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given n sample values {xi , yi = f(xi)}in

• High-dimensional x = (x(1), ..., x(d)) 2 Rd:

• Classification: estimate a class label f(x)

  High Dimensional Learning

Image Classification d = 106

Anchor Joshua Tree Beaver Lotus Water Lily

Huge variability

inside classes

Find invariants



• High-dimensional x = (x(1), ..., x(d)) 2 Rd:

• Regression: approximate a functional f(x)

given n sample values {xi , yi = f(xi) 2 R}in

  High Dimensional Learning

Astronomy Quantum Chemistry

Physics: energy f(x) of a state vector x

Importance of symmetries.



     Curse of Dimensionality

local interpolation if f is regular and there are close examples:

• f(x) can be approximated from examples {xi , f(xi)}i by

?
x

Problem: kx� xik is always large

• Need ✏�d
points to cover [0, 1]d at a Euclidean distance ✏

• Why can we approximate f ?



Dimensionality Reduction 
            Multiscale

u1

u2

Interactions de d variables x(u): pixels, particules, agents...



Data:

           Kernel Classifiers

x 2 Rd

x

V : hyperplane

w

�(x) 2 Rd0

• How and when is possible to find such a � ?

Find a change of variable �(x) = {�k(x)}kd01. : linearization

�

separation

2. Linear projection h�(x), wi =
P

k wk �k(x) : invariant.



Why does it work so well ?

Exceptional results for images, speech, language, bio-data...

Scale axis

Linearization

    Deep Convolution Neworks

• The revival of neural networks: Y. LeCun

⇢(↵) = max(↵, 0) , |↵| , arctan(↵)Lj : sums of linear convolutions

x(u) �(x)

L1

⇢
Lj

⇢

f̃(x)

Optimize Lj by propagation of errors on training exemples

Training error =

X

i

| ˜f(xi)� f(xi)|2



Under review as a conference paper at ICLR 2016

Figure 1: DCGAN generator used for LSUN scene modeling. A 100 dimensional uniform distribu-
tion Z is projected to a small spatial extent convolutional representation with many feature maps.
A series of four fractionally-strided convolutions (in some recent papers, these are wrongly called
deconvolutions) then convert this high level representation into a 64 ⇥ 64 pixel image. Notably, no
fully connected or pooling layers are used.

suggested value of 0.9 resulted in training oscillation and instability while reducing it to 0.5 helped
stabilize training.

4.1 LSUN

As visual quality of samples from generative image models has improved, concerns of over-fitting
and memorization of training samples have risen. To demonstrate how our model scales with more
data and higher resolution generation, we train a model on the LSUN bedrooms dataset containing
a little over 3 million training examples. Recent analysis has shown that there is a direct link be-
tween how fast models learn and their generalization performance (Hardt et al., 2015). We show
samples from one epoch of training (Fig.2), mimicking online learning, in addition to samples after
convergence (Fig.3), as an opportunity to demonstrate that our model is not producing high quality
samples via simply overfitting/memorizing training examples. No data augmentation was applied to
the images.

4.1.1 DEDUPLICATION

To further decrease the likelihood of the generator memorizing input examples (Fig.2) we perform a
simple image de-duplication process. We fit a 3072-128-3072 de-noising dropout regularized RELU
autoencoder on 32x32 downsampled center-crops of training examples. The resulting code layer
activations are then binarized via thresholding the ReLU activation which has been shown to be an
effective information preserving technique (Srivastava et al., 2014) and provides a convenient form
of semantic-hashing, allowing for linear time de-duplication . Visual inspection of hash collisions
showed high precision with an estimated false positive rate of less than 1 in 100. Additionally, the
technique detected and removed approximately 275,000 near duplicates, suggesting a high recall.

4.2 FACES

We scraped images containing human faces from random web image queries of peoples names. The
people names were acquired from dbpedia, with a criterion that they were born in the modern era.
This dataset has 3M images from 10K people. We run an OpenCV face detector on these images,
keeping the detections that are sufficiently high resolution, which gives us approximately 350,000
face boxes. We use these face boxes for training. No data augmentation was applied to the images.
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 Linearisation in Deep Networks

Under review as a conference paper at ICLR 2016

Figure 4: Top rows: Interpolation between a series of 9 random points in Z show that the space
learned has smooth transitions, with every image in the space plausibly looking like a bedroom. In
the 6th row, you see a room without a window slowly transforming into a room with a giant window.
In the 10th row, you see what appears to be a TV slowly being transformed into a window.

6.3.2 VECTOR ARITHMETIC ON FACE SAMPLES

In the context of evaluating learned representations of words (Mikolov et al., 2013) demonstrated
that simple arithmetic operations revealed rich linear structure in representation space. One canoni-
cal example demonstrated that the vector(”King”) - vector(”Man”) + vector(”Woman”) resulted in a
vector whose nearest neighbor was the vector for Queen. We investigated whether similar structure
emerges in the Z representation of our generators. We performed similar arithmetic on the Z vectors
of sets of exemplar samples for visual concepts. Experiments working on only single samples per
concept were unstable, but averaging the Z vector for three examplars showed consistent and stable
generations that semantically obeyed the arithmetic. In addition to the object manipulation shown
in (Fig. 7), we demonstrate that face pose is also modeled linearly in Z space (Fig. 8).

These demonstrations suggest interesting applications can be developed using Z representations
learned by our models. It has been previously demonstrated that conditional generative models can
learn to convincingly model object attributes like scale, rotation, and position (Dosovitskiy et al.,
2014). This is to our knowledge the first demonstration of this occurring in purely unsupervised

8

• On a data basis including bedrooms: interpolaitons

A. Radford, L. Metz, S. Chintala

• Reconstruction



          Overview 

• Simplified architecture: multiscale wavelet scattering  

• Unsupervised learning: statistical physics 

• Supervised learning from images to quantum chemistry 

• Structuring Deep Networks



Linearise for Dimensionality Reduction

Level sets of f(x)

⌦t = {x : f(x) = t}

Classes

⌦1
⌦2

⌦3

�(x)

x

- Linearize level sets ⌦t

- Reduce dimension with linear projections

if f(x) 6= f(x0) then �(x) 6= �(x0)

• We want to reduce the dimension of x

with a discriminative lower dimensional representation �(x):

• Dimension reduction in two steps:

How ?



            Symmetries

g
g

⌦1

⌦2

G = {g : f(g.x) = f(x)}
• Symmetry group of f preserve ⌦t = {x : f(x) = t}

f(g1.g2.x) = f(g2.x) = f(x)

If g1 and g2 are symmetries then g1.g2 is also a symmetry

�(g.x) = �(x) ) f(g.x) = f(x)

symmetry group of � included in symmetry group of f

• � discriminative means that:

⌦t = {x : f(x) = t}

- What are the symmetry groups of f ?

- How to adapt � ?

• Dimensionality curse: geometry of few far away points



x(u)

 Translation and Deformations

Video of Philipp Scott Johnson

• Digit classification:

- Globally invariant to the translation group

- Locally invariant to small di↵eomorphisms

: small

: huge group

x

0(u) = x(u� ⌧(u))

⌦3 ⌦5

Linearize small

di↵eomorphisms:

) Lipschitz regular



      Deep Convolutional  Trees

Cascade of convolutions: no channel connections

x(u)

L1

⇢
Lj

⇢ �(x)

y = f̃(x)
classification

LJ



rotated and dilated:

 Scale separation with Wavelets

 2j ,✓(u) = 2�j  (2�jr✓u)

• Wavelet transform:
: average

: higher
frequencies

Wx =

✓
x ? �2J (u)
x ?  2j ,✓(u)

◆

jJ,✓

x ?  2j ,✓(u) =

Z
x(v) 2j ,✓(u� v) dv

x(u)

• Wavelet filter  (u):= + i

real parts imaginary parts

Preserves norm:

�Wx�2 = �x�2 .

Stable to deformations
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|x ?  21,✓|

      Fast Wavelet Filter Bank

CHAPTER 2. TRANSLATION SCATTERINGAND CONVOLUTIONAL NETWORKS34
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Figure 2.3: Three Morlet wavelet families with different sets of parameters. For each
set of parameters, we show, from left to right, the gaussian window φJ , all the Morlet
wavelets ψθ,j, and the associated Littlewood Paley sum A(ω). When the number of scales
J increases, so does the width of the low pass wavelet φJ . When the number of orientations
C increases or when the number of scales per octave Q decreases, the Morlet wavelets
become more elongated in the direction perpendicular to their orientation, and hence have
an increased angular sensitivity.

|W1|

2J

Scale
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2J

|x ?  22,✓|
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an increased angular sensitivity.
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|W1|

      Wavelet Filter Bank
x(u)⇢(↵) = |↵|

|x ?  2j ,✓|



x(t)

|W1|x =

✓
x ? �2J

|x ?  �1 |

◆

�1

First wavelet transform

W1x =

✓

x ?  �1

◆

�1

x ? �2J

    Wavelet Translation Invariance

|x ?  �1 | ? �2J (t)

2J

local translation invariance

x ? �2J (t)

full translation invariance

2J = 1

Lost high frequencies: x ?  �1(t)

Eliminate the phase: |x ?  �1(t)|

Invariant:

|x ?  �1 | ?  �2(t)

|W2| |x ?  �1 |=
✓

|x ?  �1 | ? �2J (t)
||x ?  �1 | ?  �2(t)|

◆

�2

) wavelet transform:

Need to recover lost high frequencies:



    Wavelet Scattering Network

⇢L1

⇢L2

⇢LJ

⇢W1 ⇢W2 ... ⇢WJ

x

⇢(↵) = |↵|
Interactions across scales

|x ?  �1 |

x ? �J

SJ =

SJx =
n

|||x ?  �1 |? �2 ? ...| ?  �m | ? �J
o

�k

||x ?  �1 | ?  �2 | ? �J

20

2J

Scale

21



= . . . |W3| |W2| |W1|xSJx =

0

BBBB@

x ? �2J

|x ?  �1 | ? �2J
||x ?  �1 | ?  �2 | ? �2J

|||x ?  �2 | ?  �2 | ?  �3 | ? �2J
...

1

CCCCA

�1,�2,�3,...

preserves norms kSJxk = kxk

translations invariance and deformation stability:

if D⌧x(u) = x(u� ⌧(u)) then

lim
J!1

kSJD⌧x� SJxk  C kr⌧k1 kxk

      Scattering  Properties

contractive kSJx� SJyk  kx� yk (L2
stability)

Theorem: For appropriate wavelets, a scattering is

kWkxk = kxk ) k|Wkx|� |Wkx
0|k  kx� x

0kLemma : k[Wk, D⌧ ]k = kWkD⌧ �D⌧Wkk  C kr⌧k1



    Image Classification

0.4% errors

Digit Recognition

0.2% errorsCUREt

61 classes 

x

w
S



  Unsupervised Learning
X(u)

d

• Estimate the probability density p(x)

of X(u) from few realisations {xi(u)}i

Scattering of a stationary process X(u)

SJX =

0

BB@

X ? �2J (u)
|X ?  �1 | ? �2J (u)

||X ?  �1 | ?  �2 | ? �2J (u)
...

1

CCA

d ! 1

if ergodicity

0

BB@

E(X)
E(|X ?  �1 |)

E(||X ?  �1 | ?  �2 |)
...

1

CCA

Scattering moments

=

0

BB@

d�1
Pd

u=1 X(u)
d�1kX ?  �1k1

d�1k|X ?  �1 | ?  �2k1
...

1

CCA

if 2J = d

µ̄ =

Joan Bruna

• How to estimate the probability density p(x) of X ?



      Canonical Maximum Entropy

with a maximum entropy H
max

= �
R
p(x) log p(x) dx is

Theorem (Gibbs) The distribution p(x) which satisfies

p(x) =

1

Z

exp

⇣X

m

�m �m(x)

⌘

E(�m(X)) =

Z

RN

�m(x) p(x) dx = µ̄m

Given a vector of scattering moments:

E(SX) =

0

BB@

E(X)
E(|X ?  �1 |)

E(||X ?  �1 | ?  �2 |)
...

1

CCA

�1,�2,...

=
⇣
E(�m(X)

⌘

m

Multiscale Hamiltonian with scale interactions



      Canonical Maximum Entropy

with a maximum entropy H
max

= �
R
p(x) log p(x) dx is

Theorem (Gibbs) The distribution p(x) which satisfies

p(x) =

1

Z

exp

⇣X

m

�m �m(x)

⌘

E(�m(X)) =

Z

RN

�m(x) p(x) dx = µ̄m

Given a vector of scattering moments:

E(SX) =

0

BB@

E(X)
E(|X ?  �1 |)

E(||X ?  �1 | ?  �2 |)
...

1

CCA

�1,�2,...

=
⇣
E(�m(X)

⌘

m

Multiscale Hamiltonian with scale interactions

Numerically too expansive to compute Lagrange multipliers �m



Microcanonical Sampling 

X̃

X̃0

Joan Bruna

• Given a single realisation of X :

{x : kSx� SXk  ✏}

Initialized with

˜X0 Gaussian white noise

Algorithm:

SX =
n

d�1
X

u

X(u), d�1kX ?  �1k1, d�1k|X ?  �1 | ?  �2k1
o

⇡ E(SX).

Theorem (H. Georgii)

For scattering, the micro and macrocanonical processess

converge to the same Gibbs measure when d goes to 1

Iteratively reduce kSX̃n � SXk2
with gradient descent

• A microcanonical max entropy process

˜X satisfies

kSX̃ � SXk  ✏



  Texture Reconstructions Joan Bruna

Ising-critical Turbulence 2D



Original

Paper

Cocktail Party

Representation of Audio Textures
Joan Bruna
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 Failures of Audio Synthesis

Original Time Scattering

J. Anden and V. Lostanlen



     Channel Connections

x(u) �(x)

L1

⇢
Lj

⇢

f̃(x)

What is the role of channel connections ?



Time-Frequency Translation Group

|x ?  �| ? �J ||x ?  �| ?  ↵ ?  � | ? �Jt t t t log � t

Time-frequency
wavelet

convolutions

J. Anden and V. Lostanlen



  Joint Time-Frequency Scattering

Original Time Scattering Time/Freq Scattering

J. Anden and V. Lostanlen



Symmetries: Rotation Invariance

2J |x ?  22,✓|

|x ?  23,✓|Scale

|x ?  21,✓|

|W1|

x ? �J

✓

• Channel connections linearize other symmetries.

• Invariance to rotations are computed by convolutions

along the rotation variable ✓ with wavelet filters.

) invariance to rigid mouvements.



 Extension to Rigid Mouvements
Laurent Sifre

• Scattering on rigid mouvements:

Wavelets on Translations

x(u)

R
x(u)du

|W1|

Wavelets on Rigid Mvt.

|W2| |xj ~  �2(v, ✓)|

R
xj(u, ✓) dud✓

Wavelets on Rigid Mvt.

|W3|
Z

|xj ~  �2(v, ✓)|dud✓

• Group of rigid displacements: translations and rotations

|x ?  j,✓(u)|
xj(u, ✓)

x~  �(u, ✓) =

Z 2⇡

0

Z

R2

x(u0
, ✓

0) ✓,2j (u� u

0) 2k(✓ � ✓

0) d✓0du0



UIUC database:
25 classes

Scattering classification errors

Training Scat. Translation Scat. Rigid Mouvt.

20 20 % 0.6%

  Rotation and Scaling Invariance
Laurent Sifre



 Learning Physics: N-Body Problem

• Can we learn the interaction energy f(x) of a system

with x =

n

positions, charges

o

?

stable to deformations.

Quantum chemistry: f(x) is invariant to rigid mouvements,

Ground state

electronic density

computed with Schroedinger

The energy depends upon the electronic density (Kohn-Sham)

⇢
x

(u) ⇢
x

(u)



   Quantum Chemistry
Matthew Hirn

   Quantum Regression N. Poilvert

• Compute f(x) from isolated atomic densities

without interactions:

⇢̃
x

: sum of

individual densities

⇢
x

: ground state

elecronic density

scattering coe�cients and squared

Fourier modulus coe�cients and squared

or

�x = {�
n

(⇢̃
x

)}
n

:

f

M

(x) =
MX

k=1

w

k

�

nk(⇢̃x)

• Linear regressions computed with invariant change of variables:

Regression coe�cients wk: equivalent potential.

carrying chemical properties



x    Scattering Regression

Regression:

36

Quantum Energy Regression using Scattering Transforms

the RMSE is due to the fact that a scattering regression has
smaller error outliers.
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Model Complexity log2(M)
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� |f

(x
)
�

f̃ M
(x

)|2��
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Figure 2. Decay of the log RMSE error
1
2 log2

h
E

⇣
|f(x)� ˜

f

M

(x)|2
⌘i

over the larger database of
4357 molecules, as a function of log2(M) in the Fourier (green),
Wavelet (blue) and Scattering (red) regressions. The dotted line
gives the Coulomb regression error for reference.

Table 1 shows that the error of Fourier and wavelet regres-
sion are of the same order although the Fourier dictionary
has 1537 elements and the wavelet dictionary has only 61.
Figure 2 gives the decay of these errors as a function of
M . This exepected error is computed on testing molecules.
The circles on the plot give the estimated value of M which
yield a minimum regression error by cross-validation over
the training set (reported in Table 1). Although the Fourier
and wavelet regressions reach nearly the same minimum
error, the decay is much faster for wavelets. When going
from the smaller to the larger database, the minimum error
of the Fourier and wavelet regressions remain nearly the
same. This shows that the bias error due to the inability of
these dictionaries to precisely regress f(x) is dominating
the variance error corresponding to errors on the regression
coefficients. The Coulomb and Scattering representations
on the other hand, achieve much smaller bias errors on the
larger database.

The number of terms of the scattering regression is M =

591 on the larger database, although the dictionary size is
11071. A very small proportion of scattering invariants are
therefore selected to perform this regression. The chosen
scattering coefficients used for the regression are coeffi-
cients corresponding to scales which fall between the min-
imum and maximum pairwise distances between atoms in
the molecular database. These selected coefficients are thus
adapted to the molecular geometries.

7. Conclusion
This paper introduced a novel intermediate molecular rep-
resentation through the use of a model electron density.
The regression is performed on a scattering transform ap-
plied to a model density built from a linear superposition of
atomic densities. This transform is well adapted to quan-
tum energy regressions because it is invariant to the per-
mutation of atom indices, to isometric transformations, it
is stable to deformations, and it separates multiscale inter-
actions. It is computed with a cascade of wavelet convolu-
tions and modulus non-linearities, as a deep convolutional
network. State-of-the-art regression accuracy is obtained
over two databases of two-dimensional organic molecules,
with a relatively small number of scattering vectors. Under-
standing the relation between the choice of scattering coef-
ficients and the physical and chemical properties of these
molecules is an important issue.

Numerical applications have been carried over planar
molecules, which allows one to restrict the electronic den-
sity to the molecular plane, and thus compute a two-
dimensional scattering transform. A scattering transform
is similarly defined in three dimensions, with the same in-
variance and stability properties. It involves computing a
wavelet transform on the two-dimensional sphere S2 in R3

(Starck et al., 2006) as opposed to the circle S

1. It entails
no mathematical difficulty, but requires appropriate soft-
ware implementations which are being carried out.

Energy regressions can also provide estimations of forces
through differentiations with respect to atomic positions.
Scattering functions are differentiable and their differential
can be computed analytically. However, the precision of
such estimations remain to be established.
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14.2
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Interaction terms

across scales

Fourier
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Eickenberg ,Exarchakis,Hirn

Data basis {xi , f(xi)}iN of 7000 3D molecules

1.0: Deep Tensor Networks

(Schutt et. al.)



SJx y = f(x)
x

Supervised
Linear classifier

No learning

Cars
Dogs

Ships

Data Basis Deep-Net Scattering
CIFAR-10 7% 20%

  Image Classification: CIFAR-10

10 classes, 50 10

3
labeled training images, of 32⇥ 32 pixels

Edouard Oyallon



  Image Classification: CIFAR-10

Cars
Dogs

Ships

SJx y = f(x)
x

No learning

CNN

Data Basis Deep-Net Scat. + CNN
CIFAR-10 7% 7%

10 classes, 50 10

3
labeled training images, of 32⇥ 32 pixels

Oyallon, Belivovsky, Zagoruyko



Image Classification: ImageNet 2012

1000 classes, 1.2 million labeled training images, of 224⇥ 224 pixels

Y LeCun
MA Ranzato

Object Recognition [Krizhevsky, Sutskever, Hinton 2012]

Res-Net Scat. + Res-Net

Top 1 30% 30%

Top 5 11% 11%

Oyallon, Belivovsky, Zagoruyko



Structured Network: ImageNet 2012
2
H
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ayers

F
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C
lassifi

er

103

Scattering SJx

2J 103

⇢L1

103

⇢L2

103

⇢L3

Alex-Net Scat. + 3 layers

Top 1 43% 43%

Top 5 20% 20%

• Which invariants are learned and computed with the Lj ?

• Are the Lj storing some form of memory ?

Learned Channel Connexions

1000 classes, 1.2 million labeled training images, of 224⇥ 224 pixels

Oyallon, Belivovsky, Zagoruyko

20 times faster



           Conclusions

• Deep convolutional networks have spectacular high-dimensional 
approximation capabilities. Seem to learn complex symmetries 

• Can be further structured to use prior information. 

• Close link with particle and statistical physics 

• Outstanding mathematical problems to understand them:  
    what are the classes of « learnable » functions and processes ? 
     notion of complexity, approximation theorems… 

Understanding Deep Convolutional Networks, arXiv 2016.


