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Recently, the steady sedimentation profile of a dilute suspension of chemically powered colloids was

studied experimentally [J. Palacci et al., Phys. Rev. Lett. 105, 088304 (2010)]. It was found that the

sedimentation length increases quadratically with the swimming speed of the active Brownian particles.

Here we investigate theoretically the sedimentation of self-propelled particles undergoing translational

and rotational diffusion. We find that the measured increase of the sedimentation length is coupled to a

partial alignment of the suspension with the mean swimming direction oriented against the gravitational

field. We suggest realistic parameter values to observe this polar order. Furthermore, we find that the

dynamics of the active suspension can be derived from a generalized free energy functional.

DOI: 10.1103/PhysRevLett.107.058301 PACS numbers: 82.70.Dd, 47.57.ef, 47.63.Gd

Swimming cells use a variety of mechanisms to propel
themselves in a viscous environment [1]. A common prop-
erty of swimming cells is that they actively move along a
swimming direction defined by their cell body, in contrast
to passive cells suspended in water that move only by
diffusion. This internally generated, active motion leads
to interesting collective phenomena that have been a
subject of great interest in the last years [2–6]. We show
here that, even in very dilute suspensions, self-propelled
Brownian particles develop polar order in an external field
such as gravitation.

Several studies report the emergence of long-range ori-
entational order in systems of active particles. In most
cases, the orientational anisotropy is due to the specific
particle interaction considered: Approaches based on the
Vicsek model [2,7] assume that self-propelled particles
align locally with neighbors. Inelastic collisions have
been found to be at the origin of nematic alignment of
rodlike particles [8]. Biologically motivated pursuit and
escape interactions lead to the formation of coherently
moving clusters and vortex structures [9]. Instabilities
generated by hydrodynamic interactions can also result
in long-range alignment of active particle suspensions
[3,10,11] or the formation of swarms in harmonic traps
[6]. Highly concentrated actin filaments propelled by mo-
lecular motors on motility assays can self-organize to form
coherently moving structures [12]. In contrast to these
examples, we report on a system of noninteracting active
particles that shows polar order. Anisotropy is generated
here by the interplay between self-propulsion and an ex-
ternal force that does not affect directly the swimming
direction.

Artificial self-motile colloidal particles have been de-
signed recently using different techniques that allow
control of the propulsion velocity as well as particle inter-
actions [13]. One example is the study of sedimentation
of active particles under gravity. It has been shown
experimentally [14] and also predicted theoretically for

run-and-tumble particles [5,15] that the sedimentation
length of dilute active particle suspensions increases
quadratically with their active velocity. We show here
that this increase in sedimentation length goes hand in
hand with the formation of polar order in the active particle
suspension and also explains the colloid accumulation
at the bottom surface observed in experiments [14].
Furthermore, we predict that with increasing particle
radius the orientational order becomes more pronounced
and should be directly observable in experiments.
Since the volume fraction of colloids in [14] was very

small (0.05%), we neglect in the following any particle
interactions and develop the theory for a gas of active
Brownian particles. We start from the Langevin equations
of motion and derive a Smoluchowski equation for the
particle distribution in the overdamped limit. We finally
reformulate it as a density functional theory.
We assume that each active particle swims with a con-

stant speed v0 in a particular direction given by the unit
vector p and associated to the particle. This swimming
velocity is added to the velocity, a passive particle would
have due to external forces and interactions with the
solvent. We describe each active spherical particle by its
position r, the direction of swimming p, total velocity v,
and angular velocity!. Considering the forces and torques
experienced by a sedimenting particle in a viscous fluid,
the Langevin equations of an active particle read

_r ¼ v; _v ¼ � �

m
ðv� v0pÞ þ v0!� pþ gþ � ;

_p ¼ !� p; _! ¼ ��r

I
!þ �: (1)

Here, � and �r are the respective translational and rota-
tional friction coefficients, m and I are the buoyant mass
and the moment of inertia of the particles, respectively, and
g ¼ �gez is the gravity field. A change of the particle
orientation due to the interaction with the fluid results
in the pseudoacceleration v0!� p. Without noise, the
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swimming direction would be constant and the velocity of
the particle would relax to v ¼ v0pþmg=�. With noise,
the velocity changes due to random forces and torques. We
assume the solvent is a thermal bath at temperature T so
that the spheres experience additional stochastic transla-
tional and rotational accelerations � and �, the second
moments of which fulfill the fluctuation-dissipation theo-
rem: h� ðtÞ� ðt0Þi ¼ ð2�kBT=m2Þ�ðt� t0ÞI, h�ðtÞ�ðt0Þi ¼
ð2�rkBT=I

2Þ�ðt� t0ÞI.
Following the standard method [16], a Fokker-Planck

equation for the one-particle distribution function
fðr;p; v;!; tÞ can be derived from the Langevin
equations (1). The relaxation time m=� of the particle
velocity v can be estimated from [14] to be about 10 ns.
The change of the position variable occurs about 108 times
slower: R=v0 � 0:1–1 s. On this time scale, the velocity
distribution is relaxed to a Gaussian. A similar argument
holds for the rotational velocities. This motivates a
local-equilibrium Maxwell-Boltzmann approximation
fðr; p; v;!; tÞ � �ðr; p; tÞ expf��m½ðv� �vðr; p; tÞ�2=2�
�I½!� �!ðr; p; tÞ�2=2g [17] that leads to equations for
the reduced distribution function �ðr;p; tÞ, mean particle
velocity �v, and mean angular velocity �! at ðr;p; tÞ:

�t þr � ð��vÞ þR � ð� �!Þ ¼ 0;

�
Dð�v� v0pÞ

Dt
þ �

m
�ð�v� v0pÞ ¼ � kBT

m
r�þ g�;

�
D �!

Dt
þ �r

I
� �! ¼ � kBT

I
R�:

(2)

Here, r refers to the position coordinate r, R denotes
the rotation operator p�rp, and D=Dt ¼ @t þ �v � r þ
�! �R is the material derivative. In the limit of vanishing
Reynolds number, Dð�v� v0pÞ=Dt and D �!=Dt in
Eqs. (2) are negligible with respect to the damping terms
so that

�v¼v0pþmg

�
�kBT

�
r ln�; �!¼�kBT

�r

Rln�: (3)

The reduced particle distribution function then obeys a
Smoluchowski equation

�t þr � Jt þR � Jr ¼ 0; (4)

with the translational and rotational fluxes Jt ¼ �Dr�þ
ðv0pþmg=�Þ� and Jr ¼ �DrR�. Here, D ¼ kBT=�
and Dr ¼ kBT=�r are the constants of translational and
rotational diffusion, respectively. For spheres of radius R,
one has Dr ¼ 3D=4R2. Note that Eq. (4) can be derived
also directly from the overdamped limit of Eqs. (1).

In Eq. (4), space and time can be rescaled according to
r0 ¼ r=R and t0 ¼ tD=R2. With g ¼ �gez and in terms of
the new coordinates, the Smoluchowski equation reads

�t0 ¼ r02�þ 3

4
R2�� ðPep� �ezÞ � r0�; (5)

and contains now only two dimensionless parameters: the
active Peclet number Pe ¼ v0R=D and the gravitational

Peclet number � ¼ mgR=kBT. They compare either active
swimming or gravitation-induced drift motion to thermal
diffusion.
For passive particles, the steady state of Eq. (5) is given

by the well-known barometric formula �� expð��z0Þ.
Experiments in [14] confirm the exponential decay for
the total density of active particles with a velocity-
dependent sedimentation length. However, it can be easily
shown that Eq. (5) has no isotropic steady state: For such a
state, the contribution of the rotational diffusion R2�
would vanish, but the balance of the diffusion and drift
terms would depend explicitly on the swimming direction:
�� exp½�ð�� PepzÞz0�. This observation and the experi-
mentally measured total density profile suggest the follow-
ing ansatz for the steady state:

�ðr;pÞ � eð��z0=�Þe½PeU1ðcos�ÞþPe2U2ðcos�Þþ����; (6)

where we use the axial symmetry of the problem
around the z axis and introduce the angle � with cos� ¼
p � ez. The coefficient � ¼ �eff=�0 describes the ratio
between the effective sedimentation length of active parti-
cles and the sedimentation length �0 ¼ R=� of passive
particles. Classical perturbation theory in Pe leads to
�ðPe; �Þ ¼ 1þ 2

9 Pe
2 �OðPe4; �1Þ, which recovers in

second order the result found in [14] and fits experimental
data very well up to Pe ¼ 5. However, we also find
nonvanishing higher-order terms in Pe with coefficients
depending on the gravitational Peclet number �. The first
coefficient functions in Eq. (6) are given by U1¼
2�cos�=3, U2¼�2�2cos2�=27.
From Eq. (5), a Smoluchowski equation for the total

density�ðr; tÞ ¼ H
�ðr;pÞd2p follows by integrating over

all orientations:

�t0 ¼ �z0z0 � Peðhcos�i�Þz0 þ ��z0 : (7)

Thereby, hcos�i ¼ H
pz�ðr;p; tÞd2p=� characterizes the

mean orientation of the particles along the vertical.
Equation (7) states that besides the diffusive and gravita-
tional particle currents, there is also a drift current initiated
by a polar ordering of the active particles. Hence, in a
steady density profile active particles partially align against
gravity field. Integrating Eq. (6) over all directions gives

�� e��z0=�, and then Eq. (7) leads to

Pe hcos�i ¼ �þ�0
z

�
¼ �ð�� 1Þ

�
> 0 for � > 1: (8)

The mean orientation given in Eq. (8) depends nonmono-
tonically on the Peclet number Pe. Within the second-order

approximation of � in Pe, it has a maximum �=3
ffiffiffi
2

p
at

Pe ¼ 3=
ffiffiffi
2

p
.

Equation (7) is only the first one of a hierarchy of
equations for the moments hcosn�i. The dynamics of the
mean orientation hcos�i can be derived by multiplying
Eq. (5) with cos� and integrating over all orientations.
The resulting equation depends on the unknown hcos2�i,
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etc. For small perturbations around the steady state, the
leading terms in Pe lead to hcos�i ¼ �2=9 Pe�z0=� and
Eq. (7) reduces to the Smoluchowski equation derived in
[14]: �t0 � ½ð1þ 2=9 Pe2Þ�z0 þ ���z0 ¼ 0. However, for
big Peclet numbers or far from steady state, no effective
dynamics for the total density can be derived, since the
above hierarchy cannot be closed.

Figure 1 compares numeric solutions of Eq. (5) with the
second-order approximation of the reduced effective sedi-
mentation length � ¼ �eff=�0 ¼ 1þ 2=9 Pe2 and the cor-
responding expression for hcos�i in Eq. (8). Graphs (a),(b)
show both quantities for fixed � and variable Pe. Both
� ¼ 0:1 and the range of Pe correspond to values used in
the experiments of [14]. As in Ref. [14], the second-order
correction fits the sedimentation length very well (b).
However, the polar order in Fig. 1(a) deviates from the
second-order approximation in the convection dominated
regime for Pe> 2. Moreover, for the experimental parame-
ter �� 0:1 it is smaller than 2.5%. We, therefore, compare
in Fig. 1(c) the predicted linear dependence of hcos�i on �
to the numerical solution. Since �� R4, taking colloids
with a radius of 1 �m instead of 0:5 �m (used in [14])
would increase the mean orientation of particles from 2.5%
to 20%. So the anisotropy in the particle orientation could
be directly observed. Note that � is also increased when
tuning g in a centrifuge. By contrast, �eff increases only
slowly with � [Fig. 1(d)], and this dependence results from
a higher-order approximation of �. Both sedimentation
length �eff and mean alignment hcos�i saturate when �
increases further and a perfectly ordered state occurs for
� ! 1. However, for �> 1 or �0 < R, passive particles
accumulate at the bottom. So active particles need a suffi-
ciently large swimming velocity v0 to create a continuous
density profile.

At bounding walls, the balance of diffusive, active, and
gravitational currents has to vanish for each orientation, so
the boundary condition reads: 0 ¼ �z0 þ ð�� Pe cos�Þ�.
Close to the walls, our numerical solution deviates from
the exponential decay in the bulk given by Eq. (6) [see
Fig. 2(a)]. Because of the boundary, particles swimming
against the wall (� ¼ 	) accumulate and there is a deple-
tion of particles swimming away from the wall (� ¼ 0) [see
Fig. 2(a)]. Figure 2(b) shows the angular distribution of the
particles at different altitudes z�. Far from the wall, the
particle distribution has a maximum for particles swimming
up (blue curve) whereas close to the bottom wall, most
particles are swimming down (black curve). This leads to a
strong polar order at the wall. The total density profile�ðzÞ
[see Fig. 2(c)] reflects this strong ordering with a sharp
decay close to the wall at large Pe before it enters the
predicted and measured exponential decay. In Fig. 2(d),
we discard the first microns. Then the renormalized profiles
show very good agreement with the experimental data in
Fig. 3 of [14]. There, data from the first 4 �m are also not
shown. The authors only mention a strong accumulation of
particles at the bottom surface and attribute it to colloid
adsorption. However, our theory shows that this accumu-
lation is solely due to the particle’s active motion. We
noticeably observe this effect also at the upper wall for
Pe � 4 (corresponding profiles not shown in [14]).
The steady state of the active Brownian gas differs from

the passive case also by the fact that the mean translational
and rotational velocities �v and �! of the local Maxwell-
Boltzmann approximation do not vanish. From Eqs. (3)
and (6) it follows

�vSS ¼ v0pþmg

�

�� 1

�
;

�!SS ¼
�
�mv0

2
þ v2

0 � � �
�
p� g:
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FIG. 1 (color online). Dependence of polar order and reduced
sedimentation length on Pe ¼ v0R=D and � ¼ R=�0: (a),
(b) hcos�i and � as a function of Pe for � ¼ 0:1; (c),
(d) hcos�i and � as a function of � for Pe ¼ 2. Numerical
data are computed from the steady solution of Eq. (5) by
�eff=�0 ¼ ���=�z and the definitions of � and hcos�i (see
text).
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FIG. 2 (color). (a) Altitude dependence of the particle distribu-
tion�ðz; ��Þ for different orientations ��. (b) Angular dependence
of �ðz�; �Þ at different heights z�. (c) Logarithmic plot of the
normalized total density �ðzÞ [see (d) for legend]. (d) Rescaled
density profiles after discarding the first micrometers. Parameter
values: � ¼ 1, Pe ¼ 2 (a),(b) and � ¼ 0:1 (c),(d).
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Except for these mean translational and rotational veloc-
ities, the active suspension sediments like a passive
suspension in an effective potential Ueffðr;pÞ, which we
identify as in [18] by writing Eq. (6) as �ðr;pÞ �
exp½��Ueffðr;pÞ�. With this potential we define an effec-
tive free energy F ¼ Fid þ RH

Ueffðr;pÞ�ðr;pÞd3rd2p,
where Fid denotes the free energy of an ideal gas.
Remarkably, the evolution of the active suspension
described by Eq. (4) then takes the form

�t¼r�
�
�

�
1

�
r�F

��
� �vSS

��
þR �

�
�

�
1

�r

R
�F

��
� �!SS

��
:

(9)

Equation (9) can also be derived for interacting active
particles if the system exhibits a steady state. Then a
uniquely defined effective free energy F exists together
with mean velocities �vSS and �!SS [19]. We interpret
Eq. (9) as a dynamic density functional theory (DDFT)
for a system of active particles [20]. A previous attempt at a
DDFT for active particles uses the free energy functional
of passive particles, and neglects therefore any active
contributions to the particle correlations [21]. However,
this approximation cannot reproduce all aspects shown
by Brownian dynamics simulations. Here, we propose to
derive the dynamics from the effective free energy of the
active steady state instead of the free energy corresponding
to passive particles. The generic conditions for the exis-
tence of active steady states are still unknown. It was shown
recently that hydrodynamic interactions between sediment-
ing active particles might still allow for a steady state [6].

In conclusion, we have derived a Smoluchowski equa-
tion for a gas of noninteracting active Brownian particles
under gravity. We find that sedimentation is accompanied
by polar order of the active particles and enhanced orienta-
tional ordering at surfaces. Our discussion in terms of
the active (Pe) and gravitational (�) Peclet numbers shows
that the polar order can easily be increased to measurable
values. Our Smoluchowski equation can immediately be
formulated for any external potential and it would be
interesting to study the gas of active Brownian particles
in different situations.

We have constructed an effective free energy functional
for a gas of noninteracting active Brownian particles in a
gravitational field. Under the condition that a steady state
of an active particle suspension exists, we have formulated
a dynamic density functional theory. This theory can be
generalized to interacting particles and therefore provides
an appealing approach for exploring the dynamics of dense
active suspensions. The challenging task is to identify the
effective free energy for given particle interactions.
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