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Abstract

One-pot heterogeneous catalysis with different active centers offers great potential for increasing yield and

selectivity. In this field, the distance between the different catalytically active centers starts playing a role

and its influence as well as its control is an open question. Here, porous core-shell particles provide the

opportunity to control the distance on a mesoscopic scale, where the centers are placed on different shells

and are separated by an inert porous matrix. We present a continuum-mechanical model of such particles

and exploit symmetry to arrive at a computationally efficient reduced model. Using methanol synthesis

from CO2 on the first kind of center followed by a dimethylether synthesis on a second kind of center as an

example, we investigate the influence of the distance between these two centers. In particular, we consider

three simple backcoupling mechanisms and address the question whether it is best to place the centers as

close as possible or at a non-zero optimal distance. We find that this question can not a priori be answered

but the answer depends largely on the employed backcoupling mechanism.
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Nomenclature

Abbreviations

CMPs conjugated microporous polymers

CSTR continuously stirred tank reactor

COFs metal-organic frameworks

Da Damköhler Number

DME dimethylether

DS dummy species

FBR fixed bed reactor

MeOH methanol

MOFs metal-organic frameworks

RWGS reverse water gas shift

Greek Symbols

α sensitivity factor

γ tortuosity

δ distance of catalytic shells

εεε energy flux, J m−2 s−1

ε porosity

κ thermal conductivity, W m−1 K−1

φ sphere coordinate

σ integral particle production rate,

kg s−1

θ sphere coordinate

Θ adsorption coverage

τ production rate, kg s−1 m−2

π Ludolph’s number

ψ energy flow, W

Ω subvolume

Latin Symbols

a solution coefficient

A active site density, kgcat m−2

b solution coefficient

c solution coefficient

C concentration, molm−3

d solution coefficient

D diffusion coefficient, m2 s−1

eeer radial unit vector

F flow, kg s−1 or mol s−1

h specific enthalpy, J mol−1

jjj molar flux, mol m−2 s−1

J coefficient matrix

k kinetic parameter, various units

K equilibrium parameter, various units

K number of particles

L number of reactions

m molar mass, kg mol−1

M number of subvolumes

nnn normal vector
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N number of species

p pressure, bar

r radial coordinate, m

rl turnover frequency function,

mol kg−1cat s−1

R radius, m

R universal gas constant, J mol−1 K−1

S singular surface

S selectivity

T temperature, K

x mole fraction, %

X conversion

y mass fraction

Y spherical harmonics

Y yield

Z selectivity

z vector of unknown variables

Indices

ξ subvolume

i species

j species

k particle

l reaction

l spherical harmonics index

m spherical harmonics index

p parameter index

Superscripts

act. activation

gas gas phase

in entering reactor

kg mass based

mol mole based

P pore

reac. reaction

+ dimensionless
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1. Introduction

With the world’s growing demand for high value chemical products and the need to transform chemical

process industry to be based on sustainable resources, new heterogeneous catalysts and concepts need to

be developed to achieve an economically and resource efficient operation [1]. One promising approach to

increase catalyst efficiency is multifunctional (or one-pot) catalysis, where multiple different active centers

within the same reaction chamber conduct different catalytic sub-cycles of a target conversion process [2].

An open question in this field is how the distance between the active sites influences the catalytic efficiency

[3]. Intuitively, one might think ”the closer the better”, and the intimacy criterion [4] was employed for

justification [5, 6]. However, there are prominent examples where this rule does not apply [2, 7, 8] and there

is therefore the need to control the distance.

One approach to control the proximity on the mesoscale are catalytic core-shell particles [9, 10], which

can outperform monofunctional catalysts when designed properly [11]. In the bifunctional case, those

incorporate two different active sites, one located at the inner core, one located at the outer shell. Between

both catalytically active layers, a porous, inert matrix (e.g. zeolites, MOFs, COFs or CMPs ) can be placed

to separate both catalytically active sites [12]. For this matrix to have an effect, intraparticle transport

phenomena must play a key role for the interaction of the two catalysts. Understanding of these effects

is crucial for a proper design of such catalyst particles, which is not yet the case. A methodology for the

synthesis of mesoscale core-shell particles has been established that allows for tuning of essential structural

parameters [13]. This allows to separately adjust the catalyst loading of core and shell as well es the size

of the different parts of the particles. The variety of synthesis parameters requires a rational design of such

catalysts for their optimal performance.

We present a continuum mechanical model for coupled reaction and transport processes in such core-

shell particles with two different catalytically active centers. We exploit the typically weak concentration

dependence of diffusion coefficients as well as symmetry to reduce the resulting set of non-linear coupled

partial differential equations to a set of just a few algebraic equations. This allows for an efficient coupling

of the particle model to macroscopic reactor models. As a showcase, we employ a Continuously Stirred Tank

Reactor (CSTR) model and bifunctional particles for the synthesis of dimethylether (DME) from CO2 and

hydrogen. These particles consist of a CuO/ZnO/Al2O3 catalyst at the core for the synthesis of of methanol

(MeOH) and H-ZSM-5 zeolite catalyst at the outer shell for the conversion of MeOH to DME. A similar

kind of model for core-shell particles with the same combination of catalysts has already been investigated

in a previous study [14] , however, with a different focus. Our particle model primarily differs from that
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employed in ref. [14] in that we allow for a separating inert matrix and that we model the H-ZSM-5 as a

singular surface. On the one hand, this allowed for the reduction to an algebraic set of equation, in contrast

to the differential equation model in ref. [14] . Thereby, we significantly increased the computational

efficiency. On the other hand, this reduces the complexity such that a detailed discussion of the influence of

the distance and the transport does not become overly involved. In summary, the existing model [14] might

be more accurate but the proposed model should be better suited for numerical optimization in regards of

catalyst loading and core-shell distance. Also, the existing model will be more accurate for thick shells of

H-ZSM-5 around the core. Our model instead targets at those recent developments in synthesis, where the

two catalysts are deposited in thin shells and separated by an inert porous matrix [13]. In such cases the

modeling of both catalytically active domain as singular surfaces is well justified.

Whether the modeling of the catalytic shells as singular surfaces or extended domains is appropriate,

depends on the employed catalysts, shell thickness, transport properties of the shells etc. and, of course, the

research question. For the purpose of this study, we find that this basic assumption is well justified, because

we target at a qualitative understanding and use a model system instead of a quantitative model of some real

life experiment. With our reduced model, we investigate whether there is a non-zero optimal distance where

conversion or selectivity gets maximized. We particularly focus on the influence of a possible backcoupling

due to the possibility that DME interacts with the MeOH synthesis catalysts. This is an aspect, which is

not present when conducting both steps sequentially in two different chambers and which, therefore, is not

accounted for in the employed of-the-shelve kinetic models for CuO/ZnO/Al2O3[15] and H-ZSM-5 [16]. To

discuss this, we introduce three simple backcoupling mechanisms: i) no backcoupling, i.e. DME does not

even adsorb on CuO/ZnO/Al2O3, ii) poisoning of CuO/ZnO/Al2O3 by DME using Langmuir adsorption,

and iii) DME undergoing a reaction to an unwanted side product on CuO/ZnO/Al2O3. Another possible

interaction of the two reactions, the adsorption of water at the ZSM-5 will not be considered here, because

it causes no side product but only an inhibition of the active sites of the second catalytic conversion since

it will not be possible to distinguish between the impact of the produced water from both reactions.

We find that for i) and ii) the optimal distance is actually zero, with the only difference that the poisoning

lowers the conversion. If we allow DME to undergo a side reaction the optimal distance instead is non-zero.

To shine light into this, we have conducted a sensitivity analysis (cf. Appendix B) in a generalization of the

concept of the Degree of Rate Control known from reaction kinetics for the determination of rate-determining

steps. Depending on the distance, the activity is controlled by an interplay of transport and kinetics and

the maximum of case iii) is characterized by a change of the dominant controlling factors, where, for small
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distances, the side reaction and the transport of its product have a large negative impact which vanishes for

distances larger than the optimum.

2. Theory and model details

In this study, we want to consider a reaction chamber packed with the afore mentioned core-shell particles

and gaseous reactants and products. Because of the typical large differences between particle size and reactor

volume, this intrinsically is a multiscale problem. In Fig. 1, the schematic assembly of a reactor filled with

catalyst particles is shown together with the phenomena taking place at different scales [17]. On the largest,

the device scale, we have the conditions at the inlet, total flow and heat provided to the reactor and the

reactor response, i.e. the concentrations of the reactants and products at the outlet. On a smaller scale, we

consider the coarse distribution of species in the chamber. That is we divide the chamber into subvolumes,

each of which typically still contains a large number of particles, and look at the amount of each species in

each subvolume. Looking closer at these subvolumes, on scale of multiple particles, we actually resolve the

concentration and transport of the gas around the individual particles. Generally, there might be gradients

in the surrounding gas phase, but, on the scale of the particle diameter, transport is dispersion controlled

and the surrounding gas can often be assumed homogeneous. Finally, we have diffusion and reaction within

a single core-shell particle. In this study, we consider particles which primarily consist of porous inert

material. Catalysts material is only present in thin concentric shells around the origin of the particle.

Because transport can be much slower in a porous material than in a gas, significant concentration gradients

can build up within a single particle and must be accounted for.

We derive a simple model to describe the coupled kinetics and transport in spherical particles and employ

established empirical rate expressions. We couple this to a reactor model using a continuously stirred tank

reactor (CSTR) as an example, where the extension to more complex reactor models is straightforward. In

principle, this multiscale approach could also be extended to incorporate even quantum-chemical scales by

adapting the approach presented in ref. [18] .

Our reduced particle model relies on four assumptions. First, there is the mentioned homogeneity of the

surrounding gas phase on the particle scale, such that a particle experiences the same gas phase conditions

over its whole surfaces. Whether or not this is a valid assumption depends on the particle size and the

reactor setup, such as geometry and flow rate, but, for larger particles, also the general activity of the

particles. Further, we will exploit spherical symmetry, which, of course, is an idealization, and depends on

the catalyst preparation. We will model the catalytic shells as singular surfaces, which requires that the
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composition and temperature within a shell shows negligible variations in normal (radial) direction. This

depends on the nature and amount of the catalyst in the shell as well as the transport through it. This

is a common (implicit) assumption in reactor modeling of catalysts supported on (non-porous) particles.

Finally, we neglect any spatial and concentration/temperature dependence of the transport coefficients and

the specific enthalpies in the inert layers between the active shells. Considering the high sensitivity of kinetic

models on concentration and temperature and the typical large uncertainty, this can be considered a rather

weak assumption. For the coupling of the particle model to the reactor model, we will further assume that

all particles are identical. While not absolutely necessary, this leads to a particularly efficient hybrid model.

Figure 1: Different transport phenomena in generic reactor filled with catalyst on different scales, adapted from [17]

2.1. Core-Shell Model

We consider the transport and reaction of N species in a spherical porous particle of radius R and,

therefore, we work in spherical coordinates (r, φ, θ). We assume that the solid matrix is at rest and rigid.
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Reactions happen only within singular surfaces Sξ located at 0 < R1 < . . . < Rξ < RM = R and we use

the convention that the normal vector on these surfaces is the unit vector eeer pointing in r-direction. These

decompose the volume of the particle into M subvolumes Ωξ = {(r, φ, θ)|Rξ−1 < r < Rξ}, where we used

the convention R0 = 0. We assume that within Ωξ all fields are twice differentiable and a superscript (ξ) is

used to distinguish the field values within the subdomains. We use the convention that ξ = M + 1 denotes

the gas phase surrounding the particle.

A sketch of such a core-shell particle with two active layer S1 and S2 is shown In Fig. 2.

Figure 2: Sketch of representative particle with two reactive shells. The inner shell located at R1 represents catalyst A (here
Cu/ZnO), the outer shell at R2 represents catalyst B (here ZSM-5). Region I: Core, no transport;Region II: porous support,
Knudsen Diffusion; Region III: surrounding gas phase (here CSTR-behavior)

2.1.1. Inert Porous Medium

The starting point for our particle model are the balance equations the species’ mass at steady state for

the subvolumes Ωξ, ξ ∈ [1,M ] of the single particle, which are filled with a catalytically inactive porous

material. For simplicity, we assume that species transport within Ωξ is governed by Knudsen diffusion, i.e.

we have for the mass flux jjj
(ξ)
i of the i-th species jjji = −miD

(ξ)
i ∇C

(ξ)
i , where mi is the mass of a molecule

of species i, D
(ξ)
i is diffusion coefficient and C

(ξ)
i is the molar concentration. (Intrinsic) heat conduction is

assumed to obey Fourier’s law and the total energy flux εεε is then εεε = ∇κ(ξ) · T (ξ) −
N∑
i=1

hiD
(ξ+1)
i ∇Ci, where

κ is the thermal conductivity and hi is the specific enthalpy. The steady state balance equations for the

bulk (within Ωξ) read then
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species balance: ∇ ·miD
(ξ)
i ∇C

(ξ)
i = 0, (1)

energy balance: ∇ · κ(ξ)∇T (ξ) +

N∑
i=1

∇ · h(ξ)i D
(ξ)
i ∇C

(ξ)
i = 0, (2)

where the zero on the right hand side of eqn. (1) and (2) results from the fact that we neglected direct

reactions of gas phase species and the assumed the porous matrix to be inactive and further neglected

radiative heat transfer.

2.1.2. Singular surfaces

The transport equations of the different inert domains (1) and (2) are connected by jump conditions

at the reactive singular surfaces Sξ, ξ ∈ [1,M ]. For this, we utilize the balance equations for singular

surfaces[19] and neglect tangential transport within the surface, as it is common in reactive flow modeling

of catalytic processes [20]. Further, we employ the requirement that concentrations and temperature are

continuous across the singular surfaces. This requirement is reasonable considering that the catalytic shells

are assumed to be rather thin and, therefore, no significant normal variations can build up within a shell.

For the M − 1 inner shells, this leads to the equations on Sξ, ξ ∈ [1,M − 1]

continuity species: C
(ξ)
i = C

(ξ+1)
i , (3)

continuity temperature: T (ξ) = T (ξ+1), (4)

species balance: − [miD
(ξ)
i ∇C

(ξ)
i −miD

(ξ+1)
i ∇C(ξ+1)

i ] ·nnn = τ
(ξ)
i , (5)

energy balance: [κ(ξ)∇T (ξ) +

N∑
i=1

h
(ξ)
i D

(ξ)
i ∇C

(ξ)
i − κ

(ξ+1)∇T (ξ+1)−

N∑
i=1

h
(ξ+1)
i D

(ξ+1)
i ,∇C(ξ+1)

i ] ·nnn = 0 (6)

where τ
(ξ)
i is the rate of production of species i in the shell ξ and nnn is the normal vector pointing into Ωξ+1.

The left hand sides of (5) and (6) represent the flux of species and energy into Sξ and this must balance

with the production terms on the right hand sides.

We assume that we have L chemical reactions each having its own intrinsic turnover frequency function

rl(Ci, T ), returning the number of reactions per time and active site. For generality, we assume that each

reaction can have its own type of active site. In this way, we also distinct two reactions with the same
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stoichiometry but appearing nanoscopically at different active sites, e.g. on different catalyst materials or

terminations. We assume that, nanoscopically, the different catalyst particles within a singular surface see

the same partial pressures and temperature and that these equal the continuum level partial (pore) pressure

and temperature. Then, we can write

τ
(ξ)
i = mi

L∑
l=1

νi,lA
(ξ)
l rl(C

(ξ)
i , T (ξ)) (7)

where νi,l is the stoichiometric coefficient and A
(ξ)
l is the number of active sites of the reaction l in the

surface Sξ per unit surface area.

For the remaining surface SM , i.e. the interface between the particle and the surrounding gas phase, we

again assume continuity of temperature and concentrations

continuity species: C
(M)
i = C

(M+1)
i (8)

continuity temperature: T (M) = T (M+1) (9)

where, as introduced, T (M+1) and C
(M+1)
i are the temperature and concentrations in the surrounding gas

phase. If these are given, eqn. (1) to (9) form a closed set of equations from which we can determine

concentrations and temperature within the particle. In reality, T (M+1) and C
(M+1)
i will not explicitly be

known, but will need to be determined from a reactor model. Species and energy balances for singular

surface will then serve for coupling the particle with the reactor model, in a similar fashion as eqn. (5) and

(6). In this study, we will consider coarse-grained reactor models, where we do not resolve every particle.

For such models, coupling will be done using the net rate of species and heat production of a single particle.

The rate of net species production σi is given by

σi =

∫
SM

τ
(M)
i + (miD

(M)
i ∇C(M)

i ) ·nnndA (10)

which is nothing than the integrated mass flux of species i from the gas phase into the reactive interface

between particle and surrounding gas phase. Analogously, the rate of heat productions is the integral energy

flux ψ into the reactive interface and is given by

ψ =

∫
SM

[−κ(M)∇T (M) −
N∑
i=1

h
(M)
i D

(M)
i ,∇C(M)

i ] ·nnndA (11)
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. For our reactor model, we will later assume isothermal operation, such that the heat production will not

further be needed.

2.1.3. Model reduction

Given T (M+1) and C
(M+1)
i , Eqn. (1) to (9) is a closed set of equations which we could use to determine

the the unknowns C
(ξ)
i and T (ξ). However, being a set of coupled partial differential equations with nonlinear

jump conditions, their numerical solution is computationally very demanding. We therefore introduce two

reasonable simplifications to arrive at a computationally cheap model, which still captures the main effects.

The first simplification is build upon the observation that eqn. (1) and (2) were linear if D
(ξ)
i , κ(ξ) and

h
(ξ)
i were independent of C

(ξ)
i and T (ξ). For instance, they might be given by their values for the applied

concentrations and temperature and we will employ this simplification. This assumption is rather well

founded as D
(ξ)
i , κ(ξ) and h

(ξ)
i typically only weakly depend on C

(ξ)
i and T (ξ); especially compared to rl,

which usually depends sensitively on both. If we further restrict to those cases where the porous medium

has spatially homogeneous transport properties within each subvolume Ωξ, D
(ξ)
i , κ(ξ) and h

(ξ)
i are simply

constant in Ωξ (but might differ in value between different subvolumes). The system of partial differential

equations (1) and (2) has then the shape J (ξ)∆z(ξ) = 0. Here, z(ξ) = (C
(ξ)
1 , . . . , C

(ξ)
N , T (ξ))T and the coupling

matrix J (ξ) has the entries J
(ξ)
i,j = D

(ξ)
i δi,j for i, j ∈ [1, N ], J

(ξ)
i,N+1 = 0 for i ∈ [1, N ], J

(ξ)
N+1,i = h

(ξ)
i D

(ξ)
i for

i ∈ [1, N ], and JN+1,N+1 = κ(ξ). The matrix J is invertible and we can rewrite the system (1) and (2) as

∆C
(ξ)
i = 0 and ∆T (ξ) = 0. This means that C

(ξ)
i and T (ξ) must be in the null space of the Laplace operator

∆. They can thus be represented as a superposition of regular and irregular solid harmonics[21], i.e. in

spherical coordinates (r, φ, θ)

C
(ξ)
i (r, φ, θ) =

∞∑
l=0

+l∑
m=−l

(a
(ξ)
i,lmr

l + b
(ξ)
i,lm

1

rl+1
)Ylm(φ, θ) (12)

T (ξ)(r, φ, θ) =

∞∑
l=0

+l∑
m=−l

(c
(ξ)
i,lmr

l + d
(ξ)
i,lm

1

rl+1
)Ylm(φ, θ) (13)

where Ylm(φ, θ) are the spherical harmonics. Any choice of the expansion coefficients a
(ξ)
i,lm, b

(ξ)
i,lm, c

(ξ)
i,lm

and d
(ξ)
i,lm solves eqn. (1) and (2) and they are only determined by the jump conditions in eqns. (3) - (9). The

problem has thus be reduced from three dimensions to a problem on the two-dimensional singular surfaces.

The second step is to additionally restrict to spherical symmetric particles. The homogeneity of the

surrounding gas phase then implies that also C
(ξ)
i (r, φ, θ) and T (ξ)(r, φ, θ) are independent of the angles φ
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and θ, if we place the origin at the center of the particle. Since all spherical harmonics except for Y00 depend

on the angles, all expansion coefficients except a
(ξ)
i,00, b

(ξ)
i,00, c

(ξ)
i,00 and d

(ξ)
i,00 must be identical zero. Further,

b
(1)
i,00 = 0 and d

(1)
i,00 = 0, because else the fields would be singular at the origin. A more physical explanation

is that else every spherical subvolume of Ω1 around the origin, would see either a net gain or loss of species

and energy. Without sources or sinks in this subvolume, this would contradict stationarity. The particle

model thus reduces to an algebraic set of equations with O(MN) unknown coefficients.

2.2. Reactor model

The particle model must be complemented with a reactor model for the treatment of the surrounding gas.

In principle, it is possible to simulate the detailed gas transport around the particles using Computational

Fluid Dynamics and couple particle models as ours to it [22]. However, such approaches are computationally

demanding already for a small number of particles. When the particles become small and their number grows,

these approaches become unfeasible. Therefore, coarse-grained models are much more widespread, where

a volume element contains a large number of particles. These are not explicitly resolved, but only their

cumulative action is considered and the gas is assumed to be homogeneous within a volume element.

Here, we employ the simplest of such coarse-grained models, an isothermal and isobaric Continuously

Stirred Tank Reactor. That is, we do not only assume homogeneous concentrations within a volume element

but within the whole reaction chamber. The temperature T (M+1) at the particles’ surfaces is then simply

given by the preset bulk gas temperature T gas. The stationary species mass balance for this type of reactor

model with K core-shell particles is given by

F kg,in(yini − y
(M+1)
i ) +

K∑
k=1

σk,i = 0 (14)

where F kg,in is the total applied mass flow and yini is the applied mass fraction of the i-th species. y
(M+1)
i

is the mass fraction of the i-th species in the chamber. The incoming mass flux F kg,inyini and the outgoing

mass flux F kg,iny
(M+1)
i of species i must balance with the total production of that species by the core-shell

particles. This is given by the sum of the production rates σk,i, given by eq. (10). We want to assume that

all particles are identical such that
∑K
k=1 σk,i = Kσi and σi can thus be determined from a single particle

model. The hybrid model then has roughly M times more unknowns (and equations to solve) than a CSTR

model with simple single shell particles.
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2.3. Computational Implementation

The model was formulated using the in-house model generator tool MOSAICModeling, developed by the

Process Dynamics and Operations Group [23]. The model was generically implemented to be able to handle

L reactions, N species and M porous and inert subvolumes. The cases presented in this study are limited to

M = 2 porous and inert subvolumes, resulting in two reactive singular surfaces, but could easily be adapted

to different conformations, reactions and species involved. The generic equations are instantiated with the

according indices, generating the system of algebraic equations. After defining the parameters, the model is

translated and exported to MATLAB®via a native export function of MOSAICModeling. In MATLAB®,

the system of algebraic equations is solved with the non-linear solver fsolve using the trust-region-dogleg-

algorithm with a residual control of 1× 10−12.

The solution of the nonlinear equation system of the reduced model is calculated within seconds on a

single core. The main advantage lies in not having to solve a system of coupled partial differential equations

on finite volumes, for which at least a workstation with multiple cores if not a computing cluster would have

been necessary. Moreover, the solution is very robust, since no discretization is required.

3. Material and methods

The following section will give an overview of the applied methods and the system we look at in more

detail. Firstly, the applied modeling approaches for the chemistry will be presented for each location in

Fig. 2, followed by a detailed description of the transport phenomena. As mentioned before, in the scope

of this study we will look at bifunctional core-shell catalyst particles, in which two different catalytic active

sites are located as can be seen in Fig. 2. At the inner radius R1 (the core) catalyst A is placed, where the

methanol synthesis reaction is promoted. The second catalyst is located at the outer radius R2 (the shell).

Here, catalyst B promotes the dehydration from methanol to dimethylether. We will consider the particles

to be operated within a CSTR. We will investigate the influence of different values of the distance between

core and shell δ = R2−R1. In all our studies we will keep R1 and the total amount of mass of both catalysts

in the chamber fixed. We employ effective kinetic models of the uncoupled cases from literature for both

reactions. In order to address possible backcoupling, we later extend the kinetic model of catalyst A with

simple models in order to account for poisoning by DME in a first step and DME conversion in a second

step.
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3.1. Chemistry

In the following section we will describe the applied modeling approaches as well as simplifications for

the chemical reactions at each position in the particle.

Core: Region I marks the core region. Here, no chemical reaction is considered to be taking place. It is

assumed that no active sites are located in this region.

Inner surface: At the core’s surface R1, the first catalytically active layer is located. In this article

we will consider catalyst A to be commercially available Cu/ZnO based methanol synthesis catalyst. On

that catalyst, we assume the MeOH synthesis (CO2 + 3 H2 CH3OH + H2O) and the reverse water gas

shift reaction (CO2 + H2 CO + H2O) to be taking place. The reactions are described by the proposed

macrokinetics from [24] with the corrected parameters from [15] with equilibrium constants given by [25].

rRWGS = k5 ·
pCO2 ·

(
1− pCO · pH2O

pH2 · pCO2 ·KRWGS

)
1 +K2 ·

pH2O

pH2

+K3 · (pH2
)0.5 +K4 · (pH2O)

(15)

rMeOH = k1 ·
pCO2 · pH2 ·

(
1− pH2O · pMeOH

(pH2
)3 · pCO2

·KMeOH

)
(

1 +K2 ·
pH2O

pH2

+K3 · (pH2)0.5 +K4 · (pH2O)

)3 (16)

The kinetic parameters kp and the equilibrium constants Kp are calculated by Arrhenius’ equation

kp = k0,p · exp

(
Eact.
p

Rgas · T

)
(17)

Kp = K0,p · exp

(
Ereac.
p

Rgas · T

)
(18)

with the corresponding values for frequency constant k0,p and activation energy Eact.
p and equilibrium pa-

rameter K0,p and free energy of reaction Ereac.
p listed in Table C.2 in Appendix C. Analogically to [24],

who based their statement on [26] and [27], we assume the direct conversion of CO2 to be the major path

towards methanol.

Inert porous material: Region II marks the porous catalytically inactive support material between

the active layers. Here, it is also assumed that no active sites are located.

Outer surface: The outer shell is located in a distance of δ at R2, which also represents the overall

particle radius. At the particle’s surface at R2 catalyst B is located. In this study, we will consider it to

be ZSM-5 for DME dehydration. On that singular surface the dehydration from methanol to dimethylether

(2 CH3OH C2H6O + H2O) is implemented according to the macro-kinetic approach from [16] with the
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equilibrium constant as described by [28].

rDME = k6 · (K7)2 ·
(pMeOH)2 − pDME · pH2O

KDME

(1 +K7 · pMeOH +K8 · pH2O)2
(19)

Reactor: Since we consider the chemical reaction to be exclusively of heterogeneous nature, no reaction

is considered in the gas phase on reactor level.

3.2. Transport

In the following section we will describe the applied modeling approaches as well as simplifications for

the transport at each position in the particle.

Core: In the region I (the core), no net transport occurs. This is due to the symmetrical shape as

discussed before. Eqn. (12) derives to

C
(1)
i (r ≤ R1) = a

(1)
i,00Y00. (20)

Note, we have allowed the core to be porous, but inert. However, its transport properties have no effect on

the model outcome, because all fluxes are zero in steady state and under spherical symmetry. Especially,

the core might be non-porous without affecting the results. The result is a constant concentration in steady

state, independently from the transport resistance in the core.

Inner surface: The transport at the singular surface is described by Eq. (5).

Inert porous material: In region II (inert support) transport is assumed to be well described by

Knudsen Diffusion and the overall species balance Eq. (1). In this study we arbitrarily chose constant

values for tortuosity γ = 1.5, porosity ε = 0.5 and the pore radius RP = 1× 10−8 m just for demonstration

purpose. The relative findings are not affected. Furthermore, for simplification, the diffusivity coefficients

are evaluated at the gas bulk temperature and therefore are constant across r. This can be justified by a

very small temperature change in the particle. The temperature at R1 is less than 0.4 percent lower than at

R2 (cf. Appendix A).

Di =
ε

γ
· 2 ·RP

3
·
√

8 ·Rgas · T gas

π ·mi
(21)

Outer surface: At the very outer surface of the particle, the diffusive fluxes between surrounding gas

phase and particle is defined by Eq. (10).
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Reactor: The transport on reactor level is described by Eq. (14). Here, only transport based on the

macroscopic flow F is considered and the out-going concentrations are determined by the diffusive fluxes

σk,i from the particles.

4. Results and discussion

In this study we carried out simulations for three different test cases with increasing complexity. In all

cases the inner radius of the core-shell particle R1 is held constant while the outer radius R2 is increased

and therefore the distance between the catalysts δ is varied. Please note that the catalyst distance was

varied in several orders of magnitude (1× 10−9 m to 1× 10−3 m). Since the continuum assumption does

not necessarily hold for very low δ values, the interpretation for δ ≤ 1× 10−7 m needs to be done with care.

Despite that, we show the whole range to show the asymptotic behavior since for larger diffusivity constant,

the limiting behavior in the gray marked region would appear at larger scales where the continuum model

would still be valid. Moreover, on the nano-scale other effects like metal ion migration take place which are

currently not considered in the model. Nevertheless, for the purpose of this study, the fundamental investi-

gation of the influence of the distance between different catalysts for various backcoupling mechanisms, the

developed model produces qualitatively comparable results. The design parameters chosen for all showcases

presented in the results are given in Table 1. The variation of the distance between two catalytically active

shells is shown for three different cases.

The results will mainly be discussed using the characteristic global properties on reactor scale of the

CO2-conversion XCO2
, the yield Yi and the selectivity Si defined as follows:

XCO2 =
yinCO2

− y(M+1)
CO2

yinCO2

(22)

Yi =
y
(M+1)
i − yini
yinCO2

mCO2

mi

νCO2

νi
(23)

Si =
Yi

XCO2

, (24)

and the dimensionless Damköhler Number is used to quantify the ratio between reaction kinetics and

diffusivity.

Dal =
rl · δ ·ml

Di · Cgas
i · (R2)

2 (25)
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Table 1: Design parameters for simulation study

Name Parameter value unit

T gas gas bulk temperature 513.15 K
pgas gas bulk pressure 10 bar
R1 core radius 1× 10−4 m
κ thermal conductivity 0.17376 W m−1 K−1

ε porosity 0.5 -
γ tortuosity 1.5 -
RP pore radius 1× 10−8 m
K number of particles 1000 -
F kg,in inlet mass flow 1× 10−4 kg s−1

yinN2
inlet mass fraction 0.36 -

yinH2
inlet mass fraction 0.08 -

yinCO2
inlet mass fraction 0.56 -

Fmol,in inlet mole flow 0.006 56 mol s−1

xinN2
inlet mole fraction 19.6 %

xinH2
inlet mole fraction 61.0 %

xinCO2
inlet mole fraction 19.4 %

mR1 Cu/ZnO catalyst loading 2× 10−5 kg
mR2 ZSM-5 catalyst loading 2× 10−5 kg

4.1. Case I - No Coupling (K0,8 = 0 & k0,9 = 0)

In the basic case presented here, both reactive surfaces are considered not to be coupled, except for the

methanol and the water being relevant in both methanol and dimethylether synthesis. Otherwise, the two

shells are not necessarily affected by each other.

On the left axis, Fig. 3 (a) depicts the yield (Eq. (23)) of DME and methanol for showcase I (no coupling)

for varying catalyst distance by means of a constant inner radius R1 and a variable outer radius R2. The

selectivity towards DME (Eqs. (22) and (24)) is shown on the right axis. Both, yield and selectivity

increase with lowering the distance between the two active shells where the active sites are located. By

decreasing the catalyst distance, the mass transfer resistance between the shells decreases. Therefore, the

educt concentrations for the first reaction (i. e. CO2 and H2) are higher at the inner shell, where they are

consumed, which, in first place, leads to higher reaction rates. As a consequence of a higher MeOH reaction

rate, the concentration at the inner shell increases as well with the flux, since the transport resistance is

low for small catalyst distances. This results in a higher methanol flux to the outer shell where the second

reaction takes place and benefits from more MeOH being transported here, leading to a higher reaction

rate for the DME synthesis reaction. Therefore, for the case without coupling, we see that the closer the

catalysts are, the higher the DME yield and its selectivity. Fig. 3 (b) shows the Damköhler Number as

defined in Eq. (25) for the reactions involved in showcase I. With increasing distance, Da increases, showing
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a distinct maximum at an individual distance for all reactions but generally showing the same developing.

The reaction network is controlled by the MeOH synthesis step, as it shows the lowest Da Number of all.

In Fig. 4 the normalized sensitivities of the yield of DME (a) and the yield of MeOH (b) on selected

parameters (i. e. reaction rate constants and Knudsen Diffusivity constants) are depicted. The sensitivities

have been calculated according the approach outlined in Appendix B. This approach is a generalization of

the concept of the Degree of Rate Control to problems beyond mere kinetics.

• ZrMeOH
: Increasing the MeOH reaction rate constant leads to a higher yield of DME. This is expected

since DME is produced from MeOH. The higher the MeOH production, the larger the educt concen-

tration for the DME synthesis. The amplification decreases for larger distance, due to mass transfer

limitation taking over. As rMeOH shows the highest influence on the yield of both DME and MeOH of

all reaction rates it can be concluded that this reaction is the rate determining step as also indicated

by Fig. 3 (b).

• ZrRWGS : Increasing the reaction rate constant of the RWGS reaction has negative influence on the

DME yield. Here several effects act. Favoring the RWGS produces water, which is also produced in

the other two rations, therefore shifting the equilibrium towards the educt side of all reactions. As can

be seen from Eqs. (15) and (16) the increase of pH2O lowers the reaction rate rMeOH which is passed

on to the DME production. Moreover, the RWGS consumes the same educts as the MeOH synthesis

and therefore negatively weighs on the MeOH production.

• ZrDME
: The influence on the yield is negligible, since the DME synthesis step being not rate determin-

ing.

• ZDN2
: Mass transfer of Nitrogen has no influence since it is inert.

• ZDH2
: Mass transfer of Hydrogen has negligible influence.

• ZDH2O : Increasing the mass transfer rate of water has positive influence on the yield for larger distances.

By increasing the transport rate, water is transported away from the inner shell easier. Lowering the

H2O concentration increases the reaction rates of MeOH and the RWGS reactions Eqs. (15) and (16).

Although the H2O concentration at the outer laying catalyst increases Eq. (19) shows that DME

production benefits more from an increases MeOH concentration than it is hampered by the presence

of H2O. The effect weighs heavier for larger distances when mass transfer limit occurs.
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• ZDCO : Increasing the mass transfer rate of CO has a negative effect at larger distances. Being product

of the RWGS, the removal from the inner shell due to diffusion is beneficial for the RWGS from

equilibrium point of view. Here, the same arguments as for ZrRWGS
hold.

• ZDH2
: Mass transfer of CO2 has negligible influence.

• ZDMeOH
: Increasing the mass transfer rate of MeOH leads to higher yields of DME and MeOH.

Favoring the transport from the inner shell where it is produced is beneficial for the MeOH synthesis

from equilibrium point of view. Producing more MeOH automatically increases DME production.

• ZDDME
: Mass transfer of DME has negligible influence.
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Figure 3: Yield for MeOH and DME (a) (left) and selectivity for DME (a) (right) and Damköhler Numbers (b) plotted against
catalyst distance δ for a constant inner radius R1 showing that ’the closer the better’ applies for showcase I

4.2. Case II -Influence of coupling due to catalyst poisoning by adsorption (k0,9 = 0)

For the second showcase we introduce a back-coupling of the second reaction on the first in order to

investigate if that back-coupling changes the result of ”the closer the better” from Section 4.1. By damping

the reaction rates on the Cu/ZnO catalyst rl due to adsorption of DME, this case mimics catalyst poisoning.

We decided to introduce an extra equation handling the adsorption instead of including it in Eqs. (15)
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(a) DME Yield (b) MeOH Yield

Figure 4: Showcase I: Sensitivities for the yield of species DME (a) and MeOH (b) on Diffusivity coefficients and reaction rate
constants plotted against catalyst distance δ for constant inner radius R1

and (16) to isolate the effect of adsorption in the discussion. Using the Langmuir adsorption with the

equilibrium constant KDME for describing the surface coverage Θ a simple equilibrium approach is chosen

for analyzing the influence. This model perfectly conserves the number of sites since the coverage Θ is

bounded between 0 and 1 and the reaction keeps running on the free sites.

Θ =
KDME · pDME

1 +KDME · pDME
(26)

KDME = 2 bar−1 · exp

(
20.000 J mol−1

Rgas · T

)
(27)

rPoisonl = rl · (1−Θ) (28)

On the left axis of Fig. 6 (a), the yields of DME and MeOH (Eq. (23)) are plotted against the catalyst

distance for showcase II. The selectivity towards DME (Eqs. (22) and (24)) is shown on the right axis.

The DME which is transported due to concentration gradient into the inner of the particle adsorbs on

the catalytic surface of the methanol synthesis catalyst. As stated in Section 4.1, the reaction rate of MeOH
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production is higher for smaller catalyst distance and as a consequence, the DME production is increased

resulting in a larger DME concentration at the outer shell. Also, the transport resistance is lower for small

catalyst distance, which leads to an increased flux of DME towards the core. These effects lead to a higher

DME concentration at the inner shell, which leads to higher adsorption rates and as a consequence the

methanol synthesis reaction is inhibited more for lower catalyst distances. So this effect compares to the

production of an unwanted side product remaining at the core and deactivating active sites. By this catalyst

poisoning, the yields of both MeOH and DME decrease slightly compared to the case without coupling in

Fig. 4 (a). The graphs for yield for cases I and II show similar trends, only at different absolute values,

whereas the graphs for the selectivity differ significantly. As shown in Fig. 5 (b), the Da of the RWGS and

MeOH synthesis reactions cross each other, making the RWGS reaction the rate determining step for smaller

distances. Although the yield of DME and MeOH are smaller due to blocking of active sites, an increase

in selectivity towards DME is noticeable. Both MeOH synthesis and RWGS reaction are inhibited. With a

small distance between the active shells, the system is nowhere near mass transfer limit so that almost all the

MeOH is consumed to produce DME without inhibition. Nevertheless, the yield still reaches its maximum

for smallest distances so that the statement ”the closer the better” still holds. Due to the equilibrium based

approach of the coupling, the same mass transfer argumentation from Section 4.1 is valid in steady state,

only scaling the reaction relatively due to the adsorption. The sensitivities for the showcase with adsorption

are depicted in Fig. 6 (a) and (b) and qualitatively show similar behavior as the sensitivities for the showcase

without back-coupling. The adsorption energy employed in Eq. (27) for DME on the catalyst was chosen

arbitrarily in order to generally study the possible influence. Anyway, increasing or decreasing that value

only scales the coverage Θ up and down.

4.3. Case III - Influence of coupling due to reaction of DME on methanol catalyst (K0,8 = 0)

The third showcase depicts a back-coupling due to a side reaction of the DME to an unwanted Dummy

Species DS, which is motivated from a possible reaction to Alkenes [29]. With a simple first order kinetics

describing the reaction rate rDS, we introduced a non-equilibrium back-coupling for discussing the influence.

For simplicity, the Dummy species has the same thermodynamic properties as DME, so no heat is generated

from this reaction and mass is conserved easily.
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Figure 5: Yield for MeOH and DME (a) (left) and selectivity for DME (a) (right) and Damköhler Numbers (b) plotted against
catalyst distance δ for a constant inner radius R1 indicating that ’the closer the better’ applies for showcase II

rDS = k9 · pDME (29)

k9 = 1× 105 mol kg−1cat s−1 bar−1 · exp

(
−50.000 J mol−1

Rgas · T

)
(30)

In Fig. 7 (a) the yield for DME and MeOH are again plotted against the catalyst distance on the left

axis. The selectivity towards DME is shown on the right axis. We can see that allowing for a reaction of

DME to some unwanted component on the MeOH synthesis catalyst we obtain a profile with a maximum

yield at an optimal catalyst distance. The optimum distance is marked by the black dotted line.

In Fig. 7 (b) the Damköhler Numbers for the reactions employed in showcase III are plotted against the

catalyst distance. A short distance between the catalytic shells results in a small transport resistance for all

species, so that the educt species for the MeOH reaction are transported easily to the inner shell and the

MeOH on the other hand is easily transported to the outer shell where it reacts towards DME. The Da of

the four reactions show different sensitivities on the distance of the catalysts, depending on their kinetics.

The optimal distance for the DME yield is located at the point where DaDS =DaDME. The sensitivities of
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(a) DME Yield (b) MeOH Yield

Figure 6: Showcase II: Sensitivities for the yield of species DME (a) and MeOH (b) on Diffusivity coefficients and reaction rate
constants plotted against catalyst distance δ for constant inner radius R1

the yields of DME and DS on diffusivities and reaction rates are depicted in Fig. 8. The influence for most

parameters is qualitatively still the same as for the showcases discussed before except for:

• ZrDS
: The reaction rate towards DS has negative impact on the DME yield for very close distance

of the catalysts. For larger distances the transport resistance in the particle ensures the DME to be

transported to the surrounding gas phase rather than to the inner of the particle.

• ZDDME
: By increasing the diffusivity of DME, the yield of DS increases as well since more of the valued

component is transported to the inner of the particle where it reacts to DS instead of being transported

into the bulk phase outside of the particle. The closer the catalysts are, the less severe this effect gets

since the transport resistance in the particle is lower from the beginning. On the other hand, the

negative impact on the yield of DME behaves just the other way around. For longer distances between

the catalysts, the DME yield is less sensitive on the diffusivity than for smaller distances. This can be

explained by taking a closer look at Eq. (19), where the partial pressure of DME weighs negatively on

the reaction rate. This means that a removal of DME enhances the production additionally to shifting
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Figure 7: Yield for MeOH and DME (a) (left) and selectivity for DME (a) (right) plotted against catalyst distance for constant
inner radius R1 for showcase III - coupling due to DME consuming side reaction. Damköhler Numbers (b) plotted against
catalyst distance δ for a constant inner radius R1 showing a distinct maximum yield for DME due to backcoupling at the point
where DaDS =DaDME

the equilibrium term in the equation. Thereby, the enhancement counteracts the consumption towards

DS for larger distances. For smaller catalyst distances, the transport resistance is lower so that more

molecules of DME are transported to the core where they are consumed to DS. From Fig. 7 (b) we

see that here DaDS >DaDME so that almost all produced DME is consumed to DS.

• ZDDS : Mass transfer of DS has negligible influence in this showcase due to the simple 1st order kinetics

without adsorption or equilibrium term. With Eq. (29) DME is converted towards DS no matter what

the DS concentration is. Moreover, molecules of DS are assumed to not have influence on any other

reaction rate and therefore its transport will not effect other reaction rates.

Remarkably, the discussed effects due to backcoupling only occur for smaller distances between the

catalytically active layers. For the largest distance in our simulations of 1× 10−3 m, we can observe more

or less the same values for yield and selectivity in all presented cases. Moreover, the sensitivities do not

significantly change when backcoupling is introduced except for the newly added parameter rDS and the
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(a) DME Yield (b) DS Yield

Figure 8: Showcase III: Sensitivities for the yield of species: (a) DME and (b) DS on Diffusivity coefficients and reaction rate
constants plotted against catalyst distance δ for constant inner radius R1

transport parameter for DME DDME. The effects are strongest, where the transition from kinetic limit to

mass transfer limit occurs. For larger distances, the sensitivities regarding rDS and DDME vanish. Here,

yield and selectivity converge to the solution of the uncoupled case.

5. Conclusions

In this article, we presented a novel, simple and computationally efficient approach to modeling core-

shell catalyst particles in order to investigate the influence of the distance between catalytically active sites.

The model was developed by model reduction of the balances of the conserved quantities mass and energy.

Exploiting geometrical symmetry and other justified simplifications the model was reduced from a system

of partial differential equations to a small system of algebraic equations. Thereby the computational effort

decreased enormously, enabling quick solution on a workstation instead of needing super computers.

Employing the sequential heterogeneously catalyzed reactions from CO2 to methanol and methanol to

DME as an example case study, we presented three showcases with increasing complexity regarding back-

coupling between the active catalyst particle shells. The Reverse Water Gas Shift reaction was additionally
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considered as a side reaction.

As a benchmark, a case without back-coupling was introduced showing the dependency of yield and

selectivity towards DME, the product of the second reaction, for varying distance between core and shell.

In case I, both yield and selectivity showed highest values for the lowest distance. In case II it showed

that adding an equilibrium based adsorption mechanism based on Langmuir adsorption on the core in order

to represent catalyst poisoning of the first catalyst by the product of the second reaction decreased yield

and increased selectivity for small distances of the catalytic layers. For larger distances the influence was

negligible. Nevertheless, highest values were analogically to the benchmark case found at the closest distance

between core and shell. Case III demonstrated the case where the DME is consumed to a dummy species

on the methanol synthesis catalyst. We introduced a first order kinetics taking place on the core. In this

case, we observed a non-zero maximum for yield and selectivity, located at the point where DaDS =DaDME.

Interestingly, the influence of the introduced backcoupling was again negligible at larger distances.

The answer of the system showed high sensitivity on the reaction rate of the methanol synthesis for small

distances. On the other hand, the system answer was transport dominated for larger distances.

Overall we could observe that the validity of the assumption ”the closer the better” very much depends

on the case and the circumstances we look at. In our study the assumption is valid for the conditions

without backcoupling or with equilibrium based backcoupling. On the other hand, for non-equilibrium

based backcoupling the assumption loses its validity and and optimal non-zero distance is observed. In

real systems some sort of backcoupling is highly likely. The optimal distance can therefore not a priori be

deduced. Rather, it depends on the detailed interplay of meso- and macroscale transport and kinetics and

must be determined by a careful analysis taking these effects into account. Furthermore, our results indicate

that the performance might sensitively depend on the distance. Therefore, the control of the distance is

crucial for developing optimal catalytic systems.

Moreover, in real systems other effects such as ion-migration [8] might occur which was not addressed in

the scope of this study but might be implemented in the near future.
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Appendix A. Temperature profile

Figure A.9: Normalized temperature profiles over dimensionless radial coordinate for case I and varying active site distance

Appendix B. Sensitivity analysis

The system of governing equations (1) - (10) and (14) can abstractly be written as

∑
q

αqFq[z] = 0 (B.1)

where z is the desired solution, i.e. concentrations and temperature in the particle and the surrounding gas

phase. The nonlinear mappings Fq[z] represent either the terms describing the diffusion of a certain species

in a particular subdomain, i.e. those terms in eqn. (1), - (10) and (14) carrying the respective diffusion

coefficient, or those terms associated with a certain turnover frequency function rl(∗), or the total mass flux

F kg,in, or continuity conditions. For performing sensitivity analysis, we have introduced the parameters αq

to alter the influence of each physical aspect and αq = 1 means that we consider our original set of governing

equations. Now, each term Fq[z] except the continuity conditions represents some abstract kind of rate and

if increase αq we accelerate the respective physical process. For instance, if Fq[z] represents a diffusion,

increasing αq results in faster diffusion. We want to note, that the continuity conditions being no rates is

unproblematic, because the sensitivity with respect to them is zero anyways.

Any derived quantity G[z], in our case the yield, is then a function of the parameters αq, when eq. (B.1)
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has a unique solution and z is this solution. We define our sensitivities as

Zq :=

(
1

G

∂G

∂αq

)
αq′ 6=q

(α = 1) (B.2)

where α = 1 means that we evaluate the partial derivative for all αq set to one. This definition of the

sensitivity is in complete analogy to the Degree of Rate Control[30]. If eq. (B.1) would be a set of steady

state microkinetic equations, G a turnover frequency and Fq[z] would represent the effect of an elementary

step and its inverse, Zq would simply be the Degree of Rate Control of that reaction. For our purposes, the

above definition has the advantage that we treat all different phenomena - reaction, transport and flow -

on the same footing and thus the sensitivities are comparable. The sensitivities discussed in Section 4 were

calculated by finite differences of the yield Y conducting simulations for α = 1 and α = 1.01.

Z :=
∂Y

∂α
· 1

Y
≈ Yα=1 − Yα=1.01

0.01
· 1

Yα=1
(B.3)

Appendix C. Kinetic Parameters

Table C.2: Kinetic parameters of reaction and adsorption rates used in the simulations with values taken from [15, 16]

Parameter value unit Parameter value unit

k0,1 1.07 mol kg−1cat s−1 bar−2 Eact.1 40,000 J mol−1

K0,2 3453.38 - Ereac.2 0 J mol−1

K0,3 0.499 bar−0.5 Ereac.3 17,197 J mol−1

K0,4 6.62× 10−11 bar−1 Ereac.4 124,119 J mol−1

k0,5 1.22× 1010 mol kg−1cat s−1 bar−1 Eact.5 -98,084 J mol−1

k0,6 85,190 mol kg−1cat s−1 Eact.6 -55,060 J mol−1

K0,7 223.2 bar−1 Ereac.7 105,100 J mol−1

K0,8 0.5498 bar−1 Ereac.8 92,000 J mol−1

k0,9 1× 105 mol kg−1cat s−1 bar−1 Eact.9 -50,000 J mol−1
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