

M. Kleinhappl

Present poster was prepared for the 3^d. international Gas Analysis Workshop, about detail

'tar & sulptur' sampling and analysis. *21st. European Conference about Biomass in Kopenhagen June 2013.*

In detail the poster is presenting specific knowledge, which is relevant within the working area

Specific experience in this item is useful for comprehension.

BIOENERGY 2020+ GmbH

Inffeldgasse 21 b

T +43 (0)316 873-9201

F +43 (0) 316 873-9202

www.bioenergy2020.eu

centre@bioenergy2020.eu

A 8010 Graz

of sampling and analysis

substances mechanisms

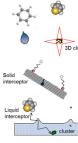
interceptors

accumulator

bio<mark>energy</mark>2020+

Mechanisms and facts in accumulative sampling of condensable and volatile organics: substance/interceptor/mass transfer $\leftarrow \rightarrow$ equilibrium

General


Accumulative sampling procedures of volatile organics underlie combined mechanisms of mass transfer, phase transition and equilibrium.

extraction of the sampling gas is often already The accompanied from beginning phase transition like resublimation and condensation, or the deposition of solid and liquid aerosols. Afterwards the expected accumulation from the 'gas phasis' on solid substrates (SPA/SPE) or in cooled solvents is carried out. Extraction of the sampling gas is very often combined with the solid precipitation of particulate and aerosol matter from the sampling gas. A certain share of this collection is desired, but side effects like adsorption, aerosol interception not (Figure 2).

In accumulation itself a complete capture should be reached, but is interfered from water content. Finally the type of sample produced should be best compatible with the planned analysis, by means of identification and quantification.

Effects during sampling

If sampling gases are extracted from a process flow the following effects are occurring:

VLE, VSE for a solution of compounds in solvents Gas phase status, over-critical; sub-critical Formation of droplets: Liquid (condensation):

10^x molecules Formation of **crystals**: **Solids** (re-sublimation): in solid lattice

Adsorption: Energetically forced fixation of clusters on surface, also pore / cavity condensation div. mechanisms, degrees

Condensation: stable liquid phase

Absorption: VLE-Interaction into homogenous liquid phase (solvent...)

Substance classes, pure substances

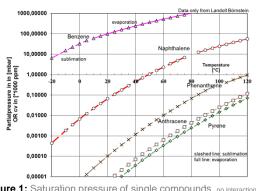
The following organic substances of Table 1 are representative for sampling. (Fullerenes, asphaltenes not included)

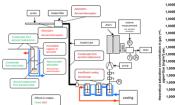
Table 1: Data of common substances (pyrolysis only reference substances)

	formular	molar mass [g/mol]	boiling point [°C]	melting point [°C]		formular		boiling point [°C]	melting point [°C]
benzene	CeHe	78,11	80,1	5,5	napthalene	C10H8	128,16	218	8
toluene	C7H8	92,14	111	-95	ace-napthalene	C12H8	152,2	275	9
xylene(-s)	C ₈ H ₁₀	106,17	138-144	-25,2-13,8	acetyl-napthalene	C12H10	154,21	279	9
styrene	C ₈ H ₈	104,15	145	-30,6	fluorene	C13H10	166,22	295	11
ethylbenzene	C ₈ H ₁₀	106,17	136	-95	phenanthrene	C14H10	178,22	340	10
guaiacol	C7H8O2	124,13	205	27-29	anthracene	C14H10	178,22	342	21
eugenol	C10H12O2	164,2	253	-9	fluoranthrene	C16H10	202,26	393	11
furfural	C ₅ H ₄ O ₂	96,08	167	-37	pyrene	C ₁₆ H ₁₀	202,26	404	15
thiophene	C4H4S	84,14	84	-38	a-phenylene anthracene	C18H12	228,29	435	15
benzothiophene	C₀H₅S	134,2	222	28-32	chrysene	C18H12	228,29	448	25
dibenzothiophene	C ₁₂ H ₆ S	184,26	332	97-100	b-phenylene-flouorene	C20H12	252,32	393	16
					bk-f	C20H12	252,32	480	21
					ba-p	C20H12	252,32	496	17
					indeno(1,2,3,c,d)-pyrene	C22H12	276,34	534	16
					di-benzo (a,h) anthracene	C22H14	278,35	535	26
					benzo(g,h,l)perylene	C22H12	276,34	542	27

Saturation pressure of single substance

The most descriptor of present substances is the saturation pressure (Figure 1): For high melting substances sublimation (solid-gas; table 1) must be considered.




Figure 1: Saturation pressure of single compounds, no interaction

Visualisation of common known effects

A typical setting of a sampling line is shown in the Figure 2 and good an bad effects are indicated, right side concentration is shown.

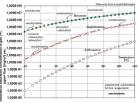
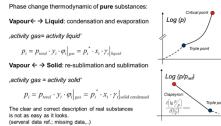
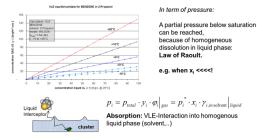



Figure 2: Equipment of sampling line with real-effects


Section	Mechanism	Reversibility	others	
Sampling probe	Aerosol interception, adsorption	De/Dedsorption	Polymerisation can occur	
Particulate filter	ausorption			
Transfer line	Condensation Aerosol growing	Aerosol evaporation	Gas/liquid interaction	
SPE/SPA-cartridge	Condensation Adsorption	Desorption Dissolution	'overheating' Polymerisation can occur	
Impinge tube	Condensation Aerosol growing	Dissolution	Cooling	
Gas distributor	clouding Aerosol growing	Deposition residues	Gas/liquid interaction	
Buble swarm	Traditional mass transfer subcooling	Equilibrium Cooling		

Interaction of substances: VLE-limits

Equilibrium effects VLE

In Figure 3 the VLE of benzene in different solvents is selected:

Capture Efficiency: e.g. accumulation in liquid

In Figure 4 the situation of 'in stationary' capture is shown:

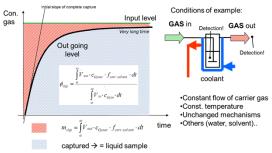


Figure 4: Phases of complete capture, transition & saturation

SFG DD

Das Land

Steiermark

Comparative descriptors of capture potential is: [k.A] of a bubble-swarm: This can include all effects (Figure 2) after the transfer-line. In a Figure 'capture efficiency' the situation of 'in stationary' capture is shown (other poster).

COMÉT