
Improving the Scalability and Capabilities of the
Nexus Hardware Task Management System

Tamer Dallou Ben Juurlink
Embedded Systems Architectures Group

Technische Universität Berlin
Einsteinufer 17, D-10587 Berlin

dallou@cs.tu-berlin.de, b.juurlink@tu-berlin.de

Cor Meenderinck
Computer Engineering Laboratory

Delft University of Technology
Mekelweg 4, 2628CD Delft

cor@ce.et.tudelft.nl

Abstract—Recently, several programming models have been
proposed that try to relieve parallel programming. One of these
programming models is StarSs. In StarSs, the programmer has
to identify pieces of code that can be executed as tasks, as well as
their inputs and outputs. Thereafter, the runtime system (RTS)
determines the dependencies between tasks and schedules ready
tasks onto worker cores. Previous work has shown that the StarSs
RTS may constitute a bottleneck that limits the scalability of the
system and proposed a hardware task management system called
Nexus to eliminate this bottleneck. Nexus has several limitations,
however. For example, the number of inputs and outputs of
each task is limited to a fixed constant and Nexus does not
support double buffering. In this paper we present Nexus++ that
addresses these as well as other limitations. Experimental results
show that double buffering increases the utilization from about
60% to almost 100% and that Nexus++ significantly enhances the
scalability of applications parallelized using StarSs.

I. INTRODUCTION

Due to the advent of multicore architectures, several par-
allel programming models have been proposed that aim at
relieving parallel programming. Examples include Google’s
MapReduce [4], Intel’s TBB [10], and StarSs [9]. StarSs, like
OpenMP [3], enables the programmer to express parallelism
by adding pragmas to the code. These pragmas identify pieces
of code that can be executed as tasks, as well as their inputs
and outputs. Based on the inputs and outputs, the runtime
system (RTS) can determine the dependencies between tasks
and schedule ready tasks onto cores that execute the tasks.
The programmer, therefore, does not have to explicitly express
dependencies between tasks and the corresponding synchro-
nization. Furthermore, the RTS can also transparently optimize
data reuse between tasks and coarsen tasks, thereby relieving
the programmer from these burdens.

Previous work [8] has shown, however, that the StarSs
RTS, when implemented in software, can be a bottleneck that
limits the scalability of applications parallelized using StarSs.
Roughly speaking, the RTS cannot compute task dependencies
and attend to finished tasks fast enough to keep all worker
cores that execute the tasks busy. The same work therefore
proposed a hardware task management system called Nexus to
accelerate the RTS. In Nexus, task dependencies are computed
using hardware hash tables and a scalable synchronization
mechanism with the worker cores is provided. Results show
that Nexus improves the scalability of a synthetic application

modeled after H.264 decoding by a factor of 4.3 when using
16 worker cores.

Even though Nexus improves the scalability significantly,
it has several limitations. For example, since the hash table
entries have a fixed size, the number of inputs and outputs of
each task is limited to a fixed constant (5 in [8]). Similarly,
the number of tasks that can depend on a certain data segment
is limited. This limits the applicability of Nexus, i.e., not all
StarSs applications can be executed on a multicore system with
Nexus. Another limitation is that Nexus does not support dou-
ble buffering, which allows executing one task while fetching
the input data of another task. In [8] double buffering was not
needed because the data transfer time was negligible.

In this paper we present Nexus++ that addresses these as
well as other limitations. The dependency count constraint is
solved by introducing dummy tasks and by adding dummy
entries to the list of tasks that depend on a certain data segment.
Double (in fact arbitrary) buffering is supported by providing
a Task Controller at each worker core that buffers tasks before
they are executed. A SystemC model has been developed to
validate and evaluate the design. The preliminary results show
that double buffering increases the utilization from about 60%
to almost 100% for up to 64 cores. For 128 cores and more,
the utilization starts to decrease because the master core that
generates tasks and submits them to Nexus++ cannot generate
them fast enough to keep all worker cores busy. The results also
show that applications that could not be executed by Nexus,
such as Gaussian elimination, can be executed efficiently on a
multicore system with Nexus++.

Several hardware scheduling units have been proposed in
literature. Most of them, however, assume independent tasks
and are optimized for a certain application, a certain platform,
or both. For example, Carbon [6] assumes independent tasks
and uses hardware queues to retrieve tasks with low latency.
In StarSs tasks can be dependent and it is the responsibility
of the RTS to determine their dependencies.An example of a
hardware accelerator targeted at a certain application domain
is a hardware task scheduler optimized for H.264 decoding [1].
It requires, however, that the programmer specifies the de-
pendencies between blocks. Etsion et al. [5] also proposed
a hardware task management unit for the StarSs RTS, based
on the similarity between task dependency checking and the



Master Core Task Maestro

Worker 
Core 1

TC Worker 
Core 2

TC Worker 
Core n

TC

main(){...}

Fig. 1. Nexus++ in a multicore system

instruction scheduler of an out-of-order processor. It was
evaluated using high-level simulations, however, and detailed
hardware models were not developed.

This paper is organized as follows. Nexus++ and its novel
features are described in Section II. In Section III the simula-
tion environment and the employed benchmarks are described.
The experimental results are presented in Section IV, and
conclusions are drawn in Section V.

II. NEXUS++ HARDWARE TASK MANAGEMENT SYSTEM

As shown in Figure 1, the multicore system under con-
sideration is assumed to have one master core (MC) that
executes the main thread and creates task descriptors (TDs),
and several worker cores (WCs) that execute the tasks. A
TD contains task-related information such as its function
pointer and input/output list. Nexus++ is responsible for the
task management responsibilities usually carried out by the
software RTS. In an (n + 1)-core system (one MC and n
WCs), Nexus++ is composed of n+1 hardware modules: one
Task Maestro (TM), which is mainly responsible for inter-task
dependencies resolution, tasks scheduling, and load balancing,
and n Local Task Controllers (TCs), which are distributed one
per worker core, and are mainly responsible for task buffering.

A. System Description

The components of Nexus++ shown in Figure 2 are de-
scribed through this scenario: when the MC executes the main
program, it generates the TDs and sends them to the TM via
the TDsInBuffer. This buffer is important so that the MC is not
blocked while the TM is busy processing an earlier submitted
TD. It also enables direct communication between the MC and
the TM, in contrast to [8], where the TDs are communicated
between the MC and the TM via off-chip memory.

Once the TDsInBuffer is written, the TM’s GetTDs WriteTP
block then gets these TDs, appends a Dependency Counter
(DC) to each one of them, and stores them in the Task
Pool (TP). The DC records how many dependencies must be
fulfilled before this task can be scheduled to run. After that,
the CheckDeps block in the TM decides whether the TDs are
ready to run or not. The task dependency graph is stored inside
the DependencyInfo tables. The dependency resolution process
is described in Section II-B to emphasize on its capabilities
and efficiency. If a task is ready, it will be passed to the
Schedule block which will schedule it to one of the worker
cores, by writing it to the ready-tasks-list of that core. Writing
a ready-tasks-list will trigger the GetReadyTask block at the
TC’s side. The TCs are responsible for communication with
the TM, and to enable buffering of tasks, according to the
TC’s buffering depth (BD). If BD equals m, the TC will
buffer m − 1 tasks while the worker core is busy executing

GetTDs_
WriteTP

TaskPool

CheckDeps

GetReady 
Task

Get 
Inputs

Execute 
Task

Write 
Outputs

HandleTC_
Requests

Handle 
FinishedTasks

Dependency
Info Schedule

Task Maestro

Local Task Controller i

TDsIn
Buffer

Ready-Tasks-List i

From MC

Fig. 2. Nexus++ modules block diagram

one task. A BD of 2 implies double buffering, whereas a BD
of 1 implies no buffering. The TC’s GetReadyTask block asks
the TM for the ready TD, and the TM’s HandleTC Requests
block answers the TC’s request and sends the requested TD to
it. This communication mechanism is necessary in order not
to block the TM’s work by a TC, since the latter might have
no empty slots in its buffer. After that the TC gets the new
task’s inputs, assigns the task to the associated worker core
to execute it, and finally, writes the outputs back and notifies
the TM of task completion. The TM’s HandleFinishedTasks
block receives the TC’s notification and checks whether there
are pending tasks in the TP that are waiting for the finished
task. If it finds any pending task that does not depend on other
tasks, it passes it to the Schedule block, and so on.

Communication and synchronization between the different
hardware blocks inside the TM are done using FIFO lists.
This is important to pipeline the work of the different blocks.
If a FIFO is full, the hardware block writing to it stalls.
Furthermore, since tasks are processed in the serial order of
execution, a deadlock is not possible.

Inside Nexus++, any task is referred to by the index at
which its TD is stored in the TP. This reduces the size and
access time of the different tables and FIFO lists. Furthermore
all events and notifications are one-bit signals, which ensures
low communication overhead between the TM blocks, the TC
blocks, and of course between the TM and the TCs.

Both Nexus and Nexus++ provide dependency resolution.
However, Nexus can only deal with tasks with a limited num-
ber of inputs/outputs, and with a limited number of tasks that
depend on those tasks. In addition, Nexus proposed TCs, but
did not implement them. Nexus++ solves the above limitations
as described next.

B. Dependency Resolution

Dependency resolution is accomplished using two hash
tables along with the DC associated with every TD in the TP.
The tables are called Read Only Table (ROT) and Read Write
Table (RWT). They store information about task parameters
that are read-only and read-write, respectively. Access mode
of an input is extracted from the TD. Fields of the ROT
and RWT tables are shown in Tables I and II, respectively.
To resolve hash collisions, a simple separate chaining hash
resolution algorithm h() is used.



TABLE I
READ-ONLY TABLE (ROT)

Memory Address RC aWriterWaits
B 2 true

TABLE II
READ-WRITE TABLE (RWT)

Memory Address Kick-Off-List
A T2, T5, . . .
B T4, T6, . . .

TABLE III
NEXUS++ VS. NEXUS COMPARISON

Nexus++ Nexus
Number of tables 2 3
No. Kick-Off-Lists per Mem. Addr 1 2
Access all tables per check not always always

To decide that a task T2 depends on T1, currently we assume
that the base address of an input of T2 matches the base
address of an output of T1, etc. Write-after-write hazards are
handled as follows: if T2 needs to write memory address A,
and A is already in the RWT, i.e. A is the output of another
task, say T1, then T2 is registered on the Kick-Off-List of
RWT[h(A)] and the DC of T2 in the TP is incremented. There
is no need to check the ROT since A was found in the RWT.
When T1 finishes, the HandleFinishedTasks block is triggered,
it accesses the RWT and checks the Kick-Off-List of A, it
reads T2, looks up TP[T2] and decrements its DC. If the DC
is zero, then T2 can be scheduled to be run. Since T2 will write
A, no more tasks are read from the Kick-Off-List of A. In the
previous example, assuming that T2 is a reader of A shows
how the read-after-write (RAW) hazards are handled.

Similarly, if a task T3 needs to read-only memory address
B, and B is already in the ROT, then the readers counter
(RC) of B in the ROT is incremented, and the DC of T3 is
not altered, so if it is zero, T3 can be scheduled to run. On
the other hand, if a task T4 needs to write B, then the TM
sets the flag aWriterWaits of ROT[h(B)] to true, creates an
entry for B in the RWT and registers T4 to the Kick-Off-
List of RWT[h(B)], and finally increments the DC of TP[T4].
Any task that comes after T4 that wishes to read or write B
registers itself to the Kick-Off-List of RWT[h(B)] and its DC
is incremented. Using the aWriterWaits flag resolves the write-
after-read (WAR) hazards.

Dependency resolution in Nexus++ is more efficient than
that in Nexus [8], since we use fewer and simpler tables and
Kick-Off-Lists. Furthermore, when determining the dependen-
cies of a new task or after the completion of a task in Nexus++,
the ROT is accessed only if the memory address does not
exist in the RWT. In Nexus, on the other hand, all tables are
accessed for all kinds of scenarios. Hence, Nexus++ is simpler
and performs fewer computations to resolve dependencies. A
brief comparison between the two is shown in Table III.

C. Dummy Tasks and Entries

In a task descriptor (TD), a task has a limited number
of inputs/outputs, so applications with tasks that have more
inputs/outputs can not be executed directly on a system with
Nexus. In addition, not all tasks necessarily have a number

T1

T2 T5
T3
T4

T6
T7

D1 D2

T8
T9

Fig. 3. Dummy Tasks/Entries added to the TP/RWT

of inputs/outputs equal to the TD’s limit, which could yield a
poor memory utilization. We solve this problem by introducing
dummy tasks. These dummy tasks will not be really executed,
they just take the form of a task by having their own TD in the
TP, only to store inputs/outputs that did not fit in the parent’s
input/output list. Figure 3 shows a scenario to demonstrate the
need for dummy tasks. If T1 has 8 outputs, and a TD can only
store 4 of them, then dummy tasks are created having their
inputs/outputs as those that did not fit in the parent’s (T1) TD.
The same principle can be deployed in the RWT table shown in
Table II, where the Kick-Off-List has a limited size, restricting
the number of tasks that might depend on a single task’s output.
As a solution, we add dummy entries to the RWT to extend
the Kick-Off-List of a certain RWT entry.

Figure 3 can be interpreted as follows: assuming that eight
tasks (T2 - T9) depend on a single output O of T1 and given that
the size of the Kick-Off-List of the RWT entry RWT[h(O)]
is 4, then the eight tasks cannot be added to the Kick-Off-
List. A stall is not a solution because the RWT might still
have empty slots. Furthermore, other tasks cannot be added
to the system since they might depend on an output of one
of the extra tasks that did not fit in the Kick-Off-List of T1.
Another non-optimal solution is to increase the size of the
Kick-Off-List, since it would still limit, although larger, the
Kick-Off-List size. It also would waste memory since not all
outputs will be inputs for a number of tasks that is equal to the
Kick-Off-List size. Furthermore, implementing the worst-case
scenario is not scalable. Our proposed solution is, therefore, to
insert some dummy entries in the RWT, namely D1 and D2,
resulting in a chain of Kick-Off-Lists.

In Figure 3, having only one dummy entry per Kick-Off-
List is efficient, since when reading a Kick-Off-List, the TM
might read only one entry (in case of a writer task), or more.
Reading only one entry from the Kick-Off-List chain is simply
reading the first entry of the first Kick-Off-List in the chain.
On the other hand, allowing more than one dummy entry per
Kick-Off-List will result in multiple lookups in order to reach
the leaf Kick-Off-List, which is an increase in the overhead.

The compiler could also add dummy tasks when it discovers
that a task has more inputs/outputs than the maximum. How-
ever, the master core then would have to generate and submit
more TDs, and our results indicate that eventually the master
core forms the bottleneck. Furthermore, the compiler can not
add dummy entries since it depends on runtime information
which is not available to the compiler. For these reasons we
have decided that the TM adds dummy tasks and entries.

III. EXPERIMENTAL SETUP

A. Benchmarks

To evaluate Nexus++ we used several benchmarks. First,
we used a trace of parallel H.264 decoder decoding one



(a) H.264-like deps. (b) Horizontal deps. (c) Vertical deps.

Fig. 4. Dependency patterns: (a) Ramp effect, (b, c) Fixed # of parallel tasks

T
1

1
T
1

2

T
1

3

T
1

4

T
1

n

T
2

2
T
2

3

T
2

4

T
2

n

T
n-2

n-1

T
n-2

n

T
n-1

n-1
T
n-1

n

Fig. 5. Dependency pattern for the Gaussian elimination benchmark.

full HD frame, consisting of 8160 tasks in total. A trace
consists of tasks execution times and the time they have
spent reading/writing their inputs/outputs from/to memory. On
average a task spends 7.5µs on accessing off-chip memory and
11.8µs on execution [2]. The benchmark processes a matrix
of 120×68 macroblocks and the dependency pattern is shown
in Figure 4(a) [11]. Tasks are generated from left to right and
from top to bottom. Initially there is only one task ready for
execution, but this number increases until halfway execution,
after which it decreases again. This ramp effect influences the
amount of parallelism in the benchmark and thus its scalability.

To evaluate Nexus++ for a range of dependency patterns,
we created two additional synthetic benchmarks derived from
the H.264 benchmark. The dependency patterns of these
benchmarks are shown in Figure 4(b) and (c). We also used
an additional benchmark without dependencies, which is not
shown in the figure. In contrast to dependency pattern (a), the
dependency patterns depicted in 4(b) and (c) do not suffer from
the ramping effect. In (b), however, the dependency pattern has
the same direction as the order in which tasks are generated.
As a consequence, the amount of effective available parallelism
could be reduced by the speed of the addition process or the
size of the TP (and other tables) , since when the tables are
full, tasks of the first row have to be executed to make room
for other tasks.

To validate the dummy tasks/entries approach, the task graph
of Gaussian elimination with partial pivoting [12] is used. In
this benchmark, the number of tasks that depend on certain
outputs depends on the size of the input matrix as depicted in
the dependency pattern of Figure 5, assuming an n×n matrix.

B. Simulation Environment

Nexus++ was simulated using SystemC. It is designed to
match modern real systems. First of all, the clock cycle time is
400 ps, which equals a clock frequency of 2.5 GHz. The TM
tables and the FIFO lists are on-chip storage and therefore
their access times are relatively fast. The hash table access
time equals the on-chip access time multiplied by the number
of lookups required per access. As the benchmarks are trace-
based, task execution is modeled by a wait.

TABLE IV
SYSTEM PARAMETERS

System Parameter Value
Clock Frequency 2.5 GHz
On Chip Access Time 6 cycles
No. Parameters per TD 8
TD size 96 Byte
TP size 384 KB (4K TDs)
Kick-Off-List Size 8
RWT entry size 64 Byte
RWT size 512 KB (8K entries)
ROT entry size 24 Byte
ROT size 192 KB/(8K entries)

The sizes of the TM tables were empirically determined.
We observed that for the current benchmarks the task pool
should be able to contain 4k task descriptors. Assuming 8
parameters per task descriptor yields a task pool size of 384
KB. The sizes of the other tables and lists, as indicated in
Table IV, were derived in a similar way. These parameters are
fully configurable.

The access time for the 192 KB, 384 KB, and 512 KB on-
chip memories was determined using Cacti 5.3 [7], for 45nm
eDRAM technology, and were found to be 6 cycles for each
of them. The latency of preparation and submission of task
descriptors by the master core was estimated. These times
were measured in Nexus in detail. As Nexus++ avoids off-chip
communication in this part, we had to compensate for this. As
a result, the task preparation was set to 100 cycles while the
task submission has a latency of 60 cycles. The latter depends
on the size of the input/output list of a task, and is therefore
not a fixed number.

IV. EVALUATION

Nexus++ was tested under different conditions, varying the
number of worker cores, the buffering depth, and with different
dependency patterns.

Figure 6 depicts the utilization for the benchmarks with
independent tasks and for different number of cores and
buffering depths. A core’s utilization equals its computation
time divided by (computation time + communication time with
the TM and memory), and we report the average utilization.
The baseline experiments were performed without using any of
Nexus++ enhancements, i.e., no buffering of task descriptors
between the MC and the TM, no buffering of tasks at the TC
side, and no dummy tasks or entries. For the other experiments,
these features are enabled.

Figure 6 shows that the utilization increases from 60% to
98% when enabling double buffering (BD = 2) for up to
64 cores. This baseline results differs (up to 60% utilization)
from those shown in [8], because the average task computation
and communication times are different. In our system, based
on [2], we assume these values to be 11.81 µsec and 7.5 µsec,
respectively, while in [8] they are assumed to be 19 µsec and
2 µsec, respectively. Furthermore, in [8], on-chip access time
equals 2 cycles which is one third of that in Nexus++.

The utilization does not increase when increasing the buffer
depth. On the contrary, the utilization slightly decreases as is
most visible in the 128-core experiment. Since the TM stalls
when it fills all buffers of the worker cores, increasing the



1 2 4 8 16 32 64 128 256 512 1024

0.00

25.00

50.00

75.00

100.00

Baseline 1 2 4 8

Number of Cores

U
til

iz
a

tio
n

 (
%

)

Fig. 6. Utilization for different number of cores with different buffer depths
running independent tasks.

buffer depth increases the number of accesses to the different
TM tables and FIFOs, mainly the TP, the RWT, and the ROT.
This increases the number of collisions when accessing the
different hash tables and, hence, increasing the search time.
It can therefore be concluded that the experiment with double
buffering (BD = 2) is sufficient and most efficient.

In Figure 6, the only difference between the baseline exper-
iment and the experiment with (BD = 1) is that TD buffering
is disabled in the baseline experiment. The effect of this can
be seen when the number of worker cores is larger than 128,
which demonstrates how TD buffering between the MC and
the TM improves the scalability to larger numbers of cores.

Figure 7 shows the utilization for the benchmarks illustrated
in Figure 4. As before, we simulate 8160 tasks with execution
and communication times obtained from a parallel H.264 de-
coder. Furthermore, since the previous experiments has shown
that double buffering is most efficient, we simulate a buffering
depth of 2. Limited application scalability explains why the
utilization decreases faster for the H.264 benchmark compared
to the utilizations shown in Figure 6. More interesting is the
difference between the benchmarks with horizontal and vertical
dependencies illustrated in Figures 4(b) and 4(c), respectively.
Although the TP is larger than a single row, the processing of
non-ready tasks before reaching the next ready task limits the
scalability of this benchmark to at most 32 cores, whereas the
benchmark illustrated in Figure 4(c) scales well to 128 cores.

Finally, Gaussian elimination with partial pivoting for a
matrix size of 100 × 100 was tested using Nexus++, and it
ran successfully on different number of cores with Kick-Off-
Lists of size 8. For such a matrix size to run without dummy
tasks, the Kick-Off-Lists should be of size 99, which means
12.5 times the Kick-Off-Lists size. Furthermore, this number
increases with the matrix size.

V. CONCLUSION

We have presented Nexus++, a hardware management ac-
celerator for the StarSs runtime system. Compared to previ-
ous work Nexus++ makes three main contributions. First, it
overcomes the limitation of Nexus that only a fixed, limited
number of tasks can depend on a certain task by introducing
dummy tasks and dummy entries in the kick-off lists. Second, it
support double buffering by providing a task controller in each
worker core. Third, it implements task dependency resolution
more efficiently, since fewer hash table lookups are required
to determine if tasks depend on each other.

Experimental results obtained using a SystemC model show
that double buffering increases the utilization from about

1 2 4 8 16 32 64 128 256 512 1024

0.00

25.00

50.00

75.00

100.00

Indep. H.264 Hor. Ver.

Number of Cores

U
til

iz
a

tio
n

 (
%

)

Fig. 7. Utilization of different number of cores running tasks with depen-
dencies shown in Figure 4.

60% to almost 100% for a benchmark modeled after H.264
decoding, while triple and higher buffering slightly decrease
the utilization. Furthermore, double buffering also increases
the scalability of the system. Eventually, for large (256 cores
and more) systems, the utilization starts to decrease, mainly
because the application does not exhibit sufficient task-level
parallelism, and/or because the master core cannot generate
tasks fast enough to keep all worker cores busy. We have also
shown that a benchmark modeled after Gaussian elimination,
where the number of tasks that depend on a certain task is not
constant, ran successfully and efficiently.

Although Nexus++ targets StarSs applications, parts of it
can be reused for other programming models. For example,
it contains hardware queues that can be used for low-latency
retrieval of independent tasks. Future work will focus on how
to make Nexus++ more versatile.

ACKNOWLEDGMENT

The research leading to these results has received fund-
ing from the European Community’s Seventh Framework
Programme [FP7/2007-2013] under the ENCORE Project
(www.encore-project.eu), grant agreement n◦ 248647.

REFERENCES

[1] G. Al-Kadi and A. S. Terechko. A Hardware Task Scheduler for Em-
bedded Video Processing. In Proc. 4th Int. Conf. on High Performance
Embedded Architectures and Compilers, 2009.

[2] C. C. Chi, B. Juurlink, and C. Meenderinck. Evaluation of Parallel H.264
Decoding Strategies for the Cell Broadband Engine. In Proc. 24th ACM
Int. Conf. on Supercomputing, 2010.

[3] L. Dagum and R. Menon. OpenMP: an Industry Standard API for
Shared-Memory Programming. IEEE Computational Sci. Eng., 1998.

[4] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters. In Proc. 6th Symp. on Operating Systems Design &
Implementation, 2004.

[5] Y. Etsion, A. Ramirez, and R. M. B. Jesuslabarta. Cores as Functional
Units: A Task-Based, Out-of-Order, Dataflow Pipeline. In Proc. Int.
Summer School on Advanced Computer Architecture and Compilation
for Embedded Systems, 2009.

[6] S. Kumar, C. J. Hughes, and A. Nguyen. Carbon: Architectural Support
for Fine-Grained Parallelism on Chip Multiprocessors. In Proc. 34th
Annual Int. Symp. on Computer Architecture, 2007.

[7] H. Laboratories. Cacti 5.3. http://www.hpl.hp.com/research/cacti/.
[8] C. Meenderinck and B. Juurlink. A Case for Hardware Task Management

Support for the StarSS Programming Model. In Proc. 13th Euromicro
Conf. on Digital System Design: Architectures, Methods and Tools, 2010.
Sp. Session on Multicore Systems: Des. and Apps.

[9] J. Planas, R. M. Badia, E. Ayguadé, and J. Labarta. Hierarchical Task-
Based Programming With StarSs. Int. J. High Perf. Comp. Appl., 2009.

[10] J. Reinders. Intel Threading Building Blocks. O’Reilly & Associates,
Inc., 1st edition, 2007.

[11] E. B. van der Tol, E. G. Jaspers, and R. H. Gelderblom. Mapping of
H.264 Decoding on a Multiprocessor Architecture. In Proc. SPIE Conf.
on Image and Video Communications and Processing, 2003.

[12] M. Veldhorst. Gaussian Elimination with Partial Pivoting on an MIMD
Computer. Journal of Parallel and Distributed Computing, 1989.


