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ABSTRACT

In Newtonian fluids, microswimmers need to perform a non-reciprocal shape change to move forward. However, this is no longer required
in biological fluids with their viscoelastic properties. In this work, we investigate an oscillating two-sphere swimmer in a weakly viscoelastic
fluid and show that the swimmer moves toward the smaller sphere. We use the flow fields generated by the individual spheres. Since they
contain a viscoelastic contribution quadratic in the sphere velocities, the forces needed to expand and contract the swimmer differ from each
other. This causes a non-zero net displacement during one cycle. We also find that the mean flow field generated by the two-sphere swimmer
is the one of a contractile force dipole.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0151585

I. INTRODUCTION

The locomotion of micrometer-sized motile organisms is gov-
erned by low-Reynolds-number hydrodynamics, where viscous forces
dominate inertia so that it is negligible.1–3 For Newtonian fluids, the
well-known scallop theorem introduced by Purcell4 states that for
microswimmers, undergoing a sequence of reciprocal periodic shape
changes, the net displacement is zero. Here, reciprocal means that
under time reversal, the periodic shape changes look the same. Hence,
a microscopic scallop with only one hinge cannot swim by opening
and closing, even if these two parts of a cyclic stroke are carried out at
different speeds. Similarly, a simple model swimmer consisting of two
spheres connected by a rod cannot swim by expanding and contract-
ing, as the deformations are reciprocal in time. Numerous studies in
the past have addressed biological and artificial microswimmers that
employ a wide variety of propulsion mechanisms with non-reciprocal
stroke patterns as documented, for example, by Refs. 1, 2, and 5–11.
These investigations range from flagellated pathogens5–9 to artificial
swimmers using superparamagnetic filaments.10,11

In contrast to the sophisticated propulsion mechanisms of real
microswimmers, simple models using linked spheres have the
advantage that one can treat them analytically and thereby reveal the
hydrodynamics of locomotion. One of the simplest models for a
self-propelling microswimmer with a non-reciprocal stroke is the

three-sphere swimmer introduced by Najafi and Golestanian.12 It per-
forms a net displacement provided the rods connecting the three
spheres do not oscillate in phase. The alternative push-me-pull-you
swimmer was introduced by Avron et al.13 This two-sphere swimmer
moves because the spheres exchange volume, while their distance
oscillates. In either case, both swimmers use the minimal number of
two degrees of freedom to break the time-reversal symmetry and fur-
ther studies have optimized their design and stroke patterns.14,15

Microorganisms typically move in an environment governed by
non-Newtonian fluids, such as sperm cells in the Fallopian tubes,16

pathogens in lung mucus,17 or bacteria in biofilms.18,19 Furthermore,
artificial swimmers with potential biomedical applications would also
move in such environments.20,21 Thus, understanding locomotion in
non-Newtonian fluids is essential for designing functional nano-/
micro-swimmers. This article aims to contribute to such an under-
standing by studying a reciprocal two-sphere swimmer in a weakly vis-
coelastic fluid.

The properties of non-Newtonian fluids can, on the one hand,
modify the motion of non-reciprocal microswimmers22–30 and, on the
other hand, overcome the scallop theorem to enable locomotion by
reciprocal deformations.31 Curtis and Gaffney24 showed that the
Najafi–Golestanian swimmer moves faster and with a higher efficiency
in viscoelastic fluids, while for spherical squirmers, which are driven
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by surface velocities fields, swimming is either improved or impeded.25

Furthermore, non-linear viscoelasticity can also enable squirmers to
swim, which would otherwise not show locomotion in Newtonian flu-
ids.32 Qiu et al.33 and Han et al.34 demonstrated directed motion of a
micro-scallop in shear-thinning and shear-thickening fluids. The pro-
pulsion mechanism of the “snowman” swimmer relies on normal
stress differences,35 and the predicted locomotion was experimentally
verified by Puente-Vel�azquez et al.36 Inspired by this, Binagia and
Shaqfeh37 and Kroo et al.38 recently designed and studied a torque-
free “snowman” swimmer that had an internal rotation mechanism.
Most importantly, in contrast to Newtonian fluids, an oscillating two-
sphere swimmer with only one degree of freedom is able to move for-
ward in a viscoelastic fluid. Using domain perturbation expansion32

and the reciprocal theorem, Datt et al.39 calculated the average swim-
ming velocity of such a two-sphere swimmer in an Oldroyd-B fluid for
small oscillation amplitudes and arbitrary Deborah number. Yasuda
et al.40 also investigated the two-sphere swimmer and extended the
analysis for a general linear viscoelastic fluid. An experimental study
by Keim et al.41 designed a proof-of-concept dimer with a different
propulsion mechanism. They showed that reciprocal oscillations of
the dimer’s orientation in an external magnetic field enable targeted
locomotion. All of these studies showed that structural asymmetry of
the swimmer is essential for breaking the symmetry.

In this article, we investigate the two-sphere swimmer in a weakly
viscoelastic fluid for arbitrary oscillation amplitude and demonstrate
the underlying mechanisms for self-propulsion as well as the generated
flow field in the ambient fluid. We employ the flow field of a dragged
sphere derived by Housiadas and Tanner42 for the Phan–Thien–
Tanner (PTT) fluid. We calculate the forces experienced by the two
spheres of the swimmer, its swimming velocity, and its net displace-
ment. We show that locomotion only is possible when the two spheres
have different sizes. Furthermore, we describe the swimmer kinematics
in detail and discuss how swimming depends on the geometry of the
swimmer. Finally, we derive the time-averaged flow field far from the
swimmer using a similar approach as Alexander et al.43 and find that
the swimmer generates the long-range flow field of a contractile
hydrodynamic dipole.

In Sec. II, we introduce the two-sphere model swimmer and the
flow field of a single dragged sphere in a weakly viscoelastic fluid,
which we use to analyze the model swimmer. Section III contains the
results and discusses the two-sphere swimmer in detail. Finally, we
conclude in Sec. IV.

II. MODEL SWIMMER AND FLOW FIELDS

Figure 1 shows the schematic of the swimmer investigated in this
work. It consists of two spheres with radii a1 ¼ a and a2 ¼ a=a, where
a ¼ a1=a2 is the sphere size ratio, and we assume a > 1 without loss
of generality. The spheres are connected by an infinitesimally thin rod
that changes its length according to

~LðtÞ ¼ ~L0 � ~d0 cosðx~tÞ: (1)

Here, ~L0 is the average distance between the spheres, ~d0 is the oscilla-
tion amplitude, x is the oscillation frequency, and tilde indicates
dimensional variables. The neutrally buoyant swimmer is freely sus-
pended and thus satisfies the force-free condition,

~f 1 þ ~f 2 ¼ 0; (2)

where ~f 1 and
~f 2 are the forces exerted by the rod on spheres 1 and 2,

respectively.
Our calculations utilize the flow field derived by Housiadas and

Tanner42 for a single sphere moving with constant velocity in a visco-
elastic fluid, which is modeled with the Phan–Thien–Tanner (PTT)
constitutive equation. The fluid is further characterized by the relaxa-
tion time k and the shear viscosity ~g ¼ ~gs þ ~gp that consists of a sol-
vent and a polymer contribution.

In the following, we switch to non-dimensional quantities. In vis-
coelastic fluids, the total stress tensor S consists of the Newtonian
stress, �pIþ gs _c, and the polymeric stress quantified by rp. Here, p is
the pressure, _c is the rate-of-strain tensor, and gs ¼

~g s
~g represents the

solvent-to-total viscosity ratio. The PTT constitutive equation deter-
mines rp as

rp expð�De trrpÞ þ Derp
� ¼ _c: (3)

Here, trð�Þ is the trace operator, and the upper convected derivative is

defined as r
r
p :¼ u � rrp � rp � ru� ðruÞT � rp, where u is the

velocity of the flow field. Furthermore, De ¼ kx is the Deborah num-
ber, where k is the polymer relaxation time, and x is the imposed
oscillation frequency. The dimensionless material parameter � intro-
duces a nonlinearity in rp, and for �¼ 0, Eq. (3) becomes identical to
the Oldroyd-B constitutive equation. By solving the incompressibility
condition, r � u ¼ 0, and the momentum balance, r � S ¼ 0, pertur-
batively in De, Housiadas and Tanner42 obtained the flow field of a
sphere moving with velocity vn. To leading order in De and up to
terms of 1=r2, its non-dimensional form is given by44

unðrÞ ¼
3
4
anvn
r

nþ ðr̂ � nÞr̂½ � � 3
8
De gp

anv2n
r2
�1þ 3ðr̂ �nÞ2
� �

r̂ (4)

with n 2 f1; 2g; r̂ ¼ ðr � rnÞ=r; r ¼ jr � rnj, and rn as the position
of each sphere. Furthermore, gp ¼

~gp

~g represents the polymer-to-total
viscosity ratio, and, in the following, we assume the Deborah number
De to be small (De� 1Þ. The flow fields un and the sphere velocities
vn are scaled with ax, the distance r and sphere sizes with a such that
the respective radii are a1 ¼ 1 and a2 ¼ 1=a. Note that, at this order
of approximation (up to terms linear in De), the flow field does not
depend on the parameter �. Thus, to linear order in De, the PTT and
the Oldroyd-B model give the same results.

FIG. 1. Schematic of the two-sphere swimmer with spheres of radii a1 ¼ a and
a2 ¼ a=a that are connected by a rod of length L(t). The unit vector n points along
the swimmer in direction of the smaller sphere. f1n and f2n are the forces exerted
by the rod on spheres 1 and 2. Throughout the article, all lengths are given in units
of a1 ¼ a.
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In the following, we perform a perturbation analysis up to first
order in De. Since in this order, the drag coefficient is the same as in
the Newtonian limit,42 we replace the particle velocities vn in Eq. (4)
by their Stokes drag forces fn ¼ vna1�n written in units of 6p~ga2x
and obtain

unðrÞ ¼
3
4
fn
r

nþ ðr̂ � nÞr̂½ � � 3
8
De gp

f 2n an�1

r2
�1þ 3ðr̂ �nÞ2
� �

r̂ : (5)

The flow field consists of two components at this order of approxima-
tion. The first term is the conventional Stokeslet: the far-field hydrody-
namic signature of a forced sphere in a Newtonian fluid, which decays
as 1=r. The second term is a modification that arrives from the visco-
elastic PTT fluid, which is equivalent to the flow field of a contractile
force dipole that decays as 1=r2. In contrast to the Stokeslet, the
strength of the dipole field depends on the size of the sphere via
the factor an�1 and quadratically on the force fn driving the motion.
The dependence on f 2n introduces a fore-aft asymmetry that we
describe now. In a Newtonian fluid, the flow field of a Stokeslet is anti-
symmetric with respect to a plane perpendicular to the point force. As
the symmetric force-dipole field is added, the flow field becomes asym-
metric: The strength of the flow field is higher at the rear than in front
of the moving sphere. This is because the Stokeslet and the force-
dipole fields point in the same direction behind the sphere but in
opposite directions in front of it. This asymmetry eventually is respon-
sible for the net movement of our swimmer when averaged over one
cycle of its reciprocal deformation.

Now, the sphere n within our swimmer is moved by the force fn
acting on it, but also advected by the flow field generated by the neigh-
boring sphere as described by Eq. (5). Thus, assuming L� a, we can
write the velocities of both spheres as45–47

v1 ¼ f1 þ
3f2
2L
þ 3
4
De gp

af 22
L2

; (6a)

v2 ¼ af2 þ
3f1
2L
� 3
4
De gp

f 21
L2
; (6b)

where L ¼ L0 � d0 cosðtÞ is the non-dimensionalized arm length with
L0 ¼ ~L0=a; d0 ¼ ~d0=a and t ¼ x~t . The first term on the right-hand
side is caused by the driving of the oscillation, and a1�n is the Stokes
drag coefficient of sphere n in our dimensionless units. The remaining
terms represent the advection in the flow field of the other sphere.
Since the prescribed arm length L(t) is the distance between both
spheres, their velocities are connected by

_L ¼ v2 � v1: (7)

Thus, we have a set of four equations, Eqs. (2), (6a), (6b), and (7), for
the four unknown quantities v1, v2, f1, and f2. Solving these equations
gives the quantities as functions of L and _L.

III. RESULTS AND DISCUSSION

In the following, we present the results of our investigations.
First, we show that viscoelasticity breaks the symmetry between expan-
sion and contraction during one cycle by studying the force compo-
nent solely due to viscoelasticity (Sec. IIIA). Second, we calculate the
net displacement of the swimmer and investigate how the ability to
swim depends on the size ratio of the two swimmer spheres

(Sec. III B). Finally, we show that the swimmer generates the long-
range flow field of a contractile force dipole (Sec. IIIC).

A. Mechanics of deformation

As a first step of solving our set of equations, we use the force-
free condition, Eq. (2), to introduce f :¼ f1 ¼ �f2 and eliminate one
of the forces in Eq. (6). By using Eqs. (6) and (7), we obtain a quadratic
equation for the force f. Discarding an unphysical solution, the rele-
vant solution to leading order in De is given by the following equation:

f ¼ f N þ De f VE

¼ �
_L

aþ 1� 3=L
1þ 3

4
De

gpðaþ 1Þ _L
Lðaþ 1Þ � 3½ �2

 !
:

(8)

Thus, the force experienced by sphere 1 is separated into a Newtonian
(f N) and a viscoelastic (De f VE) component. In Fig. 2(a), we compare
the acting forces in a Newtonian and a viscoelastic fluid. We first con-
sider the simplest case of non-interacting spheres (L!1), where
one has just the Stokes drag of the Newtonian fluid, which gives
f ¼ f non ¼ � _L=ðaþ 1Þ [black dotted line in Fig. 2(a)]. At t¼ 0, the
swimmer is in a fully contracted state. Then, it expands with velocity
_LðtÞ, which requires a negative force to move sphere 1 to the left. The
swimmer achieves full expansion at t ¼ p, followed by a contraction
toward the original state at t ¼ 2p. The forces needed to expand and
contract the swimmer are identical in magnitude as the asymmetry of
the black dotted curve about t ¼ p shows. The minimum and maxi-
mum are exactly at the maximum speeds of actuation at t ¼ p=2 and
3p=2, respectively. The orange dashed curve shows the full Newtonian
component f N with the far-field hydrodynamic interactions between
the spheres included. Clearly, the advection from the neighboring
sphere increases the magnitude of the acting force since the advection
velocity from sphere 2 always acts against expansion or contraction.
This can be also checked from Eq. (6a), where f1 and f2 ¼ �f1 have

FIG. 2. (a) Forces acting on sphere 1 plotted vs time for one cycle period with
expansion and contraction. Non-interacting spheres: f non (black dotted line),
Newtonian component f N (orange dashed line), and viscoelastic component f VE

(blue solid line). The schematics on top of the graph indicate the swimmer configu-
ration at times t¼ 0, p, and 2p, respectively. (b) Total force f for different size
ratios. Parameters are De ¼ 0:1; gp ¼ 0:8; L0 ¼ 7:5; d0 ¼ 2:5, and a¼ 2.
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always opposite signs. However, since L varies in time, its minimum
and maximum are slightly shifted toward the fully contracted rod at
t¼ 0 and 2p.

In a viscoelastic fluid, the symmetry across the two halves of cycle,
expansion and contraction, is broken. The blue curve in Fig. 2(a) shows
the viscoelastic force component Def VE acting on sphere 1. When the
swimmer extends, it now requires a larger negative force as represented
by the negative contribution f VE. This is because the contractile force-
dipole flow field due to viscoelasticity [last term in Eq. (6a)] acts against
expansion. However, it supports contraction, which results in a smaller
total force due to f VE < 0. In Eq. (8), all this behavior is manifested by
the different dependence on _L in f N and f VE. The Newtonian force is
linear in _L, whereas the viscoelastic component is quadratic in _L. Thus,
while f N changes sign when switching from expansion to contraction,
f VE does not. Furthermore, we note that the minima of f VE are further
shifted toward the contracted state. This is also suggested by Eq. (8),
since f VE strongly depends on L and not just _L.

We also show the effect of increasing size ratio on the total force
during actuation in Fig. 2(b). As suggested by the appearance of a in
the denominator of the prefactor in Eq. (8), the magnitude of the force
decreases because the larger sphere 1 hardly moves due to its larger
friction and, conversely, the smaller sphere 2 would oscillate without
needing much force.

B. Swimming kinematics

By substituting the force from Eq. (8) back in the relations of Eq.
(6), the velocities of the individual spheres are obtained. Upon taking
the arithmetic mean of these velocities, V ¼ ðv1 þ v2Þ=2, we obtain
the velocity of the center of the swimmer, which we name its instanta-
neous swimming velocity V. To leading order in De, it is given by

V ¼ VN þ DeVVE

¼ a� 1
2

_L
aþ 1� 3=L

1þ 3
4
De gp

_L
L

2Lðaþ 1Þ � 3

ðLðaþ 1Þ � 3Þ2

 !
: (9)

By integrating the velocity over time, we obtain the instantaneous
position of the swimmer with respect to the initial position of its center
(origin),

RðtÞ ¼
ðt
0
Vdt0 ¼ RNðtÞ þ DeRVEðtÞ: (10)

With this, we can now conveniently obtain the positions of the single
spheres by subtracting and adding half of the oscillating arm length,

r1ðtÞ ¼ RðtÞ � LðtÞ
2
; r2ðtÞ ¼ RðtÞ þ LðtÞ

2
: (11)

Evaluating the integral in Eq. (10) gives an analytical expression for
the position of the swimmer.

The Newtonian contribution in Eq. (10) is given by

RNðtÞ ¼ a� 1
aþ 1

d0
2
ð1� cosðtÞÞ � 1

2
3

aþ 1
ln

l0 � d0
l0 � d0 cosðtÞ

� �� �
;

(12)

with l0 ¼ L0 � 3
aþ1. After one full time period, it is zero, as expected

from the scallop theorem. For the viscoelastic contribution, we obtain

DeRVEðtÞ ¼ 3
16

a� 1

ðaþ 1Þ2
De gpð�4t �

3
aþ 1

_L

ð3=ðaþ 1Þ � LÞ2

�
_L

ð3=ðaþ 1Þ � LÞ

�
4ðL20 � d20Þ þ 45=ðaþ 1Þ2 � 27L0=ðaþ 1Þ
h i

ðl20 � d20Þ

þ 8l30 � 2d20 4l0 � 3=ðaþ 1Þ½ �
ðl20 � d20Þ

3=2
GðtÞÞ; (13)

where we have defined

GðtÞ ¼

arctan
l0 þ d0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l20 � d20

p tan
t
2

� � !
0 < t < p

arctan
l0 þ d0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l20 � d20

p tan
t
2

� � !
þ p p < t < 2p:

8>>>>><
>>>>>:

(14)

In Fig. 3(a), the positions of the swimmer and the two spheres
are shown. The swimmer moves forward (toward the smaller sphere)
during expansion and backward during contraction. This back and
forth motion covers a much larger distance than the total displacement
after one swimming stroke. As the size ratio is raised (red dashed line),
the distance covered by the smaller sphere increases, whereas the
larger sphere moves less. As a result, for the half-cycle of expansion,

FIG. 3. (a) Positions of the swimmer (middle trajectory) and spheres 1 and 2 during
one swimming stroke for two size ratios a. (b) Viscoelastic component VVE of the
velocities of spheres 1 and 2 for a¼ 2. (c) Swimmer displacement RVEðtÞ due to
viscoelasticity for two size ratios a. Other parameters are De ¼ 0:1; gp ¼ 0:8;
L0 ¼ 7:5, and d0 ¼ 2:5.
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the increasing size ratio always increases displacement. However, for
the full cycle, there is an optimum size ratio (as will later be shown in
Fig. 4). The viscoelastic velocity component is the same for both
spheres, since one immediately derives from Eq. (11) and vn ¼ _rnðtÞ
that DevVEn ¼ vn � vNn ¼ DeVVE . We show VVE in Fig. 3(b) and dis-
cuss the consequences. Since always VVE > 0, we immediately recog-
nize that during expansion the larger sphere is slower and the smaller
sphere faster compared to a Newtonian fluid. Thus, the swimmer
moves a larger distance in the first half cycle, as shown in Fig. 3(c),
where we plot the viscoelastic contribution to the displacement,
RVEðtÞ. During contraction, the first sphere is faster and the second
one slower than in a Newtonian fluid. Again, this gives a positive dis-
placement RVEðtÞ. So, in a sum the swimmer in a viscoelastic environ-
ment moves forward with a net displacement after one swimming
stroke. At larger size ratios (red dashed line), the displacement
becomes smaller, as discussed further below.

We now analyze the net displacement after one swimming stroke
by evaluating the position of the swimmer at t ¼ 2p,

Rð2pÞ ¼ DeRVEð2pÞ

¼ 3
8
Degpp

a� 1

ðaþ 1Þ2
l20 � d20
	 
�3=2

� 4l20 l0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l20 � d20

q� �
þ d20

3
aþ 1

� 4l0 þ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l20 � d20

q� �" #
:

(15)

The Newtonian contribution to the total displacement vanishes
[RNð2pÞ ¼ 0]. As already stated, this is expected from the scallop the-
orem.4 Only the contribution due to viscoelasticity gives a net displace-
ment after one swimming cycle.

To summarize our results so far, we find that the total displace-
ment during one swimmer cycle is positive, i.e., the swimmer moves
forward with the smaller sphere as the head. This was also shown pre-
viously by Datt et al.39 via the reciprocal theorem. As our formulas
also show, the size anisotropy is crucial for breaking the symmetry of

the swimmer; for same-size spheres (a¼ 1), the swimmer’s center is at
rest for all times. Increasing the size ratio from one enables the swim-
mer to move in a viscoelastic environment since after expansion, it
does not completely return to the initial position during contraction.
However, in the limit a� 1, the net displacement of the swimmer
should also approach zero. Sphere 1 has such a large friction coeffi-
cient so that it hardly moves, while the smaller sphere just oscillates
about a mean position. This view is confirmed by Fig. 4, where we plot
the total displacement from Eq. (15) vs a. There exists an ideal size
ratio amax where the maximum displacement is achieved. Increasing
the average distance L0 between the spheres reduces the net displace-
ment due to the weaker hydrodynamic interactions (c.f. blue and red
solid lines in Fig. 4). Decreasing the oscillation amplitude d0 reduces
the oscillation speed and thereby the total displacement (c.f. green
solid line). Finally, in the inset, we demonstrate that the optimum size
ratio amax increases with increasing L0, albeit slowly, and with decreas-
ing d0 due to reduced hydrodynamic interactions.

Microswimmers dissipate a lot of energy. So it seems to make
sense to relate the total displacement to the total work done by the
oscillating swimmer and find the optimal size ratio, which gives the
largest displacement per unit work done. We therefore determine the
total workW ¼

Ð 2p
0 ðf1v1 þ f2v2Þdt, which after some lengthy calcula-

tions becomes

W ¼ �
ð2p
0
f _L dt ¼ p

aþ 1
d20 �

6
aþ 1

�l0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l20 � d20

q� �� �
: (16)

Interestingly, the optimal displacement per unit work, Rð2pÞ=W, does
not show a maximum when varying a but increases monotonically
from zero and approaches a finite value for a!1.

Alternatively, one can look at the hydrodynamic efficiency intro-
duced by Lighthill and examine R2ð2pÞ=W.48 Since in our reduced
units, Rð2pÞ=2p is the mean velocity of the swimmer, this ratio com-
pares the energy dissipated by a swimmer moving constantly with
velocity Rð2pÞ=2p to the actually dissipated energy up to a factor of
1=2p. In Fig. 4, we plot R2ð2pÞ=W vs a as dashed blue line for the
same parameters as the solid blue line. Indeed, it has a maximum at
a � 3:87, which is larger than a value for the maximum of Rð2pÞ.

Finally, we compare our findings to the work of Datt et al.39 It
has an overlapping regime of validity with our work for De� 1 (our
approximation) and d0 � 1 (their approximation). Performing a
Taylor expansion of Rð2pÞ up to leading order in the oscillation ampli-
tude d0, we find for the mean velocity in our reduced units,

Rð2pÞ
2p
/ gpDe

d20
l20

a� 1

ðaþ 1Þ2
: (17)

The linear dependence on De, gp, d20, and oscillation frequency x
(considering our rescaled time) agrees with Ref. 39. The dependence
on l0 and a is contained in a numerical factor in Ref. 39, but qualita-
tively, the decreasing velocity Rð2pÞ=2p with increasing swimmer
length l0 agrees with their findings.

C. Flow field

In addition to the net movement of the swimmer, cyclic deforma-
tions generate a time-averaged flow field. We are interested to deter-
mine its type since this type determines the nature of the swimmer
being effectively a pusher, puller, or neutral. The corresponding flow

FIG. 4. Total displacement after one swimming stroke plotted vs sphere-size ratio
a. Curves for different combinations L0 and d0 are shown. Dashed blue line: hydro-
dynamic efficiency R2ð2pÞ=W plotted vs a. The same parameters as solid blue
line. Inset: optimum size ratio amax vs L0 for d0 ¼ 2:5 and vs d0 for L0 ¼ 7:5.
Other parameters are De ¼ 0:1 and gp ¼ 0:8.
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field is important for describing hydrodynamic interactions between
the swimmers. To obtain the flow field, we first take the instantaneous
flow field as a superposition of the flow fields of the two spheres,43

which we already introduced in Eq. (5). We recognize that Eq. (5) can
be rewritten in terms of the Oseen tensor Gijðr � rnÞ and its deriva-
tive. Thus, we obtain49

uiðrÞ ¼
X2
n¼1

�
3
4
fnGijðr� rnÞnjþ

3
8
De gpf

2
n an�1Gij;kðr� rnÞnjnk

�
;

(18)

where

Gijðr � rnÞ ¼
1
r

dij þ r̂ ir̂ j
� �

(19)

is the Oseen tensor, and

Gij;kðr � rnÞ ¼ �
1
r2

dij r̂ k � dikr̂ j � djkr̂ i � 3r̂ i r̂ j r̂ k
� �

(20)

its derivative with respect to rk. Furthermore, we used f n ¼ fnn.
We obtain the time-averaged flow field by integrating the instan-

taneous flow field over one swimming stroke,

�uiðrÞ ¼
1
2p

ð2p
0
uiðrÞdt: (21)

However, solving this integral is difficult because the positions of the
spheres rnðtÞ change over time, rendering the Oseen tensor time-
dependent such that direct integration does not give any tractable
analytical results. Thus, we seek a multipole expansion of the
swimmer flow field around r to characterize it far from the swim-
mer position. With the initial position of the center of the swim-
mer at the origin, the position vectors of the single spheres are
given by rn ¼ rnðtÞn. In the far field, we can now assume that the
distance to the point of observation is large compared to the dis-
placement of the spheres, i.e., jrj � jrnðtÞj. Thus, we expand the
Oseen tensor into a series in 1=r,

Gijðr � rnÞ ¼
X1
m¼0

ð�1Þm

m!
Gij;k1���kmðrÞnk1 � � � nkmrmn : (22)

The expansion of its derivative is accordingly given by

Gij;kðr � rnÞnk ¼ �
X1
m¼0

mð�1Þm

m!
Gij;k1���kmðrÞnk1 � � � nkmrm�1n : (23)

By inserting this in Eqs. (18) and (21), we obtain the multipole expan-
sion of the time-averaged flow field as

�viðrÞ ¼
X1
m¼0

ð�1Þm

m!
Gij;k1���kmðrÞnk1 � � � nkm �

� 3
8p

ð2p
0

X2
n¼1

fnr
m
n dt �

3mDe gp
16p

ð2p
0

X2
n¼1

an�1f 2n r
m�1
n dt

" #
:

(24)

This field consists of two factors: The first one (top row) describes how
the flow field decays with distance and how it depends on relative posi-
tion to the swimmer. The second factor (in squared brackets) is the

strength of the respective multipole. It contains the moments of the
forces acting on the swimmer (

P2
n¼1 fnr

m
n ) but also of the squared

forces. Since from the beginning we only considered terms up to order
1=r2, to be consistent, we focus on the monopole and dipole term of
this field. In the monopole term, only the Stokeslet of the total force
contributes, which vanishes due to the force-free condition. Hence, the
far field is dominated by a dipolar flow (m¼ 1). To evaluate the dipole
strength, we use f :¼ f1 ¼ �f2 ¼ f N þ De f VE introduced in Eq. (8)
and find to leading order in De,

p ¼ p1 þ p2 þ p3 ¼ �
3
8p

ð2p
0
f NL dt

� 3De
8p

ð2p
0
f VEL dt �

3De gpðaþ 1Þ
16p

ð2p
0
ðf NÞ2 dt: (25)

The dipole consists of three terms: The first two are regular force-
dipole strengths given by the product of force and distance with the
force being split up into the Newtonian and viscoelastic part. The third
term exists because a single sphere already exhibits a dipolar field.42

When evaluating the integrals, one realizes that the first contribution
has to vanish because the swimmer cycle is reciprocal and due to
Stokes flow reversibility, a non-zero average flow field cannot arise in a
Newtonian fluid by oscillating an object about a mean position. The
second term gives a positive dipole moment since f VE 	 0. This
means, as already discussed in Sec. IIIA, that the total force on each
sphere is larger during the expansion than during the contraction.
Thus, the net force acting on each sphere over one cycle points out-
ward, indicating a pusher or extensile dipole. The last contribution to
the dipole moment is negative and connected to the fact that the dipo-
lar field of the individual sphere is contractile. Now, since the
Newtonian force f N is roughly two orders of magnitude larger than
the viscoelastic force f VE [see Fig. 2(a)], the third contribution is the
largest and the dipolar flow field is governed by a negative total dipole
strength [see Figs. 5(b) and 5(c)]. Thus, the swimmer generates a
puller-like flow field as depicted in Fig. 5(a).

In Fig. 5(c), we plot the dipole strength vs the sphere-size ratio a
for different combinations of (L0, d0). The dipole strength is the stron-
gest for two spheres of the same size, although the swimmer does not
exhibit any net displacement. Then, the magnitude of the total dipole
moment decreases with increasing a since the magnitude of f N scales
with 1=a as Eq. (8) shows. Increasing L0 significantly only slightly
reduces the dipole strength (solid blue and dotted red line) because the
contribution of hydrodynamic interactions to f N is minor compared
to the direct force. However, reducing d0 strongly decreases the dipole
strength, as the actuation speed _L and therefore the forces are reduced
(green dashed line).

IV. CONCLUSIONS

Motivated by the abundance of examples of microbial motility in
biological systems, the current work highlights the mechanics and flow
field around a reciprocal two-sphere swimmer. For this purpose, we
rely on the hydrodynamic flow field around a sphere that moves with
constant velocity in viscoelastic fluid modeled by the PTT constitutive
equation. The flow field was derived by Housiadas and Tanner,42 and
we use it in the limit of small De to describe the hydrodynamic inter-
actions between both spheres that enable locomotion in the viscoelas-
tic fluid.
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We find that only if the sphere sizes are different does the oscilla-
tory reciprocal motion of the two spheres break the symmetry between
extension and contraction during one swimming cycle. As a result, the
swimmer moves in the direction of the smaller sphere. This is consis-
tent with a recent work by Datt et al.,39 who captured the effect of
small deformations using the reciprocal theorem, whereas the current
work allows arbitrary deformations. Our analytic approach allows us
to go through the complexity of non-Newtonian fluids and understand
how viscoelasticity enables breaking the symmetry of the swimming
stroke. We show the time courses of the forces experienced by both
spheres over a complete cycle and demarcate the viscoelastic contribu-
tion. The force needed to expand the swimmer is enhanced, whereas
contraction requires less force compared to the Newtonian fluid. As a
result, a swimmer with spheres of different sizes covers a larger dis-
tance during expansion and a smaller distance during contraction,
which yields a net displacement. The size difference of the spheres, or

more general the structural asymmetry of the swimmer, is an essential
condition for locomotion and determines the direction of motion.
This was also recognized by Pak et al.35 for the “snowman” swimmer
and Yasuda et al.40 for the three-sphere swimmer in viscoelastic fluids.
However, a further increase in the size ratio results in a situation where
the larger sphere hardly moves and the smaller one oscillates about a
mean position, so that the net displacement approaches zero. Thus,
there exists an optimum size ratio that depends on the swimmer
length and oscillation amplitude.

Another interesting feature is that the average flow field of such a
reciprocal swimmer in a viscoelastic fluid is the one of a contractile
force dipole (1=r2), which is of longer range compared to linked-
sphere swimmers in Newtonian fluids (1=r3).12,43,50 This is due to the
fact that in leading order viscoelasticity contributes a contractile force-
dipole flow field besides the conventional Newtonian Stokeslet to the
flow field of each sphere.42 A qualitatively similar feature has recently
been reported for the two-sphere swimmer by Dombrowski et al.51 In
their work, instead of viscoelasticity, weak inertia induces directed
motion toward the smaller sphere and they also observe a time-
averaged flow field of a contractile force-dipole, which they term as
“steady streaming.” Thus, self-propulsion and long-range steady
streaming can occur in systems with reciprocal deformations beyond
the validity of the Stokes equations either due to inertia, viscoelasticity,
shear-thinning/thickening, or anisotropic stresses in liquid crys-
tals.52,53 Future works could extend the current approach to account
for these properties that are observed in biological fluids and biofilms.

Since Purcell formulated his famous scallop theorem, it is clear
that microswimmers need to perform non-reciprocal periodic shape
changes to move forward in a Newtonian fluid at low Reynolds num-
bers.4 Using an oscillatory swimmer, we show explicitly that this no
longer holds in a viscoelastic fluid, which typically occurs in biological
systems. So, our work helps to explore principal features for swimming
in viscoelastic fluids and through a multipole expansion establishes the
swimming type of the oscillatory swimmer. We are not aware of any
biological swimmer, which uses a reciprocal stroke pattern. However,
our work encourages to perform further studies on reciprocal shape
changes and search for biological swimmers that use them. In addi-
tion, our studies might also provide guidelines for designing novel arti-
ficial microswimmers to explicitly move in a viscoelastic environment.
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size ratio is a¼ 2. (b) Different contributions to the dipole strength in Eq. (25) plot-
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Other parameters are De ¼ 0:1; gp ¼ 0:8; L0 ¼ 7:5, and d0 ¼ 2:5, if not stated
otherwise.
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