
Course Notes

Discrete Event Systems

Version 1.9

Jörg Raisch
Fachgebiet Regelungssysteme
Technische Universität Berlin

http://www.control.tu-berlin.de

TU Berlin, Wintersemester 2023/2024

P R E FA C E

These course notes are based on notes for a one-week course
on discrete event and hybrid systems that I taught at Trinity
College, Dublin, in July 2009. They have also served as a basis
for a course on Discrete Event Systems that I have taught at TU
Berlin for a number of years. The notes were produced with
the help of Tom Brunsch, Behrang Monajemi Nejad, Stephanie
Geist, Germano Schafaschek, and Davide Zorzenon. Thanks to
all of them! Although this represents a revised version, there are
bound to be some errors. These are of course my responsibility.
I would be grateful, if you could point out any error that you spot.

Jörg Raisch
raisch@control.tu-berlin.de

3

4

C O N T E N T S

1 Introduction 7

1.1 Discrete-Event Systems 7

1.2 Course Outline 9

2 Petri Nets 11

2.1 Petri Net Graphs 12

2.2 Petri Net Dynamics 13

2.3 Special Classes of Petri Nets 18

2.4 Analysis of Petri Nets 19

2.4.1 Petri net properties 20

2.4.2 The coverability tree 23

2.5 Control of Petri Nets 27

2.5.1 State based control – the ideal case 29

2.5.2 State based control – the nonideal case 32

3 Timed Petri Nets 37

3.1 Timed Petri Nets with Transition Delays 37

3.2 Timed Event Graphs with Transition Delays 38

3.3 Timed Petri Nets with Holding Times 40

3.4 Timed Event Graphs with Holding Times 41

4 The Max-Plus Algebra 45

4.1 Introductory example 45

4.2 Max-Plus Basics 48

4.3 Max-plus algebra and precedence graphs 50

4.4 Linear implicit equations in max-plus 52

4.5 State equations in max-plus 54

4.6 State equations in max-plus – an alternative ap-
proach 56

4.7 The max-plus eigenproblem 65

4.8 Linear independence of eigenvectors 71

4.9 Cyclicity 73

4.10 The Case of Reducible Matrices 75

5 Supervisory Control 83

5.1 SCT Basics 83

5.2 Plant Model 84

5.3 Plant Controller Interaction 85

5.4 Specifications 87

5.5 Controller Realisation 91

5

Contents

5.5.1 Finite automata with marked states 92

5.5.2 Unary operations on automata 94

5.5.3 Binary operations on automata 96

5.5.4 Realising least restrictive implementable
control 101

5.6 Control of a Manufacturing Cell 103

6

1
I N T R O D U C T I O N

1.1 discrete-event systems

In “conventional” systems and control theory, signals “live” in Rn

(or some other, possibly infinite-dimensional, vector space). Then,
a signal is a map T → Rn, where T represents continuous or
discrete time. There are, however, numerous application domains
where signals only take values in a discrete set, which is often fi-
nite and not endowed with mathematical structure. Examples are
pedestrian lights (possible signal values are “red” and “green”)
or the qualitative state of a machine (“busy”, “idle”, “down”).
Often, such signals can be thought of as naturally discrete-valued;
sometimes, they represent convenient abstractions of continuous-
valued signals and result from a quantisation process.

Example 1.1 Consider a water reservoir, where z : R+ → R+ is
the (continuous-valued) signal representing the water level in the
reservoir. The quantised signal

ỹ : R+ → {Hi, Med, Lo} ,

where

ỹ(t) =





Hi if z(t) > 2
Med if 1 < z(t) ≤ 2
Lo if z(t) ≤ 1

represents coarser, but often adequate, information on the tem-
poral evolution of the water level within the reservoir. This is
indicated in Fig. 1.1, which also shows that the discrete-valued
signal ỹ can be represented by a sequence or string of timed
discrete events, e.g.

(t0, Lo), (t1, Med), (t2, Hi), . . . ,

where ti ∈ R+ are event times and (ti, Med) means that at time ti,
the quantised signal ỹ changes its value to Med. ♦

Note that an (infinite) sequence of timed discrete events can be
interpreted as a map N0 → R+ × Y, where Y is an event set.

7

1 Introduction

t

1

2

tt1 t2 t3

Lo

Med

Hi

Med Hi Med

t0

Lo

ỹ

z

Figure 1.1: Quantisation of a continuous signal.

Similarly, a finite string of timed discrete events can be seen as
a map defined on an appropriate finite subset Ij = {0, . . . , j} of
N0.
Often, even less information may be required. For example, only
the temporal ordering of events, but not the precise time of the
occurrence of events may be relevant. In this case, we can simply
project out the time information and obtain a sequence (or string)
of logical events, e.g.,

Lo, Med, Hi, . . . ,

which can be interpreted as a map y : N0 (resp. Ij)→ Y, where Y
is the event set. It is obvious (but important) to note, that the do-
main N0 (respectively Ij) does in general not represent uniformly
sampled time; i.e., the time difference tk+1− tk, with k, k+ 1 ∈N0

(respectively Ij), between the occurrence of subsequent events
y(k + 1) and y(k) is usually not a constant.
Clearly, going from the continuous-valued signal z to the discrete-
valued signal ỹ (or the corresponding sequence of timed discrete
events), and from the latter to a sequence y of logical events,
involves a loss of information. This is often referred to as signal
aggregation.
If a dynamical system can be completely described by discrete-
valued signals, or sequences/strings of discrete events, it is said
to be a discrete-event system (DES). If time is included explicitly, it
is a timed DES, otherwise an untimed, or logical, DES. If a system
consists of interacting DES and continuous modules, it is said to
be a hybrid system.

8

1.2 Course Outline

1.2 course outline

This course is organised as follows. In Chapter 2, we start with
Petri nets, a special class of DES that has been popular since its
inception by C.A. Petri in the 1960s. We will treat modelling
and analysis aspects and discuss elementary feedback control
problems for Petri nets. It will become clear that under some – un-
fortunately quite restrictive – conditions, certain optimal feedback
problems can be solved very elegantly in a Petri net framework.
For general Petri nets, only suboptimal solutions are available,
and the solution procedure is much more involved. Then, in
Chapter 3, we will investigate timed Petri nets and discuss that
a subclass, the so-called timed event graphs, can be elegantly de-
scribed in a max-plus algebraic framework. The max-plus algebra
is an idempotent semiring and provides powerful tools for both
the analysis and synthesis of timed event graphs. In Chapter 5,
we will discuss the basic aspects of supervisory control theory
(SCT). SCT was developed to a large extent by W.M. Wonham
and coworkers. In this framework, the DES problem is modelled
in a formal language scenario, and computational aspects are
treated on the realisation (i.e. finite state machine) level.

9

1 Introduction

10

2
P E T R I N E T S

Petri nets provide an intuitive way of modelling discrete-event
systems where “counting”, i.e., the natural numbers, play a cen-
tral role. This is illustrated in the following introductory example.

Example 2.1 Two adjacent rooms in a building are connected by
a door. Room B is initially empty, while there are three desks and
four chairs in room A. Two people, initially also in room A, are
required to carry all desks and chairs from room A to room B.
While a desk can only be moved by two people, one person is
sufficient to carry a chair. To describe this process, we define
three events: “a desk is moved from room A to room B”, “a chair
is moved from room A to room B”, and “a person walks back
from room B to room A”. Furthermore, we need to keep track of
the number of desks, chairs and people in each room. To do this,
we introduce six counters. Counters and events are connected as
shown as in Fig. 2.1. The figure is to be interpreted as foll0ws: an

1
1

2

1

1 1 1

1 1

Room A

Event

Room B

number of desks number of chairs number of persons

a desk is
moved moved

2

a person moves
from B to A

a chair is

Figure 2.1: Petri net example.

event can only occur if all its “upstream” counters contain at least
the required number of “tokens”. For example, the event “a desk
is moved from room A to room B” can only occur if there is at
least one desk left in room A and if there are (at least) two people

11

2 Petri Nets

in room A. If the event occurs, the respective “upstream” counters
are decreased, and the “downstream” counters increased. In the
example, the event “a desk is moved from room A to room B”
obviously decreases the number of desks in room A by one, the
number of people in room A by two, and increases the respective
numbers for room B.
It will be pointed out in the sequel that the result is indeed a
(simple) Petri net. ♦

2.1 petri net graphs

Recall that a bipartite graph is a graph where the set of nodes is
partitioned into two sets. In the Petri net case, the elements of
these sets are called “places” and “transitions”.

Definition 2.1 (Petri net graph) A Petri net graph is a directed bi-
partite graph

N = (P, T, E, w) ,

where P = {p1, . . . , pn} is the (finite) set of places, T = {t1, . . . , tm}
is the (finite) set of transitions, E ⊆ (P× T) ∪ (T × P) is the set of
directed arcs from places to transitions and from transitions to places,
and w : E→N is a weight function.

The following notation is standard for Petri net graphs:

I(tj) := {pi ∈ P | (pi, tj) ∈ E} (2.1)

is the set of all upstream places for transition tj, i.e., the set of
places with arcs to tj.

O(tj) := {pi ∈ P | (tj, pi) ∈ E} (2.2)

denotes the set of all downstream places for transition tj, i.e., the
set of places with arcs from tj. Similarly,

I(pi) := {tj ∈ T | (tj, pi) ∈ E} (2.3)

is the set of all upstream transitions for place pi, i.e., the set of
transitions with arcs to pi, and

O(pi) := {tj ∈ T | (pi, tj) ∈ E} (2.4)

denotes the set of all downstream transitions for place pi, i.e., the
set of transitions with arcs from pi. Obviously, pi ∈ I(tj) if and
only if tj ∈ O(pi), and tj ∈ I(pi) if and only if pi ∈ O(tj).
In graphical representations, places are shown as circles, tran-
sitions as bars, and arcs as arrows. The number attached to an
arrow is the weight of the corresponding arc. Usually, weights
are only shown explicitly if they are different from one.

12

2.2 Petri Net Dynamics

Example 2.2 Figure 2.2 depicts a Petri net graph with 4 places
and 5 transitions. All arcs with the exception of (p2, t3) have
weight 1. ♦

p1 p3

p4

t1 t4

t3

t2

p2

2

t5

Figure 2.2: Petri net graph.

Remark 2.1 Often, the weight function is defined as a map

w : (P× T) ∪ (T × P)→N0 = {0, 1, 2, . . .}.

Then, the set of arcs is determined by the weight function as

E = {(pi, tj) | w(pi, tj) ≥ 1} ∪ {(tj, pi) | w(tj, pi) ≥ 1}.

2.2 petri net dynamics

Definition 2.2 (Petri net) A Petri net is a pair (N, x0) where N =

(P, T, E, w) is a Petri net graph and x0 ∈ Nn
0 , n = |P|, is a vector of

initial markings.

In graphical illustrations, the vector of initial markings is shown
by drawing x0

i dots (“tokens”) within the circles representing the
places pi, i = 1, . . . , n.
A Petri net (N, x0) can be interpreted as a dynamical system
with state signal x : N0 → Nn

0 and initial state x(0) = x0. The
dynamics of the system is defined by two rules:

1. in state x(k) a transition tj can occur1 if and only if all of
its upstream places contain at least as many tokens as the

1 In the Petri net terminology, one often says “a transition can fire”.

13

2 Petri Nets

weight of the arc from the respective place to the transition
tj, i.e., if

xi(k) ≥ w(pi, tj) ∀pi ∈ I(tj). (2.5)

2. If a transition tj occurs, the number of tokens in all its
upstream places is decreased by the weight of the arc con-
necting the respective place to the transition tj, and the
number of tokens in all its downstream places is increased
by the weight of the arc connecting tj to the respective place,
i.e.,

xi(k + 1) =





xi(k)− w(pi, tj) + w(tj, pi)

if pi ∈ I(tj) ∩O(tj),
xi(k)− w(pi, tj) if pi ∈ I(tj) \O(tj),
xi(k) + w(tj, pi) if pi ∈ O(tj) \ I(tj),
xi(k) else,

(2.6)
where xi(k) and xi(k + 1) represent the numbers of tokens
in place pi before and after the firing of transition tj.

Note that a place can simultaneously be an element of I(tj) and
O(tj). Hence the number of tokens in a certain place can appear
in the firing condition for a transition whilst being unaffected
by the actual firing. It should also be noted that the fact that a
transition may fire (i.e., is enabled) does not imply it will actually
do so. In fact, it is well possible that in a certain state several
transitions are enabled simultaneously, and that the firing of one
of them will disable the other ones.
The two rules stated above define the (partial) transition function
f : Nn

0 × T →Nn
0 for the Petri net (N, x0) and hence completely

describe the dynamics of the Petri net. We can therefore compute
all possible evolutions of the state x starting in x(0) = x0. This is
illustrated in the following example.

Example 2.3 Consider the Petri net graph in Fig. 2.3 with x0 =

(2, 0, 0, 1)′.
Clearly, in state x0, transition t1 may occur, but transitions t2

or t3 are disabled. If t1 fires, the state will change to x1 =

(1, 1, 1, 1)′. In other words: f (x0, t1) = x1 while f (x0, t2) and
f (x0, t3) are undefined. If the system is in state x1 (Fig. 2.4), all
three transitions may occur and

f (x1, t1) = (0, 2, 2, 1)′ =: x2

f (x1, t2) = (1, 1, 0, 2)′ =: x3

f (x1, t3) = (0, 1, 0, 0)′ =: x4

It can be easiliy checked that f (x4, tj) is undefined for all three

14

2.2 Petri Net Dynamics

t1

t3

t2

p1

p2

p3

p4

Figure 2.3: Petri net (N, x0).

t1

t3

t2

p1

p2

p3

p4

Figure 2.4: Petri net in state (1, 1, 1, 1)′.

transitions, i.e., the state x4 represents a deadlock, and that

f (x2, t2) = f (x3, t1) = (0, 2, 1, 2)′ =: x5,

while f (x2, t1), f (x2, t3), f (x3, t2), and f (x3, t3) are all undefined.
Finally, in x5, only transition t2 can occur, and this will lead into
another deadlock x6 := f (x5, t2). The evolution of the state can
be conveniently represented as a reachability graph (Fig. 2.5).

x(2) = x
3

x(2) = x
4

x(2) = x
2

x(1) = x
1

x(3) = x
5t2

t1t2

t1

t3

x(0) = x
0 t1

x(4) = x
6t2

Figure 2.5: Reachability graph for Example 2.3.

♦

15

2 Petri Nets

To check whether a transition can fire in a given state and, if the
answer is affirmative, to determine the next state, it is convenient
to introduce the matrices A−, A+ ∈Nn×m

0 by

a−ij = [A−]ij =

{
w(pi, tj) if (pi, tj) ∈ E

0 otherwise
(2.7)

a+ij = [A+]ij =

{
w(tj, pi) if (tj, pi) ∈ E

0 otherwise.
(2.8)

The matrix
A := A+ − A− ∈ Zn×m (2.9)

is called the incidence matrix of the Petri net graph N. Clearly,
a−ij represents the number of tokens that place pi loses when
transition tj fires, and a+ij is the number of tokens that place pi
gains when transition tj fires. Consequently, aij is the net gain (or
loss) for place pi when transition tj occurs. We can now rephrase
(2.5) and (2.6) as follows:

1. The transition tj can fire in state x(k) if and only if

x(k) ≥ A−uj , (2.10)

where the “≥”-sign is to be interpreted elementwise and
where uj is the j-th unit vector in Zm.

2. If transition tj fires, the state changes according to

x(k + 1) = x(k) + Auj . (2.11)

Remark 2.2 Up to now, we have identified the firing of transi-
tions and the occurrence of events. Sometimes, it may be useful
to distinguish transitions and events, for example, when different
transitions are associated with the same event. To do this, we
simply introduce a (finite) event set F and define a surjective map
λ : T → F that associates an event in F to every transition tj ∈ T.

We close this section with two more examples to illustrate how
Petri nets model certain discrete event systems.

Example 2.4 This example is taken from [3]. We consider a
simple queueing system with three events (transitions):

a . . . “customer arrives”,

s . . . “service starts”,

c . . . “service complete and customer departs”.

Clearly, the event a corresponds to an autonomous transition, i.e.,
a transition without upstream places. If we assume that only one

16

2.2 Petri Net Dynamics

p1

p2

p3

t3 = c

t2 = s

t1 = a

“server idle”

“server busy”

Figure 2.6: Petri net model for queueing system.

customer can be served at any instant of time, the behaviour of
the queueing system can be modelled by the Petri net shown in
Fig. 2.6. For this Petri net, the matrices A−, A+ and A are given
by:

A− =




0 1 0
0 0 1
0 1 0




A+ =




1 0 0
0 1 0
0 0 1




A =




1 −1 0
0 1 −1
0 −1 1




♦

Example 2.5 We now model a candy machine. It sells three prod-
ucts: “Mars” (for 80 Cents), “Bounty” (for 70 Cents) and “Milky
Way” (for 40 Cents). The machine accepts only the following
coins: 5 Cents, 10 Cents, 20 Cents and 50 Cents. Finally, change is
only given in 10 Cents coins. The machine is supposed to operate
in the following way: the customer inserts coins and requests
a product; if (s)he has paid a sufficient amount of money and
the product is available, it is given to the customer. If (s)he has
paid more than the required amount and requests change, and
if 10 Cents coins are available, change will be given. This can be
modelled by the Petri net shown in Fig. 2.7.

♦

17

2 Petri Nets

5C 10C 20C 50C

1

1 2
5

1

1

1

1

1

1

1

1
1

1

1

1
8

7

1

4

1
2

Bounty stock

Milky-Way stock

10C coins

Mars stock request Mars

dispense Mars

request Bounty

dispense Bounty

request Milky-Way

dispense Milky-Way

request change

give change (10C)

Figure 2.7: Petri net model for candy machine.

2.3 special classes of petri nets

There are two important special classes of Petri nets.

Definition 2.3 (Event graph) A Petri net (N, x0) is called an event
graph (or synchronisation graph), if each place has exactly one upstream
transition and one downstream transition, i.e.

|I(pi)| = |O(pi)| = 1 ∀pi ∈ P,

and if all arcs have weight 1, i.e.

w(pi, tj) = 1 ∀(pi, tj) ∈ E

w(tj, pi) = 1 ∀(tj, pi) ∈ E .

Definition 2.4 (State machine) A Petri net (N, x0) is called a state
machine, if each transition has exactly one upstream place and one
downstream place, i.e.

|I(tj)| = |O(tj)| = 1 ∀tj ∈ T,

and if all arcs have weight 1, i.e.

w(pi, tj) = 1 ∀(pi, tj) ∈ E

w(tj, pi) = 1 ∀(tj, pi) ∈ E .

18

2.4 Analysis of Petri Nets

Figs. 2.8 and 2.9 provide examples for an event graph and a state
machine, respectively. It is obvious that an event graph cannot
model conflicts or decisions2, but it does model synchronisation
effects. A state machine, on the other hand, can model conflicts
but does not describe synchronisation effects.

Figure 2.8: Event graph example.

Figure 2.9: State machine example.

2.4 analysis of petri nets

In this section, we define a number of important properties for
Petri nets. Checking if these properties hold is in general a
nontrivial task, as the state set of a Petri net may be infinite.
Clearly, in such a case, enumeration-type methods will not work.
For this reason, the important concept of a coverability tree has
become popular in the Petri net community. It is a finite entity
and can be used to state conditions (not always necessary and
sufficient) for most of the properties discussed next.

2 For this reason, event graphs are sometimes also called decision free Petri nets.

19

2 Petri Nets

2.4.1 Petri net properties

It will be convenient to work with the Kleene closure T∗ of the
transition set T. This is the set of all finite strings of elements from
T, including the empty string ε. We can then extend the (partial)
transition function f : Nn

0 × T → Nn
0 to f : Nn

0 × T∗ → Nn
0 in a

recursive fashion:

f (x0, ε) = x0

f (x0, stj) = f (f (x0, s), tj) for s ∈ T∗ and tj ∈ T,

where stj is the concatenation of s and tj, i.e., the string s followed
by the transition tj.

Definition 2.5 (Reachability) A state xl ∈ Nn
0 of the Petri net

(N, x0) is said to be reachable, if there is a string s ∈ T∗ such that
xl = f (x0, s). The set of reachable states of the Petri net (N, x0) is
denoted by R(N, x0).

Definition 2.6 (Boundedness) A place pi ∈ P is bounded, if there
exists a k ∈N0 such that xl

i ≤ k for all xl ∈ R(N, x0). The Petri net
(N, x0) is bounded if all its places are bounded.

It is obvious that a Petri net is bounded if and only if its reachable
set is finite.

Example 2.6 Consider the Petri net in Fig. 2.10. It is clearly

p1

t1 t3

4

p2

p3

t2

Figure 2.10: An example for an unbounded Petri net.

unbounded as transition t1 can fire arbitrarily often, and each
firing of t1 consumes less tokens than it generates. ♦

20

2.4 Analysis of Petri Nets

The next property we discuss is related to the question whether
we can reach a state xl where the transition tj ∈ T can fire. As
discussed earlier, tj can fire in state xl , if xl

i ≥ w(pi, tj) ∀pi ∈ I(tj)

or, equivalently, if
xl ≥ A−uj := ξ j (2.12)

where the “≥”-sign is to be interpreted elementwise. If (2.12)
holds, we say that xl covers ξ j. This is captured in the following
definition.

Definition 2.7 (Coverability) The vector ξ ∈ Nn
0 is coverable if

there exists an xl ∈ R(N, x0) such that xl
i ≥ ξi, i = 1, . . . n.

Example 2.7 Consider the Petri net shown in the left part of
Fig. 2.11. Clearly,

A− =

[
1 1 1
0 1 0

]
.

Hence, to enable transition t2, it is necessary for the state ξ2 =

A−u2 = (1, 1)′ to be coverable. In other words, a state in the

t2

p1 p2 x1

x2

t3 t1

1

x0

1

Figure 2.11: Petri net for Example 2.7.

shaded area in the right part of Fig. 2.11 needs to be reachable.
This is not possible, as the set of reachable states consists of only
two elements, x0 = (1, 0)′ and x1 = (0, 1)′. ♦
Definition 2.8 (Conservation) The Petri net (N, x0) is said to be
conservative with respect to γ ∈ Zn if

γ′xi =
n

∑
j=1

γjxi
j = const. ∀xi ∈ R(N, x0) . (2.13)

The interpretation of this property is straightforward. As the
system state x(k) will evolve within the reachable set, it will also
be restricted to the hyperplane (2.13).

Example 2.8 Consider the queueing system from Example 2.4.
The Petri net shown in Fig. 2.6 is conservative with respect to
γ = (0, 1, 1)′, and its state x will evolve on the hyperplane shown
in Fig. 2.12. ♦

21

2 Petri Nets

x1

x3

x2

Figure 2.12: Conservation property.

Definition 2.9 (Liveness) A transition tj ∈ T of the Petri net (N, x0)

is said to be

• dead, if it can never fire, i.e., if the vector ξ j = A−uj is not
coverable by (N, x0),

• L1-live, if it can fire at least once, i.e., if ξ j = A−uj is coverable
by (N, x0),

• L3-live, if it can fire arbitrarily often, i.e., if there exists a string
s ∈ T∗ that contains tj arbitrarily often and for which f (x0, s) is
defined,

• live, if, from any reachable state, it is possible to reach a state
where tj can fire, i.e., if ξ j = A−uj can be covered by (N, xi) ∀xi ∈
R(N, x0).

Example 2.9 Consider the Petri net from Example 2.7. Clearly, t1

is L1-live (but not L3-live), transition t2 is dead, and t3 is L3-live,
but not live. The latter is obvious, as t3 may fire arbitrarily often,
but will be permanently disabled by the firing of t1. ♦

Definition 2.10 (Persistence) A Petri net (N, x0) is persistent, if,
for any pair of simultaneously enabled transitions tj1 , tj2 ∈ T, the firing
of tj1 will not disable tj2 .

Example 2.10 The Petri net from Example 2.7 is not persistent:
in state x0, both transitions t1 and t3 are enabled simultaneously,
but the firing of t1 will disable t3. ♦

22

2.4 Analysis of Petri Nets

2.4.2 The coverability tree

We start with the reachability graph of the Petri net (N, x0). In
Fig. 2.5, we have already seen a specific example for this. The
nodes of the reachability graph are the reachable states of the
Petri net, the edges are the transitions that are enabled in these
states.
A different way of representing the reachable states of a Petri net
(N, x0) is the reachability tree. This is constructed as follows: one
starts with the root node x0. We then draw arcs for all transitions
tj ∈ T that can fire in the root node and draw the states xi =

f (x0, tj) as successor nodes. In each of the successor states we
repeat the process. If we encounter a state that is already a node
in the reachability tree, we stop.
Clearly, the reachability graph and the reachability tree of a Petri
net will only be finite, if the set of reachable states is finite.

Example 2.11 Consider the Petri net shown in Fig. 2.13 (taken
from [3]). Apart from the initial state x0 = (1, 1, 0)′ only the state

t1

t2

p1 p2

p3

Figure 2.13: Petri net for Example 2.11.

x1 = (0, 0, 1)′ is reachable. Hence both the reachability graph
(shown in the left part of Fig. 2.14) and the reachability tree
(shown in the right part of Fig. 2.14) are trivial. ♦
Unlike the reachability tree, the coverability tree of a Petri net
(N, x0) is finite even if its reachable state set is infinite. The
underlying idea is straightforward: if a place is unbounded, it is
labelled with the symbol ω. This can be thought of as “infinity”,
therefore the symbol ω is defined to be invariant under the
addition (or subtraction) of integers, i.e.,

ω + k = ω ∀k ∈ Z

23

2 Petri Nets

x
1

x
0 t1 t2 x

0
x
1

x
0

t2

t1

Figure 2.14: Reachability graph (left) and reachability tree (right)
for Example 2.11.

and
ω > k ∀k ∈ Z .

The construction rules for the coverability tree are given below:

1. Start with the root node x0. Label it as “new”.

2. For each new node xk, evaluate f (xk, tj) for all tj ∈ T.

a) If f (xk, tj) is undefined for all tj ∈ T, the node xk is a
terminal node (deadlock).

b) If f (xk, tj) is defined for some tj, create a new node xl .

i. If xk
i = ω, set xl

i = ω.

ii. Examine the path from the root node to xk. If
there exists a node ξ in this path which is covered
by, but not equal to, f (xk, tj), set xl

i = ω for all i
such that fi(xk, tj) > ξi.

iii. Otherwise, set xl
i = fi(xk, tj).

c) Label xk as “old”.

d) Label all new nodes that are duplicates of existing
nodes as “old”.

3. If there are no new nodes, stop.

Example 2.12 This example is taken from [3]. We investigate the
Petri net shown in Fig. 2.15. It has an infinite set of reachable
states, hence its reachability tree is also infinite. We now deter-
mine the coverability tree. According to the construction rules,
the root node is x0 = (1, 0, 0, 0)′. The only transition enabled in
this state is t1. Hence, we have to create one new node x1. We
now examine the rules 2.a)i.–iii. to determine the elements of x1:
as its predecessor node x0 does not contain any ω-symbol, rule i.
does not apply. For rule ii., we investigate the path from the root
node to the predecessor node x0. This is trivial , as the path only
consists of the root node itself. As the root node is not covered by
f (x0, t1) = (0, 1, 1, 0)′, rule ii. does also not apply, and therefore,
according to rule iii., x1 = f (x0, t1) = (0, 1, 1, 0)′ (see Fig. 2.16).

24

2.4 Analysis of Petri Nets

p4
t1

t2

p3

p1

t3

p2

Figure 2.15: Petri net for Example 2.12.

x
0 =




1

0

0

0




x
1 =




0

1

1

0




x
2 =




1

0

ω
0




x
3 =




0

0

1

1




x
4 =




0

1

ω
0




x
5 =




1

0

ω
0




x
6 =




0

0

ω
1




t1

t2

t3

t1 t2

t3

Figure 2.16: Coverability tree for Example 2.12.

In node x1, transitions t2 and t3 are enabled. Hence, we have to
generate two new nodes, x2, corresponding to f (x1, t2), and x3,
corresponding to f (x1, t3). For x2, rule ii. applies, as the path
from the root node x0 to the predecessor node x1 contains a node
ξ that is covered by, but is not equal to, f (x1, t2) = (1, 0, 1, 0)′.
This is the root node itself, i.e., ξ = (1, 0, 0, 0)′. We therefore set
x2

3 = ω. For the other elements in x2 we have according to rule
iii. x2

i = fi(x1, t2), i = 1, 2, 4. Hence, x2 = (1, 0, ω, 0)′. For x3

neither rule i., nor ii. applies. Therefore, according to rule iii.,
x3 = f (x1, t3) = (0, 0, 1, 1).

In node x2, only transition t1 may fire, and we have to create one
new node, x4. Now, rule i. applies, and we set x4

3 = ω. Rule ii.
also applies, but this provides the same information, i.e., x4

3 = ω.
The other elements of x4 are determined according to rule iii.,
therefore x4 = (0, 1, ω, 0)′. In node x3, no transition is enabled –
this node represents a deadlock and is therefore a terminal node.

By the same reasoning, we determine two successor nodes for
x4, namely x5 = (1, 0, ω, 0)′ and x6 = (0, 0, ω, 1)′. The former is a
duplicate of x2, and x6 is a deadlock. Therefore, the construction
is finished. ♦

25

2 Petri Nets

Let s = ti1 . . . tiN be a string of transitions from T. We say that
s is compatible with the coverability tree, if there exist nodes

xi1 , . . . xiN+1 such that xi1 is the root node and xij
tij→ xij+1 are

transitions in the tree, j = 1, . . . , N. Note that duplicate nodes are
considered to be identical, hence the string s can contain more
transitions than there are nodes in the coverability tree.

Example 2.13 In Example 2.12, the string s = t1t2t1t2t1t2t1 is
compatible with the coverability tree. ♦

The coverability tree has a number of properties which make it a
convenient tool for analysis:

1. The coverability tree of a Petri net (N, x0) with a finite
number of places and transitions is finite.

2. If f (x0, s), s ∈ T∗, is defined for the Petri net (N, x0), the
string s is also compatible with the coverability tree.

3. The Petri net state xi = f (x0, s), s ∈ T∗, is covered by the
node in the coverability tree that is reached from the root
node via the string s of transitions.

The converse of item 2. above does not hold in general. This is
illustrated by the following example.

Example 2.14 Consider the Petri net in the left part of Fig. 2.17.
Its coverability tree is shown in the right part of the same figure.

t2t1

1

2

1 ω

p1

ω

ω

t1

t2

t1
2

Figure 2.17: Counter example.

Clearly, a string of transitions beginning with t1t2t1 is not possible
for the Petri net, while it is compatible with the coverability tree.
♦

The following statements follow from the construction and the
properties of the coverability tree discussed above:

reachability: A necessary condition for ξ to be reachable in
(N, x0) is that there exists a node xk in the coverability tree
such that ξi ≤ xk

i , i = 1, . . . , n.

26

2.5 Control of Petri Nets

boundedness: A place pi ∈ P of the Petri net (N, x0) is bound-
ed if and only if xk

i 6= ω for all nodes xk of the coverability
tree. The Petri net (N, x0) is bounded if and only if the
symbol ω does not appear in any node of its coverability
tree.

coverability: The vector ξ is coverable by the Petri net (N, x0)

if and only if there exists a node xk in the coverability tree
such that ξi ≤ xk

i , i = 1, . . . , n.

conservation: A necessary condition for (N, x0) to be conser-
vative with respect to γ ∈Nn

0 is that γi = 0 if there exists a
node xk in the coverability tree with xk

i = ω. If, in addition,
γ′xk = const. for all nodes xk in the coverability tree, the
Petri net is conservative with respect to γ. Note that this
condition does not hold for the more general case when
γ ∈ Zn.

dead transitions: A transition tj of the Petri net (N, x0) is
dead if and only if no edge in the coverability tree is labelled
by tj.

However, on the basis of the coverability tree we cannot decide
about liveness of transitions or the persistence of the Petri net
(N, x0). This is again illustrated by a simple example:

Example 2.15 Consider the Petri nets in Figure 2.18. They have
the same coverability tree (shown in Fig. 2.17). For the Petri net

t2t1

1

2

p1

2

2

t2t1

1

2

p1

2

Figure 2.18: Counter example.

shown in the left part of Fig. 2.18, transition t1 is not live, and the
net is not persistent. For the Petri net shown in the right part of
the figure, t1 is live, and the net is persistent. ♦

2.5 control of petri nets

We start the investigation of control topics for Petri nets with a
simple example.

Example 2.16 Suppose that the plant to be controlled is modelled
by the Petri net (N, x0) shown in Fig. 2.19. Suppose furthermore

27

2 Petri Nets

t1

t2

t3

p3p1

p2

t4 p4

Figure 2.19: Plant for control problem in Example 2.16.

that we want to make sure that the following inequality holds for
the plant state x at all times k:

x2(k) + 3x4(k) ≤ 3 , (2.14)

i.e., we want to restrict the plant state to a subset of N4
0. Without

control the specification (2.14) cannot be guaranteed to hold as
there are reachable states violating this inequality. However, it is
easy to see how we can modify (N, x0) appropriately. Intuitively,
the problem is the following: t1 can fire arbitrarily often, with
the corresponding number of tokens being deposited in place
p2. If subsequently t2 and t4 fire, we will have a token in place
p4, while there are still a large number of tokens in place p2.
Hence the specification will be violated. To avoid this, we add
restrictions for the firing of transitions t1 and t4. This is done by
introducing an additional place, pc, with initially three tokens.
It is conncected to t1 by an arc of weight 1, and to t4 by an
arc of weight 3 (see Fig. 2.20). This will certainly enforce the

t1

t2

t3

p3p1

p2

t4 p4

pc

3

Figure 2.20: Plant with controller.

specification (2.14), as it either allows t1 to fire (three times at

28

2.5 Control of Petri Nets

the most) or t4 (once). However, this solution is unnecessarily
conservative: we can add another arc (with weight 1) from t3 to
the new place pc to increase the number of tokens in pc without
affecting (2.14).
The number of tokens in the new place pc can be seen as the
controller state, which affects (and is affected by) the firing of the
transitions in the plant Petri net (N, x0). ♦

In the following, we will formalise the procedure indicated in the
example above.

2.5.1 State based control – the ideal case

Assume that the plant model is given as a Petri net (N, x0), where
N = (P, T, E, w) is the corresponding Petri net graph.
Assume furthermore that the aim of control is to restrict the
evolution of the plant state x to a specified subset of Nn

0 . This
subset is given by a number of linear inequalities:

γ′1x(k) ≤ b1

...

γ′qx(k) ≤ bq

where γi ∈ Zn, bi ∈ Z, i = 1, . . . , q. This can be written more
compactly as 


γ′1
...

γ′q




︸ ︷︷ ︸
:=Γ

x(k) ≤




b1
...

bq




︸ ︷︷ ︸
:=b

, (2.15)

where Γ ∈ Zq×n, b ∈ Zq, and the “≤”-sign is to be interpreted
elementwise.
The mechanism of control is to prevent the firing of certain
transitions. For the time being, we assume that the controller to
be synthesised can observe and – if necessary – prevent the firing
of all transitions in the plant. This is clearly an idealised case. We
will discuss later how to modify the control concept to handle
nonobservable and/or nonpreventable transitions.
In this framework, control is implemented by creating new places
pc1, . . . pcq (“controller places”). The corresponding vector of
markings, xc(k) ∈N

q
0, can be interpreted as the controller state.

We still have to specify the initial marking of the controller places
and how controller places are connected to plant transitions. To
do this, consider the extended Petri net with state (x′, x′c)′. If

29

2 Petri Nets

a transition tj fires, the state of the extended Petri net changes
according to

[
x(k + 1)
xc(k + 1)

]
=

[
x(k)
xc(k)

]
+

[
A
Ac

]
uj, (2.16)

where uj is the j-th unit-vector in Zm and Ac is the yet unknown
part of the incidence matrix. In the following, we adopt the
convention that for any pair pci and tj, i = 1, . . . q, j = 1, . . . m,
we either have an arc from pci to tj or from tj to pci (or no arc at
all). Then, the matrix Ac completely specifies the interconnection
structure between controller places and plant transitions, as the
non-zero entries of A+

c are the positive entries of Ac and the
non-zero entries of −A−c are the negative entries of Ac.
To determine the yet unknown entities, x0

c = xc(0) and Ac, we
argue as follows: the specification (2.15) holds if

Γx(k) + xc(k) = b, k = 0, 1, 2, . . . (2.17)

or, equivalently,

[
Γ I

] [x(k)
xc(k)

]
= b, k = 0, 1, 2, . . . (2.18)

as xc(k) is a nonnegative vector of integers. For k = 0, Eqn. (2.17)
provides the vector of initial markings for the controller states:

x0
c = xc(0) = b− Γx(0)

= b− Γx0 . (2.19)

Inserting (2.16) into (2.18) and taking into account that (2.18) also
has to hold for the argument k + 1 results in

[
Γ I

] [A
Ac

]
uj = 0, j = 1, . . . m,

and therefore
Ac = −ΓA . (2.20)

(2.19) and (2.20) solve our control problem: (2.19) provides the
initial value for the controller state, and (2.20) provides informa-
tion on how controller places and plant transitions are connected.
The following important result can be easily shown.

Theorem 2.1 (2.19) and (2.20) is the least restrictive, or maximally
permissive, control for the Petri net (N, x0) and the specification (2.15).

30

2.5 Control of Petri Nets

Proof Recall that for the closed-loop system, by construction,
(2.17) holds. Now assume that the closed-loop system is in state
(x′(k), x′c(k))′, and that transition tj is disabled, i.e.

[
x(k)
xc(k)

]
≥
[

A−

A−c

]
uj

does not hold. This implies that either

• xi(k) < (A−uj)i for some i ∈ {1, . . . , n}, i.e., the transition
is disabled in the uncontrolled Petri net (N, x0), or

• for some i ∈ {1, . . . , q}

xci(k) < (A−c uj)i = (A−c)ij (2.21)

and therefore3

xci(k) < (−Ac)ij

= (−Acuj)i

= γ′i Auj.

Because of (2.17), xci(k) = bi − γ′i x(k) and therefore

bi < γ′i(x(k) + Auj).

This means that if transition tj could fire in state x(k) of the
open-loop Petri net (N, x0), the resulting state x(k + 1) =
x(k) + Auj would violate the specification (2.15).

Hence, we have shown that a transition tj will be disabled in
state (x′(k), x′c(k))′ of the closed-loop system if and only if it is
disabled in state x(k) of the uncontrolled Petri net (N, x0) or if
its firing would violate the specifications.

Example 2.17 Let’s reconsider Example 2.16, but with a slightly
more general specification. We now require that

x2(k) + Mx4(k) ≤ M, k = 0, 1, . . . ,

where M represents a positive integer. As there is only one scalar
constraint, we have q = 1, Γ is a row vector, and b is a scalar. We
now apply our solution procedure for Γ = [0 1 0 M] and b = M.
We get one additional (controller) place pc with initial marking
x0

c = b− Γx0 = M. The connection structure is determined by
Ac = −ΓA = [−1 0 1 −M], i.e., we have an arc from pc to t1

with weight 1, an arc from pc to t4 with weight M, and an arc
from t3 to pc with weight 1. For M = 3 this solution reduces to
the extended Petri net shown in Fig. 2.20. ♦

3 (2.21) implies that (A−c)ij is positive. Therefore, by assumption, (A+
c)ij = 0 and

(A−c)ij = −(Ac)ij.

31

2 Petri Nets

2.5.2 State based control – the nonideal case

Up to now we have examined the ideal case where the controller
could directly observe and prevent, or control, all plant transi-
tions. It is much more realistic, however, to drop this assumption.
Hence,

• a transition tj may be uncontrollable, i.e., the controller will
not be able to directly prevent the transition from firing, i.e.,
there will be no arc from any controller place to tj ∈ T;

• a transition tj ∈ T may be unobservable, i.e., the controller
will not be able to directly notice the firing of the transition.
This means that the firing of tj may not affect the number
of tokens in any controller place. As we still assume that
for any pair pci and tj, i = 1, . . . q, j = 1, . . . m, we either
have an arc from pci to tj or from tj to pci (or no arc at all),
this implies that there are no arcs from an unobservable
transition tj to any controller place or from any controller
place to tj.

Then, obviously, a transition being unobservable implies that
it is also uncontrollable, and controllability of a transition im-
plies its observability. We therefore have to distinguish three
different kinds of transitions: (i) controllable transitions, (ii) un-
controllable but observable transitions, and (iii) uncontrollable
and unobservable transitions. We partition the set T accordingly:

T = Toc ∪ Touc ∪ Tuouc︸ ︷︷ ︸
Tuc

, (2.22)

where Toc and Tuc are the sets of controllable and uncontrollable
transitions, respectively. Touc represents the set of uncontrollable
but observable transitions, while Tuouc contains all transitions
that are both uncontrollable and unobservable.
Without loss of generality, we assume that the transitions are
ordered as indicated by the partition (2.22), i.e. t1, . . . , tmc are
controllable (and observable), tmc+1, . . . , tmc+mo are uncontrollable
but observable, and tmc+mo+1, . . . , tm are uncontrollable and un-
observable transitions. This implies that the incidence matrix A
of the plant Petri net (N, x0) has the form

A = [Aoc Aouc Auouc︸ ︷︷ ︸
Auc

],

where the n × mc matrix Aoc corresponds to controllable (and
observable) transitions etc.

32

2.5 Control of Petri Nets

Definition 2.11 (Ideal Enforceability) The specification (2.15) is said
to be ideally enforceable, if the (ideal) controller (2.19), (2.20) can be
realised, i.e., if there are no arcs from controller places to transitions in
Tuc and no arcs from transitions in Tuouc to controller places.

Ideal enforceability is easily checked: we just need to compute
the controller incidence matrix

Ac = −ΓA

= [−ΓAoc −ΓAouc − ΓAuouc︸ ︷︷ ︸
−ΓAuc

].

Ideal enforceability of (2.15) is then equivalent to the following
three requirements:

−ΓAouc ≥ 0 (2.23)

−ΓAuouc = 0 (2.24)

Γx0 ≤ b (2.25)

where the inequality-signs are to be interpreted elementwise.

(2.23) says that the firing of any uncontrollable but observable
transition will not depend on the number of tokens in a
controller place, but may increase this number.

(2.24) means that the firing of any uncontrollable and unobserv-
able transition will not affect the number of tokens in a
controller place.

(2.25) says that there is a vector of initial controller markings that
satisfies (2.15).

If a specification is ideally enforceable, the presence of uncontrol-
lable and/or unobservable transitions does not pose any problem,
as the controller (2.19), (2.20) respects the observability and con-
trollability constraints.
If (2.15) is not ideally enforceable, the following procedure [7]
can be used:

1. Find a specification

Γx(k) ≤ b, k = 0, 1, . . . (2.26)

which is ideally enforceable and at least as strict as (2.15).
This means that Γξ ≤ b implies Γξ ≤ b for all ξ ∈ R(N, x0).

2. Compute the controller (2.19), (2.20) for the new specifica-
tion (2.26), i.e.

Ac = −ΓA (2.27)

x0
c = b− Γx0. (2.28)

33

2 Petri Nets

Clearly, if we succeed in finding a suitable specification (2.26),
the problem is solved. However, the solution will in general not
be least restrictive in terms of the original specification.
For the actual construction of a suitable new specification, [7]
suggests the following:
Define:

Γ := R1 + R2Γ

b := R2(b + v)− v

where

v := (1, . . . , 1)′

R1 ∈ Zq×n such that R1ξ ≥ 0 ∀ξ ∈ R(N, x0)

R2 = diag (r2i) with r2i ∈N, i = 1, . . . , q

Then, it can be easily shown that (2.26) is at least as strict as
(2.15):

Γξ ≤ b ⇔ (R1 + R2Γ)ξ ≤ R2(b + v)− v

⇔ (R1 + R2Γ)ξ < R2(b + v)

⇔ R−1
2 R1ξ + Γξ < b + v

⇒ Γξ < b + v ∀ξ ∈ R(N, x0)

⇔ Γξ ≤ b

We can now choose the entries fo R1 and R2 to ensure ideal
enforceability of (2.26). According to (2.23), (2.24) and (2.25), this
implies

(R1 + R2Γ)Aouc ≤ 0

(R1 + R2Γ)Auouc = 0

(R1 + R2Γ)x0 ≤ R2(b + v)− v

or, equivalently,

[
R1 R2

] [Aouc Auouc −Auouc x0

ΓAouc ΓAuouc −ΓAuouc Γx0 − b− v

]

≤
[

0 0 0 −v
]
,

where the “≤”-sign is again to be interpreted elementwise.

Example 2.18 Reconsider the Petri net from Example 2.16. Let’s
assume that the specification is still given by

x2(k) + 3x4(k) ≤ 3 , k = 0, 1, . . .

34

2.5 Control of Petri Nets

but that transition t4 is now uncontrollable. Hence

A = [Aoc Aouc]

=




0 −1 0 0
1 0 −1 0
0 1 0 −1
0 0 0 1


 .

Clearly, the specification is not ideally enforceable as (2.23) is
violated. We therefore try to come up with a stricter and ideally
enforceable specification using the procedure outlined above. For

R1 =
[

0 0 3 0
]

and

R2 = 1

the required conditions hold, and the “new” specification is given
by

Γ =
[

0 1 3 3
]

,

b = 3 .

Fig. 2.21 illustrates that the new specification is indeed stricter
than the original one. The ideal controller for the new specifica-

������
������
������
������
������
������
������

������
������
������
������
������
������
������

x2

x3

Γx = b

Γx = b
x4

Figure 2.21: “Old” and “new” specification.

tion is given by

x0
c = b− Γx0

= 3

and

Ac = −ΓA

=
[
−1 − 3 1 0

]
.

35

2 Petri Nets

As (Ac)14 = 0, there is no arc from the controller place to the
uncontrollable transition t4, indicating that the new specification
is indeed ideally enforceable. The resulting closed-loop system is
shown in Fig. 2.22. ♦

t1

t2

t3

p3p1

p2

t4 p4

pc

3

Figure 2.22: Closed loop for Example 2.18.

36

3

T I M E D P E T R I N E T S

A Petri net (N, x0), as discussed in the previous chapter, only
models the ordering of the firings of transitions, but not the
actual firing time. If timing information is deemed important,
we have to “attach” it to the “logical” DES model (N, x0). This
can be done in two ways: we can associate time information with
transitions or with places.

3.1 timed petri nets with transition delays

In this framework, the set of transitions, T, is partitioned as

T = TW ∪ TD.

A transition tj ∈ TW can fire without delay once the respective
“logical” firing condition is satisfied, i.e., if (2.10) holds. A transi-
tion from TD can only fire if both the “logical” firing condition
is satisfied and a certain delay has occurred. For tj, this delay
will be denoted vj. For convenience, we will introduce a vector
v ∈ R+

0
m, and vj > 0, respectively vj = 0, will indicate that

tj ∈ TD, respectively tj ∈ TW . Note that we will assume the delay
to be the same for all firings of the respective transition.

Definition 3.1 A timed Petri net with transition delays is a quadruple
(N, x0, v, ρ), where

N = (P, T, e, w) is a Petri net graph, with T = TW ∪ TD a
partitioned set of transitions,

v ∈ R+
0

m is a vector of transition delays, with vj > 0 if tj ∈ TD

and vj = 0 if tj ∈ TW ,

x0 ∈N0
n is the vector of initial markings, and

ρ :
{

pi | x0
i > 0

}
−→ (R+

0)
x0

i is a map that assigns to each place
with x0

i > 0 initial tokens x0
i nonnegative time tags, denoting the

amount of time that initial tokens have resided in place pi prior to
the initial time 0. Hence, for every place pi with nonzero initial

37

3 Timed Petri Nets

marking, ρ(pi) := ρi is a vector with entries ρ
j
i := (ρi)j, j =

1, . . . x0
i . Without loss of generality, we assume that the entries

are ordered in a non-increasing way, i.e.,

ρ1
i ≥ ρ2

i ≥ . . . ≥ ρ
x0

i
i .

The pair (x0, ρ) can be interpreted as the initial condition of the
timed Petri net. The word “initial”, without loss of generality,
will in the following always refer to time 0 and a scenario where
none of the transitions has fired. For initial conditions to be
consistent, they clearly have to disable the firing of any transition
prior to time 0.
To distinguish delayed and undelayed transitions in graphical
representations of the Petri net, the former are depicted by boxes
instead of bars (see Figure 3.1).

tj ∈ TD tj ∈ TW

vj

Figure 3.1: Graphical representation of delayed (left) and unde-
layed (right) transitions

3.2 timed event graphs with transition delays

Recall that event graphs represent a special class of Petri nets.
They are characterised by the fact that each place has exactly
one upstream transition and one downstream transition and that
all arcs have weight 1. For timed event graphs with transition
delays, we can give an explicit equation relating subsequent firing
instants of transitions. To see this, consider Figure 3.2, which
shows part of a general timed event graph with transition delays.
Let’s introduce the following additional notation:

τj(k) . . . earliest possible time for the k-th firing

of transition tj

πi(k) . . . earliest possible time for place pi to

receive its k-th token.

Then:

πi(k + x0
i) = τr(k), tr ∈ I(pi), k = 1, 2, . . . (3.1)

τj(k) = max
pi∈I(tj)

(πi(k)) + vj, k = 1, 2, . . . (3.2)

38

3.2 Timed Event Graphs with Transition Delays

tr tj
pi

vr vj

Figure 3.2: Part of a general timed event graph with transition
delays.

Furthermore, for places with nonzero initial marking, we have

πi(l) = −ρl
i , l = 1, . . . , x0

i . (3.3)

(3.1) says that, because of the initial marking x0
i , the place pi will

receive its (k + x0
i)-th token when its upstream transition tr

fires for the k-th time. The earliest time instant for this to
happen is τr(k).

(3.2) says that transition tj cannot fire the k-th time before all
its upstream places have received their k-th token and the
delay vj has passed.

(3.3) represents the initial condition by specifying for how long
initial tokens have been residing in the respective places at
time 0. To make initial conditions consistent, it is sufficient
to require that ρ1

i ≤ vj, where vj is the delay of the down-
stream transition tj of place pi. This of course implies that
the time tags of all initial tokens in place pi are less or equal
to the transition delay vj, and transition tj can therefore not
fire before time 0.

We can now eliminate πi(k), i = 1, . . . , n, from (3.1) and (3.2)
to get the desired relation. This is illustrated in the following
example.

Example 3.1 Consider the timed event graph shown in Fig. 3.3.
We get: for k ≥ 1,

τ1(k) = max(π1(k), π3(k)) (3.4)

τ2(k) = π2(k) + v2 (3.5)

π1(k + 1) = τ1(k) (3.6)

π2(k + 1) = τ1(k) (3.7)

π3(k) = τ2(k) . (3.8)

We have initial conditions corresponding to the initial marking:
π1(1) = −ρ1

1, π2(1) = −ρ1
2. Consistency is guaranteed if ρ1

1 = 0

39

3 Timed Petri Nets

p2p1

p3

t2t1

v2

Figure 3.3: Example of a timed event graph with transition de-
lays.

(as the downstream transition, t1, of place p1 has zero delay) and
ρ1

2 ≤ v2 (as v2 is the firing delay of the downstream transition, t2,
of place p2). We can now eliminate π1, π2, and π3 from (3.4)–(3.8).
We first insert (3.6) and (3.8) in (3.4) to give

τ1(k + 1) = max(τ1(k), τ2(k + 1)).

Inserting (3.5) and subsequently (3.7) results in

τ1(k + 1) = max (τ1(k), τ1(k) + v2)

= τ1(k) + v2.

Inserting (3.7) into (3.5) gives

τ2(k + 1) = τ1(k) + v2

Note that the initial condition for the above difference equations
is τ1(1) = τ2(1) = v2 − ρ1

2. ♦

3.3 timed petri nets with holding times

Now, we consider a different way of associating time with a Petri
net. We partition the set of places, P, as

P = PW ∪ PD.

A token in a place pi ∈ PW contributes without delay towards
satisfying (2.10). In contrast, tokens in a place pi ∈ PD have to be
held for a certain time (“holding time”) before they contribute
to enabling downstream transitions of pi. We denote the hold-
ing time of tokens in place pi by w̃i. For convenience, we will
introduce a vector w̃ ∈ R+

0
n, and w̃i > 0, respectively w̃i = 0, will

indicate that pi ∈ PD, respectively pi ∈ PW . Note that the same
holding time will apply to all tokens in place pi.

40

3.4 Timed Event Graphs with Holding Times

Definition 3.2 A timed Petri net with holding times is a quadruple
(N, x0, w̃, ρ), where

N = (P, T, e, w) is a Petri net graph, with P = PW ∪ PD a
partitioned set of places,

w̃ ∈ R+
0

n is a vector of holding times, with w̃i > 0 if pi ∈ PD

and w̃i = 0 if pi ∈ PW ,

x0 ∈N0
n is the vector of initial markings, and

ρ :
{

pi | x0
i > 0

}
−→ (R+

0)
x0

i is a map that assigns to each place
with x0

i > 0 initial tokens x0
i nonnegative time tags, denoting the

amount of time that initial tokens have resided in place pi prior to
the initial time 0. Hence, for every place pi with nonzero initial
marking, ρ(pi) := ρi is a vector with entries ρ

j
i := (ρi)j, j =

1, . . . x0
i . Without loss of generality, we assume that the entries

are ordered in a non-increasing way, i.e.,

ρ1
i ≥ ρ2

i ≥ . . . ≥ ρ
x0

i
i .

As for timed Petri nets with transition delays, the initial condition,
i.e., the pair (x0, ρ), needs to be consistent in the sense of disabling
the firing of any transition before the initial time 0. This is clearly
achieved if, for all places pi with initial marking, ρ1

i ≤ w̃i.
In graphical representations, places with and without holding
times are distinguished as indicated in Figure 3.4.

pi ∈ PD pi ∈ PW

w̃i

Figure 3.4: Graphical representation of places with holding times
(left) and places without holding times (right)

3.4 timed event graphs with holding times

For timed event graphs with transition delays, we could explicitly
relate the times of subsequent firings of transitions. This is also
possible for timed event graphs with holding times. To see this,
consider Figure 3.5 which shows a part of a general timed event
graph with holding times.

41

3 Timed Petri Nets

pitr tj

w̃i

Figure 3.5: Part of a general timed event graph with holding
times

We now have

πi(k + x0
i) = τr(k), tr ∈ I(pi), k = 1, 2, . . . (3.9)

τj(k) = max
pi∈I(tj)

(πi(k) + w̃i) , k = 1, 2, . . . (3.10)

(3.10) says that the earliest possible instant of the k-th firing for
transition tj is when all its upstream places have received
their k-th token and the corresponding holding time w̃i has
passed.

(3.9) says that place pi will receive its (k + x0
i)-th token when its

upstream transition tr fires for the k-th time.

(3.3) represents the initial conditions by specifying for how long
initial tokens have been residing in the respective places
at time 0. As pointed out above, requiring ρ1

i ≤ w̃i for
all places pi with nonzero initial marking will guarantee
that the initial conditions are consistent, i.e., that they will
prohibit all downstream transitions of such places to fire
before time 0.

As in Section 3.2, we can eliminate the πi(k), i = 1, . . . , n, from
(3.9) and (3.10) to provide the desired explicit relation between
subsequent firing instants of transitions.

Remark 3.1 In timed event graphs, transition delays can always
be “transformed” into holding times (but not necessarily the
other way around). It is easy to see how this can be done: we
just “shift” each transition delay vj to all the upstream places of
the corresponding transition tj. As each place has exactly one
downstream transition, this will not cause any inconsistency.

Example 3.2 Consider the timed event graph with transition de-
lays in Figure 3.3. Applying the procedure described above
provides the timed event graph with holding time w̃2 = v2,
shown in Figure 3.6. It is a simple exercise to determine the
recursive equations for the earliest firing times of transitions,

42

3.4 Timed Event Graphs with Holding Times

τ1(k), τ2(k), k = 1, 2, . . ., for this graph. Not surprisingly we get
the same equations as in Example 3.1, indicating that the obtained
timed event graph with holding times is indeed equivalent to the
original timed event graph with transition delays. ♦

p2p1

p3

t2t1

w̃2

Figure 3.6: Equivalent timed event graph with holding times.

43

3 Timed Petri Nets

44

4

T H E M A X - P L U S A L G E B R A

From the discussion in Sections 3.2 and 3.4 it is clear that we
can recursively compute the earliest possible firing times for
transitions in timed event graphs. In the corresponding equations,
two operations were needed: max and addition. This fact was
the motivation for the development of a systems and control
theory for a specific algebra, the so called max-plus algebra, where
these equations become linear. A good survey on modelling and
analysis of timed event graphs as max-plus linear systems is [4]
and the book [1] 1. A survey on state estimation and control
synthesis can be found in [5]. We start with an introductory
example, which is taken from [2].

4.1 introductory example

Imagine a simple public transport system with three lines (see
Fig: 4.1): an inner loop and two outer loops. There are two

travel time: 2 travel time: 5

travel time: 3 travel time: 3

Station 1 Station 2

Figure 4.1: Simple train example (from [2]).

stations where passengers can change lines, and four rail tracks
connecting the stations. Initially, we assume that the transport
company operates one train on each track. A train needs 3 time
units to travel on the inner loop from station 1 to station 2, 5 time

1 A pdf-version of this book is available for free on the web at
http://cermics.enpc.fr/~cohen-g//SED/book-online.html

45

http://cermics.enpc.fr/~cohen-g//SED/book-online.html

4 The Max-Plus Algebra

units for the track from station 2 to station 1, and 2 and 3 time
units for the outer loops, respectively. We want to implement
a user-friendly policy where trains wait for each other at the
stations to allow passengers to change lines without delay.
This can be easily represented in a timed event, or synchronisa-
tion, graph with holding times (Figure 4.2). It is now straightfor-

3

3

p2

p4

p3

t1

5

t2

p1

2

Figure 4.2: Timed event graph representing train example.

ward to determine the recursive equations for the firing instants
of transitions t1 and t2. These are the times when trains may
leave the respective stations and can therefore be interpreted as
the “time table” for our simple public transport system. We get

τ1(k) = max (π1(k) + 2, π4(k) + 5) (4.1)

τ2(k) = max (π2(k) + 3, π3(k) + 3) (4.2)

and

π1
(
k + x0

1
)

= π1(k + 1) = τ1(k) (4.3)

π2
(
k + x0

2
)

= π2(k + 1) = τ1(k) (4.4)

π3
(
k + x0

3
)

= π3(k + 1) = τ2(k) (4.5)

π4
(
k + x0

4
)

= π4(k + 1) = τ2(k) . (4.6)

Inserting (4.3)–(4.6) into (4.1), (4.2) gives

τ1(k + 1) = max (τ1(k) + 2, τ2(k) + 5) (4.7)

τ2(k + 1) = max (τ1(k) + 3, τ2(k) + 3) (4.8)

for k = 1, 2, The initial conditions for these recursive equa-
tions result from the time tags ρ1

i , specifiying the amount of time
initial tokens have been residing in places pi, i = 1, . . . , 4, before
time 0. Recall that ρ1

i ≤ w̃i ensures consistent initial conditions,
guaranteeing that no transition will fire before time 0. In particu-
lar, for ρ1

i = w̃i, i = 1, . . . , 4, all transitions may start firing at time
0. Then τ1(1) = τ2(1) = 0, i.e., trains may leave both stations 1

46

4.1 Introductory example

and 2 at time 0 for the first time. Then, subsequent departure
times can be easily computed from (4.7), (4.8).

(
0
0

)
,
(

5
3

)
,
(

8
8

)
,
(

13
11

)
,
(

16
16

)
, . . .

On the other hand, if ρ1
1 = 1, transition t1 cannot fire before time

w̃1 − ρ1
1 = 1, i.e., the initial departure times are τ1(1) = 1 and

τ2(1) = 0. From (4.7), (4.8), we then get the sequence
(

1
0

)
,
(

5
4

)
,
(

9
8

)
,
(

13
12

)
,
(

17
16

)
, . . .

Hence, in the second case, trains leave every 4 time units from
both stations (1-periodic behaviour), whereas in the first case the
interval between subsequent departures changes between 3 and
5 time units (2-periodic behaviour). In both cases, the average
departure interval is 4. This is of course not surprising, because
a train needs 8 time units to complete the inner loop, and we
operate two trains in this loop. Hence, it is obvious what to do if
we want to realise shorter departure intervals: we add another
train on the inner loop, initially, e.g., on the track connecting
station 2 to station 1. To do this in the TEG model, the initital
conditions need to be adapted: the initial marking of the timed
event graph in Figure 4.2 changes to x0 = (1, 2, 1, 1)′, and

ρ1
1 = −π1(1) ≤ w̃1 = 2

ρ2
2 = −π2(2) ≤ ρ1

2 = −π2(1) ≤ w̃2 = 3

ρ1
3 = −π3(1) ≤ w̃3 = 3

ρ1
4 = −π4(1) ≤ w̃4 = 5.

Equation (4.4) is now replaced by

π2(k + x0
2) = π2(k + 2) = τ1(k), (4.9)

and the resulting difference equations for the transition firing
times are

τ1(k + 1) = max (τ1(k) + 2, τ2(k) + 5) (4.10)

τ2(k + 2) = max (τ1(k) + 3, τ2(k + 1) + 3) (4.11)

for k = 1, 2, This is clearly a system of second order difference
equations. By choosing ρ

j
i = w̃i, we again allow initial tokens

to contribute to the firing of transitions as early as possible. In
particular, this leads to τ1(1) = τ2(1) = 0 and τ2(2) = 3. Then
the solution of (4.10) and (4.11) is the sequence

(
0
0

)
,
(

5
3

)
,
(

8
6

)
,
(

11
9

)
,
(

14
12

)
, . . .

47

4 The Max-Plus Algebra

Note that, by introducing a new variable τ3, with τ3(k + 1) :=
τ1(k) + 3, we can again transform (4.10), (4.11) into a system of
first order difference equations:

τ1(k + 1) = max (τ1(k) + 2, τ2(k) + 5) (4.12)

τ2(k + 1) = max (τ3(k), τ2(k) + 3) (4.13)

τ3(k + 1) = τ1(k) + 3 . (4.14)

If we initialise this system with τ1(1) = τ2(1) = τ3(1) = 0, we
get the following evolution:




0
0
0


 ,




5
3
3


 ,




8
6
8


 ,




11
9
11


 ,




14
12
14


 , . . .

We observe that the indicated solutions of (4.10),(4.11), respec-
tively (4.12)–(4.14), imply that, after a short transient period,
trains depart from both stations in intervals of three time units.
Obviously, shorter intervals cannot be reached for this configura-
tion, as now the right outer loop represents the “bottleneck”.
In this simple example, we have encountered a number of differ-
ent phenomena: 1-periodic solutions (for τ1(1) = 1, τ2(1) = 0),
2-periodic solutions (for τ1(1) = τ2(1) = 0) and a transient phase
(for the extended system). These phenomena (and more) can be
conveniently analysed and explained within the formal frame-
work of max-plus algebra. ♦

4.2 max-plus basics

Definition 4.1 (Max-Plus Algebra) The max-plus algebra consists
of the set R := R∪ {−∞} and two binary operations on R:
⊕ is called the addition of max-plus algebra and is defined by

a⊕ b = max(a, b) ∀a, b ∈ R.

⊗ is called multiplication of the max-plus algebra and is defined by

a⊗ b = a + b ∀a, b ∈ R.

The following properties are obvious:

• ⊕ and ⊗ are commutative, i.e.

a⊕ b = b⊕ a ∀a, b ∈ R

a⊗ b = b⊗ a ∀a, b ∈ R.

• ⊕ and ⊗ are associative, i.e.

(a⊕ b)⊕ c = a⊕ (b⊕ c) ∀a, b, c ∈ R

(a⊗ b)⊗ c = a⊗ (b⊗ c) ∀a, b, c ∈ R.

48

4.2 Max-Plus Basics

• ⊗ is distributive over ⊕, i.e.

(a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c) ∀a, b, c ∈ R.

• ε := −∞ is the neutral element w.r.t. ⊕, i.e.

a⊕ ε = a ∀a ∈ R.

ε is also called the zero-element of max-plus algebra.

• e := 0 is the neutral element w.r.t. ⊗, i.e.

a⊗ e = a ∀a ∈ R.

e is also called the one-element of max-plus algebra.

• ε is absorbing for ⊗, i.e.

a⊗ ε = ε ∀a ∈ R.

• ⊕ is idempotent, i.e.

a⊕ a = a ∀a ∈ R.

This makes the max-plus algebra an idempotent semi-field.
Note that the idempotency property of ⊕ implies that there is
no additive inverse, i.e., one cannot subtract. To see this, assume
that there exists an inverse element, denoted ā, for a, i.e.,

a⊕ ā = ε.

Adding a to both sides of the equation gives

a⊕ a︸ ︷︷ ︸
a

⊕ā

︸ ︷︷ ︸
ε

= a⊕ ε︸︷︷︸
a

.

Hence, the only element with an additive inverse is ε.
It is straightforward to extend both ⊕ and ⊗ to matrices with
elements in R:

• matrix addition: let A, B ∈ Rm×n with elements aij, bij.
Then,

(A⊕ B)ij := aij ⊕ bij

= max
(
aij, bij

)

• matrix multiplication: let A ∈ Rm×n, B ∈ Rn×q. Then,

(A⊗ B)ij :=
n⊕

k=1

(
aik ⊗ bkj

)

= max
k=1,...,n

(
aik + bkj

)

49

4 The Max-Plus Algebra

• multiplication with a scalar: let A ∈ Rm×n, α ∈ R. Then,

(α⊗ A)ij := α⊗ aij

= α + aij

• null and identity matrix:

N :=




ε · · · ε
...

...
ε · · · ε


 is the null matrix and

E :=




e ε · · · ε

ε e
...

...
. . . ε

ε · · · ε e




is the identity matrix.

As in standard algebra, we will often omit the multiplication
symbol, i.e., AB will mean A⊗ B.

4.3 max-plus algebra and precedence graphs

With each square matrix with elements in R we can uniquely
associate its precedence graph.

Definition 4.2 (Precedence Graph) Let A ∈ Rn×n. Its precedence
graph G(A) is a weighted directed graph with n nodes, labelled 1, . . . , n,
with an arc from node j to node i if aij 6= ε; i, j = 1, . . . , n. If an arc
from node j to node i exists, its weight is aij.

Example 4.1 Consider the 5× 5 matrix

A =




ε 5 ε 2 ε

ε ε 8 ε 2
ε ε ε ε ε

ε 3 7 ε 4
ε ε 4 ε ε




. (4.15)

The precedence graph has 5 nodes, and the i-th row of A repre-
sents the arcs ending in node i (Figure 4.3). ♦
Definition 4.3 (Path) A path ρ in G(A) is a sequence of nodes
i1, . . . , ip, p > 1, with arcs from node ij to node ij+1, j = 1, . . . , p− 1.
The length of a path ρ = i1, . . . , ip, denoted by |ρ|L, is the number of its
arcs. Its weight, denoted by |ρ|W , is the sum of the weights of its arcs,
i.e.,

|ρ|L = p− 1

|ρ|W =
p−1

∑
j=1

aij+1ij

50

4.3 Max-plus algebra and precedence graphs

2

4

4

5 8

2

3 7

1 2 3

54

Figure 4.3: Precedence graph for (4.15).

A path is called elementary, if all its nodes are distinct.

Definition 4.4 (Circuit) A path ρ = i1, . . . , ip, p > 1, is called a
circuit, if its initial and its final node coincide, i.e., if i1 = ip. A
circuit ρ = i1, . . . , ip is called elementary, if the path ρ̃ = i1, . . . , ip−1

is elementary or if p = 2.

Example 4.2 Consider the graph in Figure 4.3. Clearly, ρ =

3, 5, 4, 1 is a path with length 3 and weight 10. The graph does
not contain any circuits. ♦

Remark 4.1 The above definitions imply that, although a circuit
is a path, an elementary circuit is of course not an elementary
path.

For large graphs, it may be quite cumbersome to check “by inspec-
tion” whether circuits exist. Fortunately, this is straightforward
in the max-plus framework. To see this, consider the product

A2 := A⊗ A.

By definition, (A2)ij = maxk(aik + akj), i.e., the (i, j)-element of
A2 represents the maximal weight of all paths of length 2 from
node j to node i in G(A). More generally, (Ak)ij is the maximal
weight of all paths of length k from node j to node i in G(A).
Then it is easy to prove the following:

Theorem 4.1 G(A) does not contain any circuits if and only if Ak =

N ∀k ≥ n.

Proof First assume that there are no circuits in G(A). As G(A)

has n nodes, this implies that there is no path of length k ≥ n,
hence Ak = N ∀k ≥ n. Now assume that Ak = N ∀k ≥ n, i.e.,
there exists no path in G(A) with length k ≥ n. As a circuit can
always be extended to an arbitrarily long path, this implies the
absence of circuits. �

51

4 The Max-Plus Algebra

Example 4.3 Consider the 5× 5-matrix A from Example 4.1 and
its associated precedence graph G(A). Matrix multiplication
provides

A2 =




ε 5 13 ε 7
ε ε 6 ε ε

ε ε ε ε ε

ε ε 11 ε 5
ε ε ε ε ε




A3 =




ε ε 13 ε 7
ε ε ε ε ε

ε ε ε ε ε

ε ε 9 ε ε

ε ε ε ε ε




A4 =




ε ε 11 ε ε

ε ε ε ε ε

ε ε ε ε ε

ε ε ε ε ε

ε ε ε ε ε




A5 = N.

This implies that there are only three pairs of nodes between
which paths of length 3 exist. For example, such paths exist
from node 3 to node 1, and the one with maximal length (13) is
ρ = 3, 2, 4, 1. As expected, there is no path of length 5 or greater,
hence no circuits exist in G(A). ♦

4.4 linear implicit equations in max-plus

In the following we will often encounter equations of the form

x = Ax⊕ b, (4.16)

where A ∈ Rn×n and b ∈ Rn are given and a solution for x is
sought. We will distinguish three cases:

1. G(A) does not contain any circuits. Repeatedly inserting
(4.16) into itself provides

x = A(Ax⊕ b)⊕ b = A2x⊕ Ab⊕ b

= A2(Ax⊕ b)⊕ Ab⊕ b = A3x⊕ A2b⊕ Ab⊕ b
...

x = Anx⊕ An−1b⊕ . . .⊕ Ab⊕ b.

52

4.4 Linear implicit equations in max-plus

As An = N, we get the unique solution

x =
(

E⊕ A⊕ . . .⊕ An−1
)

b. (4.17)

2. All circuits in G(A) have negative weight. As before, we
repeatedly insert (4.16) into itself. Unlike in the previous
case, we do not have An = N, hence we keep inserting:

x =

(
lim
k→∞

Ak
)

x⊕
(
E⊕ A⊕ A2 ⊕ . . .

)
︸ ︷︷ ︸

:=A∗

b

Note that
(
limk→∞ Ak)

ij represents the maximum weight of
infinite-length paths from node j to node i in G(A). Clearly,
such paths, if they exist, have to contain an infinite number
of elementary circuits. As all these circuits have negative
weight, we get

lim
k→∞

Ak = N. (4.18)

With a similar argument, it can be shown that in this case

A∗ = E⊕ A⊕ . . .⊕ An−1. (4.19)

To see this, assume that
(

Ak)
ij 6= ε for some i, j and some

k ≥ n, i.e., there exists a path ρ of length k ≥ n from node j
to node i. Clearly, this path must contain at least one circuit
and can therefore be decomposed into an elementary path
ρ̃ of length l < n from j to i and one or more circuits. As
all circuits have negative weights, we have for all k ≥ n(

Ak)
ij = |ρ|W < |ρ̃|W =

(
Al)

ij for some l < n. (4.19) fol-
lows immediately. Hence, (4.17) is also the unique solution
if all circuits in G(A) have negative weight.

3. All circuits in G(A) have non-positive weights. We repeat
the argument from the previous case and decompose any
path ρ of length k ≥ n into an elementary path ρ̃ and at
least one circuit. We get that for all k ≥ n

(
Ak
)

ij
= |ρ|W ≤ |ρ̃|W =

(
Al
)

ij
for some l < n

and therefore, in this case also,

A∗ = E⊕ A⊕ . . .⊕ An−1

53

4 The Max-Plus Algebra

Furthermore, it can be easily shown that x = A∗b represents
a (not necessarily unique) solution to (4.16). To see this we
just insert x = A∗b into (4.16) to get

A∗b = A(A∗b)⊕ b

= (E⊕ AA∗)b

= (E⊕ A⊕ A2 ⊕ . . .)b

= A∗b

In summary, if the graph G(A) does not contain any circuits
with positive weights, (4.17) represents a solution for (4.16). If all
circuits have negative weights or if no circuits exist, this is the
unique solution.

4.5 state equations in max-plus

We now discuss how timed event graphs can be modelled by
state equations in the max-plus algebra. We will do this for an
example which is taken from [1]. We refer to transitions without
upstream places as input transitions, or autonomous transitions, as
their firing does not depend on the marking of the Petri net. The
firing times of these transitions can therefore be interpreted as an
input to the timed event graph. Transitions without downstream
places are called output transitions. Clearly their firing is of no
consequence for other transitions. Transitions which are neither
input nor output transitions are called internal transitions.

Example 4.4 Consider the timed event graph with holding times
in Figure 4.4. t1 and t2 are input transitions, and their firing times
are denoted by u1(k), u2(k), k = 1, 2, . . ., respectively. Transition
t6 is an output transition, and its firing times are denoted by y(k).
Finally, we denote the k-th firing times of the internal transitions
t3, t4 and t5 by x1(k), x2(k) and x3(k), respectively.
As discussed in Section 3.4, we can explicitly relate the firing
times of the transitions:

x1(k + 1) = max (u1(k + 1) + 1, x2(k) + 4)

x2(k + 1) = max (u2(k) + 5, x1(k + 1) + 3)

x3(k + 1) = max (x3(k− 1) + 2, x2(k + 1) + 4, x1(k + 1) + 3)

y(k + 1) = max (x2(k), x3(k + 1) + 2)

In vector notation, i.e.,

x(k) := (x1(k), x2(k), x3(k))
′

u(k) := (u1(k), u2(k))
′ ,

54

4.5 State equations in max-plus

t2

t4

5

3

4

4

t6

t5

2

2

3

t3

1

t1

Figure 4.4: Timed event graph with holding times and au-
tonomous transitions (from [1]).

this translates into the following max-plus equations:

x(k + 1) =




ε ε ε

3 ε ε

3 4 ε




︸ ︷︷ ︸
:=A0

x(k + 1)⊕



ε 4 ε

ε ε ε

ε ε ε




︸ ︷︷ ︸
:=A1

x(k)

⊕



ε ε ε

ε ε ε

ε ε 2




︸ ︷︷ ︸
:=A2

x(k− 1)⊕



1 ε

ε ε

ε ε




︸ ︷︷ ︸
:=B0

u(k + 1)

⊕



ε ε

ε 5
ε ε




︸ ︷︷ ︸
:=B1

u(k)

(4.20)

y(k) =
(

ε ε 2
)

︸ ︷︷ ︸
:=C0

x(k)⊕
(

ε e ε
)

︸ ︷︷ ︸
:=C1

x(k− 1) (4.21)

55

4 The Max-Plus Algebra

In a first step, we convert (4.20) into explicit form. Clearly, G(A0)

does not contain any circuits (see Fig. 4.5), therefore A∗0 = E⊕
A0 ⊕ A2

0 and

x(k + 1) = A∗0 (A1x(k)⊕ A2x(k− 1)⊕ B0u(k + 1)⊕ B1u(k))

=




ε 4 ε

ε 7 ε

ε 11 ε




︸ ︷︷ ︸
:=A1

x(k)⊕



ε ε ε

ε ε ε

ε ε 2




︸ ︷︷ ︸
:=A2

x(k− 1)

⊕



1 ε

4 ε

8 ε




︸ ︷︷ ︸
:=B0

u(k + 1)⊕



ε ε

ε 5
ε 9




︸ ︷︷ ︸
:=B1

u(k)

is the desired explicit form. In a second step, we define an

1 2

3

3

43

Figure 4.5: G(A0) for Example 4.4.

extended vector x̃(k) := (x′(k), x′(k− 1), u′(k))′ to get

x̃(k + 1) =




A1 A2 B1

E N N
N N N




︸ ︷︷ ︸
:=A

x̃(k)⊕



B0

N
E




︸ ︷︷ ︸
:=B

u(k + 1)

y(k) =
(

C0 C1 N
)

︸ ︷︷ ︸
:=C

x̃(k) .

♦

4.6 state equations in max-plus – an alternative ap-
proach

There is an alternative, more intuitive, approach, which often
results in a smaller number of state variables. It operates directly
on the timed event graph to be modelled in the max-plus algebra,
and it has the additional benefit of clearly displaying the influence

56

4.6 State equations in max-plus – an alternative approach

of the TEG initial conditions on the resulting state equations. The
approach comprises three basic steps. Each step operates on a
single place. To simplify notation, we will therefore drop the
index distinguishing different places.

step 1 Check whether there are places holding x0 > 1 initial
tokens. If yes, substitute each such place by a “chain” of 2

tr

tr tj

w̃

tjρd = 0

pu pd

ρ =




ρ1

ρ2

ρ3




w̃u = ρ1 w̃d = w̃ − ρ1

ρu =

(
ρ2

ρ3

)

Figure 4.6: Illustration of Step 1 (for x0 = 3).

places, with the upstream place pu containing x0 − 1 initial
tokens and the downstream place pd containing 1 initial to-
ken (see Fig. 4.6 for x0 = 3). This will introduce 1 additional
transition. Assume that the holding time of the original
place is w̃, and the vector of time tags (specifying how long
the x0 initial tokens have been residing in this place be-
fore time 0) is (ρ1 . . . ρx0

)′. Recall that w̃ ≥ ρ1 ≥ . . . ≥ ρx0
.

Equip the upstream place pu with holding time w̃u = ρ1

and time tag vector ρu = (ρ2 . . . ρx0
)′, implying that the

new transition can fire at times ρ1 − ρ2, . . . , ρ1 − ρx0
. Equip

the downstream place pd with holding time w̃d = w̃− ρ1

and time tag ρd = 0. As w̃u + w̃d = w̃, the effect of fir-
ings of transition tr on transition tj will not be changed.
Additionally, the effect of all initial tokens on tj will re-
main the same: the initial token in place pd contributes to
enabling tj from time w̃d − ρd = w̃− ρ1, and the x0 − 1 ini-
tial tokens in place pu contribute to enabling tj from times
w̃d + (ρ1 − ρl) = w̃− ρl , l = 2, . . . x0, as the intermediate
transition can fire (and therefore deposit tokens into place
pd) at times ρ1 − ρ2, . . . , ρ1 − ρx0

.

Note that for w̃ = ρ1, the downstream place generated in
this step will have zero holding time.

57

4 The Max-Plus Algebra

This step is repeated until there is no place with initial
marking greater than 1.

step 2 Check whether, in the resulting timed event graph, there
are places which connect an input transition to any other
transition and which hold an initial token. If yes, substi-
tute each such place by two places as indicated in Fig. 4.7,
thereby introducing one additional transition for each sub-

tr

tr tj

tj

w̃

ρ

w̃

ρ
pu

pd

Figure 4.7: Illustration of Step 2.

stituted place. The resulting downstream place pd is a
“copy” of the original place, also containing one initial to-
ken and exhibiting the same holding time w̃ and (scalar)
time tag ρ, while the upstream place pu has zero initial
marking and holding time. It is straightforward to see that
this step does neither affect the relation between firings of
the input transition tr and transition tj, nor does it change
the dependency of the firing of tj on the initial token.

step 3 Check whether, in the resulting timed event graph, there
are places which connect an arbitray transition to an output
transition and which hold an initial token. If yes, substi-
tute each such place by two places as indicated in Fig. 4.8,
thereby introducing one additional transition for each sub-
stituted place.The resulting upstream place pu is a “copy”
of the original place, also containing one initial token and
exhibiting the same holding time w̃ and (scalar) time tag ρ,
while the downstream place pd has zero initial marking and
holding time. Again, this step does obviously neither affect
the relation between transition tr and the output transition
tj, nor does it change how the firing of tj depends on the
initial token.

58

4.6 State equations in max-plus – an alternative approach

tr

tr tj

tj

w̃

ρ

ρ

w̃

pu pd

Figure 4.8: Illustration of Step 3.

As indicated above, none of these three steps affects the relation
between the firing times of the upstream and downstream transi-
tions of the substituted places. Therefore, the relation between
the firing times of the input transitions and the output transitions
of the investigated timed event graph will remain the same. In
other words, the input-output relation of the “original” TEG and
the input-output relation of the resulting extended TEG will be
the same. Furthermore, the effect of the initial conditions on the
output transitions will remain the same. Most importantly, and
this retrospectively motivates the suggested approach, writing
the max-plus equations for the firing times for all internal and
output transitions of the extended TEG will immediately result
in a first order, in general implicit, difference equation and an
algebraic equation. To see this, recall the structure of the TEG
resulting from applying the above steps.

(i) All places contain at most one initial token. This is a result
of repeatedly applying Step 1.

(ii) Places connecting input transitions and internal transitions
have zero initial marking; this is a consequence of Step 2.

(iii) Places connecting internal transitions and output transitions
have zero initial marking; this is a consequence of Step 3.

(iv) Places connecting input and output transitions (if any) have
zero initial marking; this is a consequence of Step 2.

As before, we denote the k-th firing times of the internal transi-
tions by xi(k), k ≥ 1, i = 1, . . . n, and the firing times of input,
respectively output, transitions by ui(k), i = 1, . . . , q, respectively

59

4 The Max-Plus Algebra

yi(k), i = 1, . . . p. Then, we can immediately deduce that for,
k ≥ 1,

xi(k + 1) =
n⊕

j=1

(A0)ijxj(k + 1)
n⊕

j=1

(A1)ijxj(k)⊕ . . .

q⊕

j=1

(B0)ijuj(k + 1), i = 1, . . . n, (4.22)

yi(k) =
n⊕

j=1

(C)ijxj(k)⊕ . . .

q⊕

j=1

(D)ijuj(k), i = 1, . . . p. (4.23)

Using vector notation, i.e.,

x(k) := (x1(k), . . . , xn(k))′,

u(k) := (u1(k), . . . , uq(k))′,

y(k) := (y1(k), . . . , yp(k))′,

this reads: for k ≥ 1,

x(k + 1) = A0x(k + 1)⊕ A1x(k)⊕ B0u(k + 1), (4.24)

y(k) = Cx(k)⊕ Du(k). (4.25)

The coefficients in equations (4.22) and (4.23), respectively (4.24)
and (4.25), are the holding times of the places in the resulting
TEG. More precisely:

• if there is a place with zero initial marking connecting the
j-th internal transition to the i-th internal transition, (A0)ij
is the holding time of this place, otherwise (A0)ij = ε;

• if there is a place with one initial token connecting the j-th
internal transition to the i-th internal transition, (A1)ij is
the holding time of this place, otherwise (A1)ij = ε;

• if there is a place connecting the j-th input transition to
the i-th internal transition, (B0)ij is the holding time of this
place, otherwise (B0)ij = ε;

• if there is a place connecting the j-th internal transition to
the i-th output transition, (C)ij is the holding time of this
place, otherwise (C)ij = ε;

• if there is a place connecting the j-th input transition to the
i-th output transition, (D)ij is the holding time of this place,
otherwise (D)ij = ε.

60

4.6 State equations in max-plus – an alternative approach

Finally, assuming that the precedence graph of matrix A0 does
not have any circuits, we can write A∗0 = E⊕ A0 ⊕ . . .⊕ An−1

0 ,
and

x(k + 1) = A∗0 A1︸ ︷︷ ︸
:=A

x(k)⊕ A∗0 B0︸ ︷︷ ︸
:=B

u(k + 1), k = 1, 2 . . . (4.26)

is the desired explicit first order difference equation, and (4.26),
(4.25) is a max-plus state model of the investigated TEG.
We need to initialise the recursion 4.26, hence we need to know
x(1). This will depend on the initial conditions of the TEG,
namely the initial marking and the time tags of places with
nonzero initial marking. In particular, the vector with the earliest
possible times for the first firings of internal transitions satisfies

x(1) = A0x(1)⊕ B0u(1)⊕ ∆(e . . . e)′,

where the value of ∆ij, i, j = 1, . . . n, depends on whether there
exists a place with nonzero initial marking connecting the j-th
internal transition to the i-th internal transition. If such a place
exists, ∆ij is the difference (in conventional algebra) between the
holding time and the time tag of this place, otherwise ∆ij = ε.
Using the same assumption as before, this can be rewritten in
explicit form as

x(1) = A∗0 B0︸ ︷︷ ︸
B

u(1)⊕ A∗0∆(e . . . e)′︸ ︷︷ ︸
:=δ

. (4.27)

We will now illustrate this procedure by revisiting the TEG from
Example 4.4.

Example 4.5 Consider the TEG of Example 4.4. Let’s first assume
that all time tags of all places with nonzero initial marking are
equal to the holding times of the corresponding places, i.e., ini-
tial tokens contribute to enabling downstream transitions from
time 0. Applying the three steps described above to the TEG
from Example 4.4 amounts to replacing the indicated boxes by
their indicated counterparts (see Fig. 4.9). This results in an
extended TEG with three additional transitions. As before, the
k-th firing times of the input transitions t1 and t2 are denoted
by u1(k) and u2(k), k = 1, 2, . . ., the firing times of the output
transition t6 are denoted by y(k), and the firing times of the “old”
internal transitions t3, t4 and t5 are denoted by x1(k), x2(k) and
x3(k), respectively. The suggested approach has generated three
additional internal transitions, t7, t8, and t9. Their k-th firing

61

4 The Max-Plus Algebra

t2

5

3

4

4

t6

t5

2

2

3

t3

1

t1

t4

t8

t9

t7

2

5

Figure 4.9: Extended timed event graph.

times are denoted by x4(k), x5(k), and x6(k), respectively. We can
then immediately deduce that, for k ≥ 1,

x1(k + 1) = max (u1(k + 1) + 1, x2(k) + 4)

x2(k + 1) = max (x5(k) + 5, x1(k + 1) + 3)

x3(k + 1) = max (x4(k), x2(k + 1) + 4, x1(k + 1) + 3)

x4(k + 1) = x3(k) + 2

x5(k + 1) = u2(k + 1)

x6(k + 1) = x2(k)

y(k + 1) = max (x6(k + 1), x3(k + 1) + 2) .

In vector notation, i.e.,

x(k) := (x1(k), x2(k), x3(k), x4(k), x5(k), x6(k))
′

u(k) := (u1(k), u2(k))
′ ,

62

4.6 State equations in max-plus – an alternative approach

this translates into the following max-plus equations:

x(k + 1) =




ε ε ε ε ε ε

3 ε ε ε ε ε

3 4 ε ε ε ε

ε ε ε ε ε ε

ε ε ε ε ε ε

ε ε ε ε ε ε




︸ ︷︷ ︸
:=A0

x(k + 1)

⊕




ε 4 ε ε ε ε

ε ε ε ε 5 ε

ε ε ε e ε ε

ε ε 2 ε ε ε

ε ε ε ε ε ε

ε e ε ε ε ε




︸ ︷︷ ︸
:=A1

x(k)⊕




1 ε

ε ε

ε ε

ε ε

ε e
ε ε




︸ ︷︷ ︸
:=B0

u(k + 1)

(4.28)

y(k) =
(

ε ε 2 ε ε e
)

︸ ︷︷ ︸
:=C

x(k) (4.29)

Clearly, the precedence graph of matrix A0 does not contain
any circuits, hence A∗0 can be written as a finite sum. In fact, it
contains only one path of length 2 (from node 1 to node 3, with
weight 7), and no paths of length 3 or more. We can therefore
deduce that Ak

0 = N for k ≥ 3, and the only entry in A2
0 different

from ε is (A2
0)31 = 7. Therefore,

A∗0 = E⊕ A0 ⊕ A2
0 =




e ε ε ε ε ε

3 e ε ε ε ε

7 4 e ε ε ε

ε ε ε e ε ε

ε ε ε ε e ε

ε ε ε ε ε e




,

and, for k = 1, 2, . . .,

x(k + 1) = A∗0 A1x(k)⊕ A∗0 B0u(k + 1) (4.30)

=




ε 4 ε ε ε ε

ε 7 ε ε 5 ε

ε 11 ε e 9 ε

ε ε 2 ε ε ε

ε ε ε ε ε ε

ε e ε ε ε ε




︸ ︷︷ ︸
A

x(k)⊕




1 ε

4 ε

8 ε

ε ε

ε e
ε ε




︸ ︷︷ ︸
:=B

u(k + 1)

y(k) = Cx(k) (4.31)

63

4 The Max-Plus Algebra

is the desired state model.
Let’s briefly investigate how to initialize the iteration (4.30), i.e.,
how to determine the vector x(1) to reflect the initial conditions
of the TEG in Fig. 4.9. Recall that, in general, no transition may
fire before the initial time 0, and that initial conditions are chosen
consistent to guarantee this for internal and output transitions.
Recall furthermore that, in our example, we have first assumed
the time tags of places with nonzero initial marking to be equal to
the corresponding holding times. Initial tokens do therefore not
restrict the firing of transitions from time 0 on. We can therefore
immediately deduce from Fig. 4.9 when all internal transitions
can fire at the earliest for the first time:

x1(1) = u1(1) + 1

x2(1) = x1(1) + 3 = u1(1) + 4

x3(1) = max (x1(1) + 3, x2(1) + 4) = u1(1) + 8

x4(1) = 0

x5(1) = u2(1)

x6(1) = 0.

We would of course see the same result when applying (4.27).
With

∆ =




ε e ε ε ε ε

ε ε ε ε e ε

ε ε ε e ε ε

ε ε e ε ε ε

ε ε ε ε ε ε

ε e ε ε ε ε




we get

x(1) =




1 ε

4 ε

8 ε

ε ε

ε e
ε ε




u(1)⊕




e
3
7
e
ε

e




.

For given firing times of the input transitions, we can now readily
compute the earliest firing times of the output transition by
iterating (4.30),(4.31). Let’s, for example, assume that both input
transitions can fire infinitely often at time 0, i.e., ui(k) = 0, k =

1, 2, . . . , i = 1, 2. Then, we get

y(1) = 10, y(2) = 17, y(3) = 24, y(4) = 31, y(5) = 38, . . .

Let’s now slightly change the initial conditions in the example
TEG. For this, assume that the place connecting transition t4 to

64

4.7 The max-plus eigenproblem

transition t3 in Fig. 4.9 now has a time tag of 2. As the holding
time of this place is 4, the initial token in this place can only
contribute to enabling t3 from time 2. This does not affect the
equations (4.30),(4.31), but it does affect the vector x(1). We now
have

x1(1) = max (u1(1) + 1, 2)

x2(1) = x1(1) + 3 = max (u1(1) + 4, 5)

x3(1) = max (x1(1) + 3, x2(1) + 4) = max (u1(1) + 8, 9)

x4(1) = 0

x5(1) = u2(1)

x6(1) = 0.

As before, we get the same result by applying (4.27) and changing
∆12 to 2:

x(1) =




1 ε

4 ε

8 ε

ε ε

ε e
ε ε




u(1)⊕




2
5
9
e
ε

e




.

Iterating (4.30),(4.31) for the “new” initial conditions, but the
same firing sequences for the input transitions, provides

y(1) = 11, y(2) = 18, y(3) = 25, y(4) = 32, y(5) = 39, . . .

♦

4.7 the max-plus eigenproblem

Recall the introductory example in Section 4.1. Depending on the
vector of initial firing times, we observed a number of different
phenomena: 1- and 2-periodic behaviour with and without an
initial transient phase. For many application scenarios as, e.g., the
one envisaged in the example, a 1-periodic solution is desirable.
It is therefore natural to ask, which initial firing vectors will
indeed generate 1-periodic solutions and what the duration for
one period is.
Consider a timed event graph without autonomous transitions
and assume that we have already converted the equations describ-
ing the firing times into a system of explicit first order difference
equations (see Section 4.5), i.e.,

x(k + 1) = Ax(k), k = 1, 2, . . . (4.32)

65

4 The Max-Plus Algebra

As x(k) represents the (extended) vector of firing times, the
requirement for a 1-periodic solution means in conventional
algebra that

xi(k + 1) = λ + xi(k),
k = 1, 2, . . .
i = 1, 2, . . . , n .

In the max-plus context this reads as

xi(k + 1) = λ⊗ xi(k),
k = 1, 2, . . .
i = 1, 2, . . . , n

or, equivalently,

x(k + 1) = λ⊗ x(k), k = 1, 2, (4.33)

Let us now consider the eigenproblem in the max-plus algebra.
If, for a given A ∈ Rn×n, there exist ξ ∈ Rn and λ ∈ R such that

Aξ = λξ, (4.34)

we call λ eigenvalue and ξ eigenvector of the matrix A. If we choose
the vector of initial firing times, x(1), as an eigenvector, we get

x(2) = Ax(1) = λx(1)

and therefore

x(k) = λk−1x(1), k = 1, 2,

This is the desired 1-periodic behaviour and the period length is
the eigenvalue λ.
To solve the max-plus eigenproblem, we need the notions of
matrix (ir)reducibility and strong connectedness of graphs.

Definition 4.5 ((Ir)reducibility) The matrix A ∈ Rn×n is called
reducible, if there exists a permutation matrix2 P such that

Ã = PAP′

is upper block-triangular. Otherwise, A is called irreducible.

Definition 4.6 (Strongly connected graph) A directed graph is
strongly connected, if there exists a path from any node i to any other
node j in the graph.

2 Recall that a permutation matrix is obtained by permuting the rows of the
n× n-identity matrix. In the max-plus context, this is of course the matrix E
(Section 4.2).

66

4.7 The max-plus eigenproblem

Remark 4.2 Definition 4.5 can be rephrased to say that the matrix
A is reducible if it can be transformed to upper block-triangular
form by simultaneously permuting rows and columns. Hence,
A is reducible if and only if the index set I = {1, . . . , n} can be
partitioned as

I = {i1, . . . , ik}︸ ︷︷ ︸
I1

∪ {ik+1, . . . , in}︸ ︷︷ ︸
I2

such that

aij = ε ∀i ∈ I1, j ∈ I2.

This is equivalent to the fact that in the precedence graph G(A)

there is no arc from any node j ∈ I2 to any node i ∈ I1. We
therefore have the following result.

Theorem 4.2 The matrix A ∈ Rn×n is irreducible if and only if its
precedence graph G(A) is strongly connected.

Example 4.6 Consider the matrix

A =




1 2 3
ε 4 ε

5 6 7


 .

For

P =




e ε ε

ε ε e
ε e ε




we get

Ã = PAP′ =




1 3 2
5 7 6
ε ε 4


 ,

which is clearly in upper block-triangular form. A is therefore
reducible, and its precedence graph G(A) not strongly connected.
Indeed, there is no path from either node 1 or node 3 to node 2
(Figure 4.10). ♦

Theorem 4.3 If A ∈ Rn×n is irreducible, there exists precisely one
eigenvalue. It is given by

λ =
n⊕

j=1

(
tr
(

Aj
))1/j

, (4.35)

67

4 The Max-Plus Algebra

1

2

3

5

1

3

4

6

7

2

Figure 4.10: Precedence graph for Example 4.6.

where “trace” and the j-th root are defined as in conventional algebra,
i.e., for any B ∈ Rn×n,

tr(B) =
n⊕

i=1

bii

and for any α ∈ R,

(
α

1/j
)j

= α.

Proof See, e.g. [1].

Remark 4.3 (4.35) can also be interpreted in terms of the prece-
dence graph G(A): to do this, recall that

(
Aj)

ii is the maximal
weight of all circuits of length j starting and ending in node i of
G(A). Then,

tr
(

Aj
)
=

n⊕

i=1

(
Aj
)

ii

represents the maximum weight of all circuits of length j in G(A).
Moreover, taking the j-th root in max-plus algebra corresponds
to dividing by j in conventional algebra, therefore

(
tr
(

Aj
))1/j

is the maximum mean weight (i.e. weight divided by length) of
all circuits of length j. Finally, recall that the maximum length of
any elementary circuit in G(A) is n, and that the mean weight of
any circuit can never be greater than the maximal mean weight of
all elementary circuits. Therefore, (4.35) represents the maximal

68

4.7 The max-plus eigenproblem

mean weight of all circuits in G(A), or the maximal cycle mean,
for short:

n⊕

j=1

(
tr
(

Aj
))1/j

= max
ρ∈S

|ρ|W
|ρ|L

,

where S is the set of all circuits in G(A).

Whereas an irreducible matrix A ∈ Rn×n has a unique eigenvalue
λ, it may possess several distinct eigenvectors. In the following,
we provide a scheme to compute them:

step 1 Scale the matrix A by multiplying it with the inverse of
its eigenvalue λ, i.e.,

Q := inv⊗(λ)⊗ A.

Hence, in conventional algebra, we get Q by subtracting λ

from every element of A. This implies that G(A) and G(Q)

are identical up to the weights of their arcs. In particular, ρ

is a path (circuit) in G(A) if and only if it is a path (circuit)
in G(Q). Let’s denote the weight of ρ in G(A) and in G(Q)

by |ρ|W,A and |ρ|W,Q, respectively. Then, for any circuit ρ,

|ρ|W,Q = |ρ|W,A − |ρ|L · λ

=

(|ρ|W,A

|ρ|L
− λ

)
|ρ|L (4.36)

≤ 0 (4.37)

as λ is the maximum mean weight of all circuits in G(A).
Hence, by construction, all circuits in G(Q) have nonposi-
tive weight.

step 2 As shown in Section 4.4 (4.37) implies that

Q∗ = E⊕Q⊕Q2 ⊕ . . .

= E⊕Q⊕ . . .⊕Qn−1

step 3 The matrix

Q+ :=Q⊗Q∗ (4.38)

=Q⊕Q2 ⊕ . . .⊕Qn

contains at least one diagonal element q+ii = e. To see this,
choose an elementary circuit ρ̃ in G(A) with maximal mean
weight. Then (4.36) implies that the weight of ρ̃ in G(Q) is
0, i.e., e. Now choose any node i in ρ̃. As the maximum
length of any elementary circuit in Q is n, q+ii represents the
maximal weight of all elementary circuits in G(Q) starting
and ending in node i. Therefore, q+ii = e.

69

4 The Max-Plus Algebra

step 4 If q+ii = e, the corresponding column vector of Q+, i.e.,
q+i , is an eigenvector of A. To see this, observe that

Q∗ = E⊕Q+,

hence, the j-th entry of q∗i is

q∗ji =

{
ε⊕ q+ji for j 6= i
e⊕ q+ji for j = i

= q+ji j = 1, . . . , n .

as q+ii is assumed to be e. Therefore, q∗i = q+i . Furthermore,
because of (4.38), we have

q+i = Q⊗ q∗i
= Q⊗ q+i
= inv⊗λ⊗ A⊗ q+i

or, equivalently,

λ⊗ q+i = A⊗ q+i .

Example 4.7 Consider the matrix

A =




ε 5 ε

3 ε 1
ε 1 4


 (4.39)

As the corresponding precedence graph G(A) is strongly con-
nected (see Figure 4.11), A is irreducible. Therefore,

1 2 3

3 1

15

4

Figure 4.11: Precedence graph for Example 4.7.

λ =
3⊕

j=1

tr
(

Aj
)1/j

= 4

70

4.8 Linear independence of eigenvectors

is the unique eigenvalue of A. To compute the eigenvectors, we
follow the procedure outlined on the previous pages:

Q = inv⊗ (λ)⊗ A

=




ε 1 ε

−1 ε −3
ε −3 e




Q∗ = E⊕Q⊕Q2

=




e 1 −2
−1 e −3
−4 −3 e




Q+ = Q⊗Q∗

=




e 1 −2
−1 e −3
−4 −3 e


 .

As all three diagonal elements of Q+ are identical to e, all three
columns are eigenvectors, i.e.

ξ1 =




e
−1
−4


 , ξ2 =




1
e
−3


 , ξ3 =



−2
−3
e


 .

Apparently,

ξ2 = 1⊗ ξ1,

i.e. the eigenvectors ξ2 and ξ1 are linearly dependent, while ξ3

and ξ1 are not. ♦

4.8 linear independence of eigenvectors

Before we can clarify the phenomena of linear (in)dependence of
eigenvectors, we need additional terminology from graph theory.

Definition 4.7 (Critical circuit, critical graph) A circuit ρ in a
weighted directed graph G is called critical, if it has maximal mean
weight of all circuits in G. The critical graph Gc consists of all nodes
and all arcs of all critical circuits in G.

Definition 4.8 (Maximal strongly connected subgraph) Let G be
a weighted directed graph with I as set of nodes and E as set of arcs.
A graph G ′ with node set I′ and arc set E′ is a (proper) subgraph of
G, if I′ ⊆ I (I′ ⊂ I) and if E′ = {(i, j)|(i, j) ∈ E, i, j ∈ I′}. A
subgraph G ′ of G is a maximal strongly connected (m.s.c.) subgraph, if
it is strongly connected, and if it is not a proper subgraph of another
strongly connected subgraph of G.

71

4 The Max-Plus Algebra

Example 4.8 Consider the matrix

A =




4 5 ε

3 ε 1
ε 1 4


 .

Its precedence graph G(A) is shown in Figure 4.12. The maximal

1 2 3

3 1

15

4
4

Figure 4.12: Precedence graph G(A) for Example 4.8.

mean weight of circuits is 4, hence the critical graph Gc(A) con-
sists of all circuits of mean weight 4 (Figure 4.13). Clearly, Gc(A)

1 2 3

3

5

4
4

Gc1
(A)

Gc2
(A)

Figure 4.13: Critical graph Gc(A) for Example 4.8.

has two m.s.c. subgraphs, Gc1(A) and Gc2(A). ♦

We can now explain the phenomenon of linearly independent
eigenvectors. Assume that A ∈ Rn×n is irreducible and there-
fore possesses precisely one eigenvalue λ. Using the procedure
described in Section 4.7, we get a set of m ≤ n eigenvectors.
More precisely, column q+i of matrix Q+ = Q⊕ . . .⊕ Qn is an
eigenvector of A, if its i-th entry is e.

Theorem 4.4 Let A ∈ Rn×n be irreducible and let the critical graph
Gc(A) consist of N m.s.c. subgraphs Gcj(A) with node sets Ij, j =
1, . . . , N. Then the following holds:

(i) If i ∈ I :=
N⋃

j=1

Ij, then q+i is an eigenvector of A.

(ii) If i1, i2 ∈ Ij, then q+i1 and q+i2 are linearly dependent eigen-

vectors, i.e. ∃α ∈ R s.t. q+i1 = α⊗ q+i2 .

(iii) If i ∈ Ip, then q+i 6=
⊕

j∈I\Ip

αj ⊗ q+j for any set of αj ∈ R.

72

4.9 Cyclicity

Proof See, e.g., [1].

Example 4.9 Let’s reconsider the Example 4.7 where we deter-
mined three eigenvectors for (4.39). The critical graph for (4.39)
is shown in Figure 4.14. It contains two m.s.c. subgraphs with

1 2 3

3

5

4

Gc1
(A)

Gc2
(A)

Figure 4.14: Critical graph Gc(A) for (4.39).

node sets I1 = {1, 2} and I2 = {3}. Hence,

ξ1 = q+1 =




e
−1
−4


 and ξ2 = q+2 =




1
e
−3




are linearly dependent eigenvectors, whereas

ξ3 = q+3 =



−2
−3
e




cannot be written as a linear combination of q+1 and q+2 . ♦

4.9 cyclicity

We have seen in the previous sections that the vectors of firing
times in a timed event graph form a regular (1-periodic) be-
haviour, if the initial firing vector is an eigenvector of the matrix
A. We also know from the motivating example (Section 4.1) that
a transient phase and/or k-periodic (k > 1) behaviour may occur
if the vector of initial firing times is not an eigenvector of A.
To explain this, we need to introduce the notion of cyclicity of
matrices in Rn×n.

Definition 4.9 (Cyclicity) Let A ∈ Rn×n and let λ be the maximal
mean weight of all circuits in G(A). If there exist positive integers
M, d such that

Am+d = λd ⊗ Am ∀m ∈N, m ≥ M (4.40)

the matrix A is called cyclic. The smallest d for which (4.40) holds is
called the cyclicity of A.

73

4 The Max-Plus Algebra

Remark 4.4 If x(k + 1) = Ax(k), with x(k) the vector of the k-th
firing instants, and if A has cyclicity d we will eventually observe
d-periodic behaviour, irrespective of x(1).

Theorem 4.5 Each irreducible matrix A is cyclic. If its critical graph
Gc(A) consists of N m.s.c. subgraphs Gcj(A), the cyclicity of A is given
by

cyc(A) = lcm
j=1,...,N


 gcd

ρ∈S
(
Gcj (A)

) (|ρ|L)


 (4.41)

where S
(
Gcj(A)

)
is the set of all elementary circuits of Gcj(A), gcd

means “greatest common divisor” and lcm is “least common multiple”.

Proof See, e.g., [1].

Example 4.10 Consider the matrix

A =




ε 5 ε

3 ε 6
ε 2 4


 (4.42)

with precedence graph G(A) shown in Figure 4.15. Clearly, the

1 2 3

3

5

4

2

6

Figure 4.15: Precedence graph G(A) for (4.42).

maximal mean circuit weight is 4, and all circuits are critical.
Hence, G(A) = Gc(A). Obviously Gc(A) is strongly connected,
i.e., there is only one m.s.c. subgraph Gc1(A), which is Gc(A)

itself. We can then deduce from (4.41) that

cyc(A) = 1.

Indeed, if we initialise the recursion x(k + 1) = Ax(k) with a
non-eigenvector of A, e.g., x(1) = (0 1 2)′, we get the following
sequence of firing vectors:



0
1
2







6
8
6







13
12
10







17
16
14







21
20
18


 .

Clearly, after a short transient phase, we get a 1-periodic be-
haviour where the period length is the maximal mean weight of
all circuits in G(A), i.e., the eigenvalue of A. ♦

74

4.10 The Case of Reducible Matrices

Example 4.11 Let’s reconsider our simple public transport sys-
tem from Section 4.1. Figure 4.16 shows the precedence graph of
the matrix

A =

(
2 5
3 3

)
.

Clearly, the maximal mean circuit weight is 4, therefore the

1 2

3

5

2
3

Figure 4.16: Precedence graph for Example 4.11.

critical graph Gc(A) consists of only one elementary circuit (Fig-
ure 4.17). Obviously, Gc(A) is strongly connected and therefore

1 2

3

5

Figure 4.17: Critical graph Gc(A) for Example 4.11.

the only m.s.c. subgraph. Hence,

cyc(A) = 2.

This explains the 2-periodic behaviour that we observed in Sec-
tion 4.1. ♦

4.10 the case of reducible matrices

Recall that, up to now, we have assumed that the A-matrix in the
max-plus state equation (4.26) is irreducible. We now investigate
how to get rid of this assumption, i.e., we will treat the case
where there exists a permutation matrix P such that Ã = PAP′

is upper block-triangular. From the discussion in Section 4.7,
we know that this means that the precedence graph G(A) is not
strongly connected.

75

4 The Max-Plus Algebra

To keep exposition as simple as possible, we will assume that
the precedence graph G(A) consists of two maximal strongly
connected (msc) subgraphs, i.e., A ∈ Rn×n can be permuted to

Ã =

[
Ã11 Ã12

N Ã22

]
, (4.43)

where Ã11 ∈ Rn1×n1 and Ã22 ∈ Rn2×n2 are irreducible and n1 +

n2 = n. This can be easily extended to the case of more than two
msc subgraphs. Without loss of generality, we will also assume
that Ã12 6= N. Otherwise we’d have two completely decoupled
subsystems.
Clearly, G(Ã11) and G(Ã22) are the two msc subgraphs of G(Ã).
Note that there is no arc from the node set of G(Ã11) into the
node set of G(Ã22), while arcs from nodes of G(Ã22) to nodes of
G(Ã11) exist (see the example in Fig. 4.18). For this reason, we
say that “G(Ã11) is downstream from G(Ã22)” and “G(Ã22) is
upstream from G(Ã11)”.

G(Ã22)

G(Ã11)

1

3

2

4 5 6

7

Figure 4.18: Example for a precedence graph with two msc sub-
graphs.

As Ã11 and Ã22 are irreducible, they have unique eigenvalues λ1

and λ2,

λ1 = max
ρ∈S1

|ρ|W
|ρ|L

λ2 = max
ρ∈S2

|ρ|W
|ρ|L

,

where S1 (respectively S2) is the set of all circuits in G(Ã11)

(respectively G(Ã22)).
We can now make the following statement regarding eigenvalues
and eigenvectors of the matrix Ã.

Theorem 4.6 With the above assumptions, λ1 is an eigenvalue of Ã;
corresponding eigenvectors are of the form (v′1, ε′)′, where v1 ∈ Rn1

76

4.10 The Case of Reducible Matrices

is an eigenvector of Ã11, and ε is the zero-vector of dimension n2.
Moreover, if λ2 > λ1, then λ2 is also an eigenvalue of Ã, and, for every
eigenvector of Ã22, there is a unique eigenvector of Ã associated with
λ2.

Proof The first part of the theorem can be shown by observing
that

Ã
[

v1

ε

]
=

[
Ã11 Ã12

N Ã22

] [
v1

ε

]
=

[
Ã11v1

ε

]
=

[
λ1v1

ε

]

= λ1

[
v1

ε

]
.

This clearly implies that λ1 is an eigenvalue of Ã and (v′1, ε′)′ is
an associated eigenvector. To prove the second part, we need to
show that, for λ2 > λ1, there exists a vector w ∈ Rn satisfying
Ãw = λ2w. With w := (w′1, w′2)

′, this can be written as
[

Ã11 Ã12

N Ã22

] [
w1

w2

]
= λ2

[
w1

w2

]
,

or, equivalently, as

Ã11w1 ⊕ Ã12w2 = λ2w1 (4.44)

Ã22w2 = λ2w2. (4.45)

Hence w2 is an eigenvector of Ã22, and it remains to show that
(4.44) can be uniquely solved for w1. To do this, we scale (4.44)
with the multiplicative inverse of λ2, i.e.,

inv⊗(λ2)Ã11︸ ︷︷ ︸
:=Q̃11

w1 ⊕ inv⊗(λ2)Ã12︸ ︷︷ ︸
:=Q̃12

w2 = w1. (4.46)

From Section 4.5 we know that the linear implicit equation (4.46)
has a unique solution for w1 if the precedence graph of Q̃11 has
no circuits with positive or zero weight. The following argument
shows that this is indeed the case. Multiplying a matrix in the
max-plus algebra by inv⊗(λ2) amounts to subtracting λ2 from
every entry in that matrix in the standard algebra, hence each
arc in the predecence graph of Q̃11 corresponds to an arc in the
precedence graph of Ã11, with the same node pair but weight
difference λ2. Therefore ρ is a circuit in G(Q̃11) if and only if it is
a circuit in G(Ã11), and the weights of ρ in G(Q̃11) and in G(Ã11),
denoted by |ρ|W,Q̃11

and |ρ|W,Ã11
, are related as follows:

|ρ|W,Q̃11
= |ρ|W,Ã11

− |ρ|Lλ2

=

(
|ρ|W,Ã11

|ρ|L
− λ2

)
|ρ|L

≤
(

max
ρ∈S1

|ρ|W,Ã11

|ρ|L
− λ2

)
|ρ|L,

77

4 The Max-Plus Algebra

where |ρL| is the length of circuit ρ and S1 is the set of all circuits
in the precedence graph of Ã11. Hence

|ρ|W,Q̃11
≤ (λ1 − λ2)|ρ|L < 0. (4.47)

Therefore, according to our discussion in Section 4.5, equation
(4.46) has the unique solution

w1 = Q̃∗11Q̃12w2

= (E⊕ Q̃11 ⊕ . . .⊕ Q̃n1−1
11)Q̃12w2,

implying that w = (w′1, w′2)
′ is indeed, for any eigenvector w2 of

Ã22, a unique eigenvector of Ã associated with eigenvalue λ2.

Remark 4.5 Permutation of a matrix does not change its eigen-
value(s). Its effect on eigenvectors is a mere re-ordering of entries.
This can be easily seen from the following argument: let λ ∈ R
be an eigenvalue of matrix Ã ∈ Rn×n, and let v ∈ Rn be a corre-
sponding eigenvector, i.e., Ãv = λv. For a permutation matrix P,
we have Ã = PAP′, hence PAP′v = λv. Multiplying from the left
by P′ gives

A P′v︸︷︷︸
v̄

= λ P′v︸︷︷︸
v̄

,

i.e., λ is also an eigenvalue of A, and v̄ = P′v ∈ Rn is a cor-
responding eigenvector. As P is a permutation matrix, P′ has
precisely one e-element in each row and column, while all other
entries are ε. Therefore, mutiplying v by P′ amounts to a re-
ordering of the entries of v.

The discussion above can be summarised as follows: in the inves-
tigated scenario, the eigenvalue of the downstream part is always
an eigenvalue of the matrix A. Additionally, the eigenvalue of
the upstream part is also an eigenvalue of A, if the upstream part
is slower than the downstream part, i.e., if the eigenvalue of the
former is greater than the eigenvalue of the latter.

Example 4.12 We’ll consider an extension of the simple public
transport system in Section 4.1. In addition to the train system
discussed there, we now have a bus system consisting of three
lines (see Fig. 4.19). Passengers can switch between trains and
buses and between two bus lines (a “central” and an “eastern”
line) at Station 1. They can switch between two bus lines (the
“central” and a “northern” line) at the new Station 3. Travelling
times for buses on their different routes are indicated in Fig. 4.19.
For example, it will take a bus two time units to go from Station 1

to Station 3, and a bus will need 1 time unit to travel along the

78

4.10 The Case of Reducible Matrices

eastern line or the northern line. Note that, for simplicity, neither
bus nor train stops between stations are shown. As in Section 4.1,
we’ll operate four trains within the system. We will also operate
four buses, two on the central line, and one each on the eastern
and the northern line.

Station 3

Bus system
Train system

Station 1 Station 2
2

3

5

3

1
1

2

1

Figure 4.19: Extended public transport system.

Recall that we impose a synchronisation rule on trains. Namely,
trains have to wait at connecting stations for an incoming train on
the other line. The effect of this is that at Station 1 (respectively
Station 2) a pair of trains leave at the same time. We implement
a similar synchronisation policy for buses, implying that at Sta-
tion 1, two buses (one on the eastern line and one on the central
line) will set out simultaneously. Analogously, at Station 3, two
buses (one on the northern line and one on the central line) will
leave at the same time. Additionally, we want buses departing
from Station 1 to wait for the departure of trains from that station
and therefore, by implication, to wait for incoming trains at that
station. In contrast, trains are not required to wait for buses.
The resulting scenario can be modelled by the TEG shown in
Fig. 4.20. The part of the TEG modelling the train system is, up
to relabelling of transitions, the same as in Section 4.1. A firing
of transition t3 signifies a departure of (a pair of) trains from
Station 1, and a firing of transition t4 represents a departure of (a
pair of) trains from Station 2. The part of the TEG modelling the
bus system has the same structure, but different holding times
as the travelling times of buses differ from the travelling times
of trains. In this subsystem, a firing of transition t2 signifies
a departure of (a pair of) buses from Station 1, and a firing of
transition t1 represents a departure of (a pair of) buses from

79

4 The Max-Plus Algebra

Bus system

Train system

t2

1

2

1

t3 t4

2

3

5

3

1

t1

Figure 4.20: TEG modelling extended public transport system.

Station 3. Additionally, as buses departing from Station 1 have to
synchronise with trains, transitions 4 and 2 are connected by a
place (with zero holding time and zero initial tokens).
Denoting the earliest time for transition ti to fire for the k-th
time by xi(k), i = 1, . . . 4, k ∈ N, we can immediately read the
following relations from the TEG in Fig. 4.20.

x1(k + 1) = max(x1(k) + 1, x2(k) + 2)

x2(k + 1) = max(x1(k) + 1, x2(k) + 1, x3(k + 1))

x3(k + 1) = max(x3(k) + 2, x4(k) + 5)

x4(k + 1) = max(x3(k) + 3, x4(k) + 3).

With x := (x1, x2, x3, x4)
′, this becomes in the max-plus algebra

x(k + 1) =




ε ε ε ε

ε ε e ε

ε ε ε ε

ε ε ε ε




︸ ︷︷ ︸
:=A0

x(k + 1)⊕




1 2 ε ε

1 1 ε ε

ε ε 2 5
ε ε 3 3




︸ ︷︷ ︸
:=A1

x(k).

(4.48)
The resulting implicit equation can be easily transformed into
a an explicit one by recalling the results of Section 4.4. The
precedence graph of A0 does not contain any circuits, and it has
only one arc. Hence, the unique solution of (4.48) is

x(k + 1) = Ax(k), (4.49)

80

4.10 The Case of Reducible Matrices

with

A = A∗0 A1 = (E⊕ A0)A1 =




e ε ε ε

ε e e ε

ε ε e ε

ε ε ε e







1 2 ε ε

1 1 ε ε

ε ε 2 5
ε ε 3 3




=




1 2 ε ε

1 1 2 5
ε ε 2 5
ε ε 3 3




:=
[

Ã11 Ã12

N Ã22

]
.

Clearly, matrix A = Ã is in upper block-triangular form and
therefore reducible, while the two 2× 2 blocks on the diagonal,
Ã11 and Ã22, are irreducible. This is of course reflected in the
precedence graph of A = Ã (see Fig. 4.21).

3 4

5

3

3

2

2

1 2

1

21

1

5

G(Ã11) G(Ã22)

Figure 4.21: Precedence graph of matrix A = Ã.

The figure nicely illustrates that the train network (represented
by the upstream part of the graph), exerts an influence on the
bus network (represented by the downstream part), but is not
affected by the latter. We can infer the unique eigenvalue λ1,
respectively λ2, of matrix Ã11, respectively Ã22, as the maximum
mean weight of all circuits in G(Ã11), respectively G(Ã22). As

λ1 = 1.5 < λ2 = 4,

both λ1 and λ2 are eigenvalues of A. Using the results in Sec-
tion 4.8, we determine that matrices Ã11 and Ã22 have only one
linearly independent eigenvector each, namely v1 = (0.5, e)′ for
Ã11 and w2 = (1, e)′ for Ã22. From Theorem 4.6, it then follows
that A has only one linearly independent eigenvector associated
with λ1, namely v = (v′1, ε′)′. To compute the correspondig result

81

4 The Max-Plus Algebra

for λ2, we need to solve (4.46), with Ã12 denoting the top right
block of matrix A = Ã. The result is

w =




−1
1
1
e


 .

Eigenvectors are only determined up to multiplication (in the
max-plus algebra) by an arbitrary scalar α ∈ R, α 6= ε. We choose
α = 1 to generate a timetable for our public transport system
where service commences a time 0. The timetable is the one-
periodic solution of (4.49) obtained for x(1) = 1w, i.e.,




e
2
2
1


 ,




4
6
6
5


 ,




8
10
10
9


 , . . .

Recall that the top entries in the above vectors correspond to the
departure times of buses from Station 3, the second entries to the
departure times of buses from Station 1, the tird entries to the
departure times of trains from Station 1, and the bottom entries
to the departure times of trains from Station 2.

♦

82

5

S U P E RV I S O RY C O N T R O L

The control of untimed (logical) DES has been an active area of
research since the mid 1980s. It was shaped to a large extent by
P.J. Ramadge and W.M. Wonham’s seminal work, e.g. [8] and [9].
Since then, numerous researchers have contributed to this area,
which has come to be known as “Supervisory Control Theory
(SCT)”. Standard references are [6], [3] and [10].
In this chapter, we will summarise the very basics of SCT. Briefly,
the plant to be controlled is modelled as an untimed DES, and the
controller design philosophy is language-based. This means that
one is primarily interested in the set of event strings (“language”)
that the plant can generate. It is then the aim of control to suitably
restrict this set such that strings of events that are deemed to be
undesirable cannot occur. At the same time, one wants to “keep”
as many other strings of events as possible. In other words,
the controller should only act if things (threaten to) go wrong.
Although the philosophy of SCT is language-based, we have to
keep in mind that control also needs to be realised. Hence, we
will have to discuss finite state machines, or finite automata, as
generators of languages.

5.1 sct basics

Let’s assume that there is a finite set of discrete events

Σ = {σ1, . . . , σN} . (5.1)

The events σi, i = 1, . . . , N, are also called symbols, and Σ is called
an alphabet. Furthermore, denote the set of all finite strings of
elements of Σ, including ε (the string of length 0), by Σ∗, i.e.

Σ∗ = {ε, σ1, . . . , σN , σ1σ2, σ1σ3, . . .} . (5.2)

(5.2) is called the Kleene-closure of Σ. Strings can be concatenated,
i.e., if s, t ∈ Σ∗, st ∈ Σ∗ represents a string s followed by a string
t. Clearly, ε is the neutral element of concatenation, i.e.,

sε = εs = s ∀s ∈ Σ∗ . (5.3)

83

5 Supervisory Control

Finally, a subset L ⊆ Σ∗ is called a language over the alphabet Σ,
and an element s ∈ L is a word.
We can now define the concept of prefix and prefix-closure:

Definition 5.1 (Prefix, prefix-closure) s′ ∈ Σ∗ is a prefix of a word
s ∈ L, if there exists a string t ∈ Σ∗ such that s′t = s. The set of all
prefixes of all words in L is called prefix-closure of L:

L := {s′ ∈ Σ∗ | ∃t ∈ Σ∗ such that s′t ∈ L} .

By definition, every prefix can be extended into a word by ap-
pending suitable symbols from the alphabet. Note that every
word s ∈ L is a prefix of itself, as sε = s, but, in general, a prefix
of a word is not a word. Therefore,

L ⊆ L .

If L = L, the language L is called closed. Hence, in a closed
language every prefix of a word is a word.

5.2 plant model

A plant model has to provide the following information:

possible future system evolution: In the context of un-
timed DES, this is the language L. Of course, a meaningful
model will never allow all possible strings of events, and
therefore L will in practice always be a proper subset of Σ∗.

control mechanism: In the context of SCT, the mechanism
that a controller can use to affect the plant evolution is
modelled by partitioning the event set Σ into a set of events
that can be disabled by a controller, Σc, and a set of events
which cannot be directly prohibited, Σuc:

Σ = Σc ∪ Σuc ; Σc ∩ Σuc = ∅ .

Σc is often called the set of controllable events, whereas
events in Σuc are called uncontrollable.

terminal conditions: As in “conventional” continuous con-
trol, it has become customary to include terminal conditions
for the system evolution in the plant model. Of course, we
could also interpret terminal conditions as specifications
that a controller has to enforce. In the SCT context, such
terminal conditions are modelled by a so-called marked lan-
guage Lm ⊆ L, which contains all strings of events that meet
these conditions. These strings are called marked strings.
In practice, one thinks of such strings as tasks that have
successfully terminated.

84

5.3 Plant Controller Interaction

In summary, the plant model is completely defined by

P = (Σ = Σc ∪ Σuc, L ⊆ Σ∗, Lm ⊆ L) .

In the following, we will always assume that the plant language
L is closed, i.e.,

L = L .

Note that the plant may generate strings of events that cannot be
extended to form a marked string. This phenomenon is called
blocking. To clarify this issue, observe that for a plant model
(Σ, L, Lm) with closed L, we always have the following relation
(see Figure 5.1):

Lm ⊆ Lm ⊆ L .

����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������

����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

Lm

Lm

L\Lm Lm\Lm

L

Figure 5.1: Illustration of blocking phenomenon.

Lm contains all marked strings, i.e., all strings that meet the
terminal conditions (“have terminated successfully”). Lm \ Lm

contains all strings that have not terminated successfully yet, but
can still be extended into a marked string. Finally, L \ Lm contains
all strings in L that cannot be extended into a marked string. The
plant model (Σ, L, Lm) is called non-blocking if L = Lm, i.e., if no
such strings exist.

5.3 plant controller interaction

Before we discuss closed loop specifications and how to find a
controller that will enforce them, we need to clarify the mode
of interaction between plant and controller. For this, we assume
that the controller is another DES defined on the same alphabet
Σ as the plant but, of course, exhibiting different dynamics. The
latter is captured by the controller language Lc ⊆ Σ∗. We also
assume that the marked language of the controller is identical to

85

5 Supervisory Control

its language. Therefore, the controller is completely described by

C = (Σ, Lc, Lcm = Lc) . (5.4)

As pointed out in the sequel, this implies that the controller will
not change the marking properties introduced by the plant model.
We will later realise the controller DES by a finite automaton. As
the language generated by an automaton is always closed (see
Section 5.5), we will henceforth also assume that Lc is closed,
i.e., Lc = Lc. It is obvious that the controller DES has to satisfy
another (implementability) requirement. Namely, it can only
disable events in the controllable subset Σc of Σ:

Definition 5.2 (Implementable controller) The controller (5.4) is
implementable for the plant model P if

LcΣuc ∩ L ⊆ Lc ,

where LcΣuc := {sσ | s ∈ Lc, σ ∈ Σuc}.

This means that for any string s ∈ Lc, if s is followed by an uncon-
trollable event σ and if the extended string sσ can be generated
by the plant, sσ must also be a string in Lc. In other words: an
implementable controller accepts all uncontrollable events that
the plant produces.
If the implementability requirement is satisfied, the interaction
between plant and controller is simply to agree on strings that
are both in L and in Lc. Hence, the closed loop language is

Lcl = L ∩ Lc .

Similarly, a string of the closed loop system is marked if and only
if it is marked by both the plant and the controller, i.e.,

Lcl,m = Lm ∩ Lc

= Lm ∩ L ∩ Lc

= Lm ∩ Lcl .

Let us now rephrase our problem and ask which closed loop
languages can be achieved by a controller satisfying the im-
plementability constraints discussed above. The answer is not
surprising:

Theorem 5.1 There exists an implementable controller with closed
language Lc such that

Lc ∩ L = K , (5.5)

86

5.4 Specifications

if and only if

(i) K is closed ,

(ii) K ⊆ L ,

(iii) KΣuc ∩ L ⊆ K . (5.6)

Proof Sufficiency is straightforward, as (i)–(iii) imply that Lc =

K is a suitable controller language: it is closed because of (i);
because of (ii) it satisfies K ∩ L = K, and because of (iii) it is im-
plementable for L. Necessity of (i) and (ii) follows immediately
from (5.5) and the fact that Lc and L are both closed languages.
To show the necessity of (iii), assume that there exist s ∈ K,
σ ∈ Σuc such that sσ ∈ L, sσ /∈ K, i.e., (iii) does not hold. Then,
because of (5.5), s ∈ Lc and sσ /∈ Lc, i.e., the controller is not
implementable for L.

Remark 5.1 (5.6) is called the controllability condition for the
closed language K.

5.4 specifications

The closed loop specifications are twofold:

(a) The closed loop language Lcl has to be a subset of a given
specification language Lspec, which is assumed to be closed:

Lcl
!
⊆ Lspec with Lspec = Lspec . (5.7)

It is therefore the task of control to prevent undesirable
strings from occurring.

(b) The closed loop must be nonblocking, i.e.,

Lcl,m = Lcl ∩ Lm
!
= Lcl . (5.8)

This means that any closed loop string must be extendable
to form a marked string.

It is obvious that (5.7) implies

Lcl,m = Lcl ∩ Lm
!
⊆ Lspec ∩ Lm . (5.9)

As the following argument shows, (5.8) and (5.9) also imply (5.7):

Lcl = Lcl,m (because of (5.8))

⊆ Lspec ∩ Lm (because of (5.9))

⊆ Lspec ∩ Lm (always true)

⊆ Lspec (always true)

= Lspec (as Lspec is closed).

87

5 Supervisory Control

Instead of (5.7) and (5.8), we can therefore work with (5.8) and
(5.9) as closed loop specifications. This, however, does not com-
pletely specify the closed loop. We therefore add the requirement
that Lcl,m should be as large as possible. In other words, we want
control to be least restrictive or, equivalently, maximally permissive.
In summary, our control problem is to find an implementable
controller

C = (Σ, Lc, Lc) ,

such that

1. the marked closed loop language satisfies (5.9)

2. the closed loop is nonblocking, i.e., (5.8) holds

3. control is maximally permissive.

This naturally leads to the question which nonblocking marked
closed loop languages K can be achieved by an implementable
controller. The answer is provided by the following theorem:

Theorem 5.2 There exists an implementable controller with closed
language Lc such that

Lc ∩ Lm︸ ︷︷ ︸
Lcl,m

= K (5.10)

and
Lc ∩ L︸ ︷︷ ︸

Lcl

= K︸︷︷︸
Lcl,m

(5.11)

if and only if

(i) K ⊆ Lm ,

(ii) KΣuc ∩ L ⊆ K , (5.12)

(iii) K = K ∩ Lm . (5.13)

Proof Sufficiency is straightforward as (i)–(iii) imply that Lc =

K is a suitable controller language: first, Lc is obviously closed.
Then, because of (iii), we have Lc ∩ Lm = K ∩ Lm = K, i.e., (5.10)
holds. Furthermore, (i) and the fact that L is closed implies
K ⊆ L. Therefore, Lcl = Lc ∩ L = K ∩ L = K, i.e., (5.11) holds.
Finally, (ii) says that Lc = K is implementable for L.
Necessity of (i) and (iii) follows directly from (5.10) and (5.11).
To show necessity of (ii), assume that there exist s ∈ K, σ ∈ Σuc

such that sσ ∈ L, sσ /∈ K, i.e., (iii) does not hold. Then, because of
(5.11), s ∈ Lc and sσ /∈ Lc, i.e., the controller is not implementable
for L.

Remark 5.2 (5.12) is called the controllability condition for K,
and (5.13) is known as the Lm-closedness condition.

88

5.4 Specifications

Theorem 5.2 tells us whether we can achieve a nonblocking closed
loop with a given marked language K. Recall that we want the
maximal K that satisfies K ⊆ Lspec ∩ Lm. Hence we check whether

K̂ := Lspec ∩ Lm (5.14)

satisfies condition (ii) of Theorem 5.2. Note that (i) holds by
definition for K̂. As the following argument shows, (iii) also
holds for K̂:

K̂ = Lm ∩ Lspec

= Lm ∩ Lspec ∩ Lm

⊆ Lm ∩ Lspec ∩ Lm

= K̂ ∩ Lm

and

K̂ ∩ Lm = Lm ∩ Lspec ∩ Lm

⊆ Lm ∩ Lspec ∩ Lm

= Lm ∩ Lspec

= Lm ∩ Lspec

as Lspec is a closed language. Hence, if (ii) also holds, K̂ is the
desired maximally permissive marked closed loop language and
K̂ is a corresponding controller language. If the condition does
not hold, we seek the least restrictive controllable sublanguage of
K̂, i.e.,

K̂↑ := sup{K ⊆ K̂ | (5.12) holds } .

Using set-theoretic arguments, it can be easily shown that K̂↑

uniquely exists and is indeed controllable, i.e., satisfies Condition
(ii) in Theorem 5.2. As K̂↑ ⊆ K̂, (i) holds automatically. Fur-
thermore, it can be shown (e.g., [3]) that K̂↑ also satisfies (iii).
Hence, K̂↑ is the desired maximally permissive marked closed
loop language and K̂↑ is a suitable controller language.

Example 5.1 Consider the following exceedingly simple DES. Its
purpose is to qualitatively model the water level in a reservoir. To
do this, we introduce two threshold values for the (real-valued)
level signal x, and four events:

Σ = {o, o, e, e} .

The event o (“overflow”) denotes that the water level crosses the
upper threshold from below. The event o denotes that x crosses
this threshold from above. Similarly, e (“empty”) means that x

89

5 Supervisory Control

crosses the lower threshold from above, and e that x crosses this
threshold from below. We assume that initially the water level x
is between the two thresholds, implying that the first event will
either be o or e. In our fictitious reservoir, we have no control
over water consumption. The source for the reservoir is also
unpredictable, but we can always close the pipe from the source
to the reservoir (Figure 5.2) to shut down the feed.

source

consumer

valve "open" or "closed"

x(t)

o

exl

xu ō

ē

Figure 5.2: Water reservoir example.

This implies that o and e are controllable events (they can be
prohibited by control), whereas o and e are not:

Σc = {o, e} ,

Σuc = {o, e} .

The plant language is easily described in words: the first event is
o or e. After o, only o can occur. After e, only e can occur. After o
and e, either o or e may occur:

L = {ε, o, e, oo, ee, ooo, ooe, . . .} . (5.15)

Clearly, L is a closed language, i.e., L = L.
We consider those strings marked that correspond to a current
value of x between the lower and upper threshold:

Lm = {ε, oo, ee, . . .} , (5.16)

i.e., all strings that end with an o or an e event plus ε, the string of
length 0. To complete the example, suppose that the specification

90

5.5 Controller Realisation

requires that strings may not begin with ooe (although this does
not make any physical sense). Hence,

Lspec = Σ∗ \ {ooe . . .} , (5.17)

and Lspec is a closed language.
We can now, at least in principle, use the approach outlined in the
previous pages to determine the least restrictive control strategy.
First, we need to check whether K̂ = Lm ∩ Lspec can be achieved
by means of an implementable controller. This is not possible,
as condition (ii) in Theorem 5.2 is violated for K̂. To see this,
consider the string oo. Clearly, oo ∈ Lm ∩ Lspec = K̂. Therefore,

ooe ∈ K̂Σuc ∩ L, but ooe /∈ K̂. Hence, (5.12) does not hold. This is
also clear from Figure 5.3, which visualises the plant language L
as a tree.

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

o, ō

o, ōe, ē

. . .

. . .

. . .

. . .

ε

e, ē

o, ō

e, ē

Figure 5.3: Illustration for Example 5.1.

From the figure, it is obvious that to enforce K̂ as marked closed
loop language, the controller would have to disable the event e
after the string oo has occurred. This is of course not possible
as e ∈ Σuc. From the figure, it is also obvious what the least
restrictive controllable sublanguage of K̂ is: We need to prohibit
that the first event is o (by closing the pipe from the source to the
reservoir). Once e has occurred, o can be enabled again. ♦

This example is meant to illustrate the basic idea in SCT. It also
demonstrates, however, that we need a mechanism, i.e., a finite
algorithm, to realise the required computations on the language
level. This will be described in Section 5.5.

5.5 controller realisation

We first introduce finite automata as state models for both plant
and specification. We then discuss a number of operations on

91

5 Supervisory Control

automata that will allow us to compute another finite automaton
that realises the least restrictive controller.

5.5.1 Finite automata with marked states

Definition 5.3 (Finite deterministic automaton) A finite determin-
istic automaton with marked states is a quintuple

Aut = (Q, Σ, f , qo, Qm), (5.18)

where Q is a finite set of states, Σ is a finite event set, f : Q×Σ→ Q is
a (partial) transition function, q0 ∈ Q is the initial state, and Qm ⊆ Q
is the set of marked states.

To discuss the language and the marked language generated by
Aut, it is convenient to extend the transition function f : Q×Σ→
Q to f : Q× Σ∗ → Q. This is done in a recursive way:

f (q, ε) = q ,

f (q, sσ) = f (f (q, s), σ) for s ∈ Σ∗ and σ ∈ Σ .

Then, the language generated by Aut is

L(Aut) := {s ∈ Σ∗ | f (q0, s) exists} .

The marked language generated by Aut (sometimes also called
the language marked by Aut) is

Lm(Aut) := {s ∈ Σ∗ | f (q0, s) ∈ Qm} .

Hence, L(Aut) is the set of strings that the automaton Aut can
produce from its initial state q0, and Lm(Aut) is the subset of
strings that take the automaton from q0 into a marked state.
Clearly, the language generated by Aut is closed, i.e.

L(Aut) = L(Aut).

In general, this is not true for the language marked by Aut, i.e.

Lm(Aut) ⊆ Lm(Aut).

We say that Aut realises the plant model P = (Σ, L, Lm) if

L(Aut) = L ,

Lm(Aut) = Lm .

92

5.5 Controller Realisation

Example 5.2 Let us reconsider the plant model from Example 5.1.
The plant model (Σ, L, Lm) is realised by Aut = (Q, Σ, f , q0, Qm)

with

Q = {Hi, Med, Lo} ,

q0 = Med ,

Qm = {Med} ,

Σ = {o, o, e, e} ,

and f defined by the following table, where “–” means “unde-
fined”.

o o e e
Hi – Med – –

Med Hi – Lo –
Lo – – – Med

The resulting automaton is depicted in Figure 5.4. There, we
use the following convention. The initial state is indicated by
an arrow pointing “from the outside” to q0; marked states are
indicated by arrows pointing from elements in Qm “outside”; and
controllable events can be recognised by a small bar added to the
corresponding transition.

Hi

Mid

Lo

e

o

ē

ō

Figure 5.4: Automaton realisation for water reservoir system.

Clearly,
L(Aut) = {ε, o, e, oo, ee, ooo, ooe, . . .} ,

and
Lm(Aut) = {ε, oo, ee, . . .} .

♦

Remark 5.3 A language that is marked by a finite deterministic
automaton is called regular.

93

5 Supervisory Control

Remark 5.4 Aut is called non-blocking if the system (Σ, L(Aut),
Lm(Aut)) is non-blocking, i.e., if

L(Aut) = Lm(Aut).

This implies that from any reachable state q of a non-blocking
automaton, we can always get into a marked state. If in a blocking
automaton, we get into a state q from which we cannot reach
a marked state, we distinguish two situations: if there is no
transition possible, i.e., if f (q, σ) is undefined ∀σ ∈ Σ, we are in a
deadlock situation, otherwise the automaton is said to be livelocked
(Figure 5.5).

Figure 5.5: Deadlock (left) and livelock (right).

5.5.2 Unary operations on automata

We will need the following unary operations on automata, i.e.,
operations that take one finite deterministic automaton with mark-
ed states as an argument.
The first operation, Ac(Aut), removes all states that are not reach-
able (accessible) and all transitions originating from those states:
for Aut given in (5.18),

Ac(Aut) := (Qac, Σ, fac, q0, Qac,m) ,

where

Qac := {q ∈ Q | ∃s ∈ Σ∗ such that f (q0, s) = q} ,

Qac,m := {q ∈ Qm | ∃s ∈ Σ∗ such that f (q0, s) = q} ,

fac : Qac × Σ→ Qac is the restriction of f : Q× Σ→ Q to Qac .

Clearly, this operation neither changes the language nor the
marked language generated by Aut:

L(Aut) = L(Ac(Aut))

Lm(Aut) = Lm(Ac(Aut)).

94

5.5 Controller Realisation

Example 5.3 Consider the automaton depicted in the left part
of Figure 5.6. Clearly, there is only one state that is not reach-
able. This state (and the two transitions originating from it) are
removed by the Ac-operation to provide Ac(Aut) (right part of
Figure 5.6).

Ac(Aut)Aut

Figure 5.6: Illustration of Ac-operation.

♦

Another operation, CoAc(Aut), provides the “co-accessible” part
of Aut. It removes all states from which we cannot reach a
marked state and all transitions originating from and ending in
such states. For Aut given in (5.18),

CoAc(Aut) := (Qcoac, Σ, fcoac, q̃0, Qm) ,

where

Qcoac := {q ∈ Q | ∃s ∈ Σ∗ such that f (q, s) ∈ Qm}

q̃0 :=
{

q0, if q0 ∈ Qcoac

undefined else

fcoac : Qcoac × Σ→ Qcoac

is the restriction of f : Q× Σ→ Q to Qcoac.

Clearly, this operation does not change the language marked by
Aut, i.e.,

Lm(Aut) = Lm(CoAc(Aut))

but will, in general, affect the language generated by Aut:

L(CoAc(Aut)) ⊆ L(Aut).

Note that, by construction, CoAc(Aut) is non-blocking, i.e.,

Lm(CoAc(Aut)) = L(CoAc(Aut)).

Example 5.4 Consider the automaton depicted in the left part of
Figure 5.7. Clearly, there are two states from which it is impos-
sible to reach the marked state. These (plus the corresponding

95

5 Supervisory Control

Aut CoAc(Aut)

Figure 5.7: Illustration of CoAc-operation.

transitions) are removed by the CoAc-operation to provide the
nonblocking automaton shown in the right part of Figure 5.7.

♦

Remark 5.5 The Ac- and the CoAc-operation commute, i.e.,

Ac(CoAc(Aut)) = CoAc(Ac(Aut)).

5.5.3 Binary operations on automata

The product operation, denoted by “×”, forces two automata to
synchronise all events. For

Aut1 = (Q1, Σ, f1, q10, Q1m)

Aut2 = (Q2, Σ, f2, q20, Q2m) ,

it is defined by

Aut1 × Aut2 := Ac(Q1 ×Q2, Σ, f , (q10, q20), Q1m ×Q2m) ,(5.19)

where Q1 × Q2 and Q1m × Q2m denote Cartesian products, i.e.,
the sets of all ordered pairs from Q1 and Q2 and from Q1m and
Q2m, respectively. The transition function f of Aut1 × Aut2 is
defined as follows:

f ((q1, q2), σ) =





(f1(q1, σ), f2(q2, σ)) if both f1(q1, σ) and
f2(q2, σ) are defined,

undefined else.
(5.20)

Hence, in a state (q1, q2) of the product automaton Aut1 × Aut2,
an event σ ∈ Σ can only be generated if both Aut1 and Aut2 can
generate σ in their respective states q1 and q2. In other words:
the two constituent automata have to agree on, or synchronise,
events. It follows from the definition (5.19) that the initial state

96

5.5 Controller Realisation

of Aut1 × Aut2 is the pair of initial states of Aut1 and Aut2, and
that a state (q1, q2) is marked in Aut1 × Aut2 if q1 is marked in
Aut1 and q2 is marked in Aut2.
Note that, for convenience, we have included the Ac-operation
into the product definition to remove non-reachable states.
The definition (5.19) implies the following properties:

L(Aut1 × Aut2) ={s ∈ Σ∗ | f (q10, q20), s) exists}
={s ∈ Σ∗ | f1(q10, s) and f2(q20, s) exist}
={s ∈ Σ∗ | f1(q10, s) exists} ∩
{s ∈ Σ∗ | f2(q20, s) exists}

=L(Aut1) ∩ L(Aut2) ,

Lm(Aut1 × Aut2) ={s ∈ Σ∗ | f (q10, q20), s) ∈ Qm}
={s ∈ Σ∗ | f1(q10, s) ∈ Q1m and

f2(q20, s) ∈ Q2m}
={s ∈ Σ∗ | f1(q10, s) ∈ Q1m} ∩
{s ∈ Σ∗ | f2(q20, s) ∈ Q2m}

=Lm(Aut1) ∩ Lm(Aut2) .

Another operation on two automata is parallel composition, de-
noted by “‖”. It is used to force synchronisation when the two
constituent DESs (and therefore the two realising automata) are
defined on different event sets. For

Aut1 = (Q1, Σ1, f1, q10, Q1m)

and
Aut2 = (Q2, Σ2, f2, q20, Q2m) ,

Aut1 ‖ Aut2 := Ac(Q1 ×Q2, Σ1 ∪ Σ2, f , (q10, q20), Q1m ×Q2m) ,
(5.21)

where

f ((q1, q2), σ) =





(f1(q1, σ), f2(q2, σ)) if σ ∈ Σ1 ∩ Σ2, and
both f1(q1, σ) and f2(q2, σ) are defined,

(f1(q1, σ), q2) if σ ∈ Σ1 \ Σ2 and
f1(q1, σ) is defined,

(q1, f2(q2, σ)) if σ ∈ Σ2 \ Σ1 and
f2(q2, σ) is defined,

undefined else.
(5.22)

97

5 Supervisory Control

This implies that the automata Aut1 and Aut2 only have to agree
on events that are elements of both Σ1 and Σ2. Each automaton
can generate an event without consent from the other automaton,
if this event is not in the event set of the latter. In the special
case where Σ1 ∩ Σ2 = ∅, parallel composition is also called the
“shuffle product”.
To discuss the effect of parallel composition on languages, we
need to introduce projections. The projection operation

Pi : (Σ1 ∪ Σ2)
∗ → Σ∗i , i = 1, 2,

is defined recursively as

Pi(ε) = ε

Pi(sσ) =

{
Pi(s)σ if σ ∈ Σi,
Pi(s) otherwise .

Hence, the effect of Pi on a string s ∈ (Σ1 ∪ Σ2)∗ is to remove all
symbols that are not contained in Σi.
The inverse projection P−1

i : Σ∗i → 2(Σ1∪Σ2)
∗

is defined as

P−1
i (s) = {t ∈ (Σ1 ∪ Σ2)

∗ | Pi(t) = s} .

With these definitions, we can write

L(Aut1 ‖ Aut2) ={s ∈ (Σ1 ∪ Σ2)
∗ | f ((q10, q20), s) exists }

={s ∈ (Σ1 ∪ Σ2)
∗ | f1(q10, P1(s)) and

f2(q20, P2(s)) exist}
={s ∈ (Σ1 ∪ Σ2)

∗ | f1(q10, P1(s)) exists} ∩
{s ∈ (Σ1 ∪ Σ2)

∗ | f2(q20, P2(s)) exists}
=P−1

1 ({t ∈ Σ∗1 | f1(q10, t)) exists}) ∩
P−1

2 ({t̃ ∈ Σ∗2 | f2(q20, t̃) exists})
=P−1

1 (L(Aut1)) ∩ P−1
2 (L(Aut2)).

Similarly, we can show

Lm(Aut1 ‖ Aut2) ={s ∈ (Σ1 ∪ Σ2)
∗ | f ((q10, q20), s) ∈ Qm}

={s ∈ (Σ1 ∪ Σ2)
∗ | f1(q10, P1(s)) ∈ Q1m

and f2(q20, P2(s)) ∈ Q2m}
={s ∈ (Σ1 ∪ Σ2)

∗ | f1(q10, P1(s)) ∈ Q1m} ∩
{s ∈ (Σ1 ∪ Σ2)

∗ | f2(q20, P2(s)) ∈ Q2m}
=P−1

1 ({t ∈ Σ∗1 | f1(q10, t)) ∈ Q1m}) ∩
P−1

2 ({t̃ ∈ Σ∗2 | f2(q20, t̃) ∈ Q2m})
=P−1

1 (Lm(Aut1)) ∩ P−1
2 (Lm(Aut2)).

98

5.5 Controller Realisation

The parallel composition operation is particularly useful in the
following scenario. Often, the specifications can be formulated
in terms of a subset Σspec ⊂ Σ, i.e., L̃spec ⊆ Σ∗spec. Recall that a
crucial step when computing the least restrictive controller is to
perform the language intersection (5.14). As L̃spec and Lm are
now defined on different alphabets, we cannot directly intersect
these languages. In this situation, we have two options:

(i) Use inverse projection

P−1
spec : Σ∗spec → Σ∗

to introduce
Lspec = P−1

spec(L̃spec).

Then, Lspec ∩ Lm is well defined and can be computed by
finding finite automata realisations

Autp = (Qp, Σ, fp, qp0, Qpm)

for the plant model (Σ, L, Lm) and

Autspec = (Qspec, Σ, fspec, qspec0, Qspec)

for the specification (Σ, Lspec, Lspec), respectively. Then,

Lspec ∩ Lm = Lm(Autp × Autspec).

(ii) Alternatively, we can directly work with the language L̃spec

and define an automaton realisation

Ãutspec = (Q̃spec, Σspec, f̃spec, q̃spec0, Q̃spec).

The desired language intersection is then generated by

Lm ∩ P−1
spec(L̃spec) = Lm(Autp ‖ Ãutspec).

Clearly, this option is much more economical, as the number
of transitions in Ãutspec will in general be much less than in
Autspec.

Example 5.5 Let us reconsider the simple water reservoir from
Example 5.1 with event set Σ = {o, o, e, e}. A finite automaton
realisation

Autp = (Qp, Σp, fp, qp0, Qpm) (5.23)

for the plant model has already been determined in Example 5.2.
Recall that the specification is that strings beginning with ooe are
not allowed, i.e., the specification language is

Lspec = Σ∗ \ {ooe . . .} . (5.24)

99

5 Supervisory Control

ō, e, ē

o, ō, e, ē

o ō

o, e, ē

ē, o, ō

α β γ δ

Figure 5.8: Automaton realisation for Lspec.

We can easily find a finite automaton Autspec generating Lspec. It
is depicted in Figure 5.8 and works as follows: The state δ can
be interpreted as a “safe state”. Once this is reached, all strings
from Σ∗ are possible. Clearly, if the first event is not o, it can be
followed by any string in Σ∗ without violating the specifications.
Hence, o, e, e will take us from the initial state α to the “safe state”
δ. If the first event is an o, this will take us to state β. There,
we have to distinguish whether o occurs (this will result in a
transition to γ), or any other event. In the latter case, violation
of the specification is not possible any more, hence this takes us
to the safe state δ. Finally, in γ, anything is allowed apart from e.
As the specification is not supposed to introduce any additional
marking, we set Qspec,m = Qspec = {α, β, γ, δ}.
The desired language intersection is then provided by

Lm ∩ Lspec = Lm(Autp × Autspec) , (5.25)

and the product automaton Autp× Autspec is shown in Figure 5.9.

o

ō

o

ē

o
ō

ee

Figure 5.9: Autp × Autspec for Example 5.5.

100

5.5 Controller Realisation

Note that we could also express our specification on the reduced
event set Σspec = {o, e}. The specification language would then
be

L̃spec = Σ∗spec \ {oe . . .} . (5.26)

An automaton realisation Ãutspec for L̃spec is shown in Figure 5.10.
The desired language intersection is now provided by

o o

e

o, e

Figure 5.10: Automaton realisation for L̃spec.

Lm ∩ P−1
spec(L̃spec) = Lm(Autp ‖ Ãutspec) , (5.27)

and the parallel composition Autp ‖ Ãutspec is shown in Fig-
ure 5.11. ♦

ē

o

e

ō
o

o

ō

e

Figure 5.11: Autp ‖ Ãutspec for Example 5.5.

5.5.4 Realising least restrictive implementable control

Recall that, on the basis of a finite automaton Autp realising the
plant model P = (Σ, L, Lm) and a finite automaton Autspec real-
ising the specifications (Σ, Lspec, Lspec), or, equivalently, Ãutspec

realising (Σspec ⊆ Σ, L̃spec, L̃spec)), we can compute

Autps := Autp × Autspec

= Autp ‖ Ãutspec

= (Qps, Σ, fps, qps0, Qpsm)

101

5 Supervisory Control

with

K̂ = Lm(Autps)

= Lm ∩ Lspec (5.28)

= Lm ∩ P−1
spec(L̃spec)

as the potentially least restrictive marked closed loop language
and K̂ as the potentially least restrictive closed loop (and con-
troller) language. Note that a realisation of (Σ, K̂, K̂) is provided
by

AutK̂ := CoAc(Autps)

= (QK̂, Σ, fK̂, qK̂0, QK̂m)

as Autps may be blocking.
We now need a mechanism to decide whether K̂ can be achieved
by an implementable controller. If yes, K̂ = L(AutK̂) is the least
restrictive (or maximally permissive) implementable controller. If
not, we will need an algorithm to determine a realisation for the
least restrictive controllable sublanguage K̂↑ of K̂.
We know that K̂ can be achieved by an implementable controller
if and only if conditions (i), (ii) and (iii) in Theorem 5.2 hold for
K = K̂. Because of the specific form (5.28) of the target language
K̂, (i) and (iii) hold (see Section 5.4). Hence, we only need
an algorithm to check condition (ii) in Theorem 5.2. For this,
introduce

ΓK̂((q1, q2)) := {σ ∈ Σ | fK̂((q1, q2), σ) is defined}
Γp(q1) := {σ ∈ Σ | fp(q1, σ) is defined} ,

where fK̂ and fp are the transition functions of the automata
AutK̂ and Autp, respectively. Then, (ii) holds for K̂ if and only if

Γp(q1) \ ΓK̂((q1, q2)) ⊆ Σc (5.29)

for all (q1, q2) ∈ QK̂. If (5.29) is not true for some (q1, q2) ∈ QK̂,
this state and all the transitions originating in and ending in it
are removed to give an automaton AutK̃ with marked language

K̃ = Lm(AutK̃) .

We apply the procedure consisting of CoAc- and Ac-operations1

and the subsequent removal of states that violate (5.29) recur-
sively, until

Γp(q1) \ ΓK̃((q1, q2)) ⊆ Σc

1 The Ac-operation can always be included, as it does neither affect the language
nor the marked language.

102

5.6 Control of a Manufacturing Cell

holds for all (q1, q2) ∈ AutK̃. The resulting (non-blocking) au-
tomaton is AutK̂↑ , and its marked language is

K̂↑ = Lm(AutK̂↑) .

Example 5.6 We now apply this procedure to the automaton

Autps = (Autp × Autspec)

from Example 5.5. As this Autps is nonblocking, we have

AutK̂ = Autps .

Clearly, (5.29) does not hold for state (Med, γ) in QK̂. There,

Γp(Med) = {o, e}
ΓK̂(Med, γ) = {o}

and therefore

Γp(Med) \ ΓK̂(Med, γ) = {e} * Σc .

Removing this state (plus the corresponding transitions) provides
AutK̃ as shown in Figure 5.12. Applying the CoAc-operation

o
o

ē

ō

ee

Figure 5.12: AutK̃ for Example 5.6.

results in the automaton shown in Figure 5.13. Now (5.29) is
satisfied for all (q1, q2) in the state set of CoAc(AutK̃). Hence

AutK̂↑ = CoAc(AutK̃)

is the desired controller realisation. ♦

5.6 control of a manufacturing cell

In this section, the main idea of SCT will be illustrated by means
of a simple, but nontrivial, example. The example is adopted

103

5 Supervisory Control

o

ē

ō

ee

Figure 5.13: CoAc(AutK̃) for Example 5.6.

from [9]. The manufacturing cell consists of two machines and
an autonomous guided vehicle (AGV). Machine 1 can take a
workpiece from a storage and do some preliminary processing.
Before it can take another workpiece from the storage, it has to
transfer the processed workpiece to the AGV. Machine 2 will then
take the pre-processed workpiece from the AGV and add more
processing steps. The finished workpiece then has again to be
transferred to the AGV, which will finally deliver it to a conveyor
belt. From a high-level point of view, we need the following
events to describe the operation of the machines and the AGV.

The event set for machine 1 is ΣM1 = {M1T, M1P}, where M1T
signifies the event that a workpiece is being taken from the
storage, and M1P is the event that a workpiece is transferred
from machine 1 to the AGV. M1T is a controllable event, whereas
M1P is not controllable: if machine 1 is finished with a workpiece
it will have to transfer it to the AGV. An automaton model for
machine 1 is shown in Fig. 5.14.

M1P

M1T

Figure 5.14: Automaton model M1 for machine 1.

The event set for machine 2 is ΣM2 = {M2T, M2P}, where M2T
represents the event that a preprocessed workpiece is transferred
from the AGV to machine 2, and M2P signifies that the finished
workpiece is put from machine 2 to the AGV. As for machine
1, M2T is a controllable event, whereas M2P is not controllable.
The automaton M2 (Fig. 5.15) models machine 2.

104

5.6 Control of a Manufacturing Cell

M2T

M2P

Figure 5.15: Automaton model M2 for machine 2.

The event set for the AGV consists of four elements: ΣAGV =

{M1P, M2T, M2P, CB}, where CB represents the event that a
finished workpiece is being transferred from the AGV to the
conveyor belt. CB is not controllable. We assume that the AGV
has capacity one, i.e., it can only hold one workpiece at any
instant of time. A suitable automaton model, VEH, is shown in
Figure 5.16.

M1P

M2P

CB

γ

M2T

α
β

Figure 5.16: Automaton model VEH for the autonomous guided
vehicle.

In state β, the AGV is not loaded; in state α, it is loaded with a
preprocessed workpiece from machine 1; in γ, it is loaded with a
finished workpiece from machine 2.
In a first step, we set up the plant model by parallel composition
of the three automata M1, M2, and VEH. As ΣM1 ∩ ΣM2 = ∅,
the parallel composition M := M1 ‖ M2 reduces to the “shuffle
product”. This is shown in Figure 5.17, and Autp = M ‖ VEH is
depicted in Figure 5.18.
Let’s first assume that the only requirement is that the closed
loop is non-blocking, i.e., Lspec = (ΣM1 ∪ ΣM2 ∪ ΣAGV)

∗. It is
indeed easy to see from Figure 5.18 that the uncontrolled plant,
Autp, may block. An example for a string of events that takes the
plant state from its initial value into a blocking state is

M1T, M1P, M1T, M2T, M1P, M1T .

In the state reached by this string, both machines are loaded with
workpieces, and the AGV is also loaded with a preprocessed
workpiece, i.e., a workpiece which is not ready to be delivered to
the conveyor belt.

105

5 Supervisory Control

M1T

M1P

M2PM2T

M1T

M1P

M2T M2P

Figure 5.17: M = M1 ‖ M2.

M1T

M2P

M1T

M1P

M1T

M2TM1T

M1TM2T

M1P

CB

M2P

CB

Figure 5.18: Realisation of plant model, Autp = M ‖ VEH.

Note that an automaton realisation Autspec for Lspec is trivial. Its
state set is a singleton, and in this single state all events from
Σ = ΣM1 ∪ ΣM2 ∪ ΣAGV can occur.
The first step in the controller synthesis procedure outlined in
the previous section is to compute

AutK̂ = CoAc(Autp × Autspec)

= CoAc(Autp) .

106

5.6 Control of a Manufacturing Cell

This is shown in Figure 5.19. When investigating AutK̂, we find

M1T

M2P

M1T

M1P

M2TM1T

M1TM2T

CB

M2P

CB

Figure 5.19: AutK̂ = CoAc(Autp).

that (5.29) is violated in the state indicated by �, as a transi-
tion corresponding to an uncontrollable event has been removed.
Hence, we remove � (plus all transitions originating and end-
ing there). This, however, gives rise to a blocking automaton.
Applying the CoAc-operation for a second time results in the
automaton shown in Figure 5.20. For this automaton, (5.29) is sat-
isfied in all states; it is therefore the desired controller realisation
AutK̂↑ .
Let us assume that apart from non-blocking, we have another
specification. Namely, it is required that each M2P event is imme-
diately followed by a CB event. The corresponding specification
can be realised by the automaton Autspec shown in Figure 5.21.
The corresponding automaton Autps = Autp × Autspec is de-
picted in Figure 5.22. We then compute AutK̂ = CoAc(Autp ×
Autspec) and perform the discussed controller synthesis proce-
dure. The resulting AutK̂↑ is shown in Figure 5.23.

107

5 Supervisory Control

M1T

M2P

M1T

CB

M2P

CB

M2T

M1P

Figure 5.20: Realisation of least restrictive controller AutK̂↑ .

CB

M2P

M1T, M1P, M2T, CB

Figure 5.21: Specification automaton Autspec.

108

5.6 Control of a Manufacturing Cell

M2P

M1T

M1P

M1T

M2TM1T

M1TM2T

M1P

CB

M2P

CB

Figure 5.22: Autp × Autspec.

M1T

M2T

M2P

CB

M1P

Figure 5.23: Realisation of least restrictive controller AutK̂↑ .

109

5 Supervisory Control

110

B I B L I O G R A P H Y

[1] F. Baccelli, G. Cohen, G. J. Olsder, and J.-P. Quadrat. Synchro-
nization and Linearity – An Algebra for Discrete Event Systems.
Wiley, 1992.

[2] C. Cassandras, S. Lafortune, and G. Olsder. Discrete Event
Systems. In Trends in Control – A European Perspective, pages
217–291. Springer, 1995.

[3] C. G. Cassandras and S. Lafortune. Introduction to Discrete
Event Systems. Springer, 2nd edition, 2008.

[4] G. Cohen, P. Moller, J.-P. Quadrat, and M. Viot. Algebraic
tools for the performance evaluation of discrete event sys-
tems. In IEEE Proceedings: Special issue on Discrete Event
Systems, pages 39–58, 1989.

[5] L. Hardouin, B. Cottenceau, Y. Shang, and J. Raisch. Control
and state estimation for max-plus linear systems. Foundations
and Trends® in Systems and Control, 6(1):1–116, 2018.

[6] R. Kumar and V. Garg. Modeling and Control of Logical Discrete
Event Systems. Kluwer Academic Publishers, Boston, USA,
1995.

[7] J. O. Moody and P. J. Antsaklis. Supervisory Control of Discrete
Event Systems Using Petri Nets. Kluwer Academic Publishers,
1998.

[8] P. J. Ramadge and W. M. Wonham. Supervisory control of
a class of discrete event processes. SIAM Journal on Control
and Optimization, 25(1):206–230, 1987.

[9] P. J. Ramadge and W. M. Wonham. The control of discrete
event systems. In Proceedings of the IEEE, volume 77, pages
81–98, 1989.

[10] W. M. Wonham. Course Notes: Supervisory Control of Discrete-
Event Systems. Available online at http://www.control.

toronto.edu/cgi-bin/dldes.cgi.

111

http://www.control.toronto.edu/cgi-bin/dldes.cgi
http://www.control.toronto.edu/cgi-bin/dldes.cgi

	Introduction
	Discrete-Event Systems
	Course Outline

	Petri Nets
	Petri Net Graphs
	Petri Net Dynamics
	Special Classes of Petri Nets
	Analysis of Petri Nets
	Petri net properties
	The coverability tree

	Control of Petri Nets
	State based control – the ideal case
	State based control – the nonideal case

	Timed Petri Nets
	Timed Petri Nets with Transition Delays
	Timed Event Graphs with Transition Delays
	Timed Petri Nets with Holding Times
	Timed Event Graphs with Holding Times

	The Max-Plus Algebra
	Introductory example
	Max-Plus Basics
	Max-plus algebra and precedence graphs
	Linear implicit equations in max-plus
	State equations in max-plus
	State equations in max-plus – an alternative approach
	The max-plus eigenproblem
	Linear independence of eigenvectors
	Cyclicity
	The Case of Reducible Matrices

	Supervisory Control
	SCT Basics
	Plant Model
	Plant Controller Interaction
	Specifications
	Controller Realisation
	Finite automata with marked states
	Unary operations on automata
	Binary operations on automata
	Realising least restrictive implementable control

	Control of a Manufacturing Cell

