
Hardware-Based Task Dependency Resolution for
the StarSs Programming Model

Tamer Dallou and Ben Juurlink
Embedded Systems Architecture Group

Technische Universität Berlin

Einsteinufer 17, 10587 Berlin, Germany

{dallou, b.juurlink}@tu-berlin.de

Abstract—Recently, several programming models have been
proposed that try to relieve parallel programming. One of these
programming models is StarSs. In StarSs, the programmer has
to identify pieces of code that can be executed as tasks, as well as
their inputs and outputs. Thereafter, the runtime system (RTS)
determines the dependencies between tasks and schedules ready
tasks onto worker cores. Previous work has shown, however,
that the StarSs RTS may constitute a bottleneck that limits
the scalability of the system and proposed a hardware task
management system called Nexus to eliminate this bottleneck.
Nexus has several limitations, however. For example, the number
of inputs and outputs of each task is limited to a fixed constant
and Nexus does not support double buffering. In this paper
we present Nexus++ that addresses these as well as other
limitations. Experimental results show that double buffering
achieves a speedup of 54×/143× with/without modeling memory
contention respectively, and that Nexus++ significantly enhances
the scalability of applications parallelized using StarSs.

I. INTRODUCTION

Due to the advent of multicore architectures, several par-
allel programming models have been proposed that aim at
relieving parallel programming. Examples include Google’s
MapReduce [4], Intel’s TBB [14], and StarSs [12]. StarSs, like
OpenMP [3], enables the programmer to express parallelism
by adding pragmas to the code. These pragmas identify pieces
of code that can be executed as tasks, as well as their inputs
and outputs. Based on the inputs and outputs, the RTS can
determine the dependencies between tasks and schedule ready
tasks onto cores that execute the tasks. The programmer, there-
fore, does not have to explicitly express dependencies between
tasks and the corresponding synchronization. Furthermore, the
RTS can also transparently optimize data reuse between tasks
and coarsen tasks, thereby relieving the programmer from
these burdens.

Previous work [10] has shown, however, that the StarSs
RTS, when implemented in software, can be a bottleneck that
limits the scalability of applications parallelized using StarSs.
Roughly speaking, the RTS cannot compute task dependencies
and attend to finished tasks fast enough to keep all worker
cores that execute the tasks busy. The same work therefore
proposed a hardware task management system called Nexus to
accelerate the RTS. In Nexus, task dependencies are computed
using hardware hash tables and a scalable synchronization
mechanism with the worker cores is provided. Results show
that Nexus improves the scalability of a synthetic application
modeled after H.264 decoding by a factor of 4.3 when using
16 worker cores.

Even though Nexus improves the scalability significantly,
it has several limitations. For example, since the hash table
entries have a fixed size, the number of inputs and outputs

of each task is limited (up to 5 in [10], [9]). Similarly, the
number of tasks that can depend on a certain data segment
is limited. This limits the applicability of Nexus, i.e., not all
StarSs applications can be executed on a multicore system
with Nexus. Another limitation is that Nexus does not support
double buffering, which allows executing one task while
fetching the input data of another task. In [10] double buffering
was not needed because the data transfer time was negligible.

In this paper we present Nexus++ that addresses these as
well as other limitations. Nexus++ main contributions include:
first, it solves the constraint on the maximum number of
inputs/outputs a task can have by introducing dummy tasks. It
also solves the constraint on the dependency count of a certain
data segment by adding dummy entries to the list of tasks that
depend on this data segment. Second, it support double (in
fact arbitrary) buffering by providing a Task Controller at each
worker core that buffers tasks before they are executed. Third,
it implements task dependency resolution more efficiently,
since fewer resources and computations are needed.Fourth,
Nexus++ implementation is platform-independent, since its
parameters are fully configurable, while Nexus was integrated
in a simulator of the Cell processor.

A SystemC model has been developed to validate and
evaluate the design. The preliminary results show that double
buffering achieves a speedup of 54× for up to 64 cores.
For 128 cores and more, the speedup gain starts to decrease
because the master core that generates tasks and submits them
to Nexus++ cannot generate them fast enough to keep all
worker cores busy, and due to limited memory bandwidth. The
results also show that applications that could not be executed
by Nexus, such as Gaussian elimination with partial pivoting,
which resembles the LINPACK benchmark, can be executed
efficiently on a multicore system with Nexus++.

This paper is organized as follows. Overview of the StarSs
programming model and related work are described in Sec-
tion II. Nexus++ and its features are described in Section III.
In Section IV the simulation environment and the employed
benchmarks are described. The experimental results are pre-
sented in Section V, and conclusions are drawn in Section VI.

II. BACKGROUND

A. StarSs
StarSs is a task-based programming model, which enables

exploitation of task-level parallelism, regardless of the target
architecture. StarSs provides programmers with pragmas, an
annotations added to the serial code, to identify potential
pieces of code that can run in parallel. The programmer does
not need to care about synchronization between tasks, as this is
done implicitly by the StarSs RTS. Listing 1 shows an example
of exploiting parallelism using pragmas.

The example in Listing 1 shows that function decode() is
called inside a nested loop, processing the elements of matrix

2012 41st International Conference on Parallel Processing Workshops

1530-2016/12 $26.00 © 2012 IEEE

DOI 10.1109/ICPPW.2012.53

367

X. Calculating decode() for each element requires the values of
the left and up-right cells.This example represent macroblock
wavefront decoding in H.264 [16], for one 1920×1088 frame
in blocks of 16× 16, and it is one of the benchmarks used to
evaluate Nexus++.

int* X[120][68];
#pragma css task input(left[16][16],\
upright[16][16]) inout(this[16][16])
void decode(int* left, int* upright, int* this){...}
void main(){
int i, j;
init_matrix(X) ;
for(i=0; i<120; i++)
for(j=0; j<68; j++)
decode(X[i][j-1], X[i-1][j+1], X[i][j]);

#pragma css barrier
}

Listing 1. StarSs example of macroblock wavefront decoding in H.264

Annotating a function with the css task pragma defines a
task. The inputs/outputs of the task should also be specified as
with function decode() in Listing 1. StarSs also provides sev-
eral synchronization pragmas such as the css barrier pragma.

A source-to-source compiler transforms the annotated func-
tion calls to runtime library calls, which generate a task out
of each function call, and add it to the task graph. As in the
example of Listing 1, every time function decode() is called,
a task is generated.

Having identified the tasks and the direction of their pa-
rameters, the StarSs environment builds, at run time, the task
graph, and the task-level parallelism is detected and exploited.

B. Related Work
Several hardware scheduling units have been proposed in

literature. Most of them, however, assume independent tasks
and are optimized for a certain application, a certain platform,
or both. For example, Carbon [7] assumes independent tasks
and uses hardware queues to retrieve tasks with low latency.

In StarSs, tasks can be dependent and it is the responsibility
of the RTS to determine their dependencies. An example
of a hardware accelerator targeted at a certain application
domain is a hardware task scheduler optimized for H.264
decoding [1]. It requires, however, that the programmer spec-
ifies the dependencies between blocks. Etsion et al. [6] also
proposed a hardware task management unit for the StarSs RTS,
based on the similarity between task dependency checking and
the instruction scheduler of an out-of-order processor. It was
evaluated using high-level simulations, however, and detailed
hardware models were not developed.

As mentioned before, our work builds upon Nexus [10],
which was integrated in a simulator of the Cell processor.

III. NEXUS++ HARDWARE TASK MANAGEMENT SYSTEM

The multicore system under consideration, shown in Fig-
ure 1, is assumed to have one Master Core that executes
the main thread and creates Task Descriptors, and several
worker cores that execute the tasks. A Task Descriptor con-
tains task-related information such as its function pointer and
input/output list. Nexus++ is responsible for the task graph
management usually carried out by the software RTS. In an
n-core system (one master core and (n − 1) worker cores),
Nexus++ is composed of n hardware modules:

• one Task Maestro, which is mainly responsible for depen-
dency resolution, task scheduling, and load balancing,

• and n − 1 local Task Controllers (TCs), one per worker
core, and are mainly responsible for task buffering.

���������	
�

���	�
���
�

�������

	
�����	��	��

		
�����	��	���

			���������������
�	�����
���

			����������������

		�

� �����	����	�����
���
����������	����������
��
�

��
��
���
����

��

��
��
���
���

��

��
��
���
���

��

��
��
���
���

��

Fig. 1. Nexus++ in a multicore system

A. System Description
The different components of Nexus++ shown in Figure 2

are described through explaining a task’s life cycle.

Tasks submission: When the Master Core executes the
main program, it generates the Task Descriptors and sends
them to the Task Maestro via the Get TDs block; the first
hardware block of the Task Maestro; which communicates with
the Master Core and receives variable-length Task Descriptors
(depending on the number of inputs/outputs per task) and
writes them to the TDs Buffer. This block is important so
that the Master Core is not blocked while the Task Maestro
is busy processing an earlier submitted task. It also enables
direct communication between the master core and the Task
Maestro, avoiding off-chip communication overhead, which is
one of the scalability limiting factors of Nexus[9]. After having
received a Task Descriptor, the Get TDs block writes its size
to a FIFO list called the TDs Sizes list. If this list is full, the
Master Core stalls and stops sending new Task Descriptors.

Storing tasks: Once the TDs Sizes list is written, it triggers
the Write TP block, which reads the size of the recently
received Task Descriptor from the TDs Sizes list, then it reads
the Task Descriptor from the TDs Buffer, appends some meta
data to it, and finally writes it to the main task storage table in
Nexus++ which is called the Task Pool. The full format of a
Task Descriptor in the Task Pool is shown in Table I. The 1st

column in Table I is the index at which tasks are stored. This
index is determined by the Write TP block, which reads the
TP Free indices list, that stores initially all indices of the Task
Pool. After the completion of a task, its Task Pool’s index is
written back to the TP Free indices list.

Inside Nexus++, a task is identified by its Task Pool index.
This is important to directly address a specific entry in the
table, rather than searching the table for that entry.

The busy column of a Task Descriptor is a boolean flag
indicating whether this Task Descriptor is currently under
processing by one of the blocks of the Task Maestro or not.
This is to ensure exclusive access to any entry in the Task Pool
at a certain time, and hence, preventing dead locks.

The *f column of a Task Descriptor indicates the function
pointer of that task. The DC column stands for Dependence
Counter, which records how many dependencies must be
fulfilled before this task can be scheduled to run, i.e., how
many inputs of this task are outputs of older tasks.

The nD stores the number of dummy entries that are linked
to this Task Descriptor. Adding dummy entries to the Task
Pool is the mechanism used to overcome the limit on the
number of inputs/outputs a task can have. This mechanism
is explained in Section III-C.

Columns nP and the following ones indicate the number

368

addr busy tp_i *f DC nD nP P1 P2 . . . P8 or ptr_next Dummy
17 0 17 0xABCD 0 0 8 1A/4/in 2A/4/in . . . 1B/4/out
98 0 98 0xDCBA 1 1 10 1B/4/in 2B/4/inout . . . 99/. . . /. . .
99 0 99 - - - - 8B/4/in 9B/4/out 10B/4/out -

TABLE I
THE TASK POOL. (TP_I: TP INDEX, *F: FUNC. PTR, DC: DEPENDENCE COUNT, ND: NUM. DUMMY ENTRIES, NP: NUM. PARAMETERS, Px : PARAMETERx)

�������

����	
����

�	 ��������

���������

����	
��������

����������

����
��

����! �!���
��"��

��#��	
����!������

��! ����

$�! ���%�!����

���"���&�� '������

������(��

)�*������

�������������+��

�
,
-& '�����

�
�
-& '�����

�
!
-& '�����

./�����	
��

./����	
�

.0#�������	
�� .�,

.�,

.�,

.�,

.�,

.�,

.�/

.�/

./�����	
�#�

�������	
��

�����������

.�,

��
��

�
,
-%�!�����

�
�
-%�!�����

�
!
-%�!�����

.�,

���%����+! ����.�,

.�,

�
�����
	
����

���

�
�����
	
����

���

�
�����
	
����

���

Fig. 2. Nexus++ modules block diagram

of inputs/outputs, and their information, respectively. An in-
put/output of a task is stored in the format: (base memory
address, size, and access mode), where the access mode can
be either input, output, or inout.

Resolving tasks dependencies: Once the Write TP block
has finished storing a task in the Task Pool, it writes this task’s
ID (Task Pool’s index) in a FIFO list called New Tasks, the
event that triggers the Check Deps block. The latter block is
responsible for checking whether the new submitted task is
ready or not, by checking the new submitted task inputs/out-
puts against all those of the previously submitted tasks. The
task dependence graph is stored inside the Dependence Table.
The process of dependency resolution is described in detail in
Section III-B to emphasize on its capabilities and efficiency.

Scheduling tasks: Once a ready task is found by the Check
Deps block, it writes its ID to a FIFO list called the Global
Ready Tasks list. This event triggers the Schedule block, which
is responsible for scheduling ready tasks onto the worker
cores. Another FIFO list called the Worker Cores IDs list
contains initially all worker cores IDs (repeated "buffering
depth" times). The Schedule block reads the latter FIFO for a
worker core ID and schedules the last found ready task on this
worker core. This simple round-robin scheduling mechanism
achieves load balancing between cores, since whenever a core
finishes running a task, the core’s ID is written back at the tail
of the Worker Cores IDs list.

The Task Maestro has two FIFO lists for each worker core.
The first one called the CiRdyTasks (Corei Ready Tasks) list,

and the second one is the CiFinTasks (Corei Finished Tasks)
list. Scheduling a task on a core is done by writing the task’s
ID in that core’s CiRdyTasks list. CiFinTasks lists are used
later upon completion of tasks.

Send ready tasks to worker cores: Once the RdyTasks
list of a certain core is written, this 1-bit list_written_event is
communicated to the corresponding worker core. In each of
the worker cores, a small and simple unit called the local Task
Controller (TC) is integrated. The Task Controller is mainly
responsible for communication with the Task Maestro, and to
enable buffering of tasks.

A Task Controller contains four pipelined hardware blocks,
namely the Get TD, Get Inputs, Run Task, and Put Outputs
blocks. The first of them is the Get TD block, which is
triggered upon writing a new task ID to the corresponding
core’s RdyTasks list. The Get TD block is responsible for
fetching parts (*f and input/output list) of the Task Descriptors
from the Task Maestro. This is done by sending a 1-bit request
signal to the the Task Maestro; the event that is handled by the
Send TDs block in the Task Maestro. The latter block works
in a round-robin fashion. It checks all the requests from the
different Task Controllers, and whenever it finds an active one,
it reads the RdyTasks list corresponding to the incoming active
signal and gets the ready task ID. Since a task ID is the index
at which it is stored in the Task Pool, the Send TDs block reads
the Task Descriptor at that index directly without searching the
Task Pool. After the Send TDs block have sent the requested
Task Descriptor to the requesting worker core, it writes the
sent task ID to that core’s FinTasks list, which is important
upon task completion as will be shown later.

Sending tasks to worker cores upon requests from the local
Task Controllers insures that the Send TDs block in the Task
Maestro will not waste any clock cycle waiting for a local
Task Controller, due to for example a handshaking protocol
or full buffer at that local Task Controller.

Run tasks: After getting a task from the Task Maestro, the
Get Inputs block at the Task Controller side, prefetches the
task code and inputs from memory. Then, the Run Task block
passes the task to the worker core to run it, and finally the
Put Outputs block writes the outputs back to memory, and
notifies the Task Maestro, via a 1-bit notification signal, of
task completion.

Finalize tasks, and update the task graph: The task-
finished notification signals from the local Task Controllers are
handled by the Handle Finished block in the Task Maestro.
The latter block also works in a round-robin fashion; it
continuously checks the notification signals from the different
cores, and whenever it finds an active one, it performs two
things: first, it acknowledges the corresponding local Task
Controller of the observation of its task-finished signal, so
the local Task Controller deactivates its task-finished signal
consequently.

The second thing the Handle Finished block performs is
that it reads the FinTasks list of the corresponding worker
core. The value read is the ID of the finished task, since the
FinTasks list was written by the Send TDs block immediately
after having sent the Task Descriptor to the corresponding
worker core. After reading the finished task ID, the Handle
Finished block reads the input/output list of the finished task

369

from the Task Pool, updates the Dependence Table and kicks-
off pending tasks, if any. Finally, the Handle Finished block
deletes the task from the Task Pool, adds the task ID to the TP
Free indices list, and adds the worker core ID to the Worker
Cores IDs list.

Since inside Nexus++ any task is identified by the index
at which its Task Descriptor is stored in the Task Pool, the
size and access time of the different tables and FIFO lists are
reduced. Furthermore all events and notifications are one-bit
signals, which ensures low communication overhead between
the Task Maestro blocks, the Task Controller blocks, and of
course between the Task Maestro and the Task Controllers.

Both Nexus and Nexus++ provide dependency resolution.
However, Nexus can only deal with tasks with a limited
number of inputs/outputs. It also can deal with dependency
patterns where only few, limited number of tasks depend on a
certain task. In addition, Nexus proposed TCs, but did not
implement them. Nexus++ solves the above limitations as
described next.

B. Dependency Resolution
Dependency resolution between tasks is accomplished in-

side the Task Maestro by the Check Deps block, Handle
Finished block, and the Dependence Table along with the
Dependence Counter associated with every Task Descriptor
in the Task Pool. Currently, dependencies between tasks are
decided by comparing the base addresses of the inputs/outputs
of the different tasks.

The Dependence Table: The place where dependence in-
formation are stored. Each input/output that is accessed by a
task will have an entry in the Dependence Table indicating its
access mode, and a Kick-Off List that contains the IDs of tasks
waiting for this address to be produced before they can run.

The Dependence Table is a hash table with a simple separate
chaining hash collisions resolution algorithm h(). The different
fields of it are shown in Table II. The first column hAddr is the
hash address, followed by a valid bit in the v column, followed
by the full memory address in the fAddr column. Size and
access mode of this memory segment are stored in the Size
and isOut columns respectively. The Rdrs column indicates the
number of tasks reading-only this memory segment at a certain
time. The ww flag (stands for a writer waits) indicates whether
a task is waiting for previous readers to finish before it can run
and write this memory segment. The latter case is known as the
write-after-read hazards WAR. Although the WAR hazards and
the write-after-write WAW hazards are false dependencies and
are normally resolved using renaming techniques, Nexus++
supports them as a safe guard.

The n_v, n_i, and p_i columns stand for next is valid flag,
next entry index, and previous entry index respectively, which
builds up a linked-list structure inside the Dependence Table
for entries that map to the same hash address. The h_D and l_D
are the has dummy flag and last dummy index to implement
the dummy entries mechanism explained in Section III-C in
the Dependence Table, to overcome the limit on the number
of tasks that may depend on a certain memory segment. These
tasks are stored in the Kick-Off List of which is composed of
the columns T1 . . .T8 of Table II.

Resolving new tasks dependencies: Every new submitted
task to the Task Maestro is handled by the Check Deps block,
of which pseudocode is shown in Listing 2. Listing 2 shows
that for each entry A in the input/output list of the newTask,
the Dependence Table is looked up, and an entry for A would
be inserted if it was not found. On the other hand, if A was
found, then an older task is already accessing it. In this case,
the access modes are checked; if both the old and new tasks

access A as read-only, then the new task is granted access
to A. However, if the older task is writing A, then the new
task T2 is added to the Kick-Off List of A as shown in Table II
regardless of its access mode to A (RAW or WAW hazards when
the new task T2 is a reader or a writer of A respectively), and
its Dependence Counter is incremented.

Finally, the WAR hazards are handled using the ww (a writer
waits) flag in Table II. If a task T1 is reading B, and T10
wants to write B, then T10 is added to the Kick-Off List of B
as shown in Table II, its Dependence Counter is incremented,
and the ww flag is set. Any other task that wishes to access
B, regardless its access mode, will be added to the Kick-Off
List of B, and its Dependence Counter is incremented.

After checking all inputs/outputs of a new task, the Check
Deps block checks the new task’s Dependence Counter, if it
was 0, then the task does not depend on any other older tasks,
and can be scheduled to run.

foreach A in parameters[newTask]
{
if(A not exist){ //1
Add A to DT;
if(newTask read-only A){ //2
DT[A].Rdrs=1;
DT[A].isOut = false;
}
else //2’
DT[A].isOut = true;

}
else //1’
if(newTask read-only A) //3
if(!DT[A].isOut && !DT[WriterWaits]) //4

DT[A].Rdrs++;
else{ //4’
DT[A].writeKickOffList(newTask);
TP[newTask].DC++;
}
else{ //3’
DT[A].writeKickOffList(newTask);
TP[newTask].DC++;
if(!DT[A].isOut)
DT[A].WriterWaits = true;

}
}
if(TP[newTask].DC == 0)
GlobalReadyTasksList.write(newTask);

Listing 2. Checking dependencies for new tasks pseudocode

Handling finished tasks: Upon task completion, the
Handle Finished block takes action. For example, for each
entry A in the input/output list of the finished task T1, if T1
has read-only A, then the Rdrs count of A is decremented. If
it becomes 0 and no writer task is waiting (ww flag is false),
then A is deleted from the Dependence Table. But if the ww
flag was true, then a pending task T2 must exist and is read
from Kick-Off List of A.

On the other hand, if T1 is a writer of A, and no tasks are
waiting for A, then A is deleted from the Dependence Table.
But if there are some tasks waiting for A, then the Handle
Finished block will continuously read these tasks IDs one after
the other as long as they read-only A, until it reads a task that
is willing to write A, or the Kick-Off List of A is empty. Each
time a reader is read from the Kick-Off List, the Rdrs count
of A is incremented.

Dependency resolution in Nexus++ is more efficient than
that in Nexus [10], since we use fewer and simpler tables
and Kick-Off Lists. Nexus++ has only one table (Dependence
Table) to maintain the task graph, and using the Task Pool’s

370

hAddr v fAddr Size isOut Rdrs ww n_v n_i p_i h_D l_D TID . . . TID or ptr_next Dummy
0xA 1 0x1A 4 1 0 0 0 - - 0 - T2 - -
0xB 1 0x1B 4 0 1 1 0 - - 0 - T10 - -
0xC 1 0x1C 4 1 0 0 1 111 - 1 333 T20 . . . 222

0x111 1 0x2C 4 1 0 0 0 - C 0 - T50 . . . -
0x222 1 0x1C 4 - - - - - - 1 333 T27 . . . 333
0x333 1 0x1C 4 - - - - - - 0 - T34 . . . -

TABLE II
THE DEPENDENCE TABLE. (HADDR: HASH ADDRESS, FADDR: FULL ADDRESS, ISOUT: IS OUTPUT, RDRS: READERS COUNTER, N_V: NEXT IS VALID,

N_I: NEXT ENTRY INDEX, P_I, PREV. ENTRY INDEX, H_D: HAS DUMMY ENTRIES, L_D: LAST DUMMY ENTRY INDEX, WW: A WRITER WAITS, Tx : TASKx)

indices as task IDs eliminate the need to search the tables. In
Nexus, on the other hand, three tables (containing two Kick-
Off Lists) are used and are accessed always for all kinds of
scenarios.

C. Dummy Tasks and Entries
In a Task Descriptor, a task has a limited number of

inputs/outputs, so applications with tasks that have more
inputs/outputs can not be executed directly on a system with
Nexus. In addition, not all tasks necessarily have a number
of inputs/outputs equal to the Task Descriptor’s limit, which
yields a poor memory utilization. We solve this problem by
introducing dummy tasks. A dummy task will not be executed,
it just takes the form of a task by having an entry in the
Task Pool, only to store inputs/outputs that did not fit in
the parent’s input/output list. Figure 3 shows a scenario to
demonstrate the need for dummy tasks. If Tx has 2n outputs,
and a Task Descriptor can only store n of them (8 in our
design), then dummy tasks (D1 and D2) are created having
their inputs/outputs as those that did not fit in the parent’s
(Tx) Task Descriptor. A dummy task is simply a pointer that
replaces the last entry of an input/output list.

In Table I, this mechanism is accomplished using the nD
(number dummy) column along with the last column (P8
or ptr_next Dummy) of a Task Descriptor. The number of
the extra Task Descriptors needed is stored in the nDummies
column of the parent entry, as shown in the example in Table I.
The Task Descriptor at index 98 has 10 inputs/outputs, which
is more than maximum limit of 8 per Task Descriptor, that
is why a new entry is occupied by this task, namely the Task
Descriptor at index 99. The parent entry at index 98 has 1 in
its nDummies field, indicating that this task occupies in total
2 Task Descriptors, and the last entry in its input/output list
now points to index 99. This process is done by the Write TP
block.

Although this solves the problem of having a fixed, limited
number of inputs/outputs per task, the maximum number of
inputs/outputs is still bounded by the size of the Task Pool.

The same principle can be deployed in the Dependence
Table shown in Table II, where the Kick-Off List has a limited
size, thus restricting the number of tasks that might depend
on a certain memory segment. As a solution, we add dummy
entries to the Dependence Table to extend the Kick-Off List of
a certain entry.

In Table II, a precise example is shown. Memory segment
0x1C is currently being written by a certain task T1, and the
number of tasks that are waiting in the Kick-Off List of 0x1C
doesn’t fit in a single Kick-Off List. That is why the h_D flag

��

��

��

��

����

��

��	�

��

��
����

�����

���

Fig. 3. Dummy Tasks/Entries added to the Task Pool/Dependence Table

of 0x1C is set, and the last entry in the Kick-Off List of 0x1C
points to address 222, which contains also some tasks IDs,
and also have another dummy entry at address 333 of the
Dependence Table, where the rest of the waiting tasks reside.

Reading tasks IDs from the Kick-Off List of a certain
memory address happens from the top of the first Kick-Off
List of the chain. Whenever all tasks are read from the first
Kick-Off List, this entry’s data (except the Kick-Off List and the
h_D fields) will be copied to the next dummy entry so that it
becomes the new parent. For example, memory address 0x1C
occupies 3 entries (at DT[0xC, 0x222, and 0x333]) in Table II.
When all items in the Kick-Off List of DT[0xC] are read,
this entry will be invalidated, and the parent entry of 0x1C
will reside at DT[0x222]. This way, the Dependence Table
is efficiently utilized, since DT[0xC] can now be reused by
other memory segments, even before memory segment 0x1C is
totally removed from the Dependence Table. This also allows
direct (and hence, fast) access to the first Kick-Off List, since
it always resides at the parent entry of a memory segment.

Dummy tasks are injected by the Task Maestro when needed
at run time. They utilize memory well, and are scalable. The
compiler could also add dummy tasks when it discovers that
a task has more inputs/outputs than the maximum. However,
the master core then would have to generate and submit more
TDs, and [9] indicates that eventually the master core forms
the bottleneck. Furthermore, the compiler can not add dummy
entries to the Dependence Table since it depends on runtime
information which is not available to the compiler. For these
reasons we have decided that the Task Maestro adds dummy
tasks and entries.

IV. EXPERIMENTAL SETUP

A. Benchmarks
Several benchmarks were used to evaluate Nexus++. First,

we used a trace of parallel H.264 decoder decoding one
full HD frame on a Cell Broadband Engine processor [11],
consisting of 8160 tasks in total. The trace consists of tasks
input/output information, tasks execution times and the time
they have spent reading/writing their inputs/outputs from/to
memory. On average a task spends 7.5μs for accessing off-
chip memory and 11.8μs for execution [2]. The benchmark
processes a matrix of 120 × 68 macroblocks and the depen-
dency pattern is shown in Figure 4(a) [15]. Tasks are generated
in serial execution order, which is from left to right and
from top to bottom. Initially there is only one task ready for
execution, but this number increases until halfway execution,
after which it decreases again. This ramping effect influences
the average amount of parallelism available in the benchmark
and thus its scalability.

To evaluate Nexus++ for a range of dependency patterns,
we created two additional synthetic benchmarks derived from
the H.264 benchmark. Their dependency patterns are shown
in Figure 4(b) and (c). We also used an additional benchmark
without dependencies, i.e., has only independent tasks, in
order to measure the maximum scalability of Nexus++. In
contrast to dependency pattern (a), the dependency patterns

371

���������	
������� �������������
����� ����������
�����

Fig. 4. Dependency patterns (120×68 blocks): (a) Ramp effect, (b, c) Fixed
of parallel tasks

�
�

�
�
�

�

�
�

�

�
�

�

�
�

�

�
�

�
�
�

�

�
�

�

�
�

�

�
���

���

�
���

�

�
���

���
�
���

�

Fig. 5. Dependency pattern for the Gaussian elimination benchmark. T j
i :

i, j row and column numbers respectively

depicted in 4(b) and (c) do not suffer from the ramping
effect. Instead, these dependency patterns provide a constant
number of parallel tasks. In (b), however, the dependency
pattern has the same direction as the order in which tasks are
generated. As a consequence, the amount of effective available
parallelism could be reduced by the speed of the addition
process or the size of the Task Pool, since when the table is
full, tasks of the first row have to be executed to make room
for other tasks. Hence, leading to an indirect dependency.

To validate the dummy tasks/entries approach, the task
graph of Gaussian elimination with partial pivoting [16] is
used. In this benchmark, the number of tasks that depend on
certain outputs depends on the size of the input matrix as
depicted in the dependency pattern of Figure 5, assuming an
n× n matrix.

The execution starts with one task (T 1
1), on which n − 1

tasks (T 2
1 ...T

n
1) depend. After that only one task (T 2

2) can
execute, and then n − 2 tasks, etc. Total number of tasks is
relative to the matrix size, and equals n2+n−2

2 , where n is
the matrix dimension. Each task performs number of floating
point operations FLOPs. This number represent the weight W
of a task and equals [16]:

W (T j
i) =

{
n+ 1− i FLOPs if i = j
n− i FLOPs if i < j (1)

where i, j are the row and column numbers respectively. Hence
the duration of a task T i

j equals W (T j
i), divided by the

GFLOPS of one core. Each task also reads W (T j
i) floating

point number from memory, and writes the same number back
when finished.

Some tasks in the Gaussian elimination benchmark are
really small (few FLOPs), but as can be seen in Formula (1)
and Figure 5, the number of tasks of a certain weight is directly
proportional to the weight itself. So the large portion of tasks
are relatively coarse, and only a small portion are fine. Table III
gives an overview about number and granularity of Gaussian
tasks for different matrix sizes.

B. Simulation Environment
The Task Machine: Nexus++ was simulated using the Task

Machine, a SystemC simulator of a task-based, trace-driven
multicore system. The Task Machine is a fully configurable
system that is designed to match modern real systems. Among
the configurable parameters are the number of cores, core

Matrix dimension # Tasks Average task weight (FLOPs)
250 31374 167
500 125249 334

1000 500499 667
3000 4501499 2012
5000 12502499 3523

TABLE III
GAUSSIAN ELIMINATION TASKS FOR DIFFERENT MATRIX SIZES

System Parameter Value
Cores clock freq. 2.0 GHz
Nexus++ clock freq. 500 MHz
On Chip Access Time 2 ns
Off Chip Access Time 12 ns
On chip bus bandwidth 2 GB/s
Memory bandwidth 10.67 GB/s
Task Descriptor (TD) size 78 Byte
Task Pool size 78 KB (1K TDs)
No. Parameters per TD 8
Dependence Table entry size 28 Byte
Dependence Table size 112 KB (4K entries)
Kick-Off list size 8 task IDs
TDs Sizes list size 1 KB
New Tasks list size 2 KB
TP Free Indices list size 2 KB
Global Ready Tasks list size 2 KB
Worker Cores IDs list size 2 KB
Cx RdyTasks list size 4 Bytes
Cx FinTasks list size 4 Bytes

TABLE IV
SYSTEM PARAMETERS

clock frequency, onchip/offchip memory access times, etc.
Tasks information are read from experimental traces, which
include tasks input/output information, and also their execution
and memory access times. Thus task execution is simply
modeled by waiting for a certain time. Memory accesses
delays are modeled in the same way and memory contention
is also modeled. The list of parameters and their values are
shown in Table IV.

Nexus++ is simulated assuming a clock cycle time of 2 ns,
which equals a clock frequency of 500 MHz. The Task Maestro
tables and the FIFO lists are on-chip storage and therefore
their access times are relatively fast. The hash table access
time equals the on-chip access time multiplied by the number
of lookups required per access.

The traces recording execution and communication times
per task were generated after parallel H.264 decoding on a Cell
processor [11]. Thus, the experiments are assuming a local-
stores, shared-memory architecture. Nevertheless, Nexus++
concept can be applied to any other multicore architecture.

Design Space Exploration: The sizes of the Task Mae-
stro tables and lists were empirically determined. They are
summarized in Table IV. We observed, as will be shown later
in Figure 6, that for the current benchmarks, the Task Pool
should be able to contain 1k Task Descriptors. Assuming 8
parameters and a total 78 Bytes per task descriptor yields a
Task Pool size of 78 KB. The Dependence Table, on the other
hand, should be able to hold 4K entries, as will be shown later
in Figure 6. Each entry size equals 28 bytes, which yields a
table size of 112 KB.

Having 1K tasks in the Task Pool, 10 bits are needed index
it and to identify a single task ID. This number is rounded
up to multiples of a byte (i.e., 2 bytes), yields that 2KB are
needed to store the IDs of a 1K tasks, which is the selected
size for the New Tasks list, the TP Free Indices list, and the
Global Ready Tasks list. 1 byte is allocated to store the size of
one Task Descriptor upon its reception from the Master Core.

372

This gives a total size of 1KB for the New Tasks list to store
the sizes of 1K Task Descriptors.

Simulating up to 512 worker cores, requires 9 bits to assign
an individual ID to each core. Rounding this number up to
multiples of bytes gives a 2KB Worker Cores IDs list size.
Assuming double buffering, a worker core should be able to
store two task IDs in its RdyTasks and FinTasks lists, which
yields a size of 4 bytes per list.

Access Latencies: The access time for the ∼100 KB on-
chip memory structures(those are mainly the Task Pool and
the Dependence Table) was determined using Cacti 5.3 [8],
and was found to be 2 ns for each of them. Off-chip memory
(RAM) access time is also determined using the same tool, and
was found to be 12 ns per 128 bytes RAM chunk, assuming
32-bank 1GB of RAM, which is equivalent to a maximum
memory bandwidth of 10.67 GB/s. The off-chip memory is
assumed to have 32 banks, each having one read/write port.
Therefore, no more than 32 tasks can access the memory at
a given time, and this is how contention accessing off-chip
memory is modeled.

The latency of preparation and submission of Task Descrip-
tors by the master core was estimated. These times were
measured in Nexus [9] in detail. As Nexus++ avoids off-
chip communication in this part, we had to compensate for
this. As a result, the task preparation was set to 30 ns ,
while the task submission is not fixed since it depends on
the size of the input/output list of a task. The modeled on-
chip bus is a very basic one. It is an 8-byte width bus, and
its bandwidth is assumed to be 2GB/s which is a typical
bandwidth of the state-of-the-art on-chip buses [13]. Every
time the Master Core wishes to submit a task to the Task
Maestro, it arranges the task’s information into 8-byte words.
The first word specifies the task’s ID and function pointer,
and every other word specifies a single parameter(including its
address, size, and access mode). The Master Core also sends
initially a handshaking word specifying the new task’s number
of words, and hence, number of its parameters. We assume that
for each task submission, an initial(handshaking) bus delay of
5 cycles is needed, and each word takes 2 cycles(2GB/s bus
bandwidth) to reach the Task Maestro. For example, a task with
4 parameters takes 10 cycles(20 ns), whereas an 8-parameters
task takes 14 cycles(28 ns) submission delay.

V. EVALUATION

Nexus++ was tested under different conditions, varying the
number of worker cores, the buffering depth, and with different
dependency patterns.

Using double buffering, the independent tasks benchmark
was performed varying the number of cores. Measuring the
speedup against the single core experiment, the indepen-
dent tasks benchmark achieved a speedup of 54× on 64
cores. Furthermore, it achieved 143× on 256 cores, assum-
ing contention-free memory. When disabling task preparation
delay, the resulting speedup was 221× using 256 cores.

Design space exploration is also performed by running
the independent tasks benchmark, on a 256-core system with
double buffering, and contention-free memory. First, in order
to determine the optimal Dependence Table size, all the other
structures are configured to be very large, the Task Pool ,
for example, is configured to hold 8K Task Descriptors at
once (given that the total number of tasks is 8160). The
first column in Figure 6 shows the speedup achieved against
varying the Dependence Table size, and fixing the Task Pool
size at 8K entries. Maximum speedup equals 143× when
setting the Dependence Table size to 2K entries. However,
the Dependence Table is set to 4K entries since this size

��� ��� ��� ���� ���� ��	� ��	�

�

��

��

���

���

�� �� �� �� � � �

�������������
���
�������������
���

��������������� !!����"#$�!��������
���

�$%&��
����'(�)!�*���+

�
�
�

�
�

Fig. 6. Speedup achieved with varying the size of the Task Pool and fixing
the size of the Dependence Table and vice versa. Also showing the effect of
varying the Dependence Table size on the longest Kick-Off List chain.

� � � � �� �� �� ��� ��� ���

	

�	

�	

�	

�	

�	

�	

���� ���� ��� �����

�������������
�
�

�
�
�

Fig. 7. Speedup achieved with different number of cores running tasks with
dependencies shown in Figure 4.

enhances shorter Kick-Off List chain(almost half of that when
the Dependence Table is set to 2K entries), as showin in the
third column of Figure 6, as longer Kick-Off List chains implies
a longer search time. The second column shows the speedup
when varying the Task Pool size, and fixing the Dependence
Table size at 8K entries. A Task Pool size of 512 entries is
enough to achieve a speedup of 143×, however, a 1K entries
Task Pool is chosen to allow a larger task window.

Figure 7 shows the achieved speedup for the benchmarks
illustrated in Figure 4. As before, we simulate 8160 tasks with
execution and communication times obtained from a parallel
H.264 decoder [2]. The speedup is measured against the
single core experiment of Nexus++ (double buffering enabled).
Limited application scalability explains why the speedup gain
decreases faster for the H.264 benchmark compared to the
independent tasks speedup.

More interesting is the speedup gain difference between
the benchmarks with horizontal and vertical dependencies
illustrated in Figures 4(b) and 4(c), respectively. Although
the Task Pool is larger than a single row, the processing of
non-ready tasks before reaching the next ready task (first task
in the second row of Figure 4(b)) limits the scalability of
this benchmark to at most 8 cores, whereas the benchmark
illustrated in Figure 4(c) scales well to 64 cores.

Figure 8 shows the speedup achieved by using different
multicore systems to solve the Gaussian elimination prob-
lem (Figure 5) for different matrices of sizes ranging from
250 × 250 to 5000 × 5000. Memory contention is modeled,
and double buffering is used.

Although the size of the Kick-Off List of each of the
Dependence Table entries is equal to 8, Nexus++ could handle
the Gaussian elimination problem for matrices of large sizes.
This is mainly because of the dummy entries added to the

373

� � � � �� �� �� ��� ��� ���

	

�	

�	

�	

�	

�	

��	 �		 �			 �			 �			

	
�����������

�
�

�

�

Fig. 8. Speedup achieved with different multicore systems running Gaussian
elimination for different matrix sizes (legend shows matrix dimension)

Dependence Table. As shown in Figure 8, the matrix size has
a great impact on the speedup gain and the scalability of the
system, since a bigger matrix results in a larger number of
tasks of larger granularity. A 5000 × 5000 matrix scaled up
to 64 cores with a speedup factor of 45×. This experiment
includes building and managing a task graph of 12502499
tasks with 3523 FLOPs per task on average as shown in
Table III. Each single worker core is assumed to be able to do
2 GFLOPS, which means that the average computation time
of each of the aforementioned tasks equals 1.77μs.

Although the 250 × 250 has very small tasks (83.5ns per
task on average), Nexus++ could handle them. The benchmark
scaled to 4 cores and a speedup of 2.3× is achieved. This
demonstrates the applicability of Nexus++ to any kind of
applications, even those with very fine grained tasks.

All tables and FIFO lists in the Nexus++ task manager
do not exceed 210KB of memory. Nevertheless, they are
sufficient to perform all the objectives of Nexus++. The Task
Superscalar [5], on the other hand, consumes more than 6.5MB
and still has a static limit (19) on the number of inputs/outputs
a task can have. Nexus++ introduces dummy tasks/entries in
the Task Pool and the Dependence Table respectively, uses
the Task Pool indices as tasks identifiers, and uses its internal
structures more dynamically and efficiently, therefore tables
sizes are relatively small.

VI. CONCLUSION

We have presented Nexus++, a hardware task management
accelerator for the StarSs RTS. Compared to previous work
Nexus++ makes four main contributions. First, it overcomes
the limitation of Nexus that a task can only have a fixed,
limited number of inputs/outputs by introducing dummy tasks
in the Task Pool. It also overcomes the limitation that only
a fixed, limited number of tasks can depend on a certain
task by introducing dummy entries in the Kick-Off Lists of
the Dependence Table. Second, it support double buffering
by providing a task controller in each worker core. Third,
it implements task dependency resolution more efficiently,
since fewer hash table lookups are required to determine
if tasks depend on each other. Fourth, we have presented
a platform-independent implementation of Nexus++ whose
parameters are fully configurable, while Nexus was integrated
in a simulator of the Cell processor.

Experimental results obtained using a SystemC model show
that double buffering achieved a speedup of 54 × /143×
with/without modeling memory contention respectively, for
a benchmark modeled after H.264 decoding. Furthermore,
double buffering increases the scalability of the system. Even-
tually, for large (64 cores and more) systems, the speedup gain

starts to decrease, mainly because the application does not
exhibit sufficient task-level parallelism, insufficient memory
bandwidth, and/or because the master core cannot generate
tasks fast enough to keep all worker cores busy. We have also
shown that a benchmark modeled after Gaussian elimination,
where the number of tasks that depend on a certain task is
not constant, ran successfully and efficiently with an achieved
speedup of 45× for an 5000× 5000 matrix using 64 cores.

Although Nexus++ targets StarSs applications, parts of it
can be reused for other programming models. For example,
it contains hardware queues that can be used for low-latency
retrieval of independent tasks. Future work will focus on how
to make Nexus++ more versatile.

ACKNOWLEDGMENT

The research leading to these results has received fund-
ing from the European Community’s Seventh Framework
Programme [FP7/2007-2013] under the ENCORE Project
(www.encore-project.eu), grant agreement n◦ 248647.

REFERENCES

[1] G. Al-Kadi and A. S. Terechko. A Hardware Task Scheduler for Em-
bedded Video Processing. In Proc. 4th Int. Conf. on High Performance
Embedded Architectures and Compilers, 2009.

[2] C. C. Chi, B. Juurlink, and C. Meenderinck. Evaluation of Parallel
H.264 Decoding Strategies for the Cell Broadband Engine. In Proc.
24th ACM Int. Conf. on Supercomputing, 2010.

[3] L. Dagum and R. Menon. OpenMP: an Industry Standard API for
Shared-Memory Programming. IEEE Computational Sci. Eng., 1998.

[4] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters. In Proc. 6th Symp. on Operating Systems Design &
Implementation, 2004.

[5] Y. Etsion, F. Cabarcas, A. Rico, A. Ramirez, R. M. Badia, E. Ayguade,
J. Labarta, and M. Valero. Task Superscalar: An Out-of-Order Task
Pipeline. Microarchitecture, IEEE/ACM International Symposium on, 0,
2010.

[6] Y. Etsion, A. Ramirez, and R. M. B. Jesuslabarta. Cores as Functional
Units: A Task-Based, Out-of-Order, Dataflow Pipeline. In Proc. Int.
Summer School on Advanced Computer Architecture and Compilation
for Embedded Systems, July 2009.

[7] S. Kumar, C. J. Hughes, and A. Nguyen. Carbon: Architectural Support
for Fine-Grained Parallelism on Chip Multiprocessors. In Proc. 34th
Annual Int. Symp. on Computer Architecture, 2007.

[8] H. Laboratories. Cacti 5.3. http://www.hpl.hp.com/research/cacti/.
[9] C. Meenderinck. Improving the Scalability of Multicore Systems, with

a Focus on H.264 Video Decoding. PhD thesis, Delft University of
Technology, July 2010.

[10] C. Meenderinck and B. Juurlink. A Case for Hardware Task Man-
agement Support for the StarSS Programming Model. In Proc. 13th
Euromicro Conf. on Digital System Design: Architectures, Methods and
Tools, 2010. Sp. Session on Multicore Systems: Des. and Apps.

[11] D. Pham, S. Asano, M. Bolliger, M. Day, H. Hofstee, C. Johns, J. Kahle,
A. Kameyama, J. Keaty, Y. Masubuchi, M. Riley, D. Shippy, D. Stasiak,
M. Suzuoki, M. Wang, J. Warnock, S. Weitzel, D. Wendel, T. Yamazaki,
and K. Yazawa. The design and implementation of a first-generation cell
processor. In Solid-State Circuits Conference, 2005. Digest of Technical
Papers. ISSCC. 2005 IEEE International, 2005.

[12] J. Planas, R. M. Badia, E. Ayguadé, and J. Labarta. Hierarchical Task-
Based Programming With StarSs. Int. J. High Perf. Comp. Appl., 2009.

[13] Power.org. Power.org Embedded Bus Architecture Report. www.power.
org/resources/downloads/Embedded_Bus_Arch_Report_1.0.pdf, 2008.

[14] J. Reinders. Intel Threading Building Blocks. O’Reilly & Associates,
Inc., 1st edition, 2007.

[15] E. B. van der Tol, E. G. Jaspers, and R. H. Gelderblom. Mapping of
H.264 Decoding on a Multiprocessor Architecture. In Proc. SPIE Conf.
on Image and Video Communications and Processing, 2003.

[16] M. Veldhorst. Gaussian Elimination with Partial Pivoting on an MIMD
Computer. Journal of Parallel and Distributed Computing, 1989.

374

