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Diversity of Infrared Imaging

● Measures scalar intensities (absorbance, reflectance, 
transmittance, fluorescence,…)  across various 
spectral channels

Bottom: BR1003 AGILENT dataset: Resolution 1.1 um, 
Size 128 x 128, #Bands 1506, Wavelength 2.5 -25 um

Multispectral Image.                                                        RGB Color Image  
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 Hydice HYMAP dataset: Resolution 5 m, Size 500 x 500, 
#Bands 128, Wavelength 0.4 -2.45 um 



Visible vs  Mid-Infrared
● Cell/Tissue Classification for Cancer Detection

1.1 um0.22 um

H&E stained image

Classified and pathologically verified map of the Tissue 
Sample: Breast Tissue BR1003,
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Small vs Big Data Spectral Analysis

56Typical spectra from five different classes of 
the core

1.1 
um

0.22 
um

Image Classification / Segmentation 

1.3TB/day  0.005TB/day 



Need for Noise Estimation and De-Noising
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Wavenumber 
Wavelength 

800 
cm^-1 
12.5 um

3800 
cm^-1 
2.6 um

AUC curve for Malignant 
Epithelium 
MNF:  (Minimum Noise 
Fraction) a denoising 
technique

Noisy and DeNoised signal with spectral 
signature markers

Classification suffers if data is Noisy 
● Classifying Malignant Epithelium using 

Machine Learning 
● Denoised Signal: 98-99% correct 

prediction 
● Noisy Signal: 85-86% correct prediction 
● Based on well distinguished spectral 

markers

Fingerprint Region Functional Region

IR Silent Region
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Combining IR Spectroscopy + Machine Learning

Changing the paradigm of     data  acquisition ! modeling  ! 
analysis  ! visualization

Diagnostic Problem @ 
Multiple Scales 

Forward Imaging Model

Determine Signal, Noise 
Dimensionality, Parameter 

Sensitivity Analysis

Determine Sparsest Data 
Sampling for S/N and UQ  Augment/Build Instrumentation

Reconstruct Raw Data  
Inverse Model Analysis

Current Instrumentation, 
Uncertainty Analysis…..

Towards Smart Diagnosis   
Multi-scale Data Analysis with 

Quantified Uncertainty
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Noise Estimation: Model and Simulate the Image Acquisition



Computational 
flow of imaging 
forward model 

Parameter : ii 
lterate over 
wavenumbers 

2. Focused light source 
>-~--------------1 Discretized rays of light, 

direction s 

-------------------------- --------,, 
/~-------------, 1 

1 3. Homogeneous layer 
1 

Write angular spectrum 

1. Input: Layered sample 4. Heterogeneous layer 
s = („„(s<l)(XJ',v), t'>),„.) ~-~Salve coupled differential eqns. 
8 relative permittivity 

s. Solve electrlc/magnetlc fleld 
Solve linear system of equations 
(banded matrix) 

Any number of layers (Ssmple 
is any number of homogeneous 

1 and heterogeneous layers) \_ ___________________________ -------~ 

1~~--1 
l 

7. Array detector 
Discretization with sensitivity and 
PSF; upgradable to CCD model 

Light source . 
Image: Spegazzini. High definition (HD) IR imaging 1nformat1on. May 2016. 

8. Output: J(x,y; ,;, s) 
image function 



ß71nput - Layered sample 

• Model represents sample as layered medium 
• Each layer may be modeled either 

homogeneously or heterogeneously 
• Homogeneous layers: E(z) (v) depends only on : 

wavenumber 
• Heterogeneous layers: E(z) (x, y, v) depends on 

x, y position as well 
• Variation along the z direction modeled through layers (discretization) 
• Sample is described by relative permittivity E - a four-dimensional 

(l, x, y, v) complex-valued function - and layer boundary positions z(l) 

• Sample s ~ ((E(l),z(1)),(t(2),z(2)), ... ,(E(L),z(L))) 

Lightsource 

Dclcctor 

Laycr 1 

Laycr 2 

Plane Wave Amplitude 

- 10 

:(0) 

..,<1) 

z(2) 

: z(L-1) 

z(l . ) 



13-s.I Light-sample interaction 

The sample interaction model (steps 3-5) computes the 
electric and magnetic field in the sample 

• Generale constraint equations for each sample layer boundary 
• For homogeneous layers, get constraint equations directly (step 3) 
• For heterogeneous layers, solve differential system first (step 4) 

• Salve linear system of 4(L - l)Np equations (step 5) to determine light 
leaving sample towards detector 

E (l) (x y z(l) v) = E (z+ i ) (x y z(l) v) H (l) (x y z(l) v) = H (z+ i ) (x y z(l) v) x,y , , , x,y , , , x,y , , , x,y , , , 

Light sourcc 

Dctcctor 

Layer 1 

Layer 2 
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Preliminary results: toluene 

1600 1400 1200 1000 

+-V 
800 

Top: Simulated by my implementation (solid line), 
reference implementation (dotted line). 
Bottom: Observed spectrum (Coblentz No. 10130). 

600 

Coblentz Society, lnc. Evaluated infrared reference spectra. In Linstrom and Mallard, editors, NIST Chemistry WebBook. NIST Standard Refarence Database Number 69. 
Gaithersburg MD, 20899. Accessed 30 May 2017. 
SDBS No. 97. In SDBSWeb: Spectral Databasa forOrganic Compounds. National Institute of Advanoed lndustrial Science and Technology, Tokyo. Accessed 5 June 2017. 

Preliminary results: hexane 

1600 1400 1200 1000 

+- II 
800 

Top: output from my implementation (solid line), 
reference implementation (dotted line). 
Bottom: Observed spectrum (Coblentz No. 10118). 

600 

Coblentz Society, lnc. Evaluated infrarec reference spectra. In Linstrom and Mallard, editors, NIST Chemistry WebBook, NIST Standard Reference Database Number69. 
Gaithersburg MD, 20899. Aocessed 30 May 2017. 



Given Noisy data (Y = D + ε) under an unknown noise model ε, obtain an 

approximation      : 

1. Maximize the Signal to Noise Ratio (SNR) 

2. Preserve structural details in the image domain  

3. Preserve spectral markers F (peak position, peak location, relative 

peak spacing) 

The Spectral De-Noising Problem 

Fingerpri
nt 
Region

Function
al 
Region

IR Silent 
Region

Structural 
Details

Structural 
Details

Noisy 
Pixels



Metrics for De-Noising evaluation
● Spatial 

a. Classification Accuracy 
● Spectral 

a. Preservation of spectral features 
b. Spatial profile analysis



Challenges for De-Noising in Mid IR
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● Most algorithms fail if the data is noisy 
● Spectral markers get corrupted or lost 
● Signal and noise maybe correlated 
● Noise correlated across multiple 

channels* 
 

Correlation in fingerprint 
region

Correlation in functional 
region

Correlation in 
fingerprint and 
functional region

Peak 
Lowered

Peaks Lost

Covariance matrix of approximated noise in 
the FTIR data 

Illustration when noise is correlated within channels 
and also to data

* Leger et al. "Methods for systematic investigation of 
measurement error covariance matrices." Chemometrics and 
Intelligent Laboratory Systems 77.1 (2005): 181-205.



Prior De-Noising Techniques
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● Filtering based approaches on spectrum *$+ 

● Coefficients chosen by human 
experimentation 

● Can handle any kind of noise 
● Initial analysis is very time consuming 
● Recalculate for every new dataset 
● Good Classification accuracy 

* Savitzky, Abraham, and Marcel JE Golay. "Smoothing and differentiation of data by simplified least squares procedures." 
Analytical chemistry 36.8 (1964): 1627-1639. 
$ Kawata, Satoshi, and Shigeo Minami. "Adaptive smoothing of spectroscopic data by a linear mean-square estimation." Applied 
spectroscopy 38.1 (1984): 49-58. 
+ Tsai, Fuan, and William Philpot. "Derivative analysis of hyperspectral data." Remote Sensing of Environment 66.1 (1998): 41-51.

Results of Savitzky Golay filtering with different order 
polynomial fitting



● Signal is much stronger than noise 
○ Signal and noise are independent 

○ Noise across channels are independent 
● Recover a low rank structure from the data where all the 

major signal contributions lie, and with with sparse noise 
structure *+ 

● Perform multi-modal lteration using Parallel Factor 
Analysis or Multidimensional Weiner based filters on the 

HSI cube $% 

● Use a rank-1 approximated tensor decomposition 

approach # 

● Model the signal and noise as gaussian random fields 

and solve using Bayesian approach & 

* Zhang et al. "Hyperspectral image restoration using low-rank matrix recovery." IEEE Transactions on Geoscience and Remote Sensing 52.8 (2014): 4729-4743 
+ Wei, et al. "Hyperspectral image denoising via noise-adjusted iterative low-rank matrix approximation." IEEE Journal of Selected Topics in Applied Earth Observations and 
Remote Sensing 8.6 (2015): 3050-3061 
$ Xuefeng et al. "Reduction of signal-dependent noise from hyperspectral images for target detection." IEEE Transactions on Geoscience and Remote Sensing 52.9 (2014): 
5396-5411 
% Letexier, Damien, and Salah Bourennane. "Noise removal from hyperspectral images by multidimensional Filtering." IEEE Transactions on Geoscience and Remote 
Sensing 46.7 (2008): 2061-2069 
# Guo, Xian, et al. "Hyperspectral image noise reduction based on rank-1 tensor decomposition." ISPRS journal of photogrammetry and remote sensing 83 (2013): 50-63. 
& Zhong et al. "Jointly learning the hybrid CRF and MLR model for simultaneous denoising and classification of hyperspectral imagery." IEEE Transactions on Neural 
Networks and Learning Systems 25.7 (2014): 1319-1334

Assumption on independent noise model 
results in negligible denoising 

Prior De-Noising Techniques



Minimum Noise Fraction (MNF)
● Developed by Green et al. * 

● Can handle cases when signal and noise are 

uncorrelated 

● Noise can be correlated within channels 

● Orders data in terms of SNR in the MNF transformed 

space

* Green, Andrew A., et al. "A transformation for ordering multispectral data in terms of 
image quality with implications for noise removal." IEEE Transactions on geoscience 
and remote sensing 26.1 (1988): 65-74



Minimum Noise Fraction: Geometry 

Spectral Decomposition of Noise Covariance

Data Covariance Structure

Whitened Noise Covariance

Spectral Decomposition of Whitened Data



Minimum Noise Fraction: Fast MNF
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● Previously slow due to inversion of large 
matrices 

● Current formulation avoids any inverse 
● Uses rank-K approximation of G



● Block Lanczos # method to compute a rank K’ SVD  

● Guarantees (1+ε) Frobenius and (1+ε) spectral norm 

approximation 
● Guarantees ε per vector norm approximation 

● Although the Block Lanczos algorithm can attain 

machine precision 

● Block Lanczos is rel.slow when the matrix is large 
● A faster randomized and memory efficient version &  

● Computes the K’-SVD up to (1+ε)  Frobenius norm 

relative error 

● Only keeps a N x O(K’/ε) sketch in memory

Variations on Minimum Noise Fraction: Fast MNF
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$ Musco, Cameron, and Christopher Musco. "Stronger 
approximate singular value decomposition via the block 
lanczos and power methods." Advances in Neural 
Information Processing Systems (NIPS) (2015). 
& Halko, Nathan, Per-Gunnar Martinsson, and Joel A. 
Tropp. "Finding structure with randomness: Probabilistic 
algorithms for constructing approximate matrix 
decompositions." SIAM review 53.2 (2011): 217-288.

Approx MNF

Rand MNF



Minimum Noise Fraction: Profile Analysis
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Minimum Noise Fraction: Classification Analysis
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Next Steps:  Super-Resolution IR

Breast Tissue
Visualization and chemical 

characterization of 
intralobular stroma.

Colon Tissue
Visualization and chemical characterization of 

subcellular mucin

ProstateTissue
Visualization and chemical 

characterization of collagen bands

Nasse et al. Nature Methods (2011); 
Reddy et al Appl Spectrosc (2013)

Collaboration with Rohit Bhargava, UIUC



Next Steps:  Tunable Quantum Cascade Laser 
(Compressed Sensing)

Frontier – Imaging with QCLs 
-    Excellent SNR (104); 105 pix/s.Δν 
- Ideal for ML approaches ! use discrete 

frequency data for classification 
- Limited frequency range



SMART DATA ANALYSIS: Tumor Cytotyping, Tracking Progression in 3D with 
Molecular-Cell Precision 

Developing computational tools convert chemical imaging data to 
knowledge, as shown here for identifying all cells in prostate 
tissue (E).

 (D) nucleic acids (left, at 1080cm-1) 
and collagen specific (right, at 
1245cm-1).

(A) acinar org. of primary organoid cultures with a well-defined 
lumen 

(B)  200 micron x 200 micron field of view of a single 100 nm thin 
resin section imaged at 1 nm resolution of an organoid 
undergoing branching morphogenesis

(C) HMT-3522 S1 acini (left) and T4 aggregates (right). 
(D) S1 cells form growth-arrested acini with extensive intercellular 

membrane network and reduction in cell polarity, illustrating the 
label-free resolving power of the electron microscope.

Learning the Heterogeneity in cellular morphology, with a 
reduction in cell polarity during branching morphogenesis



DETAILS
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Sources for hyperspectral images
● Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) program 

○ Spatial resolution 20 meters at 20 km altitude, 4 meters at 4 km 

○ 0.4-2.5 µm 

● Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Spectral Library 

○ 2000 spectra of minerals, rocks, soils, water 

○ 0.4-14 µm 

● USGS Spectral Library 

○ 500 spectra of minerals and a few plants 

○ 0.2-3.0 µm



Reflectance vs. radiance
Laboratory instruments observe reflectance (or absorption), while remote sensing observes radiance, 
capturing several effects which must be corrected for. 

● Spectrum of illuminating (solar) light 

○ Additionally affected by shadows 

● Light interactions with atmosphere 

○ e.g. absorbance by water vapor, CO2 

● Illumination geometry (angle of incidence) 

○ Varies by time of day and season 

● Sensor characteristics 

○ Variations between sensors, temporal changes



Hyperspectral image acquisition
● Imaging spectrometers capture hyperspectral images  

● Remote sensing 

○ Analysis of the surface of the Earth (or other planets) 

○ Optical dispersing element to separate frequencies 

○ Can have spectral resolution as fine as 0.01 µm 

○ Broadband (solar) light source 

● Hyperspectral images also used in microscopy 

○ Focal plane array detector 

○ FTIR spectroscopy using interferometer light source

31



Hyperspectral instrument specifications
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AVIRIS ASTER Agilent Cary 
FTIR

QCL DFIR

Image 
size

677 pixels 
wide

4980 pixels wide 
(V/NIR)

128 × 128 pixels 128 × 128 
pixels

Spatial 
resolutio
n

20m (at 20km 
alt.) 
4m (at 4km 
alt.)

15m (V/NIR) 
30m (SWIR) 
90m (MidIR)

1.1 µm 0.95 µm

Spectral 
resolutio
n

0.01 µm in 
0.4-2.5 µm

14 bands 
increments of 
0.4-14 µm

0.0002 µm 
increments of 
1.1-28.5 µm

0.002 µm in 
5.25-12.87 µm

Detector Si (Vis) 
InGaAr (NIR) 
InSb (SWIR)

Si (V/NIR) 
PtSi-Si (SWIR) 
HgCdTe (MidIR)

DLaTGS or 
HgCdTe (MCT)

HgCdTe (MCT)

SNR 100 (at 0.49 varies 10,000 260 (single 



Research and commercial imaging spectrometers
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Sensor Organization Country # 
bands

Wavelengt
hs

AVIRIS NASA United 
States

224 0.4   - 2.5 
µm

AISA Spectral Imaging Ltd Finland 286 0.45 - 0.9 
µm

CASI Itres Research Canada 288 0.43 - 0.87 
µm

DAIS 
2115

GER Corp United 
States

211 0.4   - 12.0 
µm

HYMAP Integrated Spectronics 
Pty Ltd

Australia 128 0.4   - 2.45 
µm

PROBE Earth Search Sciences United 128 0.4   - 2.45 



Aerobic glycolysis 
inhibitors 

Proapoptotic 
BH3 mimetics 

PARP 
inhibitors 

Res1sting 
cell 

death 

EGFR 
inhibitors 

Sustaining 
proliferative 

signaling 

lnducing 
angiogenesis 

Inhibitors of 
VEGF signaling 

Cyclin-dependent 
kinase inhibitors 

Evading 
growth 

suppressors 

Activating 
invasion & 
metastasis 

Inhibitors of 
HGF/c-Met 

Enabl1ng 
rephcat1ve 
1mmortahty 

Immune activating 
anti-CTLA4 mAb 

Telomerase 
Inhibitors 

Selective anti­
inflammatory drugs 



Minimum Noise Fraction: Automatic Band Selection

35

● Previous works include: 
○ Manual inspection of Eigen-images 
○ Automatic selection of Eigen-images 

based on its RMSE error to a clear image $ 

○ Computationally expensive 
○ Time Consuming 

● The optimal value of K can be determined from 
the diagonal entries of  

● The Rose criteria & states that an SNR of at 
least 5.0 is needed to be able to distinguish 
image features at 100% certainty.

$ Reddy, K., and Bhargava, R. "Accurate histopathology from low signal-to-
noise ratio spectroscopic imaging data." Analyst 135.11 (2010): 2818-2825. 
& Bushberg et al. “The essential physics of medical imaging”. Lippincott 
Williams & Wilkins, 2011.
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Blind Error Metric
● Absence of ground truth 
● The Method Noise Image (MNI)*  

○ No-reference metric, simple and easy to 
use 

○ Based on Structural Similarity Index 
Metric% (SSIM) 

○ Scores based on intensity, contrast, 
Image moments 

○ Maximum score around highly structured 
regions

* Kong, Xiangfei, et al. "A new image quality metric for image auto-
denoising." Proceedings of the IEEE International Conference on 
Computer Vision. 2013. 
% Wang, Zhou, et al. "Image quality assessment: from error visibility to 
structural similarity." IEEE transactions on image processing 13.4 (2004): 
600-612.




