 1.01-2.75×

C. Execution using the Nexus++ FPGA implementation

To confirm that Nexus++ works correctly in practice, we
implemented a prototype on an FPGA development board.

1) Experimental Setup: We programmed the Nexus++ de-
sign described in Section III on a Xilinx XUPV5- LX110T
development board and installed it in a machine equipped
with a Intel Core i5-2500K 4-core CPU. The same benchmarks
as before were compiled and linked against the VSs runtime
described in Section IV. Three versions were prepared:

Software dependency resolution: This is the baseline
against which the Nexus++ FPGA implementation is evaluated.

Nexus++: This version uses Nexus++ for dependency
resolution. Communication over PCIe is implemented naively.

Nexus++ and improved flow control: This version also uses
Nexus++, but the Nexus Plugin in VSs is aware of the size of
the New Tasks FIFO and the Finished Tasks FIFO. Instead of
checking for every packet if there is sufficient space to receive
it, it will read the FIFO occupancy counter once and keep a
conservative estimate of space available. Only when there is
a possibility of the FIFO being full will it check again. (This
version triggers a runtime error in the h264dec benchmark, so
no results are provided for it.)

2) Results: The results of running the three above-
mentioned versions of each of the benchmarks are shown in
Figure 7 (the bars for emptytask and sparselu were scaled
by the indicated constant factor to fit the graph). The com-
munication over PCIe shows a significantly greater impact
than would be expected from the previous simulations. From
the emptytask benchmark, we can again derive an absolute
estimate of overhead. The naive implementation takes 12.5µs
per task. With flow control optimization, the overhead is
reduced to 6.9µs per task. In comparison, the software version
only takes 1.2µs per task.

Measuring where time is spent inside the Nexus Plugin
reveals that there are two main sources of overhead. The first,
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reading the status registers for flow control, is addressed by the
optimization described above. The second is in the nature of
the communication protocol: the runtime has to poll the board
for new tasks to execute, as the Nexus++ board is not capable
of initiating transfers in this implementation. This second
source of overhead is especially important for benchmarks
which have few parallel tasks at a time, and thus higher
likelihood of idle cores polling repeatedly and interfering with
transfer of task finish notifications. Accordingly, the results
show that for the benchmarks with large amounts of available
parallelism such as rot-cc and sparselu, optimizing the flow
control reduces overhead by 40-95%. For streamcluster, which
only spawns up to 20 tasks at a time, improvement is only 11%,
as polling overhead dominates.

For further optimizations, the communication protocol with
the Nexus++ FPGA implementation would have to be re-
designed. Adding DMA capability to the board would make
it possible to remove most of the runtime overhead currently
dedicated to communication. For instance, locating the Ready
Tasks FIFO in the host RAM would obviate the need for
polling. In that case, no flow control messages would need
to be exchanged over PCIe as the board would only initiate
transfers if it wished to acquire new data.

VI. CONCLUSIONS

We implemented and evaluated Nexus++, a hardware ac-
celerator for OmpSs as a PCIe extension board, as well as VSs,
a runtime library capable of making use of the accelerator. We
found that the Nexus++ core can process the dependency res-
olution for 32 cores efficiently, adding less than 1% overhead
in simulation. Communication latency between the extension
board and the worker cores over PCIe incurs somewhat higher
overheads, but is not the limiting factor. Even taking into
account these overheads, we still find expected performance
benefits of 240% for fine-grained applications, and 25-30%
for applications optimized for the Nanos runtime.

We also ran an early prototype FPGA implementation with
actual applications. Unfortunately, the communication protocol
between the VSs runtime system and the Nexus++ FPGA
implementation is currently suboptimal and adds significant
delays. Nevertheless, the extension board is functional and
performance reaches levels similar to the software version after

only a little optimization. This leads us to conclude that with
an improved communication protocol, Nexus++ would signifi-
cantly speed up dependency resolution for OmpSs applications.
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