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Orientational dynamics and rheology of active
suspensions in weakly viscoelastic flows
Akash Choudhary 1,2✉, Sankalp Nambiar 3 & Holger Stark 1✉

Microswimmer suspensions in Newtonian fluids exhibit unusual macroscale properties, such

as a superfluidic behavior, which can be harnessed to perform work at microscopic scales.

Since most biological fluids are non-Newtonian, here we study the rheology of a micro-

swimmer suspension in a weakly viscoelastic shear flow. At the individual level, we find that

the viscoelastic stresses generated by activity substantially modify the Jeffery orbits well-

known from Newtonian fluids. The orientational dynamics depends on the swimmer type;

especially pushers can resist flow-induced rotation and align at an angle with the flow. To

analyze its impact on bulk rheology, we study a dilute microswimmer suspension in the

presence of random tumbling and rotational diffusion. Strikingly, swimmer activity and its

elastic response in polymeric fluids alter the orientational distribution and substantially

amplify the swimmer-induced viscosity. This suggests that pusher suspensions reach the

superfluidic regime at lower volume fractions compared to a Newtonian fluid with identical

viscosity.
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Systems of particulate matter suspended in fluids are pre-
valent in numerous natural and industrial processes. Active
suspensions are particulate systems that are driven out of

equilibrium by converting chemical energy or fuel into mechan-
ical work to achieve self-propulsion1,2. Motile microorganisms
are the prototypical example of active motion that is generated via
metachronal actuation of hairlike cilia (Paramecium, Volvox), by
whipping cell-attached flagellar appendages (spermatozoa, algae),
or by rotating a bundle of helical flagella (bacteria)3. Micro-
swimmers navigate through their environment by sensing or
interacting with gradients in hydrodynamic, chemical, thermal,
and light fields; a strategy known as taxis4–10. A particular
example is rheotaxis, where microswimmers experience hydro-
dynamic gradients and swim against the flow, which is relevant
for biofilm formation and reproduction2,8,11,12.

Pathogenic microswimmers when infiltrating human and ani-
mal bodies have to pass through mucus linings that lubricate and
protect our respiratory tracks, eyes, and urogenital and gastro-
intestinal systems13. The presence of mucin fibers (typically
3–10 nm in length14) and DNA makes these mucus linings vis-
coelastic and shear thinning15. The linings are often subjected to
shearing motion, for instance, during blinking, coughing, repro-
duction, and continuous mucociliary clearance in respiratory sys-
tems. In such microbiological flows, the non-Newtonian fluid
properties can alter the swimmer’s rheotactic behavior16,17.

In this article, we study the bulk rheology of microswimmers in
viscoelastic flows. For Newtonian fluids, several rheological experi-
ments on suspensions of extensile swimmers like Escherichia coli
have shown that activity can drastically reduce the effective
viscosity18–20, even down to the ‘superfluidic’ limit21. The mechan-
ism, first outlined by Hatwalne et al.22 and elaborated further by
Haines et al.23 and Saintillan24 is as follows. The orientations of
elongated swimmers in shear flow follow periodic Jeffery orbits25 and
are also subject to thermal noise. This competition yields a mean
orientation that points in the extensional quadrant of applied shear
flow. With such an orientation extensile microswimmers (pushers)
support the applied shear flow and thereby reduce the effective shear
viscosity, whereas contractile swimmers like Chlamydomonas rein-
hardtii (pullers) resist it and thus increase viscosity26.

Since almost all biological fluids are non-Newtonian, there has
been a recent interest in developing theoretical frameworks that
capture the individual and collective dynamics of microswimmers
in complex fluids27–29. For example, experiments have shown
reduced tumbling and increased persistence lengths of bacteria in
polymeric fluids30–32. Viscoelasticity can also initiate spatio-
temporal order in active suspensions. For example, a recent study
found that DNA polymers trigger oscillatory vortices in the
confined suspension of E. coli33. However, determining the
effective shear viscosity of an active suspension in a viscoelastic

fluid has been uncharted territory because of its complexity: the
elastic relaxation of non-Newtonian fluids and their shear-thin-
ning/thickening property.

To gain better insights into biological and artificial motility in
biological fluids, this communication investigates the role of non-
linear polymeric stresses in non-Newtonian fluids. Specifically,
this non-linearity allows us to directly couple a background shear
flow to the active disturbance flow generated by a microswimmer.
For spherical microswimmers in a Poiseuille flow, we already
showed that due to such a coupling, they experience a swimming
lift force that depends on the swimmer type17. Here, we will show
that this nonlinear coupling influences the Jeffery orbit of an
elongated swimmer in a shear flow, which thereby also funda-
mentally alters the bulk rheological response. Such activity-
induced changes in the orientational dynamics cannot be
observed in Newtonian fluids because the viscous stress tensor
does not permit such a nonlinear coupling. De Corato and
D’Avino34 recently showed that a spherical microswimmer in the
shear flow of a non-Newtonian fluid can exhibit a rotational
velocity that is different from a Newtonian fluid. Although qua-
litative changes did not occur for weak viscoelasticity, strong
viscoelasticity affected the orientational dynamics of pushers,
pullers, and neutral swimmers distinctly. Here we consider an
elongated particle and show that even weak viscoelasticity
modifies the orientational dynamics, and ultimately, the rheology
of a microswimmer suspension.

The current work uses the model of a second-order fluid (SOF)
with a single elastic relaxation time that captures the dynamics of
polymeric fluids in the dilute limit (Boger fluids)35,36. For weak
elasticity, quantified by the Weissenberg number, we perform a
perturbative analysis. Thereby we show that the inherent non-
linearity in the polymeric stress tensor together with activity sig-
nificantly alters the Jeffery orbits known from the Newtonian fluid
and orbits of passive rods in a viscoelastic fluid37,38. To evaluate
the influence of thermal noise, we combine our results with the
orientational Smoluchowski equation and find that the altered
deterministic dynamics also substantially affect the orientational
distribution, known as the suspension microstructure39. It
strongly differs between extensile (pushers) and contractile (pull-
ers) microswimmers. The orientational distribution allows us to
directly determine the effective viscosity of the active suspension
from an orientational average over the swimmer stresslets. Our
analysis shows that fluid elasticity reduces the effective viscosity of
active suspensions for both pushers and pullers compared to
Newtonian fluids. The reduction increases with activity and might
allow reaching the superfluidic limit for smaller swimmer
densities.

Results
Setup and SOF. We consider a dilute suspension of micro-
swimmers in a shear flow of a viscoelastic fluid, for instance,
consisting of polymers dissolved in a Newtonian fluid as shown in
Fig. 1a. Figure 1b depicts the coordinate system moving with the
microswimmer that is modeled as an active prolate spheroid and
swims with speed Us. The uniformly distributed polymers are
much smaller than the microswimmers and hence modeled
within a continuum description. The inertia-less hydrodynamics
is governed by the mass and momentum conservation as
∇ ⋅V= 0 and ∇ ⋅ T= 0, respectively, where V is the velocity field
and T is the total stress tensor. It follows the SOF model:
T=−PI+ 2E+WiS35. Here, E denotes the rate-of-strain tensor

and S ¼ 4E � Eþ 2δE
Δ
is the polymeric stress tensor, which is

quadratic in E and contains the lower-convected time derivative.
The SOF model not only allows us to capture the elastic effects
pertinent to Boger fluids but also to obtain analytical results for

Fig. 1 Microswimmers in viscoelastic shear flow. Schematics showing
a the dilute suspension of microswimmers in an external shear flow V∞ of a
viscoelastic fluid, b coordinate system moving with an individual swimmer
that is modeled as an active prolate spheroid of the major axis a and minor
axis b. Here p and Us denote the orientation and swimming speed,
respectively.
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small Wi. Since we consider a steady shear rate in this work, we
disregard the partial time derivative of E. In above governing
equations, length, velocity, and pressure are already non-
dimensionalized by the swimmer length (l= 2a), _γl, and μf _γ,
respectively, where μf is the fluid shear viscosity. Also, the stress
tensor is written in dimensionless units using characteristic
numbers (Wi and δ). In particular, Wi ¼ trelax _γ is the shear-
based Weissenberg number that quantifies the importance of
elasticity in the medium. It compares the shear rate _γ or inverse
shearing time to the polymer relaxation time trelax= (Ψ1+Ψ2)/μf,
where Ψ1 and Ψ2 are the normal stress coefficients. Furthermore,
δ=−Ψ1/2(Ψ1+Ψ2) is the viscometric parameter that typically
varies between− 0.7 and − 0.5. In ‘Methods: Hydrodynamic
model’ we explain in detail how we solve the governing equations
using a systematic perturbation expansion in Wi in the limit of
weak viscoelasticity.

Active spheroid in viscoelastic shear flow. To determine the
dynamics of an active spheroid, we first note that a swimmer
disturbs the flow field both passively (due to its rigid body) and
actively (due to self-propulsion). The disturbance fields are
implemented using hydrodynamic multipoles40,41. Flagellated
microswimmers like E. coli and Chlamydomonas generate a force-
dipole flow field and higher-order disturbances: source dipole,
rotlet dipole, and force quadrupole. We included all four of them
and found that only the force–dipole flow field affects the
swimmer dynamics in leading order in Wi. The force–dipole field
around the active spheroid is σ r̂

r2 ½3ðr̂ � pÞ2 � 1� with r̂ ¼ r=r.
Here, σ is a non-dimensional parameter equal to the ratio of the
force–dipole strength (σ∗) to the stresslet imposed by the shear
flow (8πμf˙γl3), where σ > 0 represents pushers and σ < 0 pullers.
For the current work, we focus on swimmers of 5 μm size and
shear rates of order 0.5−5 s−1, which corresponds to σ of typical
wild-type E. coli being roughly 0.04–0.142,43. Here, the Weissen-
berg number can be tuned either by varying the shear rate or
relaxation time of the fluid. The latter for the current system is
trelax≲ 0.1 s, which for instance, can be realized in PEO solutions
of molecular weight ranging from 2 to 4 × 106 g mol−1 and
concentration between 0.25 and 0.5 wt%44. We vary Wi from 0.05
to 0.5 by fixing trelax and changing the shear rates between
˙γ ∼ 0.5–5s −1, following a protocol similar to that for varying σ.

In Newtonian fluids, the equation of motion for the orientation
p (θ, ϕ) gives the Jeffery orbits. To formulate this equation for
viscoelastic shear, we note that the polymeric stress tensor S is
quadratic in the rate-of-strain tensor and vorticity35. Thus,
similar to Einarsson et al.42 we determine all terms that by
symmetry contribute to the rate of change _p up to the first order
in Wi. Neglecting small terms, we arrive at

_p ¼ I� ppð Þ � E1 � pð Þ Λþ Wi σα1 þ Wi β1 E
1 : pp

� �
þΩ1 ´ p 1þ Wi σα2 þ Wi β2 E

1 : pp
� �þ OðWi2Þ

ð1Þ
in non-dimensional form, where Ω is the angular velocity and the
superscript ∞ denotes the quantities that belong to the prescribed
shear flow. The shape factor Λ ¼ �1þλ2

1þλ2
contains the aspect ratio

λ= a/b, the ratio of the major to the minor axis. The shape factor
approaches +1 and −1 for needle and disk-like particles,
respectively. Since microswimmers are usually elongated, we
focus on prolate spheroids of Λ > 0.9, which corresponds to λ > 4;
it also helps in simplifying the calculations (see ‘Methods:
Hydrodynamic model’). The terms with coefficients αi and βi
represent the active and passive viscoelastic contributions,
respectively. These coefficients are evaluated explicitly as outlined
in ‘Methods: Orientation dynamics’ using the Lorentz reciprocal

theorem, where we also derive Eq. (1). For our relevant
parameters, we find α1≫ ∣α2∣. This along with Eq. (1) indicates
that the modification arising from the activity predominantly
depends on the extensional part (E∞) of the viscoelastic shear
flow rather than its rotational component. Since the coefficients
vary only weakly with λ and δ, they are treated as constants in the
following discussion of results (see also Supplementary Note 2A).

In the absence of polymers (Wi= 0), Eq. (1) reduces to the
well-known Jeffery equation25 that has an infinite number of
neutrally stable solutions, i.e., the microswimmer’s orientation
traces periodic orbits that depend on initial conditions. During
the orbital time period T ¼ 2πðλþ λ�1Þ= _γ, they spent the
majority of their time (∝λ) aligned near the flow-vorticity plane.
When polymers are present, the passive viscoelastic effect breaks
the degeneracy of Jeffery orbits and the microswimmer slowly
drifts towards an alignment with the vorticity axis, known as the
“log-rolling” state38,43,44. Figure 2a shows the curve traced by the
orientation of a spheroid on a unit sphere while drifting toward
the vorticity axis. These dynamics can be deduced from Eq. (1)
for passive spheroids (σ= 0) when the terms with coefficients β1
and β2 are present. In Supplementary Note 2C we also compare
our results of passive spheroids with Brunn38.

Now, we illustrate the influence of activity. For weak pushers
(0 < σ≲ 0.1), the orbits toward log rolling look similar to the ones
of passive spheroids, albeit with a larger aspect ratio (see Fig. 2b)
since they exhibit more skewed trajectories. This can directly be
inferred from Eq. (1), where activity (σ) in the term with Wi σα1
modifies the shape factor. Since α1 > 0, a pusher (σ > 0) effectively
increases Λ, which corresponds to a higher aspect ratio. The
opposite occurs for weak pullers (σ < 0) as they behave like a
passive spheroid with a reduced aspect ratio. Here the trajectories
are more circular as shown in Fig. 2d.

As the dipole strength of a pusher increases beyond a critical value
σc, the orientation drifts to the shear plane (θ= π/2) and aligns at an
angle ϕeq with the flow direction (see Fig. 2c). We quantify this
transition in Fig. 3 and show that σc (dots close to 0) decreases with
increasing Wi while ϕeq increases with both σ and Wi. This
dynamical behavior can again be discerned from Eq. (1), which
essentially balances the effect of rotational (Ω∞) and elongational
(E∞) flow on p. Now, activity together with viscoelasticity allows to
control this balance. In particular, for our case of α1≫ ∣α2∣, we expect
the elongational flow to dominate the dynamics for increasing

Fig. 2 Orientation dynamics of passive (σ= 0) and active particles in
weakly viscoelastic shear flow. The blue curves show time traces of the
orientation vector p on the unit sphere starting at the red dot. a Dipole
strength σ= 0, b σ= 0.06, c σ= 0.2, d σ=− 0.2, e σ=− 0.8, f σ=− 2.4.
Other parameters: Weissenberg number (Wi)= 0.2, aspect ratio (λ)= 5,
initial polar angle (θ0)= π/5, initial azimuthal angle (ϕ0)= π/2, viscometric
parameter δ=− 0.6. The active and passive viscoelastic coefficients of
Eq. (1) are evaluated to be α1= 4.62, α2=− 0.33, β1= 0.68, and β2= 1.46.
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activity. Indeed, when the effective shape factor Λ+Wi σα1 exceeds
unity at a critical value σc, the dynamics of p transitions from the
orbital to the alignment state as favored by the elongational flow. In
‘Methods: Dynamical analysis 1’, we show for a modified dynamical
system that the relevant eigenvalue of the dynamical matrix becomes
real at σc, as expected for such a transition, and the corresponding
eigenvector gives the alignment angle ϕeq. As σ increases, ϕeq grows
from zero and approaches π/4 for large σ, since in this limit, the
elongational flow (E∞) with its principal axis along ϕ= π/4
completely dominates the dynamics of p.

For pullers, Fig. 2e shows that increasing the activity induces a
transition from log rolling toward rotation in the shear plane. This
orbit is also observed for passive particles with oblate shape (Λ < 0)
in viscoelastic flows38,43,44. It appears here and acts as an attracting
limit cycle when the effective shape factor Λ+Wiσα1 in Eq. (1)
becomes negative due to the puller activity σ < 0.We have performed
a stability analysis for the shear-plane rotation in ‘Methods:
Dynamical analysis 2’ and calculated the Lyapunov stability
exponent L. It determines the exponential time variation of the
disturbed limit cycle. In the inset of Fig. 3, we show the Lyapunov
exponent as a function of σ. For weak and moderate pullers, L> 0
shows that shear-plane rotation is an unstable limit cycle, where the
system drifts towards stable log rolling. As the dipole strength of the
puller becomes more negative, L turns negative meaning that shear-
plane rotation is stable. Upon analyzing the orbital dynamics in the
shear-plane rotation, we find that increasing ∣σ∣ gradually slows
down the swimmer’s rotation near the y-axis, along which the flow
gradient is applied. Eventually, a transition to permanent alignment
with ϕeq= π/2 occurs, which can be similarly analyzed as the
alignment transition of pushers. However, here it occurs at the
effective shape factor Λ+Wiσcα1=− 1. With further increasing ∣σ∣
the active spheroid tilts against the flow, in contrast to pushers, and
asymptotes at 3π/4, which is the direction of the second principal
axis of the elongational flow (E∞). This behavior is illustrated in
Fig. 2f and Fig. 3. Finally, Fig. 3 also shows that as Wi increases, the
regime of shear-plane rotation shrinks.

Impact of noise on orientational dynamics. The deterministic
orientational dynamics are disturbed by two types of stochastic

reorientations of the swimming direction, which we now address
with the help of the Smoluchowski equation. First, a bacterium
tumbles, which is triggered when the rotation of one of its flagella
reverses so that it leaves the flagellar bundle45–47. For a wild-type
E.coli, tumbling occurs roughly every 1s, where it attains a new
random orientation. Although tumbling is biased in the forward
direction with a mean tumbling angle of roughly 68.5°, we model
it to be unbiased for computational ease because it only affects
our results marginally as suggested by Nambiar et al.48. Second,
thermal rotational diffusion continuously reorients a micro-
swimmer but its effect is small compared to tumbling.

We now evaluate the orientational distribution of an ensemble
of non-interacting microswimmers in a steady state, caused by
the three mechanisms discussed so far: deterministic motion in
background shear flow, tumbling, and rotational diffusion. The
steady-state probability distribution function ψ(p) for the
orientation vector of non-interacting microswimmers is governed
by the Smoluchowski equation49

Pef∇p � _pψ
� �� τDr∇

2
pψ þ ψ � 1

4π

� �
¼ 0; ð2Þ

where ψ(p) is normalized to unity. The first term describes the
orientational drift using ∇p as the gradient operator on the unit
sphere. To compare the strength of flow-induced reorientation to
the mean time τ between two tumbling events, we introduce the
flow Péclet number Pef ¼ _γτ. Tumbling away from the swim-
ming direction p is handled by the third term and rotational
diffusion by the second term. For bacteria, the latter is typically
small compared to tumbling since τ ~ 1s45 and Dr≲ 0.1 s−1, as an
estimate from the Stokes-Einstein relation shows. In restricting
ourselves to Eq. (2), we assume a spatially uniform system valid
when hydrodynamic and steric interactions with bounding
surfaces can be neglected29,41. In particular, this means that the
mean length of persistent swimming, Usτ, where Us is the
swimming speed, is much smaller than the spatial extent of the
system. Finally, we consider weak fluid elasticity with relaxation
time trelax � τ;D�1

r , so that the fluid relaxes faster than the time
scales given by stochastic reorientations50. Typical dilute and
semi-dilute PEO solutions of molecular weight of ~106 g mol−1

have trelax≲ 0.1 s51, whereas the stochastic reorientation time
scale is always 1 s or larger. Thus, here we do not need to take into
account any memory in the rotational noise.

In the following, we want to emulate a rheological experiment
and vary the shear rate _γ via Pef, while the fluid and swimmer
properties are kept constant. Therefore, in Eq. (1) for the
rotational drift velocity _p, we rewrite Wi as PefDe, where the
Deborah number De= trelax/τ compares the fluid relaxation time
to τ. Furthermore, the second relevant parameter, Wiσ, does not
explicitly depend on _γ but rather quantifies the strength of
activity relative to fluid elasticity. To vary the activity independent
of other parameters, we replace Wiσ by PeaDe/8π. Here, Pea is the
signed activity Peclet number that is positive for pushers and
negative for pullers. Using Us ~ σ*/(μfl2) for the swimming speed
with the force dipole moment σ*52, we can write it in the familiar
form Pea ~Usτ/l. Thus, its magnitude compares the persistence
length to the body length l. A wild-type E. coli typically has
Pea≲ 545,53. We numerically solve Eq. (2) for arbitrary Pef by
expanding ψ in spherical harmonics and taking into account the
first 100 harmonics. The numerical solution is also verified
analytically in the limit of Pef ≪ 1 (see further details in
‘Methods: Kinetic model’).

Figure 4 shows the orientational probability distribution of
passive and active particles for various cases. It quantifies the
orientational ‘microstructure’ of a suspension of non-interacting
and orientable particles subject to shear flow48,54,55. We begin with

Fig. 3 State diagram showing the different states of the orientational
dynamics for three Weissenberg numbers. With increasing dipole
strength σ from left to right, we observe alignment (Align.), shear-plane
rotation (SPR), log rolling (LR), and again alignment. In the alignment state,
the alignment angle ϕeq is plotted versus dimensionless activity σ as solid
lines. The dots on the horizontal axis indicate the critical values σc at which
alignment (Align.) occurs either to the left of the dashed-dotted lines
(pullers, σ < 0) or to the right (pushers, σ > 0). The dashed lines separate
SPR and LR from each other at σ=− 1.93, − 0.49, − 0.19 for increasing Wi.
The inset shows the variation of the Lyapunov exponent (L) with σ. Other
parameters are chosen as in Fig. 2.
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discussing the case of weak shear rate (Pef < 1) in Fig. 4a–d. In the
absence of shear flow, the microstructure is solely governed by
rotational noise and is therefore isotropic. For weak shear rates, the
extensional part (E∞) of the shear flow primarily distorts the
microstructure, which peaks near the extensional axis as noted for
Newtonian fluids by Hinch and Leal56. We quantify this in
‘Methods: Kinetic model 1’ by solving Eq. (2) via a perturbation

expansion in Pef and obtain the first-order correction:

ψð1Þ ¼
3
4π

ðΛþ α1 DePea=8πÞ
E1 : pp
1þ 6τDr

ð3Þ

In the absence of activity, there is no deviation from the Newtonian
microstructure in this order.

In Fig. 4a–d, we use a weak shear rate of Pef= 0.5 and ∣Pea∣= 20,
which is an activity close to mutated strains of tumbling E. coli
(pusher)57 and the algae C. reinhardtii (puller). The observed
distributions follow the trend of Eq. (3). While pushers (Pea > 0)
enhance the alignment along the extensional axis of the applied
shear flow, pullers (Pea < 0) weaken it. We note that the peak of the
orientational distributions in the shear plane (plot d) exhibits a
small deviation from ϕ= π/4. This is due to the rotational flow
(Ω∞), which contributes to ψ(p) in the second order in Pef55.

As the shear rate increases, the deterministic dynamics become
more visible. We illustrate this in Fig. 4e–h for Pef= 5. Compared to
Fig. 4a, the peak in ψ(p) for passive particles (Fig. 4e) shifts towards
the flow axis and becomes more anisotropic along the flow-vorticity
plane, as the deterministic velocity _p is smallest in this plane.
Eventually, _p becomes zero in the deterministic log-rolling state
observed in viscoelastic fluids (Fig. 2a). However, the deterministic
log-rolling state is not completely reflected in the distribution
because the slow relaxation towards the vorticity axis is always
interrupted by the dominating stochastic reorientations (see
Supplementary note 4, where we illustrate the orientation distribu-
tion for a larger weakly Brownian particle that resembles log-rolling).
Note that due to the fluid elasticity, the peak of ψ(p) in Fig. 4h is
slightly closer to the flow axis compared to the Newtonian case.
Furthermore, the inset therein also illustrates a broader distribution
in the flow-vorticity plane (ϕ= 0). Further increasing Pef spreads the
distribution even more in the flow-vorticity plane and, ultimately, for
Pef≳ 100 the peak develops along the vorticity axis, which is entirely
reminiscent of log rolling. However, this is a regime that we cannot
strictly capture as our analysis requires De, Wi < 1, which means
Pef < 10. These findings are qualitatively consistent with earlier
studies on passive fiber suspensions at moderate shear rates50,58

(further illustrated in Supplementary Note 4).
Figure 4f demonstrates that the activity of pushers in conjunction

with the higher shear rate (Pef= 5) makes the distribution more
anisotropic. According to Fig. 4h, pushers strongly focus at an angle
ϕ= 18∘ in comparison to a weaker peak of passive particles near to
flow axis. This angle is close to the alignment angle ϕeq= 21° of the
deterministic state with the parameters Wi= 0.5, σ= 0.16 in Fig. 3.
Conversely to pushers, pullers reduce the anisotropy in the
orientational distribution as shown in Fig. 4g. We can directly
relate this observation to the deterministic velocity _p with
parameters Wi= 0.5, σ=− 0.16 that indicate again the log-
rolling state; the resulting orbit is similar to that depicted in Fig. 2d.
Compared to the passive case, the orbit is more circular, which we
already related to a reduced effective aspect ratio when discussing
the deterministic orientational dynamics. Therefore, the orientation
is less constrained to the flow-vorticity plane. This is explained by
the dynamics of the azimuthal angle ϕ in the inset of Fig. 4g which
shows lesser time spent in the plane compared to the inset in
Fig. 4e. As a result, the distribution is broader and less anisotropic59.
Consequently, the particle is less susceptible to the effect of
stochastic reorientations and thus, its distribution has a peak closer
to the flow axis. Hence, unlike active Newtonian suspensions24, the
microstructure of microswimmers in a viscoelastic fluid is clearly
sensitive to their hydrodynamic signature being either pushers or
pullers.

We also examined the orientational distributions of micro-
swimmers that do not tumble and only experience rotational
thermal noise. Therefore, in this case, we eliminate the last term

Fig. 4 Orientational probability distribution. ψ(p) for a–d weak shear flow
at flow Péclet number Pef= 0.5, e–j moderate shear flow at Pef= 5. The
activity Péclet number (Pea) varies as (a, e) Pea= 0, (b, f) Pea= 20, c, g
Pea=− 20 and always with Drτ= 0.1, where τ is tumbling time and Dr is
the rotary diffusion coefficient. d, h Probability distribution function (PDF)
in the flow-shear plane; the inset in h shows PDF in the flow-vorticity plane.
Non-tumbling particles: i Pea= 100, j Pea=− 100. The insets in e, g, j show
the polar angle ϕ(t) for the shear-plane rotation state corresponding to the
respective distributions. Color bars indicate the value of the PDF. Other
parameters are chosen as in Fig. 2 with Deborah number De= trelax/τ= 0.1.
To locate these distributions in Fig. 3, we give the corresponding
Weissenberg and activity numbers: a–d Wi= 0.05, σ= ± 1.6; e–h Wi= 0.5,
σ= ± 0.16; i, j Wi= 0.5, σ= ± 0.8.
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on the right-hand side of Eq. (2) and redefine our parameters Pef,
Pea, and De replacing τ by D�1

r . For passive particles and activity
Pea ~O(10), the microstructure is qualitatively similar to the
distributions in Fig. 4a–h. However, microswimmers that do not
tumble can have larger persistence lengths60. In particular, one
can genetically modify E. coli such that tumbling does not
occur52,57,61. Therefore, in Fig. 4i, j we show the orientational
distributions for Pea= ± 100. Compared to Fig. 4f, increasing the
activity of a pusher moves the peak in the distribution function
(at ϕ= 34∘) even closer to the alignment angle (ϕeq= 36∘) of the
deterministic alignment state. For pullers, we observe an even
more drastic change upon increasing the activity. The peak in the
orientational distribution shifts to the quadrant where the
compressional part of the shear flow occurs (see Fig. 4j).
Interestingly, this is not due to the deterministic alignment of
pullers, as the parameters (Wi= 0.5, σ=− 0.8) belong to the
shear-plane rotation state (see Fig. 3). As already explained in the
discussion of Fig. 3, the rotational velocity _p slows down near
ϕ= π/2 when the effective shape factor Λ+Wiσcα1 becomes
negative. Therefore, the active particle resembles a passive oblate
spheroid62. Indeed, the inset of Fig. 4j shows how the puller
orientation spends more time near ϕ= π/2. This again shows that
even in the presence of significant noise the microstructure is
determined by the deterministic dynamics.

Shear viscosity of active suspensions. Finally, we evaluate the
effective shear viscosity of a dilute active suspension from the total
stress tensor, Σ= Σf+ Σp, where subscripts f and p refer to fluid
and particle contributions, respectively. The deviatoric component
of Σ provides the shear viscosity, μ= μf+ φμp, where φμp ¼ Σpxy= _γ

is due to the suspended microswimmers and φ= na3 is propor-
tional to their volume fraction with n being the particle density.
Note that the shear viscosity μf of the SOF does not depend on the
shear rate, while μp is dependent on it. To evaluate μp, we need to
average over the stresslets Π(p) generated by the suspended par-
ticles. Using the orientational distribution, we obtain

Σp ¼ nhΠi ¼ n
Z

S
ΠðpÞψðpÞ d p; ð4Þ

where Π(p) is the sum of three contributions24, which give the
following stress tensors: ΣA

p ¼ nσ� hppi � I=3
� �

=8π due to activity,

ΣT
p ¼ 3nkBT hppi � I=3

� �
due to thermal reorientations63, and ΣF

p

due to the resistance of passive particles to shear. For Newtonian
fluids, the latter was first derived by Einstein64 for spherical par-
ticles, and then later generalized to elongated particles by Hinch
and Leal39,54. For the SOF, we follow Férec et al.65 and approximate

it using the Geisekus form, ΣF
p ¼ �μf nl

3A _γhpp∇ i=2, where A ¼
π=6 lnð2λÞ is a shape factor to access the friction of a long slender

body and hpp∇ i is the upper-convected time derivative of the second
moment of ψ(p). The expression for ΠF was originally derived for
dumbbells suspended in a Newtonian fluid66. As in ref. 65, we use it
here as an approximation for the stress response of particles in a
weakly viscoelastic fluid, as there are no closed form expressions
available. The consequences of the SOF come in through the
orientational dynamics _p in Eq. (1) and further terms in the upper-
convected derivative (see ‘Methods: Rheology’). The expressions
for the three contributions to the particle stress tensor are pertinent
to studies on slender rods and fibers (i.e., Λ→ 1), and henceforth,
we will be focusing on spheroids with larger aspect ratios (λ= 10).
Using Eq. (4) in the definition of the particle-induced contribution
to shear viscosity, φμp ¼ Σpxy= _γ, together with our characteristic

parameters, we obtain

μp
μf

¼ �4Ahpp∇ ixy þ
8
Pef

6τDrA� Pea
8π

� �
hppi � I

3

� 	
xy

: ð5Þ

We use numerical solutions of Eq. (2) for the orientational dis-
tribution ψ(p) to evaluate μp for varying Pef and Pea. We also match
the numerical values of μp with an expression, which we obtain
using the analytic form of ψ(p) from Eq. (3) in the limit of small Pef
(the derivation is provided in ‘Methods: Rheology’). In Supple-
mentary Fig. 4, we also show that our results agree with Saintillan24

in the Newtonian limit.
Figure 5 a shows the particle-induced contribution to shear

viscosity normalized by the bare fluid viscosity μf, which is plotted
versus shear strength Pef. We begin with discussing suspensions
in a Newtonian fluid (dashed lines)24. When a suspension of
passive rods (black) is sheared weakly (Pef ≪ 1), the orientational
microstructure is governed by Eq. (3) with De= 0 and resembles
Fig. 4a. Here, the rods are aligned along the extensional axis of the
applied shear flow and resist shearing (μp > 0), which enhances
viscosity. For a suspension of pushers (brown dashed) in the
weak-shear regime, the microstructure still resembles Fig. 4a, but
now the extensile force dipoles support the elongational part of
the shear flow, which results in μp < 0 so that the total shear
viscosity is smaller than μf. Conversely, pullers (green dashed)
with their contractile force dipoles additionally resist shear flow
and thereby enhance viscosity. Note that, since the microstructure
of active suspensions in a Newtonian fluid is unchanged by the
hydrodynamic signature of microswimmers, the magnitude of the
activity contribution to μp is identical for pushers and pullers. As
the shear rate increases, the magnitude of μp for both passive and
active rods reduces, which resembles a typical shear-thinning/
thickening behavior. For passive particles the microstructure is
similar to Fig. 4e. The alignment close to the flow axis explains

Fig. 5 Particle-induced contribution to viscosity. Viscosity ratio μp/μf in a
weakly viscoelastic (VE) fluid: a plotted vs. shear rate (characterized by the
flow Péclet number Pef) for pusher (Pea > 0), the puller (Pea < 0), and a
passive rod (Pea= 0) with solid lines. Dashed lines correspond to the
Newtonian case. b Contributions to particle-induced viscosity for activity
Péclet number Pea= 20. c μp/μf vs. activity Pea in the Pef≪ 1 limit for
tumbling and non-tumbling active rods. d μp/μf vs. shear rate Pef for non-
tumbling active rods with large persistence length, ∣Pea∣= 100. Dotted
black lines near Pef= 0.1 in (a, d) correspond to the analytical results for
Pef≪ 1. Other parameters: Deborah number De= 0.1, the active and
passive viscoelastic coefficients of Eq. (1) are evaluated to be
α1= 5.92, α2=− 0.91, β1= 0.63, β2= 1.18 for aspect ratio λ= 10.
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why the resistance of particles to the applied shear flow is
reduced. For active particles, the activity-induced flow becomes
less and less important with increasing shear rate as quantified by
the inverse proportionality to Pef in Eq. (5).

Now, we discuss the results for the SOF in Fig. 5a (solid lines).
For the suspension of passive rods (black), we do not find an
appreciable deviation from the Newtonian case until Pef ≈ 10,
similar to refs. 50,58. However, for active suspensions, the
modifications are substantial and qualitatively different for
pushers (brown) and pullers (green). For pushers, the reduction
in viscosity is further enhanced compared to Newtonian fluids,
whereas the viscosity enhancement of pullers is reduced. For a
fixed viscosity of μf and a volume fraction of φ= 0.1, a pusher
suspension of Pea= 20 predicts a 10% viscosity reduction,
whereas in a Newtonian fluid, the reduction is 6%. We
understand this viscosity reduction by using the orientational
distributions in Fig. 4: pushers are even more aligned in the
extensional quadrant of the applied shear flow (Fig. 4b, d, f),
which explains their further increased support of shear flow. In
contrast, pullers are less aligned compared to the Newtonian case
(Fig. 4c, d, g) and, therefore, oppose the shear flow to a reduced
extent. Figure 5b for pushers clearly shows that the active stress
(ΣA) dominates and hence is primarily responsible for the
observed viscous response.

In the limit of shear rate much smaller than tumbling rate,
Pef ≪ 1, we can calculate μp/μf analytically using Eq. (3) (see
‘Methods: Rheology’) and obtain:

μp
μf

¼ 4Að5� 3ΛÞ
15

þ 48AτDr � Pea=π

5 1þ 6τDr

� � Λþ De Peaα1
8π

� �

� De PeaAα1
10π

:

ð6Þ

We elaborate on the result here since the influence of passive and
active rods on the shear viscosity is the strongest in this limit. In
Fig. 5c we plot μp/μf vs. Pea for tumbling microswimmers (solid
lines). As Eq. (6) shows, elasticity in the fluid adds a quadratic
dependence in Pea, while in a Newtonian fluid, the dependence is
only linear24. For all Pea, except a small region close to Pea= 0,
the values of μp/μf remain below those obtained in the Newtonian
limit. Thus, fluid elasticity reduces the shear viscosity for both
pusher and puller suspensions. Note that, as we increase the
activity of pullers (Pea≲− 50), they too can reduce the shear
viscosity (μp/μf < 0) like pushers. This is a consequence of the
orientational distribution shown in Fig. 4j; pullers with large
activity align preferentially in the compressional quadrant of the
shear flow and thereby also support the shearing fluid similar to
pushers aligned in the extensional quadrant.

As described earlier, we can treat the case of non-tumbling
microswimmers by replacing τ by D�1

r in the definitions of Pef,
Pea, and De. With these parameters, Eq. (6) can be formulated in
the limit τ→∞ to show that the viscosity contribution of non-
tumbling active rods also follows a quadratic dependence in Pea
(Fig. 5c, dashed lines). Non-tumbling microswimmers can exhibit
high persistence lengths. Thus, in Fig. 5d we show for ∣Pea∣= 100
that their contribution to viscosity is negative over a wide range of
shear rates for both pushers and pullers in a SOF. Hence, we find
that the elasticity of a fluid always results in a reduced total
viscosity as compared to suspensions in a Newtonian fluid of
identical base viscosity (μf).

Discussion
In this article, we show how activity influences the dynamics of a
sheared microswimmer suspension in a viscoelastic fluid at an
individual level and in the bulk. At the individual level, the
orientational dynamics of passive rods are well-known from

Jeffery’s orbits in Newtonian shear25 and ‘log-rolling’ orbits in
viscoelastic shear flow37,38. Our analytical result [Eq. (1)], derived
for elongated active spheroids in a SOF, demonstrates how the
active flow field of a swimmer modifies the orientational
dynamics. Extensile swimmers like E. coli (pushers) drift to the
shear plane and align at an angle to the flow direction. For
contractile swimmers like C. reinhardtii (pullers), activity effec-
tively lowers their aspect ratio. With increasing dipole strength,
pullers show log rolling, transition to shear-plane rotation, and
ultimately align at an angle against the flow direction. The latter
occurs for strong pullers at dipole strengths relevant to artificial
swimmers with large propulsion speed67,68.

To demonstrate the impact of the individual swimmer
dynamics on the bulk rheological behavior, we employ the
Smoluchowski equation to evaluate the orientational probability
distribution of an ensemble of active spheroids called the sus-
pension microstructure39. Accounting for tumbling and rotary
diffusion, we find that the microstructure is sensitive to the
hydrodynamic signature of the swimmer, unlike suspensions in
Newtonian fluids22,24,48. Pushers align more strongly in the
extensional quadrant of the applied shear flow, while the align-
ment of pullers is significantly weaker. This activity-specific
microstructure significantly modifies the effective shear viscosity
compared to Newtonian fluids21. In particular, the viscosity
reduction of a dilute pusher suspension is more pronounced
under viscoelastic shear flow, while the viscosity enhancement of
pullers is weaker. Thus, the activity of a microswimmer con-
tributes in two ways to the rheology of swimmer suspensions in a
viscoelastic fluid; directly through its active stresses and indirectly
by coupling to the elasticity of the fluid and thereby influencing
the orientational microstructure. In particular, in the weak-shear
limit, the particle-induced contribution to viscosity scales quad-
ratically with the activity Pea. In total, we find that the elasticity of
a SOF always reduces the total viscosity of the microswimmer
suspension, as compared to a Newtonian fluid of identical base
viscosity. Especially for pushers, this might help to reach the
regime of superfluidity at lower volume fractions compared to
Newtonian fluids. We note that superfluidity is reported to be
also associated with the onset of collective motion69,70, and
requires further analysis at higher microswimmer densities.

Most biological fluids are viscoelastic. We presented the first
systematic study of the individual dynamics and the bulk rheology
of microswimmers suspended in such fluids. Earlier investigations
on active suspensions in quiescent71 and vortical viscoelastic
flows72 assumed conventional Newtonian Jeffery orbits. In light of
our results, these studies on collective behavior might need to be
revisited. Our investigations make several assumptions to address
the complexity of microbial flows, which offers ample opportunities
for future developments. Biological fluids can be more complex and
exhibit shear-thinning/-thickening properties or several character-
istic relaxation times, which requires more evolved modeling using,
for example, the FENE-P or Giesekus model. Furthermore, mucus
besides being significantly shear-thinning has relaxation times lar-
ger than 1 s, which is of the order of the bacterial mean free tumble
time15,28,29. Thus, noise becomes non-Markovian and memory
needs to be incorporated in the stochastic description, for example,
within a generalized Langevin equation73.

Methods
Hydrodynamic model. The hydrodynamics around the spheroidal particle is
governed by the mass and momentum conservation as∇ ⋅V= 0,∇ ⋅ T= 0. Here T
is the total stress tensor defined as T=− PI+ 2E+WiS35, where

S ¼ 4E � Eþ 2δ E
Δ
. The lower-convected derivative is defined as

E
Δ
¼ ∂E

∂t
þ V � ∇ð ÞEþ E � ∇V þ ∇VT � E

� 	
: ð7Þ
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Since we consider a steady shear flow and a steadily active swimmer, we can disregard
the temporal derivative in the above stress tensor. In particle frame of reference, the
boundary condition on its surface is the no-slip condition V=Ωp × r, where the
rotational velocityΩp is currently unknown and will be evaluated by using the torque-
free condition. We split the velocity field into the disturbance field v and background
flow field V∞=E∞ ⋅ r+Ω∞ × ri.e.,V= v+V∞. The equations governing the dis-
turbance flow field are

∇ � v ¼ 0; �∇pþ ∇2v ¼ �Wi ð∇ � sÞ; where
s ¼ 4ðe � eþ wÞ þ 2 δðeΔ þw

Δ Þ:
ð8Þ

Here e is the rate of strain tensor for the disturbance flow (∇ v+∇ v†)/2, whereasw,

e
Δ
and w

Δ
are the different constituents of the polymeric tensor (s) due to the dis-

turbance flow field. Specifically,w is the interaction tensor defined as E∞ ⋅ e+ e ⋅E∞,

arising from the interaction between background flow and disturbance field; and w
Δ
is

the lower-convected derivative of e and E∞ with respect to V∞ and v, respectively:

w
Δ ¼V1 � ∇eþ e � ∇V1y þ ∇V1 � e

þ v � ∇E1 þ E1 � ∇vy þ ∇v � E1:
ð9Þ

The boundary conditions of the disturbance field at the particle surface and far away
are

v ¼ ΔΩ ´ r � E1 � r at r 2 S and v ! 0 as r ! 1; ð10Þ
respectively. Here ΔΩ is the difference in particle angular velocity and background
vorticity (Ωp−Ω∞).

For small values of Wi, the disturbance field variables are expanded as
f= f(0)+Wi f(1)+⋯ . Here, f is a generic field variable that represents velocity (v),
pressure (p), and angular velocity (Ωp). We substitute this expansion in Eq. (8) and
obtain the O(1) Stokes problem as

∇ � vð0Þ ¼ 0; �∇pð0Þ þ ∇2vð0Þ ¼ 0 ð11Þ
with the boundary condition at the particle surface:

vð0Þ ¼ ΔΩð0Þ ´ r � E1 � r at r 2 S; ð12Þ
and a decaying condition at infinity (v(0)→ 0). Using the finite multipole
expansion around the spheroid40,42,74, we obtain the disturbance velocity for a
passive spheroid at O(1) as

vð0Þi ¼QR
ij;kεjkl ARplpm þBRðδlm � plpmÞ

� �
ΔΩm



þCRεlmnpmE

1
nopo

�
þ QS

ij;k þ χQQ
ij;llk

� 

ASpAjklm þBSpBjklm þCSpCjklm

h i
E1
lm

n
�CR εjlmpkpm þ εklmpjpm

� 

ΔΩl

o
:

ð13Þ

Here Q represent the spheroidal multipoles i.e. integral representation of
fundamental singularities spread on a line extending from one foci to another (−c

to c, where c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 � 1

p
=λ); QR; QS represent rotlet and stresslet around the

spheroid, respectively. Here χ ¼ 1
8ðλ2�1Þ represents the strength of higher order

quadrupolar field (QQ
ij;llk). Since we focus on elongated particles, we exclude this

component for computational ease (λ= {5, 10} correspond to χ= {0.005, 0.001}).
Following Einarsson et al.42, we simplify these multipoles as

QR
ij;k ¼ δikrj � δijrk

� 

J03 þ δijpk � δikpj

� 

J13 ð14aÞ

QS
ij;k ¼ δjkriJ

0
3 � δjkpiJ

1
3 � 3rirjrkJ

0
5

þ 3ðpirjrk þ pjrirk þ pkrirjÞJ15
� 3ðripjpk þ rjpipk þ rkpipjÞJ25 þ 3pipjpkJ

3
5:

ð14bÞ

Here I and J represent various integrals defined as

Iba ¼
Z c

�c

ξb

jr � ξpja d ξ; Jba ¼ c2Iba � Ibþ2
a : ð15Þ

In Eq. (13), the fourth-order orientation tensors (pA, pB, pC) and other coefficients
(A;B;C) are described in Supplementary Note 1.

At O(1), we add the activity using the far-field descriptions, which consist of a
force-dipole (FD), source-dipole (SD), rotlet-dipole (RD), and force-quadrupole
(FQ)41:

vð0ÞFD ¼ σFD
�r
r3

þ 3r r � pð Þ2
r5

� �
ð16aÞ

vð0ÞSD ¼ σSD
3rr
r2

� I

� �
p
2r3

ð16bÞ

vð0ÞRD ¼ σRD
3p � r
r5

p ´ rð Þ
� 	

ð16cÞ

vð0ÞFQ ¼ σFQ
p
r3

� 3
r5

3ðp � rÞr þ ðp � rÞ2p� 5ðp � rÞ3r
r2

� 	� �
ð16dÞ

At O(Wi), the governing equation is

∇ � vð1Þ ¼ 0; �∇pð1Þ þ ∇2vð1Þ ¼ � ð∇ � sð0ÞÞ; where

sð0Þ ¼ 4ðeð0Þ � eð0Þ þ wð0ÞÞ þ 2 δðeΔ
ð0Þ

þ w
Δ ð0Þ

Þ;
ð17Þ

The boundary condition at the particle surface being

vð1Þ ¼ U ð1Þ
p þΩð1Þ

p ´ r at r 2 S; ð18Þ

with a decaying condition at infinity (v(1)→ 0). Conventionally, a solution to Eqs.
(17) and (18) (i.e., v(1)) is sought, which, on the implementation of torque-free
condition, reveals the modification of Jeffery orbits (Ωð1Þ

p ). We employ the
reciprocal theorem74,75 to avoid solving for the first-order flow field and directly
obtain the rotation velocity as

Ωð1Þ
p � Tt ¼

Z
Vf

sð0Þ : ∇vt dV: ð19Þ

Here, superscript t refers to the test problem where the particle rotates at a unit
velocity Ωt= ei, where i corresponds to either of the three Cartesian coordinates.
The test torque is:

Tt ¼ R �Ωt ; whereR ¼ 64πc3

3
ARppþBRðI� ppÞ� � ð20Þ

We solve Eq. (19) for three test field torques (along the three Cartesian
coordinates) and obtain the following system of equations:
Ry � Ωð1Þ

p ¼ I 1; I2; I 3


 �
, where † represents transpose and I i is the solution of

volume integral (19) for the test field in ith unit vector. We further simplify the
above relation by noting that R is a symmetric matrix and _pð1Þ ¼ Ωð1Þ

p ´ p:

_pð1Þ ¼ R�1 � I 1; I 2; I 3


 �� �
´ p ð21Þ

Eq. (21) can be evaluated over a discretized angular grid, where each point requires
solving the volume integral in Eq. (19). The polymeric stress therein (s(0)) is given
by Eq. (8) and is entirely dependent on O(1) disturbance flow fields i.e., passive
disturbance in Eq. (13) and active disturbance in Eq. 16. We find that out of all
active fields, only force–dipole ( ~ r−2) provides a modification at the current order
of approximation; the rest decays in odd powers of distance ( ~ r−3), and due to
antisymmetry, give zero contribution to the volume integral at O(Wi).

Orientation dynamics. We evaluate _pð1Þ analytically by noting that it stems from
the leading order polymeric stress [specifically s(0) in Eq. (19)]; its form in Eq. (8)
suggests that the modification for a passive particle will be quadratic in the flow
gradient tensor, which can be decomposed in symmetric E∞ and antisymmetric
O∞ (rotation-rate tensor) components. Following Einarsson et al.42, this can be
written in the general form as:

_pð1;PÞi ¼ Kð1Þ
ijklmE

1
jk E

1
lm þ Kð2Þ

ijklmE
1
jk O

1
lm þ Kð3Þ

ijklmO
1
jk O

1
lm; ð22Þ

where superscript P denotes passive contribution. The coefficients of the fifth-order
tensor K are composed of all possible permutations of the orientation vector p with
E∞ and O∞:

KðiÞ
ijklm ¼ ∑

n¼5!
β½1�n pn1pn2pn3pn4pn5 þ β½2�n pn1pn2pn3δn4n5

�
þ β½3�n pn1δn2n3δn4n5



:

Here β represents the unique coefficients for all 5! terms.
When activity is added in the hydrodynamics, the form of the polymeric stress

tensor in Eq. (8) suggests that the gradients of disturbance velocity (directed with
p) will multiply with gradients of passive disturbance (which originate from E∞

and O∞) to yield further modification to _pð1Þ. Thus, the contribution resulting from
the interaction of active disturbances (p) with background flow (E∞ and O∞) takes
the following form at O(Wi):

_pð1;AÞi ¼ σ Lð1ÞijkE
1
jk þ Lð2ÞijkO

1
jk

h i
; ð23Þ

where coefficients of the third-order tensor L are composed of the following
combinations

LðiÞijk ¼ ∑
n¼5!

α½1�n pn1pn2pn3 þ α½2�n pn1 δn2n3

� 

:

Here α represent the unique coefficients for all the 3! terms. We simplify Eqs. (22)
and (23) by using the symmetry arguments and noting that magnitude of p is
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always unity. We obtain the following six irreducible terms:

_pð1Þ ¼E1 : pp β1ðI� ppÞ � ðE1 � pÞ þ β2 O
1 � p� �

þ ðI� ppÞ � β3ðE1 � E1Þ � pþ β4ðO1 � E1Þ � p� �
þ σα1ðI� ppÞ � E1 � pð Þ þ σα2 O

1 � p:
ð24Þ

We calculate the coefficients (αi and βi) by evaluating _pð1Þ numerically for six
independent orientations (p) and solve the system of equations from Eq. (24) to
extract the coefficients. We find that β3 and β4 are nearly zero (≲10−5) and thus
neglect them. We obtain the analytical approximation as

_pð1Þ ¼ I� ppð Þ � E1 � pð Þ σα1 þ β1 E
1 : pp

� �
þO1 � p σα2 þ β2 E

1 : pp
� �

;
ð25Þ

We use the above equation in the main text as Eq. (1), where we write O∞ ⋅ p as
Ω∞ × p. In Supplementary Note 2A, we show the weak variation of these
coefficients with particle aspect ratio λ and the viscometric coefficient δ.

Dynamical analysis
Eigenvalue analysis of alignment dynamics. Following Bretherton76, we explain the
alignment of a particle in the shear plane by extracting a fundamental matrix
solution of Eq. (1). For this, we first consider the non-dimensional Jeffery equation
in the expanded form as

_p ¼ O1 � pþ Λ E1 � p� pðE1 : ppÞ� �
; ð26Þ

which can be represented in an unconserved form that facilitates a fundamental
matrix solution77:

_q ¼ ΛE1 þO1ð Þ � q: ð27Þ
Here qðtÞ

jqðtÞj ¼ pðtÞ and jqðtÞj ¼ exp½Λ E1 : ppð Þt� represents the exponential elon-

gation of q. We study the angular dynamics of q, as its normalization yields back
the orientation vector p. The solution to Eq. (27) is

qðtÞ ¼ exp ðΛE1 þO1Þt½ �qð0Þ: ð28Þ
The eigensystem of the above exponential matrix determines the orbital dynamics
of spheroid. For the two-dimensional shear flow, the eigenvalues of the matrix in

the exponent (ΛE∞+O∞) are: 0; ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 � 1

p
=2. The non-zero eigenvalues are

purely imaginary as 0 <Λ < 1, where Λ= 1 for an infinitely slender particle. As a
consequence of this imaginary pair, we observe degenerate infinite solutions of
orbits in Newtonian fluids (i.e., Jeffery orbits). For the case of pure elongational
flow (O∞≡ 0), the eigenvalues are real: 0, ±Λ/2, which reveals the absence of
periodic orbits. The normalized eigenvector corresponding to the positive eigen-
value determines the equilibrium orientation: 1=

ffiffiffi
2

p
; 1=

ffiffiffi
2

p
; 0


 �
i.e., 45° or 225° in

the two extension quadrants.
We now use Eq. (1) for the SOF and consider only the active viscoelastic

component because the passive effects do not contribute to the alignment [this
assumption is later verified by matching the results with numerical integration of
complete Eq. (1)]. In this case, the equation of motion for the unconserved vector q
is

_q ¼ E1ðΛþ Wi σα1Þ þO1ð1þ Wi σα2Þ
� � � q; ð29Þ

which yields the solution q(t) as

exp E1ðΛþ Wi σα1Þ þO1ð1þ Wi σα2Þ
� �

t
� �

qð0Þ: ð30Þ
We obtain the eigenvalues of the fundamental matrix as

0; ±
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 � 1þ 2σWi α1 Λ� α2

� �þWi2σ2 α21 � α22
� �q

:

These eigenvalues turn real when σ > 1�Λ
Wi ðα1�α2Þ

or σ < �1�Λ
Wi ðα1þα2 Þ

. For instance, for

a particle of aspect ratio λ= 5, the negative and positive critical values are
σcrit=− 0.448/Wi; 0.016/Wi, which matches with Fig. 3 generated from the
integration of full Eq. (1) (see Supplementary Note 2B). In the alignment regimes of
Fig. 3, we further find that the normalized eigenvector corresponding to the
positive eigenvalue matches the angle of alignment (ϕeq) obtained via numerical
integration.

In addition to validating our results of Fig. 3, Eq. (30) provides a key insight that
the contribution from active disturbances is to effectively alter the strength of
elongation (prefactor of E∞) and the rotation rate (prefactor of O∞). The first
prefactor is the more decisive as α1≫ ∣α2∣. It suggests that a pusher (σ > 0) disturbs
the local shear flow in order to increase the weight of elongation. Once the activity
exceeds the critical limit, the local shear flow transforms into an effective
elongation flow whose axis of elongation points in the direction of the normalized
eigenvector associated with the positive eigenvalue. As the pusher’s activity further
increases, the locally elongated flow asymptotically approaches the pure elongation
state where the impact of O∞ is negligible in comparison (similar to our
aforementioned case of O∞≡ 0 in a previous paragraph).

Stability analysis of orbits. Here we find the stability exponent of the complete non-
linear Eq. (1) to analyze the onset of the shear-plane rotation state as shown in

Figs. 2 and 3. For Newtonian fluids, θ= π/2 is one of the infinite neutral Jeffery
orbits. For SOF, the polymeric stress in the fluid lifts this degeneracy. To quantify
this, we write down the angular dynamics as

_θ ¼ f ðθ; ϕÞ; _ϕ ¼ gðθ;ϕÞ; ð30a; bÞ
and perform a Taylor expansion near the shear-plane: θ(t)= π/2+ ϵ(t). Here ϵ
represents the deviation from Jeffery orbit and we determine its growth i.e.,
whether it grows or shrinks with time. At O(ϵ) we obtain

dϵ
dt

¼ ϵ
∂f
∂θ

����
θ¼π=2

; ð31Þ

which can be simplified and integrated over an orbit to obtain

ϵ ¼ ϵ0 exp
Z �2π

0

1
gðθ; ϕÞ

∂f
∂θ

� �
θ¼π=2

dϕ

" #
: ð32Þ

Here the integration is over −2π because the particle’s rotation due to shear is in
−ϕ direction. Eq. (32) can be expressed in the form of Lyapunov exponent
(ϵ ¼ ϵ0 exp½LT�)78 as

L � 1
T

Z �2π

0

1
_ϕ

∂ _θ

∂θ

" #
θ¼π=2

dϕ; ð33Þ

where T is the time period of a Jeffery orbit 2πðλþ λ�1Þ= _γ. We show the solution
to Eq. (33) in the inset of Fig. 3.

Kinetic model
Near-equilibrium microstructure. First, we detail the evaluation of microstructure
near equilibrium (Pef ¼ _γτ � 1) i.e., when stochastic reorientation dominates the
shear-induced reorientation. In this limit, we expand the orientation distribution as

ψ ¼ ψð0Þ þ Pef ψð1Þ þ � � � : ð34Þ
We substitute this in Eq. (2) and collect the zeroth and first-order terms in Pef. At
O(1), we get ψ(0)= 1/4π as the isotropic microstructure. At O(Pef), we have

∇p � _pð0Þ þ De Pea _p
ð1Þ
A =8π

h i
ψð0Þ

n o
� τDr∇

2
pψð1Þ þ ψð1Þ ¼ 0: ð35Þ

Here we denote the equation of motion (Eq. (1)) as having three parts:
_p ¼ _pð0Þ þ DePef _p

ð1Þ
P þ DePea _p

ð1Þ
A , where subscripts represent passive and active

components. Upon substituting this in Eq. (35), we find that the _pð1ÞP term only
contributes at OðPe 2

f Þ, and is thus neglected. Upon simplification, we find that the
microstructure at O(Pef) is governed by

�τDr∇
2
pψð1Þ þ ψð1Þ ¼

3
4π

ðΛþ α1 DePea=8πÞE1 : pp: ð36Þ

Following48,55, we solve the above inhomogeneous linear differential equation
using Green’s function Gðpjp0Þ, which is governed by

�τDr∇
2
pGðpjp0Þ þ Gðpjp0Þ ¼ δðp� p0Þ; ð37Þ

where δ represents the Dirac-delta function. Following79, we expand this G into
spherical harmonic series as

Gðpjp0Þ ¼ ∑
1

n¼0
∑
n

m¼�n
Cn;mðp0ÞYm

n ðpÞ: ð38Þ

Here Cn,m are the series coefficients and Ym
n ðpÞ represent the spherical harmonics.

Similarly, the Dirac-delta function can also be related to the spherical harmonics as
δðp� p0Þ ¼ ∑1

n¼0 ∑
n
m¼�n Y

m
n ðpÞYm

n ðp0Þ, where Ym
n represents the corresponding

complex conjugate spherical harmonic79. Eq. (37) is now expressible as

∑
1

n¼0
∑
n

m¼�n
Cn;mðp0Þ �τDr∇

2
p Ym

n ðpÞ
� �þ Ym

n ðpÞ
n o

¼ ∑
1

n¼0
∑
n

m¼�n
Ym
n ðpÞYm

n ðp0Þ:
ð39Þ

Using the properties of spherical harmonics79, we substitute

∇2
pY

m
n ¼ �nðnþ 1ÞYm

n , take the inner product with respect to YM
N ðpÞ on both sides

of Eq. (39), and use the orthogonality property to obtain

Cn;mðp0Þ ¼
Ym
n ðp0Þ

1þ τDrnðnþ 1Þ ; ð40Þ

where the normalization condition yields C0;0 ¼ 1=
ffiffiffiffiffi
4π

p
. We finally use the Green’s

function solution to find ψ(1):

ψð1Þ ¼
3
4π

ðΛþ α1DePea=8πÞ
E1 : pp
1þ 6τDr

� 	
: ð41Þ

In the limit of weak shear, this solution matches with the numerically obtained ψ
for arbitrary Pef, whose evaluation is discussed next.
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Numerical solution valid for arbitrary Pef. Now we detail the numerical solution of
Eq. (2), which uses the decomposition of ψ as ∑1

n¼0 ∑
n
m¼�n Cn;mðpÞYm

n ðpÞ: We
substitute this expansion in Eq. (2) and use the properties of spherical harmonics to
obtain

� 1
4π

þ ∑
1

n¼0
∑
n

m¼�n
Cn;m 1þ τDrnðnþ 1Þ� �

Ym
n

þ Pef ∑
1

n¼0
∑
n

m¼�n
Cn;mHðYm

n Þ ¼ 0:
ð42Þ

Here HðYm
n Þ is a collection of expressions obtained by simplifying ∇p � _pψ

� �
.

These are represented in terms of angular momentum operators for computa-
tional convenience55 (detailed in Supplementary Note 3). We take an inner

product with Yj
i on both sides of Eq. (42) and use the orthogonality property to

obtain

� 1
4π

Z
S
Yj
i d pþ Ci;j 1þ τDriðiþ 1Þ� �

þ Pef ∑
1

n¼0
∑
n

m¼�n
Cn;m

Z
S
Yj
iHðYm

n Þ d p ¼ 0:
ð43Þ

Since the n= 0 mode is already known from normalization, the above equations
can be recast as the following linear system of equations where Ci,j (for i ≥ 1) is
unknown:

Ci;j 1þ τDriðiþ 1Þ� �þ Pef ∑
100

n¼1
∑
n

m¼�n
Cn;m

Z
S
Yj
iHðYm

n Þ d p

¼ �Pef C0;0

Z
S
Yj
iHðY0

0Þ d p:;
ð44Þ

To find Ci,j coefficients, the above equations are solved using the
Clebsch–Gordon coefficient formulation, where the first 100 modes in n are
used. We note that although the numerical approach is valid for arbitrary Pef,
there is an indirect upper bound of weak viscoelasticity that we must adhere to,
as we are using the SOF model. In non-dimensional terms, this bound is De
Pef < 1. Thus, for De= 0.1, we explore the results within an upper bound of
Pef= 10.

Rheology. First, we show the expanded version of the flow-induced component of
the particle stress

ΣF
p ¼ �μf nl

3A _γa
∇
2=2 ð45Þ

where ai is a shorthand notation for the ensemble of orientation moment of ith
order: 〈p⊗i〉. Expanding the upper-convected derivative, we obtain

a
∇
2 ¼ Λ� 1ð Þ E1 � a2 þ a2 � E1� �� 2Λa4 : E

1

þ De Pef β1 E1 � a4 : E1 � 2E1 : a6 : E
1 þ E1 : a4 � E1� �h

þ Pef β2 O1 � a4 : E1 � E1 : a4 �O1� �
þ Peaα1 E1 � a2 � 2a4 : E

1 þ a2 � E1� �
þ Peaα2 O1 � a2 � a2 �O1� ��

:

ð46Þ

This ΣF
p matches with the Newtonian bulk stress for De= 054. For near-equilibrium

results (Pef ≪ 1), the above expression is substituted in Eq. (5) and orientation
distribution from Eq. (41) is used to perform the ensemble integral. Since the
passive viscoelastic contribution is OðPe 2

f Þ, it does not contribute to the O(Pef)
calculations. The viscosity relates to the deviatoric particle-induced stress as φμp ¼
Σpxy= _γ; where φ= na3 is the volume fraction. This viscometric relation can be
simplified to obtain the near-equilibrium viscosity ratio

μp
μf

¼ 4Að5� 3ΛÞ
15

þ 48AτDr � Pea=π

5 1þ 6τDr

� � Λþ De Peaα1
8π

� �

� De PeaAα1
10π

:

ð47Þ

The last term in the above expression is negligible and is generated from the non-
Newtonian component of ΣF

p . Thus, the major modifications due to the fluid’s

viscoelasticity scale as Pe 2
a , as also depicted in Fig. 5d.
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