

Mathematical Mysteries of Deep Neural Networks

Joan Bruna, Stéphane Mallat, Edouard Oyallon, Vincent Lostanlen

École Normale Supérieure

www.di.ens.fr/data

High Dimensional Learning

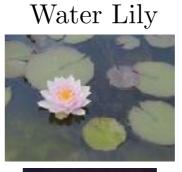
- High-dimensional $x = (x(1), ..., x(d)) \in \mathbb{R}^d$:
- Classification: estimate a class label f(x)given n sample values $\{x_i, y_i = f(x_i)\}_{i < n}$

Image Classification $d = 10^6$

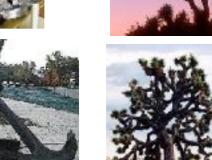
$$d = 10^6$$

Anchor

Joshua Tree



Huge variability inside classes



Find invariants

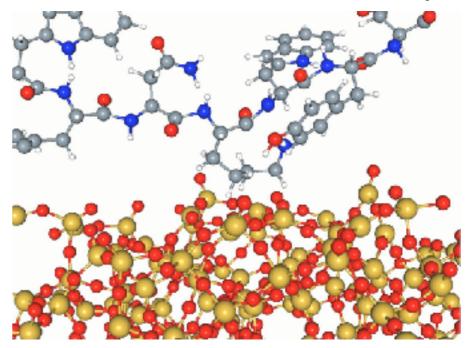
High Dimensional Learning

- High-dimensional $x = (x(1), ..., x(d)) \in \mathbb{R}^d$:
- Regression: approximate a functional f(x) given n sample values $\{x_i, y_i = f(x_i) \in \mathbb{R}\}_{i \le n}$

Physics: energy f(x) of a state vector x

Astronomy

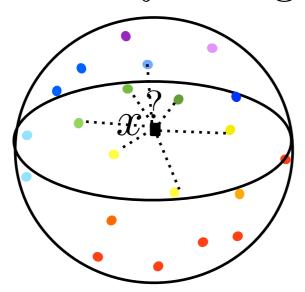
Quantum Chemistry



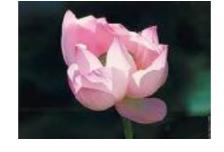
Importance of symmetries.

Curse of Dimensionality

• f(x) can be approximated from examples $\{x_i, f(x_i)\}_i$ by local interpolation if f is regular and there are close examples:



• Need ϵ^{-d} points to cover $[0,1]^d$ at a Euclidean distance ϵ Problem: $||x-x_i||$ is always large



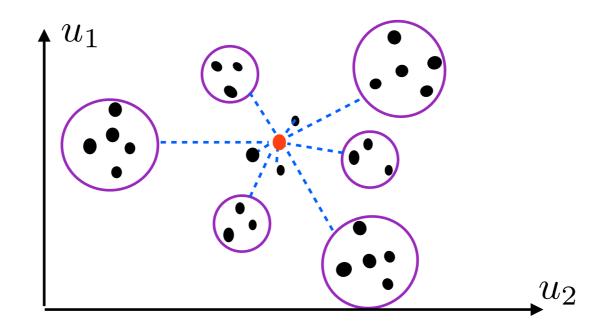
• Why can we approximate f?

Dimensionality Reduction Multiscale

• Why can we learn despite the curse of dimensionality?

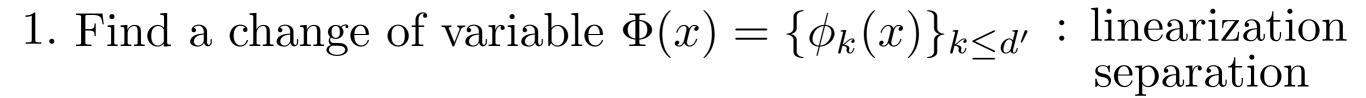
Multiscale structures/interactions

Interactions de d variables x(u): pixels, particules, agents...



Regroupement of d interactions in $O(\log d)$

Kernel Classifiers



2. Linear projection $\langle \Phi(x), w \rangle = \sum_k w_k \phi_k(x)$: invariant.

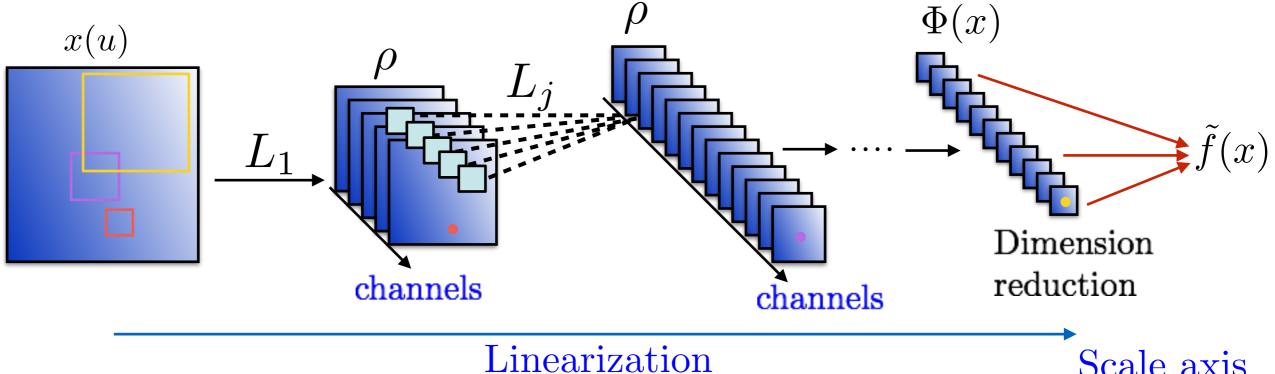
Data:
$$x \in \mathbb{R}^d$$

$$V: \text{hyperplane}$$

• How and when is possible to find such a Φ ?

Deep Convolution Neworks

• The revival of neural networks: Y. LeCun



Scale axis

 L_i : sums of linear convolutions $\rho(\alpha) = \max(\alpha, 0)$, $|\alpha|$, $\arctan(\alpha)$

Optimize L_j by propagation of errors on training exemples

Training error =
$$\sum |\tilde{f}(x_i) - f(x_i)|^2$$

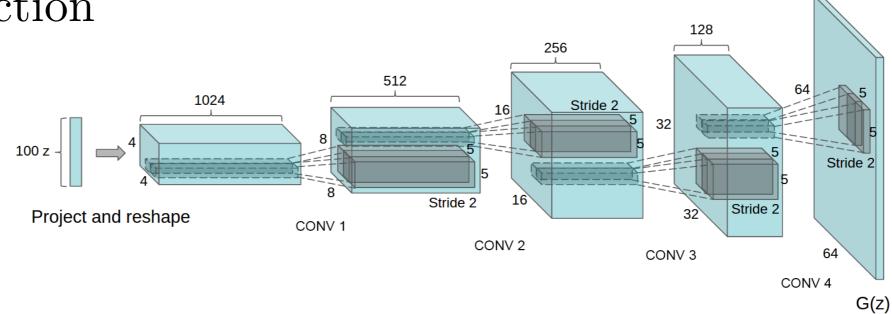
Exceptional results for image's, speech, language, bio-data...

Why does it work so well?

Linearisation in Deep Networks

A. Radford, L. Metz, S. Chintala

• Reconstruction



• On a data basis including bedrooms: interpolaitons

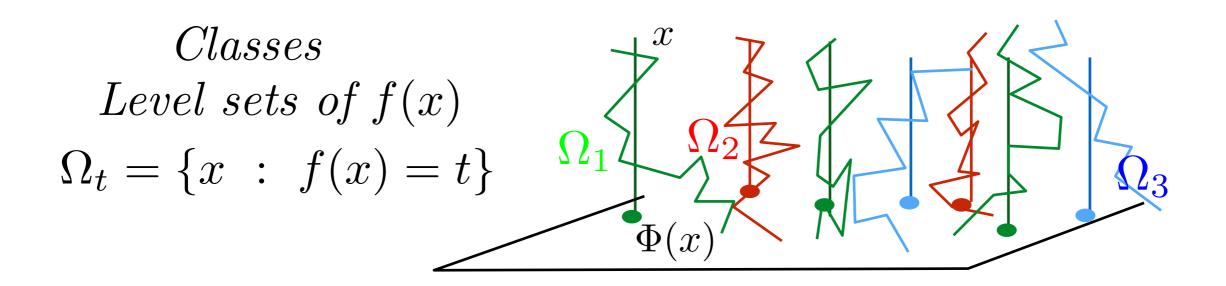
Overview

- Simplified architecture: multiscale wavelet scattering
- Unsupervised learning: statistical physics
- Supervised learning from images to quantum chemistry
- Structuring Deep Networks

Linearise for Dimensionality Reduction .

• We want to reduce the dimension of x with a discriminative lower dimensional representation $\Phi(x)$:

if
$$f(x) \neq f(x')$$
 then $\Phi(x) \neq \Phi(x')$

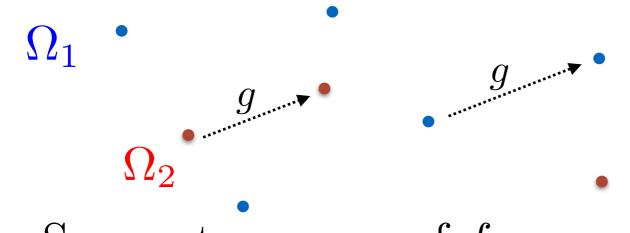


- Dimension reduction in two steps:
 - Linearize level sets Ω_t How?
 - Reduce dimension with linear projections

Symmetries

• Dimensionality curse: geometry of few far away points

$$\Omega_t = \{x : f(x) = t\}$$



• Symmetry group of f preserve $\Omega_t = \{x : f(x) = t\}$

$$G = \{g : f(g.x) = f(x)\}$$

If g_1 and g_2 are symmetries then $g_1.g_2$ is also a symmetry

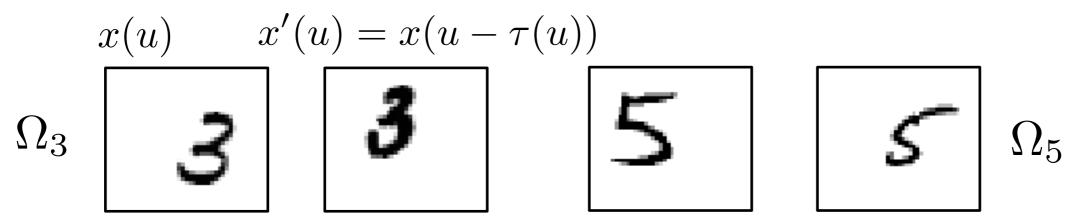
$$f(g_1.g_2.x) = f(g_2.x) = f(x)$$

• Φ discriminative means that: • What are the symmetry groups of f? • $\Phi(g.x) = \Phi(x) \Rightarrow f(g.x) = f(x)$

- How to adapt Φ ? symmetry group of Φ included in symmetry group of f

Translation and Deformations

• Digit classification:



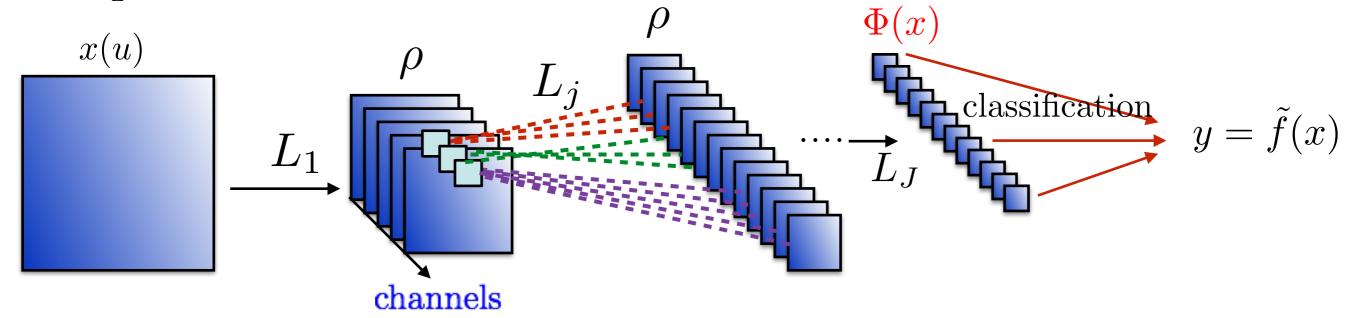
- Globally invariant to the translation group: small
- Locally invariant to small diffeomorphisms: huge group

Linearize small diffeomorphisms:

Video of Philipp Scott Johnson

Deep Convolutional Trees

Simplified architecture:



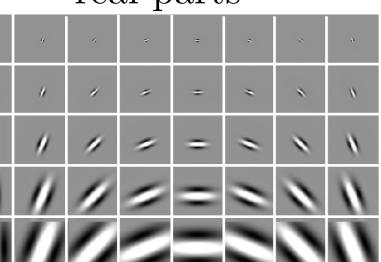
Cascade of convolutions: no channel connections predefined wavelet filters

Scale separation with Wavelets

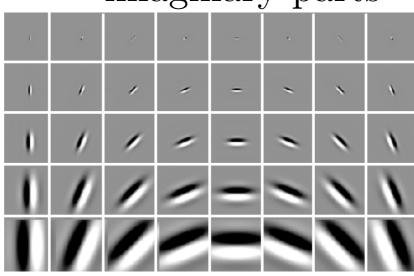
• Wavelet filter $\psi(u) = 1 + i$

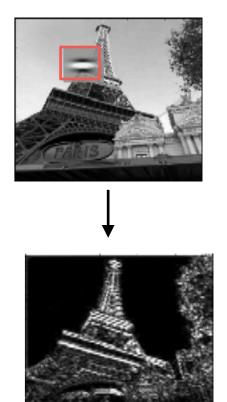
rotated and dilated: $\psi_{2^{j},\theta}(u) = 2^{-j} \psi(2^{-j}r_{\theta}u)$

real parts



imaginary parts





$$x \star \psi_{2^{j},\theta}(u) = \int x(v) \, \psi_{2^{j},\theta}(u-v) \, dv$$

• Wavelet transform: $Wx = \begin{pmatrix} x \star \phi_{2^J}(u) \\ x \star \psi_{2^J,\theta}(u) \end{pmatrix}_{\substack{j \leq J,\theta \text{ frequencies}}}$: average

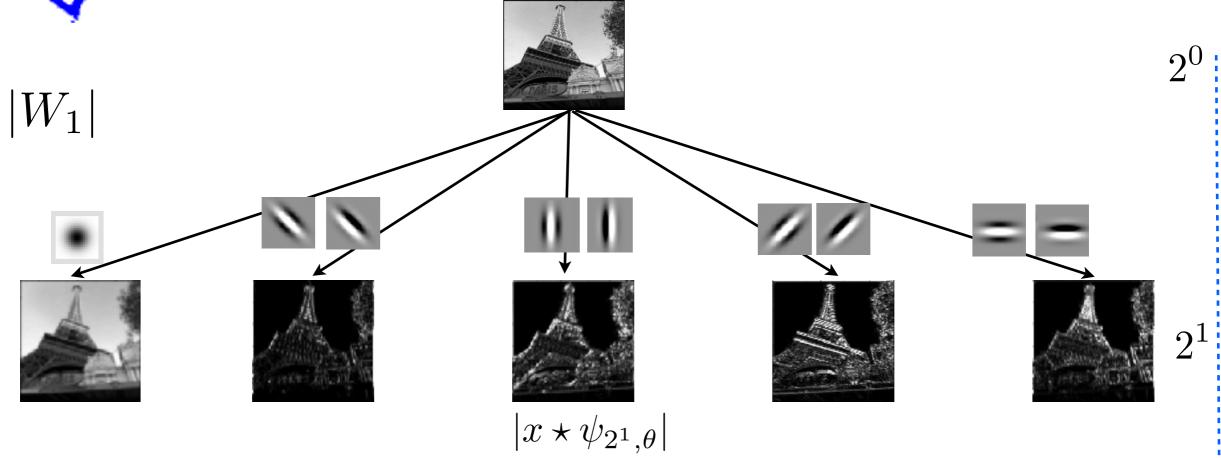
$$x \star \phi_{2^{j}}(u)$$

$$x \star \psi_{2^{j},\theta}(u)$$

Preserves norm: $||Wx||^2 = ||x||^2$.

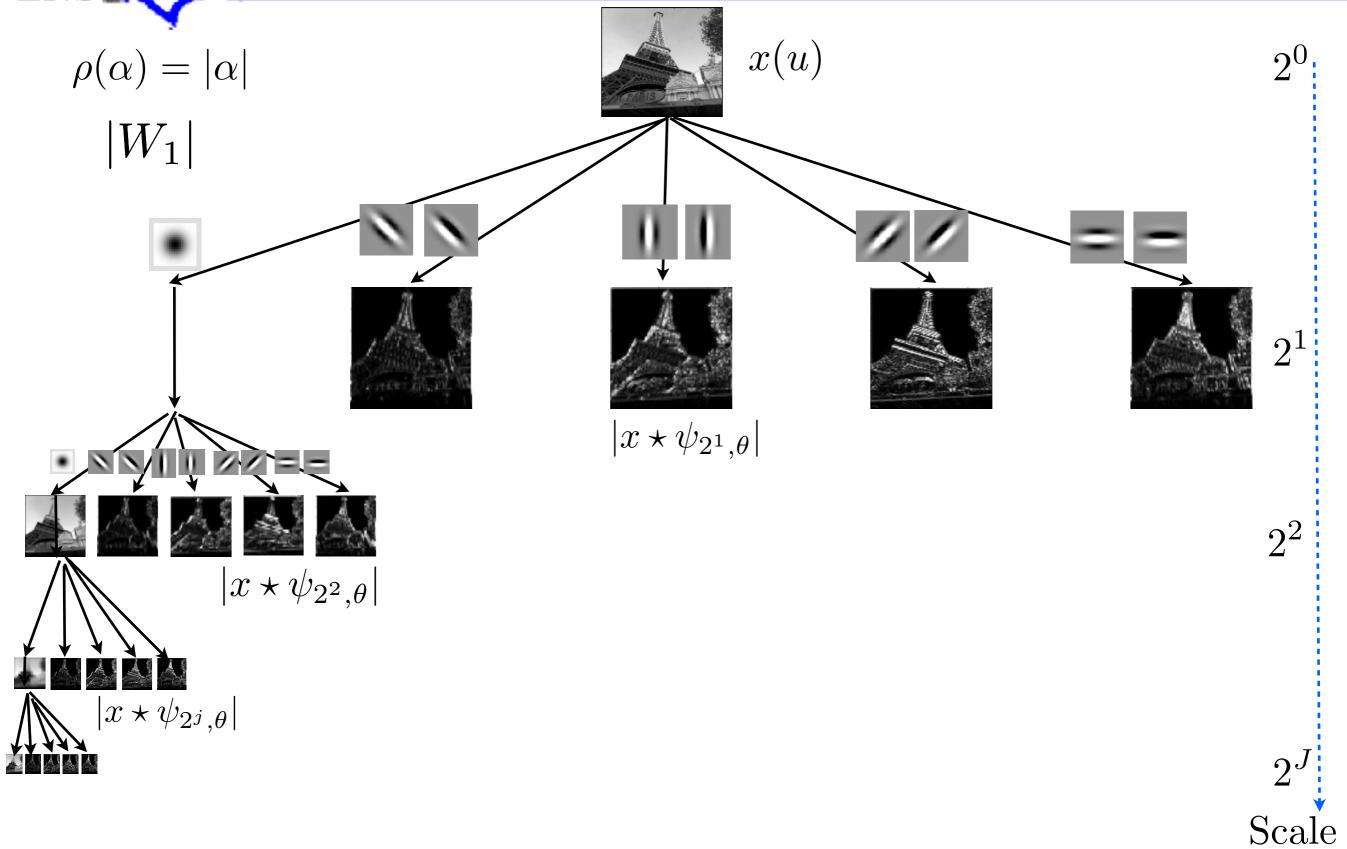
Stable to deformations

Fast Wavelet Filter Bank



2° Scale

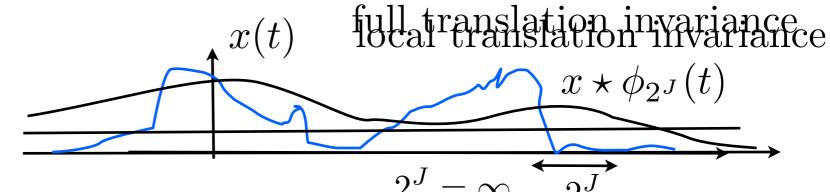
Wavelet Filter Bank



Wavelet Translation Invariance

First wavelet transform

$$|W_1|_x = \left(\begin{array}{c} x \star \phi_{2^J} \\ x \star \psi_{\lambda_1} \end{array} \right)_{\lambda_1}$$



Lost high frequencies: $x \star \psi_{\lambda_1}(t)$

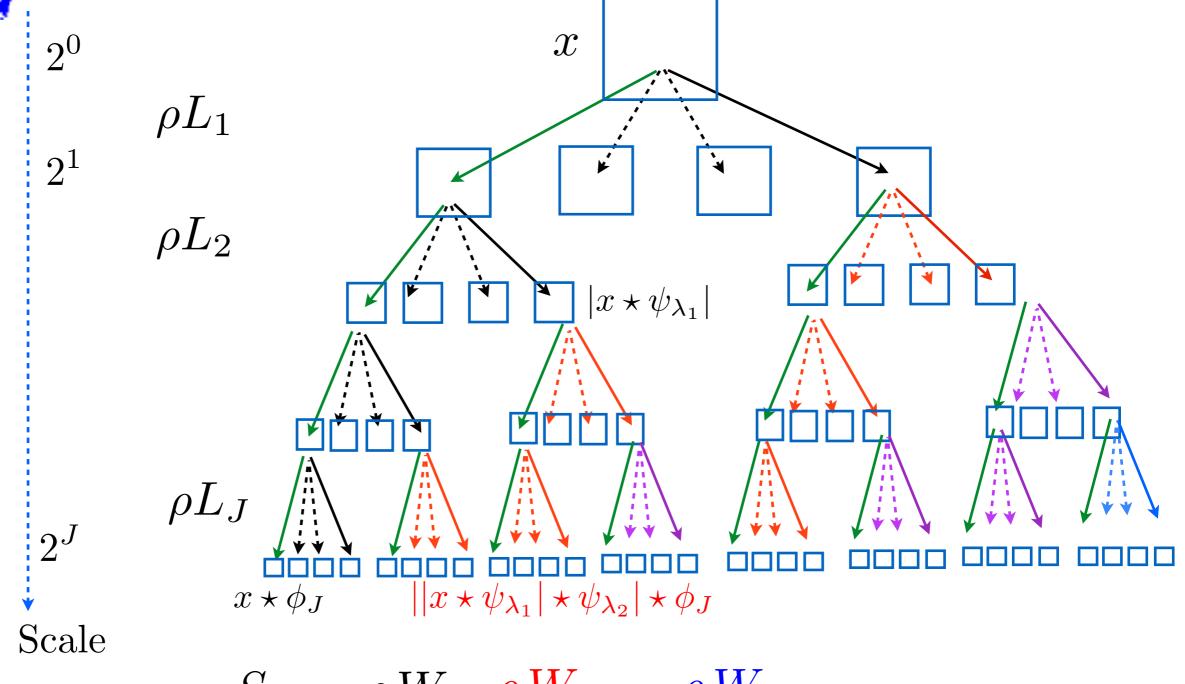
Eliminate the phase: $|x \star \psi_{\lambda_1}(t)|$

Invariant: $|x \star \psi_{\lambda_1}| \star \phi_{2^J}(t)$

Need to recover lost high frequencies: $|x \star \psi_{\lambda_1}| \star \psi_{\lambda_2}(t)$

$$\Rightarrow$$
 wavelet transform: $|W_2| |x \star \psi_{\lambda_1}| = \begin{pmatrix} |x \star \psi_{\lambda_1}| \star \phi_{2^J}(t) \\ |x \star \psi_{\lambda_1}| \star \psi_{\lambda_2}(t)| \end{pmatrix}_{\lambda_2}$

Wavelet Scattering Network



$$S_J = \rho W_1 \quad \rho W_2 \quad \cdots \quad \rho W_J$$

$$\rho(\alpha) = |\alpha| \qquad S_J x = \left\{ |||x \star \psi_{\lambda_1}| \star \psi_{\lambda_2} \star ...| \star \psi_{\lambda_m}| \star \phi_J \right\}_{\lambda_k}$$
Interactions across scales

Scattering Properties

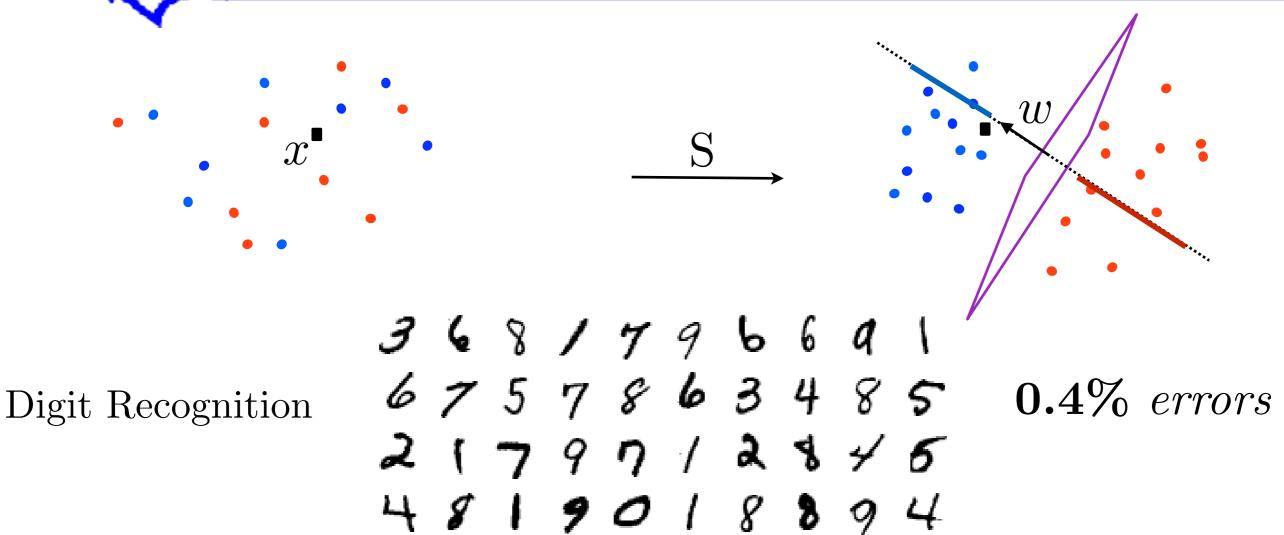
Theorem: For appropriate wavelets, a scattering is

contractive
$$||S_J x - S_J y|| \le ||x - y||$$
 ($\mathbf{L^2}$ stability)
preserves norms $||S_J x|| = ||x||$

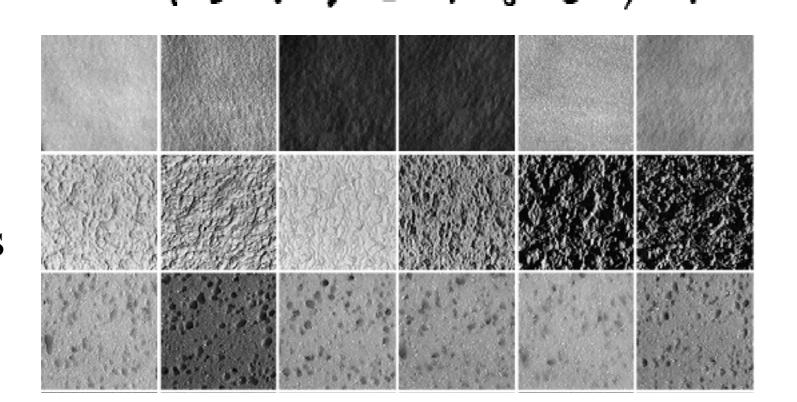
translations invariance and deformation stability:

if
$$D_{\tau}x(u) = x(u - \tau(u))$$
 then
$$\lim_{J \to \infty} ||S_J D_{\tau}x - S_J x|| \le C ||\nabla \tau||_{\infty} ||x||$$

Image Classification



CUREt 61 classes



0.2% *errors*

• Estimate the probability density p(x)of X(u) from few realisations $\{x_i(u)\}_i$

Scattering of a stationary process X(u)

$$S_{J}X = \begin{pmatrix} X \star \phi_{2^{J}}(u) \\ |X \star \psi_{\lambda_{1}}| \star \phi_{2^{J}}(u) \\ |X \star \psi_{\lambda_{1}}| \star \psi_{\lambda_{2}}| \star \phi_{2^{J}}(u) \end{pmatrix}$$
...

if
$$2^J = d$$



Scattering moments

$$= \begin{pmatrix} d^{-1} \sum_{u=1}^{d} X(u) \\ d^{-1} || X \star \psi_{\lambda_1} ||_1 \\ d^{-1} || |X \star \psi_{\lambda_1} || \star \psi_{\lambda_2} ||_1 \end{pmatrix} \quad \text{if ergodicity} \quad \bar{\mu} = \begin{pmatrix} \mathbb{E}(X) \\ \mathbb{E}(|X \star \psi_{\lambda_1}|) \\ \mathbb{E}(|X \star \psi_{\lambda_1}| \star \psi_{\lambda_2}|) \\ \dots \end{pmatrix}$$

• How to estimate the probability density p(x) of X?

Canonical Maximum Entropy

Given a vector of scattering moments:

$$\mathbb{E}(SX) = \begin{pmatrix} \mathbb{E}(X) \\ \mathbb{E}(|X \star \psi_{\lambda_1}|) \\ \mathbb{E}(||X \star \psi_{\lambda_1}| \star \psi_{\lambda_2}|) \end{pmatrix}_{\lambda_1, \lambda_2, \dots} = \left(\mathbb{E}(\phi_m(X))\right)_m$$

Theorem (Gibbs) The distribution p(x) which satisfies

$$\mathbb{E}(\phi_m(X)) = \int_{\mathbb{R}^N} \phi_m(x) \ p(x) \ dx = \bar{\mu}_m$$

with a maximum entropy $H_{\text{max}} = -\int p(x) \log p(x) dx$ is

$$p(x) = \frac{1}{Z} \exp\left(\sum_{m} \beta_{m} \phi_{m}(x)\right)$$

Multiscale Hamiltonian with scale interactions

Canonical Maximum Entropy

$$\mathbb{E}(SX) = \begin{pmatrix} \mathbb{E}(X) \\ \mathbb{E}(|X \star \psi_{\lambda_1}|) \\ \mathbb{E}(||X \star \psi_{\lambda_1}| \star \psi_{\lambda_2}|) \\ \dots \end{pmatrix}_{\lambda_1, \lambda_2, \dots} = \left(\mathbb{E}(\phi_m(X))\right)_m$$

Theorem (Gibbs) The distribution p(x) which satisfies

$$\mathbb{E}(\phi_m(X)) = \int_{\mathbb{R}^N} \phi_m(x) \ p(x) \ dx = \bar{\mu}_m$$

with a maximum entropy $H_{\text{max}} = -\int p(x) \log p(x) dx$ is

$$p(x) = \frac{1}{Z} \exp\left(\sum_{m} \beta_{m} \phi_{m}(x)\right)$$

Multiscale Hamiltonian with scale interactions

Numerically too expansive to compute Lagrange multipliers β_m

Microcanonical Sampling Joan Bruna

 \bullet Given a single realisation of X:

$$SX = \left\{ d^{-1} \sum_{u} X(u), d^{-1} \| X \star \psi_{\lambda_1} \|_1, d^{-1} \| | X \star \psi_{\lambda_1} | \star \psi_{\lambda_2} \|_1 \right\} \approx \mathbb{E}(SX).$$

ullet A microcanonical max entropy process X satisfies $||SX - SX|| \le \epsilon$

Theorem (H. Georgii)

For scattering, the micro and macrocanonical processess converge to the same Gibbs measure when d goes to ∞

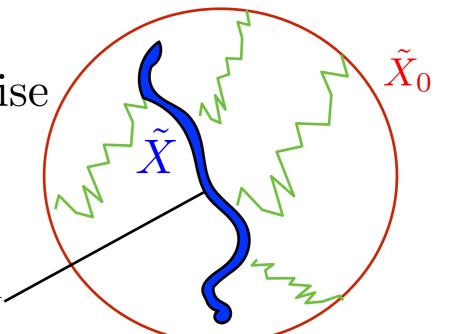
Algorithm:

Initialized with X_0 Gaussian white noise

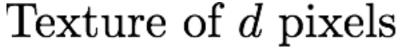
Iteratively reduce $||S\tilde{X}_n - SX||^2$

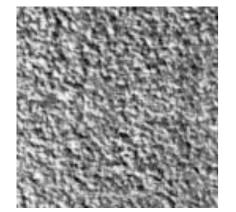
with gradient descent

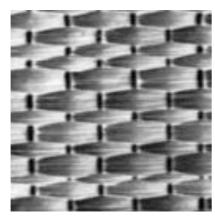
$$\{x : \|Sx - SX\| \le \epsilon\}$$



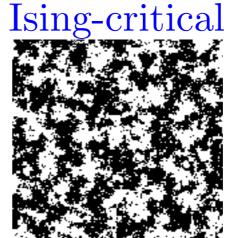
Texture Reconstructions Joan Bruna



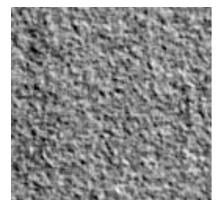


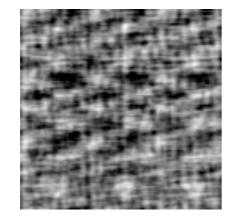


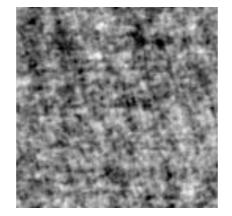
Statistical Physics

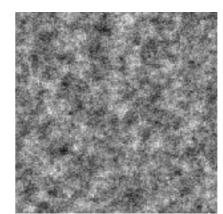


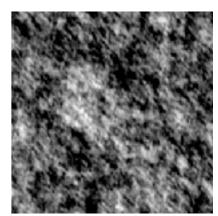
Gaussian process model with d second order moments



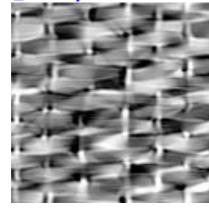


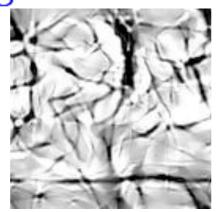


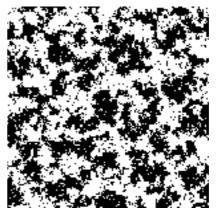




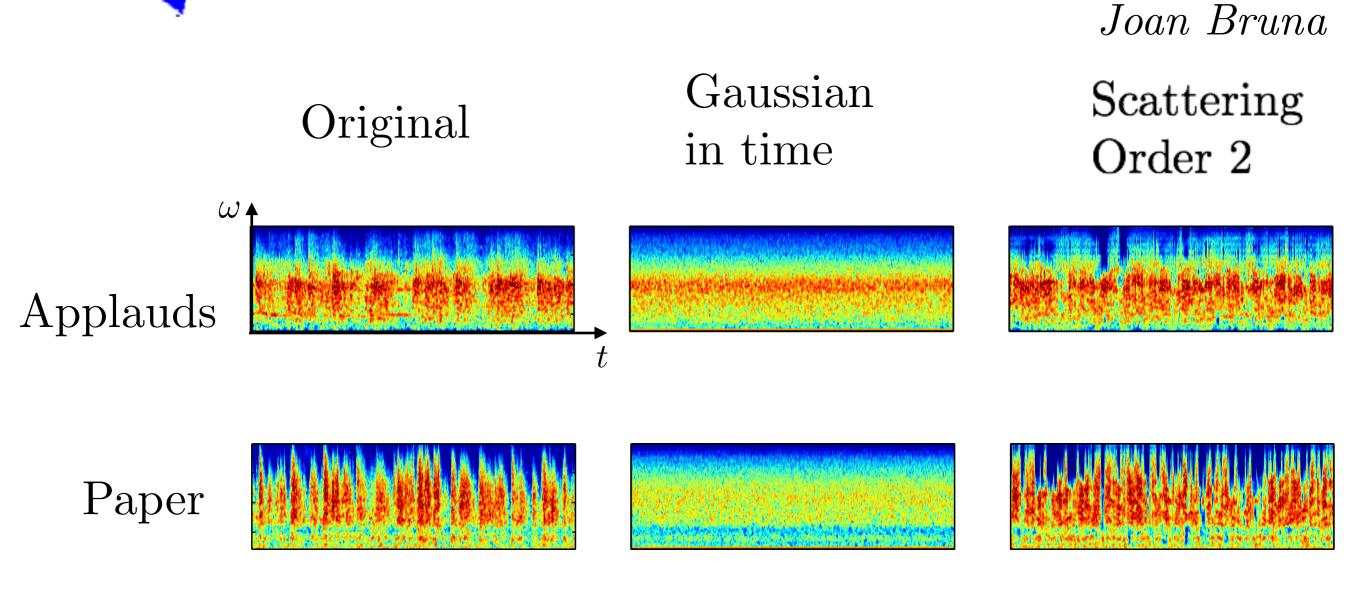
Reconstructions from $||X \star \psi_{\lambda_1}||_1$ and $|||X \star \psi_{\lambda_1}||_1 \star \psi_{\lambda_2}||_1$ $O(\log^2 d)$ scattering coefficients







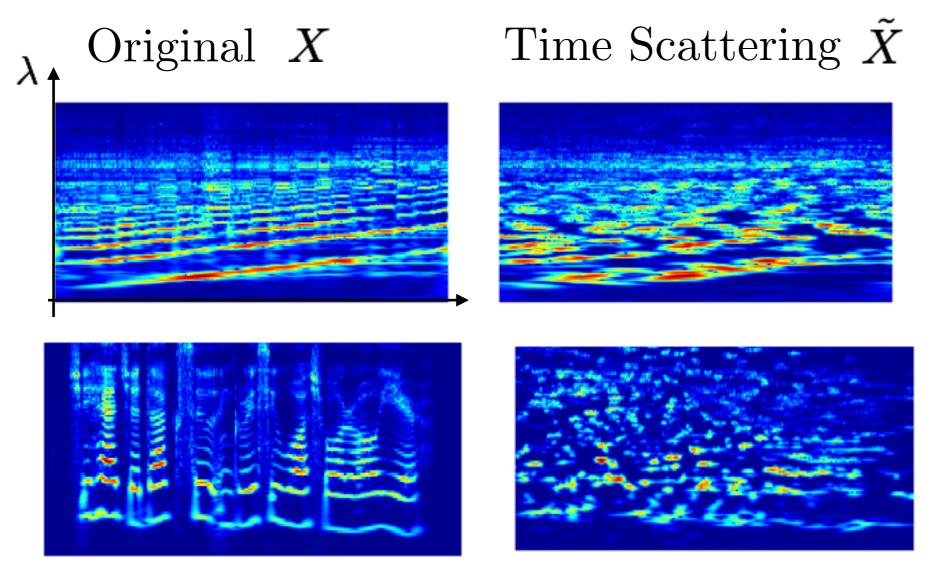
Representation of Audio Textures



Cocktail Party

E Failures of Audio Synthesis

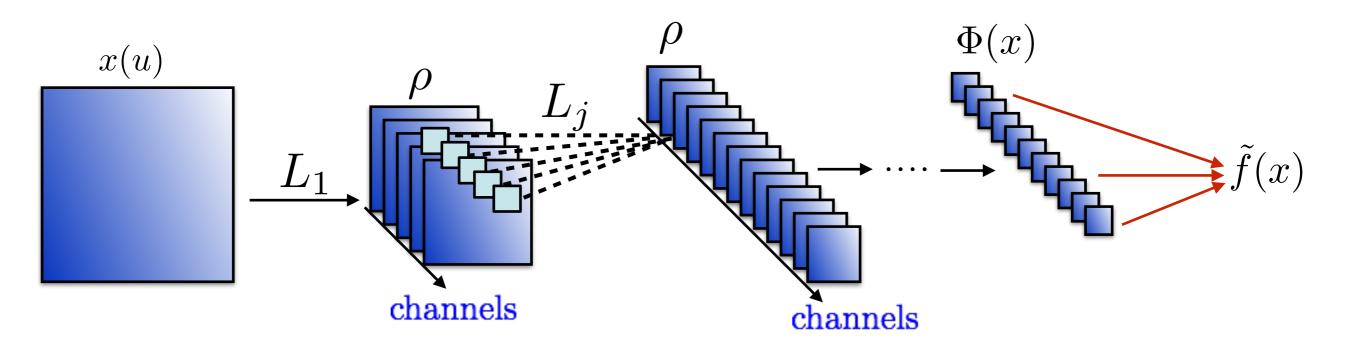
J. Anden and V. Lostanlen



Typical of \tilde{X} is not typical of X

- Missing frequency connections ⇒ misalignments
- ⇒ incorporate two-dimensional translations in time-frequency

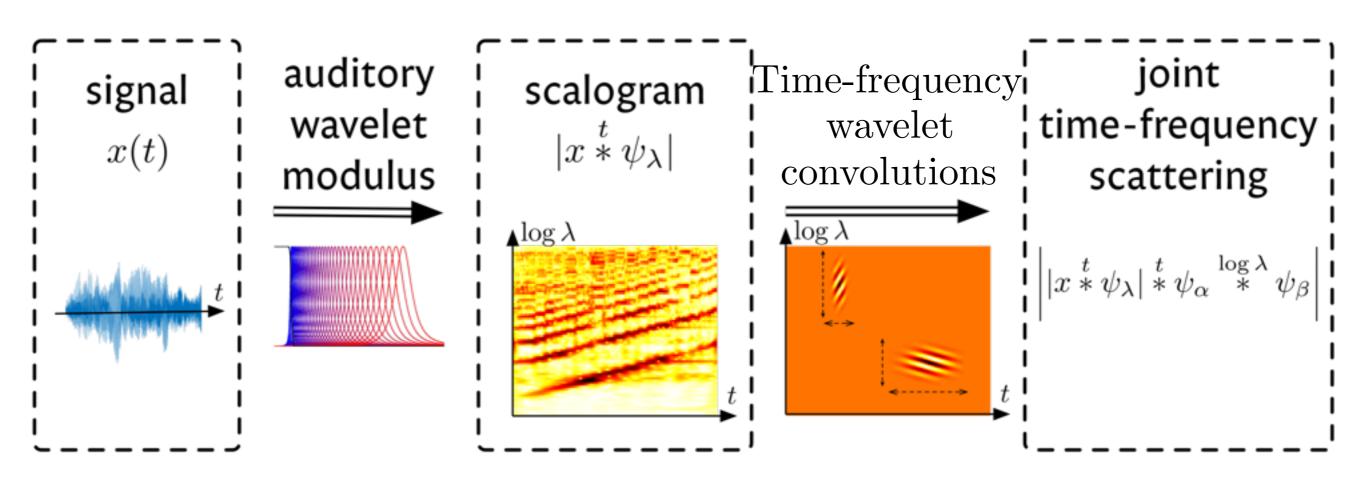
Channel Connections



What is the role of channel connections?

Time-Frequency Translation Group

J. Anden and V. Lostanlen



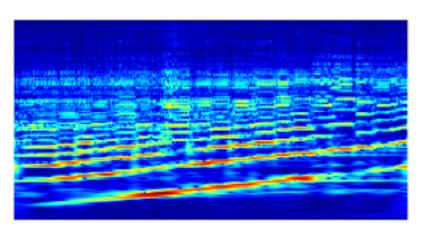
Joint Time-Frequency Scattering -

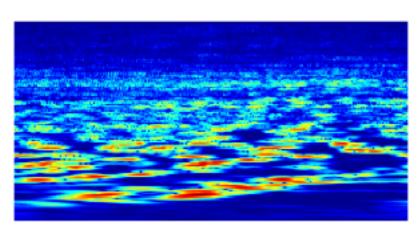
J. Anden and V. Lostanl

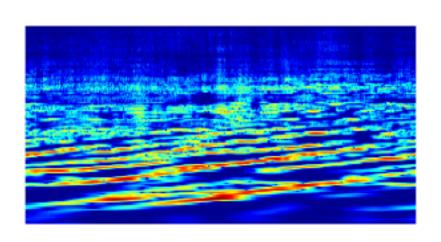
Original

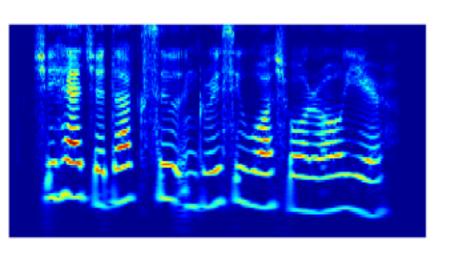
Time Scattering

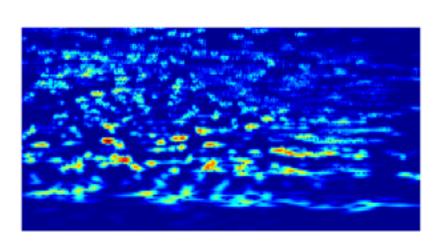
Time/Freq Scattering

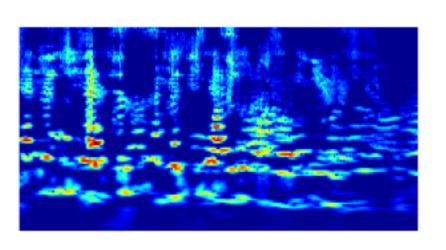






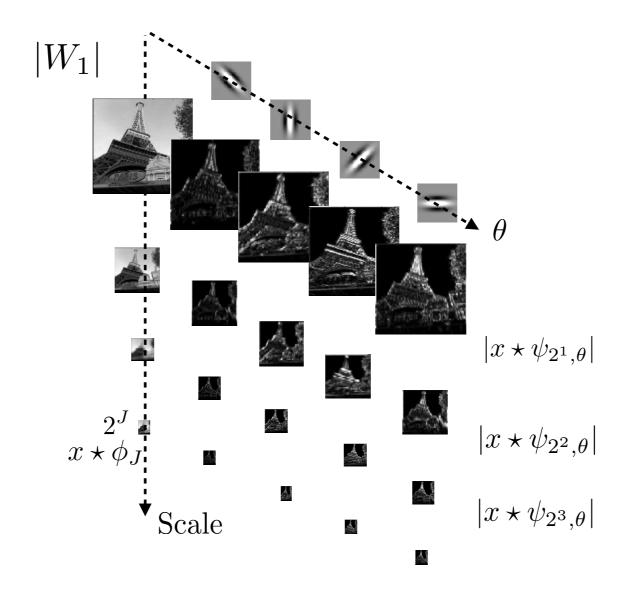






Symmetries: Rotation Invariance

• Channel connections linearize other symmetries.



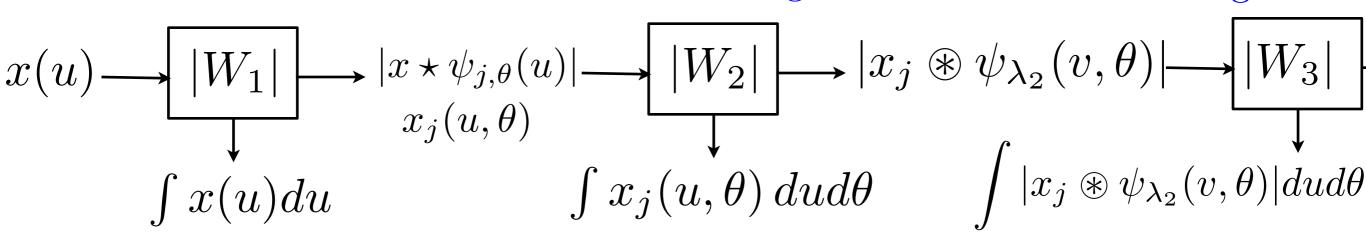
- Invariance to rotations are computed by convolutions along the rotation variable θ with wavelet filters.
 - \Rightarrow invariance to rigid mouvements.

Extension to Rigid Mouvements

Laurent Sifre

- Group of rigid displacements: translations and rotations
- Scattering on rigid mouvements:

Wavelets on Translations Wavelets on Rigid Mvt. Wavelets on Rigid Mvt

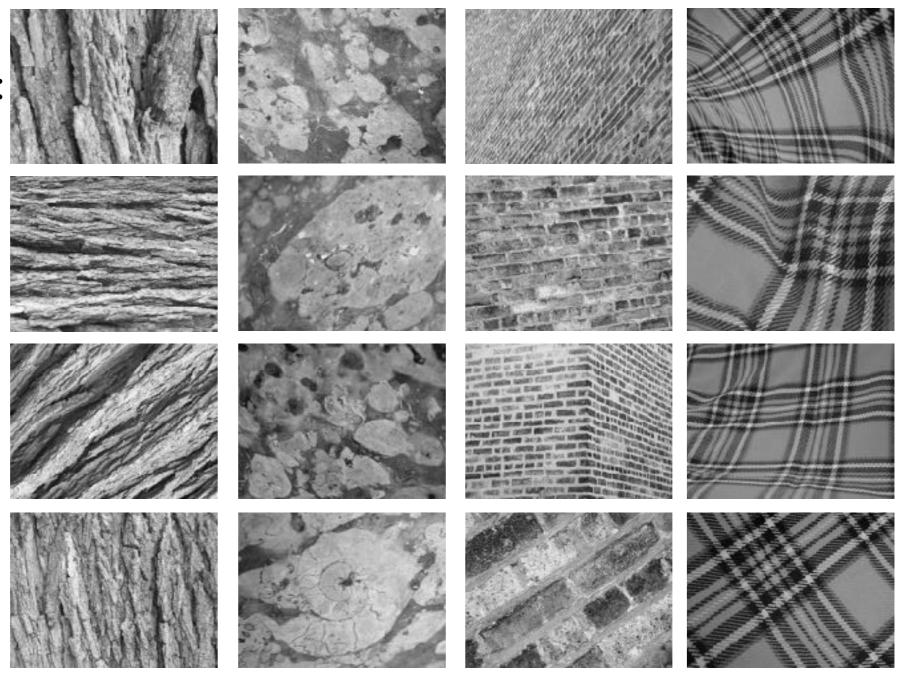


$$x \circledast \psi_{\lambda}(u,\theta) = \int_{0}^{2\pi} \int_{\mathbb{R}^{2}} x(u',\theta') \psi_{\theta,2^{j}}(u-u') \psi_{2^{k}}(\theta-\theta') d\theta' du'$$

Rotation and Scaling Invariance

Laurent Sifre

UIUC database: 25 classes



Scattering classification errors

Training	Scat. Translation	Scat. Rigid Mouvt.
20	20 %	0.6 %

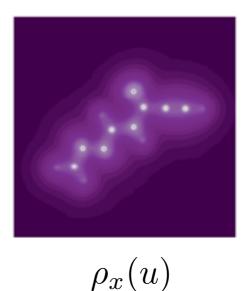
Learning Physics: N-Body Problem -

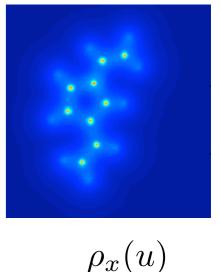
• Can we learn the interaction energy f(x) of a system with $x = \{\text{positions, charges}\}$?

Quantum chemistry: f(x) is invariant to rigid mouvements, stable to deformations.

The energy depends upon the electronic density (Kohn-Sham)

Ground state electronic density computed with Schroedinger

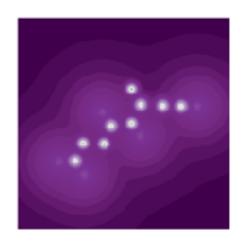




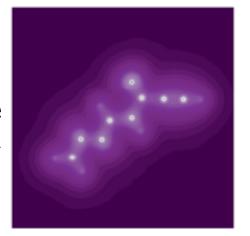
• Compute f(x) from isolated atomic densities

without interactions:

 $\tilde{\rho}_x$: sum of individual densities



 ρ_x : ground state electronic density



• Linear regressions computed with invariant change of variables

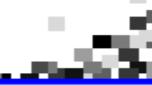
$$\Phi x = \{\phi_n(\tilde{\rho}_x)\}_n :$$

 $\Phi x = \{\phi_n(\tilde{\rho}_x)\}_n : \left| \begin{array}{c} \text{Fourier modulus coefficients and squared} \\ \text{scattering coefficients and squared} \end{array} \right|$

$$f_M(x) = \sum_{k=1}^{M} w_k \, \phi_{n_k}(\tilde{\rho}_x)$$

Regression coefficients w_k : equivalent potential. carrying chemical properties

Scattering Regression



Eickenberg, Exarchakis, Hirn

Data basis $\{x_i, f(x_i)\}_{i < N}$ of 7000 3D molecules

Regression:
$$f_M(x) = \sum_{m=1}^{N} w_m \, \phi_{k_m}(\tilde{\rho}_x)$$

Testing error

$$2^{-1}\log_2 \mathbb{E}[f_M(x) - y(x)]^2$$

Interaction terms across scales

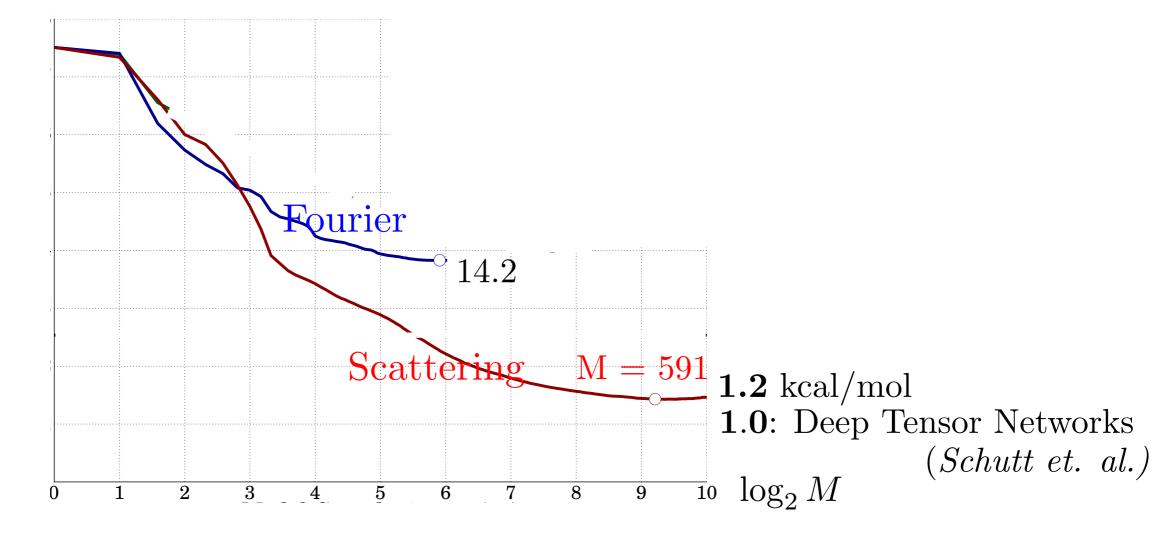


Image Classification: CIFAR-10

Edouard Oyallon

10 classes, $50 \, 10^3$ labeled training images, of 32×32 pixels

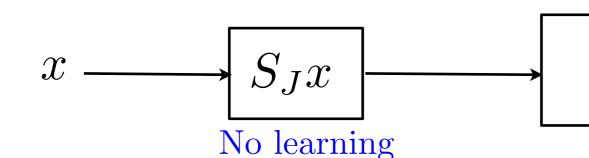
Data Basis

CIFAR-10

7%

Ships

 $\rightarrow y = f(x)$



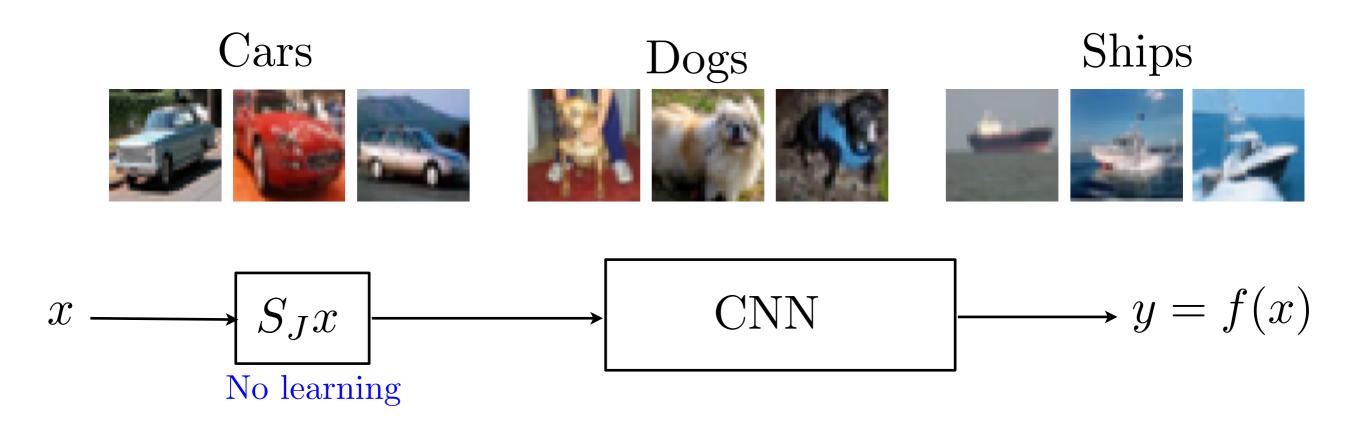
Supervised Linear classifier

Deep-Net	Scattering
7%	20%

Image Classification: CIFAR-10

Oyallon, Belivovsky, Zagoruyko

10 classes, $50\,10^3$ labeled training images, of 32×32 pixels

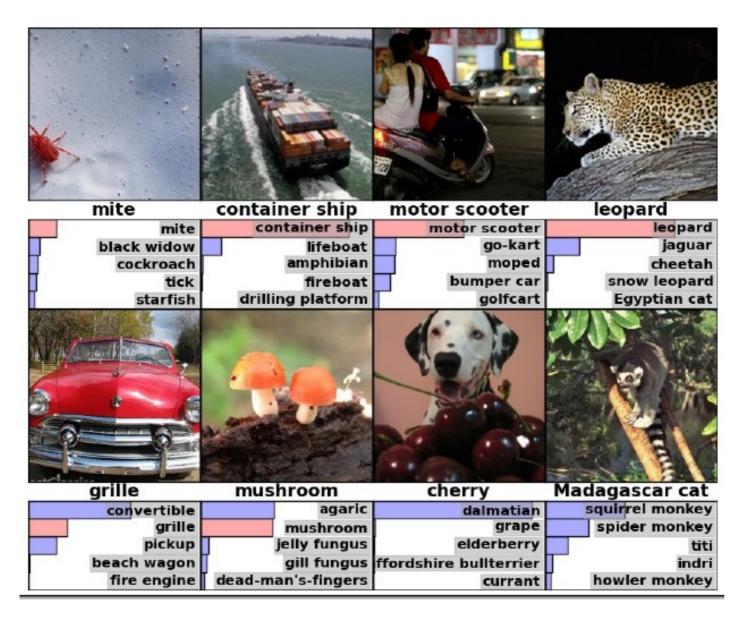


Data Basis	Deep-Net	Scat. + CNN
CIFAR-10	7%	7%

Image Classification: ImageNet 2012-

Oyallon, Belivovsky, Zagoruyko

1000 classes, 1.2 million labeled training images, of 224×224 pixels

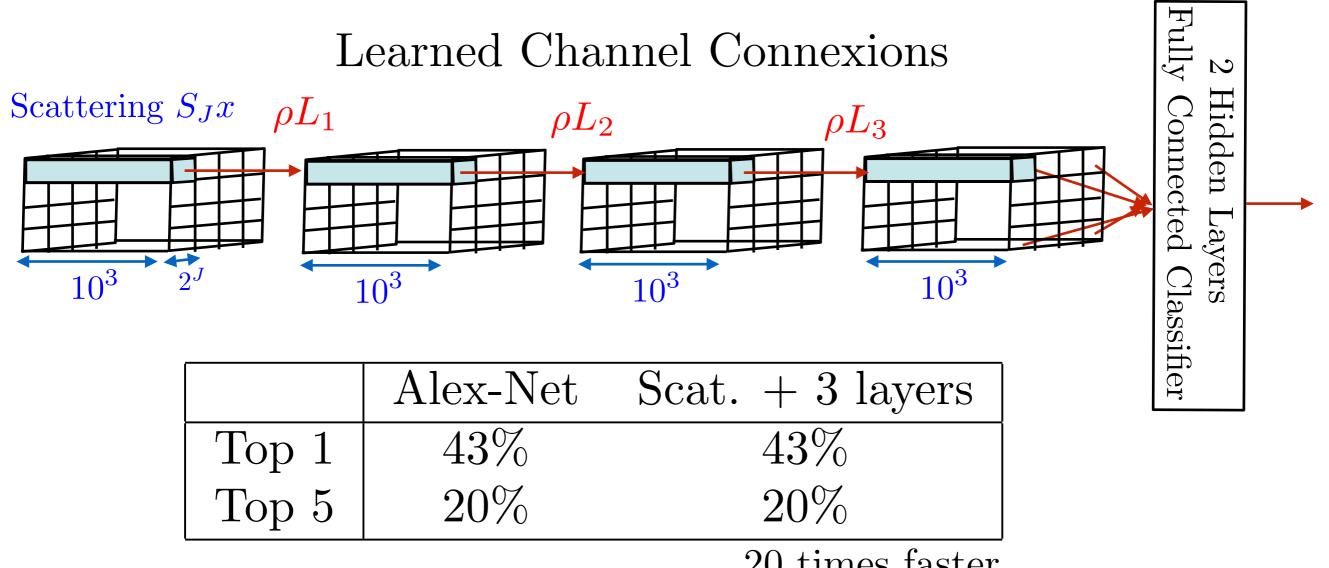


	Res-Net	Scat. + Res-Net
Top 1	30%	30%
Top 5	11%	11%

Structured Network: ImageNet 2012-

Oyallon, Belivovsky, Zagoruyko

1000 classes, 1.2 million labeled training images, of 224×224 pixels



20 times faster

- Which invariants are learned and computed with the L_i ?
- Are the L_j storing some form of memory?

Conclusions

- Deep convolutional networks have spectacular high-dimensional approximation capabilities. Seem to learn complex symmetries
- Can be further structured to use prior information.
- Close link with particle and statistical physics
- Outstanding mathematical problems to understand them: what are the classes of « learnable » functions and processes ? notion of complexity, approximation theorems...

Understanding Deep Convolutional Networks, arXiv 2016.