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Implementation of an additive sound synthesis for an electronic music
instrument

by Benjamin Wiemann

An additive synthesis system based on real instrument recordings is developed. A set of
83 semitones is recorded in four different dynamic levels, for which an analysis algorithm
is used to extract amplitude and frequency data in the form of matrices. This data
is given to a synthesis application, which can be controlled by the input parameters
pitch and velocity. The system uses this information to pick the corresponding data
matrices and interpolates between them to enable amplitude and frequency modulation
in real time. The analysis data is also transformed into time-independent cumulative
distribution functions. This data is used to generate amplitude and frequency from
random numbers.
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Zusammenfassung
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Implementation of an additive sound synthesis for an electronic music
instrument

von Benjamin Wiemann

Es wurde ein additives Synthesesystem entwickelt, welches auf den Aufnahmen eines
realen Musikinstruments basiert. Ein Satz von 83 Halbtönen wurde in vier verschie-
denen Dynamikstufen aufgenommen. Auf diesen wurde ein Analyse-Algorithmus ange-
wendet, um die Amplituden und Frequenzen zu extrahieren und in der Form von Ma-
trizen zu speichern. Diese Daten werden von einer Syntheseanwendung benutzt, welche
mittels der Parameter Anschlagsstärke und Tonhöhe gesteuert werden kann. Die An-
wendung nutzt diese Informationen, um die passenden Datenmatrizen herauszusuchen
und zwischen ihnen zu interpolieren. Dies ermöglicht die Modulation von Amplitu-
de und Frequenz in Echtzeit. Die Analysedaten werden außerdem in zeitunabhängige
kumulative Verteilungsfunktionen umgewandelt. Diese ermöglichen es, Amplitude und
Frequenz aus Zufallszahlen zu generieren.
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1 Introduction

In the last century, electronic signal processing enabled engineers to synthesize sounds
which could not be found in the natural environment. The first synthesizers based
on electronic circuits, and their sound was successfully used for the creation of new
electronic music genres. However, attempts to simulate an acoustic instrument with
a synthesizer produced interesting results, but their timbre quality could not keep up
with their natural ideals. An infinite amount of new possibilities was introduced by
computers and the science of digital signal processing. They allowed the music pro-
duction and performance with applications, which were much closer to natural sounds.
Digital controllers could be developed independently from the actual sound synthesis
software.
Digital synthesis techniques can be organized into four categories: processed recording,
spectral model, physical model and abstract algorithms (Julius O. Smith 1999). Pro-
cessed recording techniques are based on previously recorded audio material. Physical
modeling creates the sound by simulating the physical features of a real instrument.
Spectral model techniques do not need knowledge about these features, since the syn-
thesis is directly derived from spectral features of the sound which arrives at the human
ear. Using abstract algorithms to simulate a real existing instrument or sound is rather
difficult, but they offer many possibilities to create sounds with no connection to real
world ideals. In this thesis, a spectral model approach is selected to create an applica-
tion based on prerecorded and processed audio samples. We used additive synthesis,
which first has been extensively described in Moorer 1977. The developed synthesis
application is mainly refers to the model proposed by Serra 1997. Additive synthesis is
known as one of the most flexible and powerful synthesis methods, which can be used
for a proper reconstruction of the timbre of real instruments. It uses the concept of
Fourier analysis, which is based on the fact that every signal can be modeled as sum
of elemental sinusoid signals. In additive synthesis, these are generated individually.
Since it gives control of the time development of every single partial and optionally
noise components of instrumental sounds, this type of sound synthesis is more suitable
for imitating real acoustic instruments than many other approaches are. However, this
is accompanied by a big need for computational resources. For this reason, a lot of
effort has been done to develop strategies to save computational performance, also to
enable the application of this method for real-time use and live performances. This
included e.g. effective oscillator design or frequency-domain synthesis. In this thesis
we conceptualize and implement an additive synthesis system, which uses the already
well documented approach. The synthesis is based on prerecorded instrumental sound
recordings. Our approach consists of two stages: the analysis stage and the synthesis
stage. The analysis stage involves all steps which were taken to receive the actual syn-
thesis parameters of the recorded data. The synthesis stage describes the functionality
of the system, where we discuss different possible designs. But since the implementation
of the analysis stage is not part of this thesis, we go more into detail when we deal with
the synthesis part. The classical additive synthesis uses the partial parameters received
in the analysis stage to re-create the signal. Our application also supports this classical
version. In addition to this, another mode is introduced and implemented, were the
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synthesis parameters are created by the use of probability distributions. Furthermore,
we discuss possibilities to control the parameters of the system.
In chapter 2, we describe the two stages and the mathematical backgrounds of our sys-
tem. In chapter 3, we write about details of the implementation of the system. Finally,
in chapter 4 we analyze the resulting sound and the performance of the system.
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2 Fundamentals

2.1 Basics of Additive Synthesis

A single sound can be modeled as a deterministic part and a stochastic residual. The
deterministic part is the tonal part of the sound which can be described as a sum of
multiple sinusoids, also called partials. The stochastic residual is simply another word
for noise, to which no specific frequency can be assigned, but which can be described
by filter parameters. Equations 2.1, 2.2 and 2.3 follow the definitions of Serra 1997.
Every signal kann be modeled as a sum of sinusoids plus a residual noise component:

s(t) =

N∑
i=1

ai(t) sin(φi(t)) + r(t). (2.1)

The function a(t) represents the instantaneous amplitude, φi(t) the instantaneous phase
and r(t) the residual noise component. The instantaneous phase is determined by the
integral of the instantaneous frequency fi(t):

φi(t) =

∫ t

τ=0
fi(τ)dτ. (2.2)

The noise signal is defined as follows:

r(t) =

∫ t

τ=0
h(t, τ)u(τ)dτ, (2.3)

where u(τ) is white noise and h(t, τ) is a time-varying filter impulse response at time
t. That is, the noise component is modeled by subtractive synthesis. According to
the Fourier theorem, every signal, which also includes noise, can be modeled by a sum
of sinusoids. But, as Serra 1997 points out, that approach would need a much bigger
number of computationally intensive sinusoids.
However, for the timbre of a violin, as well as for the timbre of many other instruments,
noise is not the dominating component in comparison to the deterministic part. The
stochastic component is especially audible, when the violin is played at a low dynamic
level. Of course, there are also instruments like cymbals, snares and some types of
wind instruments (e.g. the panpipe), whose synthesis highly depends on the correct
modeling of the noise component. In the context of this thesis we focus our work on
the deterministic part. The analysis and synthesis of the noise component will not be
implemented, but it might still be a part of the future development of the application.

2.1.1 Comparison to Sampling Technique

Additive synthesis has the disadvantage, that for each partial a digital sinusoidal oscil-
lator is needed, which is very expensive compared to the classical sampling technique.
Sampling offers a high-quality reproduction of the original recorded sound with a very
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low need of computational resources. However, sampling has some limitations, espe-
cially relating to the needs of live performances. Sampling does not offer the same
possibilities in changing the timbre of the sound. Filters have to be used to adjust
spectral phase and amplitude, which are less precise than the individual control of the
amplitude and frequency of every partial. Also, pitch shifting and time stretching are
bound together: playing a sound slower results in a (probably unintended) lower pitch
and a different timbre. This is especially audible in the characteristics of human speech.
Conversely, an intended pitch shift of the fundamental frequency causes the timbre and
durance of the sound to change. As a solution to this, time stretching and pitch shifting
algorithms can be applied. Nonetheless, these suffer from artifacts, when bigger time
stretches and pitch shifts are applied (zolzer˙timesegment˙2011).

2.2 Application and Control Concept

The application is able to be played in real time, thus forming the software part of
an electronic instrument. The number of controllable parameters is determined by the
number of sinusoids N , which may vary in amplitude, frequency and starting phase
each. The starting phase is not measured in the analysis stage, since it is not essential
for the sound of a violin. Nevertheless there still remain 2 ·N controllable parameters,
which need to be controlled by a digital music controller. Most commercially available
controllers have in common, that the number of input parameters is below the number
of control parameters needed for additive synthesis. To solve this mapping problem, a
low-to-many mapping strategy (Hunt, Wanderley, and Kirk 2000) needs to be created.
It is not part of this thesis to develop a final mapping strategy for a controller. Instead
a more general approach is discussed how to deal with a class of controllers, and which
parameters we actually want to be controlled by the user.
A later goal is to run the application together with the digital controller introduced by
Treindl 2016 and von Coler, Treindl, et al. 2017, which is under further development.
This controller enables the musician to address all semitones of a full octave by push-
ing combinations of four pressure-sensitive buttons. Additional buttons exist for the
octave selection, and a so-called excitation pad enables the control of three degrees of
freedom. This controller is representative for a class of controllers, which are primarily
designed to modulate pitch as discrete values in the form of semitones. This includes
ordinary piano-style keyboard controllers and pad controllers, which were used to test
the synthesis system. However, these controllers differ in their ability of continuous
pitch modulation (e.g. a pitch modulation wheel, which are part of most of the key-
board controllers), and continuous velocity modulation (e.g. so-called aftertouch of pad
controllers and some keyboards). Since the controller described by von Coler, Treindl,
et al. 2017 has as least four continuous degrees of freedom (the variable pressure on
the buttons plus the ones of the excitation pad), these controller features are consid-
ered to be available. Another point of view is to ask which parameters are needed to
control the application in a way to achieve results which are similar to the simulated
instrument. The recordings have been made with a violin, which is mainly played by
varying pitch in a discrete (which string to touch/play) and continuous way (where to
press the string). Velocity can be varied on a continuous scale by controlling speed and
pressure of the bow. Since in terms of electronic music instruments velocity as a control
parameter is often distinguished from aftertouch, we want to clarify that our definition
of velocity includes both parameters in one term. Velocity should be understood as a
parameter which primarily influences the amplitude of the resulting sound signal. It
should be noted that the synthesis system can also imitate another acoustic instrument
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which is primarily played by the control of pitch and velocity. This would simply be
done by using a recorded set of samples of this instrument. As a conclusion to the
pictured findings, the application supports three main control parameters:

1. note selection per discrete indices, where a limited number of notes is supported.
These indices correspond to the semitones on a equally-tempered scale. The input
of a note index results in the creation of a voice. The number of playable notes is
determined by the number of recorded notes in the data set (see section ??. The
application is designed to be polyphonic, thus supports the existence of multiple
voices at the same time.

2. velocity as a continuous input parameter, which can be varied over the whole time
in which a note is played. If the controller supports it, every note can be varied
independently from the others.

3. pitch as a continuous input parameter, which is also variable over the playing
time. This variation can also be done per note, although most of the polyphonic
controllers support only a global pitch variation, which influences all played voices
simultaneously.

The remaining part of musical control is the control of timbre. In Houtsma 1997,
the timbre of a sound is described as a multidimensional attribute of a sound, which
not only includes the spectral profile, but also the temporal envelope of the sound.
Relating to our additive synthesis model, the timbre of the synthesized sound is mainly
described by the partial tone trajectories of amplitude and frequency of the imitated
instrument. It is possible to play the synthesizer without further modifications of
these partial tones, which is also not done in this first version of the synthesis system.
Changing the pitch control parameter will result in a consistent exponential change
of every partial tone frequency, and changing the amplitude control parameter will
result in a consistent exponential change of every partial tone amplitude. The timbre
is then selected by interpolating between the timbres of the recordings which are the
closest in pitch and amplitude (see section 2.6). Nevertheless, the system uses internal
control messages (see section 3.1.2), where additional control parameters can be added
to enable timbre modifications in future versions. In comparison to pitch and velocity,
finding a convincing mapping concept for timbre control will be more challenging.

2.3 Analysis Data

2.3.1 Recording

Since the timbre of instrument, in this case a violin, changes with the playing velocity
and pitch, we tried to gain data of the whole velocity and pitch range of the violin. A
set of recordings was played by a professional violinist in a non-reverberant room. A
number of 83 semitones or 7 octaves were recorded in the four dynamic levels piano,
pianissimo, forte and fortissimo. The chosen tuning frequency was 443 Hz. The violinist
was instructed to play each tone on a constant amplitude, a constant pitch and a fixed
length. Multiple takes were done to enable a later selection of the best take. The
recording was done with two microphones simultaneously. The first one was a DPA 4099
cardiod clip microphone and the second one was a Brüel & Kjär 4006 omnidirectional
small diaphragm microphone with free-field equalization. All material was captured in
a resolution of 96 kHz and 24 Bit word length.
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2.3.2 Segmentation and Labeling

The synthesis application supports two different synthesis modes, the deterministic
mode and the stochastic mode. Note that deterministic and stochastic in this context
does not mean the separation of sinusoidal and noise components as used in section
2.1, but instead indicates how the synthesis parameters amplitude and frequency are
generated. A more detailed description will be given in 2.6. This differentiation is
important at this point, because the preparation of the audio data for the stochastic
mode requires additional steps.
From every recording, a preferred take was selected by listening to its sound and ex-
amining the waveform. In the deterministic mode, the application directly takes the
frequency and amplitude data from a text file and plays it in the exact order given in
this file. A simple comma separated text file format is used, where every row consists of
the amplitude respectively frequency values of all partials of one analysis window. For
this purpose, it is sufficient to mark the beginning and the end of the preferred take.
The marked sound material will serve as the input for the parameter analysis described
in section 2.4. For the data generation in stochastic mode, a further segmentation of
the marked recording is necessary. Hence, every chosen recording was segmented into
three parts: the attack, the sustain and the release part.
For the procedure of marking the beginning and the end of a take, as well as for the
marking of the segments, the software Sonic Visualiser (Cannam, Landone, and Sandler
2010) was used, which enables marking time instants in an audio file. We followed the
criteria for music segmentation described by von Coler and Lerch 2014.

Figure 2.1: Segmentation of a recording in attack, sustain and release
part. The note was played in pianissimo. The durance of the attack

segment is 600 ms.

Figure 2.2: Another segmentation of a note, this time played in for-
tissimo. The attack segment is only about 150 ms long.

For each file, the beginning was marked at the last instant where the signal was still
inaudible. The end was marked at the first instant, where the signal became inaudible
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again. The cut between the attack and the sustain part was marked at the instant
where the onset transient is finished and the partials reached their target frequencies.
These instants were located by using the peak frequency spectrogramm of Sonic Vi-
sualiser. The time span of the resulting attack parts reaches from approximately 50
ms till 700 ms, mostly depending on the dynamic level of the examined audio file (see
figures 2.1 and 2.2). The beginning of the release part has been marked at that instant
where it was assumed that the musician lifts the bow and the contact of the bow and
the string is interrupted. This was done by careful listening and also by examining the
peak frequency spectrogram. Typically, the release of the bow is indicated by decreas-
ing of the amplitude of the higher partials. Generally, the segmentation markers were
more easy to set for the recordings of higher dynamic level. The recordings played at
lower levels, which are piano and particularly pianissimo, often contain sections where
the bow looses contact to the string and then touches it again, making it more difficult
to find the exact instant.

2.4 Analysis Stage

In preliminary work to this thesis, the amplitudes and frequencies, which are needed
for the re-synthesis of the sound, were extracted and written into text files. To find the
frequencies and amplitudes of every partial trajectory, the analysis procedure of Serra
1997 was used. Given a recording, which was trimmed at its start and ending points, a
spectrogram is computed from the whole audio file. Every spectrum of the spectrogram
is computed from a windowed part of the signal using the Fast Fourier Transformation
(FFT). The analysis window is of lengthM . Then, a peak detection algorithm is applied
to each spectrum of the spectrogram. Subsequently, the algorithm writes rows of N
floating point values into the according text file, where N is the number of analysed
sinusoids. Opposing to Serra 1997, no peak continuation detection was included into
the algorithm. In every spectrum, the algorithm expects a fixed number of N partials.
Hence, the first N peaks of a spectrum are analyzed, beginning with the fundamental
tone. The analysis was applied on every recording in the data set. In the following,
this will be called the deterministic analysis data. In the deterministic mode of the
synthesis application, this data is used directly as input for the sinusoid generators.
The input parameters note, pitch and velocity are used to determine the most suitable
files, from which the rows of the current window index are read and interpolated (see
section 2.6). These parameters are used to synthesize a number of M samples. The
resulting signal is of the same length as the original recording, and sounds very close
to the original.
This approach is the easiest to synthesize a sound signal with the given analysis data.
But it has the constraint, that a musician or producer will only be able to play tones
of a maximum duration equal to the duration of the currently selected source data. A
longer playing is not possible, and if the musician stops the tone earlier, it results in
an abrupt, unnatural sounding cut of the signal. Thus, it is advisable to parametrize
the available data into another format to make it time-independent.

2.4.1 Generating Statistical Data

To understand how the parametrization of frequency and amplitude could be done, we
refer to a model applied by von Coler and Röbel 2011. In connection to a vibrato de-
tection algorithm, the authors suggest that the variation of the fundamental frequency
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f0 of a tonal sound can be modeled as

f0 = fstep + fcor + fmod. (2.4)

The first summand fstep is the fundamental tone of the played note, fcor stands for in-
tended frequency correction moves and glissandi, and fmod models a periodic frequency
modulation. We use this model as an initial point to add some features. In the author’s
opinion, this model can be applied to every partial of the tone, when fstep is adjusted
to the according partial frequency. In our recordings, the musician was instructed to
play a single tone of a given note without any modulation. Hence, fcor and fmod should
be zero, and all three summands should remain constant over time. Still, in the sustain
part of the signal a very small frequency variation is present. These variations are a
result of unintended movements of the musician, but also of the physical properties of
the instrument. They cannot be avoided and thus represent a characteristic part of the
timbre. For the context of additive synthesis, we propose a new model of the frequency
variation of a partial i :

fi = fstep,i + fcor + fmod + fstoch,i, (2.5)

where fstoch,irefers to the stochastic timbre element of the frequency variation. Note
that this timbre variation is specific for a partial i . Analogously to this, we propose to
model the amplitude as

ai = astep,i + acor + amod + astoch,i, (2.6)

where astep,i declares the amplitude of a dynamic level, acor models the amplitude cor-
rection moves, amod is the intended amplitude modulation and astoch,iis the stochastic
part of the amplitude, which we use to model timbre-relevant random amplitude vari-
ations.
To parametrize fstoch,iand astoch,i, patterns of the movements of both variables must be
explored. In our approach, we simply chose to transform the partial tone trajectories
of the sustain part into time-independent statistical data. We only choose the sustain
part, since the behavior of amplitude and frequency of the attack and the release part
highly depends on time and is thus unsuitable to be modeled by a CDF, which stays
constant over time.
For each file containing data of partial trajectories (which is associated to a specific
note and dynamic level) and for each partial tone, a cumulative distribution function
(CDF) was generated. The algorithm works as follows: First, the boundaries, in which
the amplitude of a partial moves in between during the sustain part, are detected. This
interval gets subdivided into an equally spaced partition, which contains a fixed num-
ber of subintervals. A statistical frequency analysis is done by counting the number of
amplitude values in each subinterval. The resulting probability density function (PDF)
then gets transformed into a CDF, which in opposite to a PDF can be inverted. The
CDF is then written into a text file. The inverted CDFs (ICDF) are used to synthesize
the values of fstoch,iand astoch,iin the stochastic mode of the application (see section
2.6.2).

2.4.2 Data Denotation

In the following sections, we will refer to the analysis data in many different contexts.
Hence, we define some symbols to describe certain elements of the data. Depending on if
we are dealing with stochastic or static analysis data, addressing the needed variables
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follows different principles. Both have in common, that single data structures for a
given note index n and a given velocity index v have been generated. These data
structures are of different shape.

Denotation of Static Data

In case of static data, a frequency value a or an amplitude value f are located in
precalculated matrices. Every recording can be identified by its note index and its
velocity index, and so can its data matrices Fn,v and An,v. Every value in theses
matrices is addressed dependent of two different parameters. These are time, which is
subscripted by the analysis window index k , and the partial tone, which is subscripted
by the partial index i . Within this matrix, a single value will be written as ai,k or
fi,k. A whole vector of partial frequencies or amplitudes of a given window index k is

denoted as ~fk respectively ~ak. A whole amplitude or frequency trajectory for a given
partial tone i is denoted as a vector ~ai or ~fi. Generally, to denote a single frequency
or amplitude value in the whole set of matrices, the expressions an,v,i,k and fn,v,i,k can
be used. However, this amount of subscripts makes a term unnecessarily complicated.
So, depending on the context, the use of certain subscripts will be avoided, if they do
not support the understanding of a term.

Denotation of Stochastic Data

The inverse cumulative density functions, which are a result of further processing of
the data matrices, will be denoted as f̊n,v,i[x] and ån,v,i[x], where xε[0, 1] is a uniformly
distributed random variable. A discrete denotation is used, since the function is inter-
nally saved as discrete pairs of key and values. Again, depending on the context, the
use of subscripts may be avoided.

2.5 Synthesis Stage

2.5.1 Frequency Domain Synthesis

Because of the high computational costs of time domain additive synthesis, a frequency
domain synthesis approach has been proposed by Rodet and Depalle 1992. For each
time window, a vector of amplitudes ~a and frequencies ~f is used to build a frequency
spectrum, which is then transformed into the time domain using an IFFT. The resulting
time frames are then stringed together via overlap-add. This is done to interpolate
amplitude and frequencies. If both frames contain sinusoids of different frequencies,
an unintended amplitude distortion occurs. A solution to this has been introduced by
Goodwin and Rodet 1994 and Goodwin and Kogon 1995. The IFFT method achieves
a better performance than time domain synthesis, which can be divided by a factor
of up to 20 (Rodet and Depalle 1992). However, since the spectrum resolution needs
to be high enough to represent low frequencies accurately, the IFFT size must not fall
below a certain threshold. A higher IFFT size results in a longer time window. This
increases the latency, which is actually required to stay low for live performances in
connection with a digital controller. An alteration of either pitch or velocity would
not be noticeable until the synthesis of the current window is finished. Since the
computational capability of personal computers also increased exponentially since the
algor ithm was developed, we stayed with the classical time domain approach.
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2.5.2 Time Domain Synthesis

Also in the time domain new amplitude and frequency values will only be picked every
N samples, where N is the size of the analysis window. In between, the values need to
be interpolated. This can be done by using the overlap-add technique. Unfortunately,
this introduces the distortion described in 2.5.1. We chose to interpolate amplitude
and phase using interpolation polynoms. An approach to do this has been presented
by McAulay and Quatieri 1986. In this work the authors suggest to derive a cubic
polynom from the given frequency and phase on the left and right boundary of a frame.
This requires to save phase information at analysis stage for every analysis window.
However, this isn’t contained in the given analysis information and is also not intended
for this project. Hence, from the four described parameters, in our synthesizer there are
only three given for the synthesis of a frame: both of the frequency parameters, but only
the starting phase information, which is a result of the previously synthesized frame.
Given these constraints, it would still be possible to generate a quadratic polynom
for phase interpolation, like it has been done in an interpolation method described
in Qian and Ding 1997. Since the frequency function is the derivative of the phase
function, this would result in a linear frequency interpolation. The problem of the
quadratic frequency interpolation is, that as long as a frequency of a partial stays
constant from the left frame boundary to the right one, the resulting interpolation
curve is still shaped like a parabola. This avoids the frequency to stay constant, which
isn’t the case for the linear frequency interpolation. However, both approaches in
McAulay and Quatieri 1986 and Qian and Ding 1997 produce non-differentiable points
in the frequency interpolation curve at the frame boundaries. So as an alternative, it’s
possible to use the derivative of the frequency function, the rate of frequency change,
at the right boundary of the previous frame. But quadratic phase interpolation stays a
legitimate option, also since it is the less computationally intensive solution compared
to the cubic interpolation. We hence chose to apply the quadratic interpolation for the
frequency, and linear interpolation for the amplitude.
Given the three constants phase φk, frequency ωk = fk · 2π of the left boundary and
frequency ω̂k+1 = fk+1 · 2π of the right boundary, the instantaneous phase is defined as

φ̂k[t] = φ̂k + ω̂kt+
ω̂k+1 − ω̂k

2T
t2, (2.7)

where T is the frame size in samples. The instantaneous frequency is then

f̂k[t] = fk +
fk+1 − fk

T
t. (2.8)

Analogously we define the instantaneous amplitude as

âk[t] = ak +
ak+1 − ak

T
t. (2.9)

Figure ?? shows an example the modulation of amplitude and phase on the time scale.

2.6 Amplitude and Frequency Generation

2.6.1 Interpolation and Extrapolation

The synthesized audio signal will vary depending on control velocity and control pitch.
The problem here is, that there only exists one recording per semitone and dynamic
level. The synthesizer shall be able to modulate its sound by a continuous pitch and
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velocity variation. Hence, an interpolation system is needed, for which the applica-
tion of different types of interpolation, for instance, linear, polynomial or logarithmic
interpolation, have to be considered. That is, including the time scale interpolation
described in section 2.5.2, the system needs to interpolate on three different scales.
The pitch-velocity interpolation problem can be viewed as a two-dimensional interpola-
tion on a grid, where pitch is represented by one axis and velocity is represented by the
other. The pitch axis position is the sum of the note index n and the pitch ∆p. The
velocity axis position is determined by the input velocity. Internally this parameter is
also split into the sum of the velocity index v and the velocity offset ∆v. That is,
values from four different data sets are taken to calculate a single interpolated value.
For example, a frequency value will be calculated by values from the matrices Fn,v,
Fn+1,v, Fn,v+1 and Fn+1,v+1. In case of deterministic synthesis, the needed vectors are
directly taken from these matrices. If the stochastic synthesis mode is used, the matri-
ces contain vectors of CDFs, which are used to generate the partial frequency vector.
The interpolation procedure stays the same for both modes.
Since we also need to think about an performant implementation of the synthesis sys-
tem, we are also going to present more efficient, but less accurate alternatives for some
cases of interpolation. Note that for this type of interpolation the partial vectors are
taken from the partial matrices of different recordings. The recordings are of differ-
ent duration, thus the partial tone matrices are of different size on the time axis. A
strategy is needed to deal with the situation where only one of the two needed partial
vectors for a given k exists. This will be the case for the beginning of the attack state
and the end of the release state, as well as for the end of the deterministic mode. As
a solution we choose to use extrapolation algorithms, which only use frequency and
amplitude data of a single recording. Nevertheless, interpolation is generally favored
over extrapolation, since the former achieves results closer to the original timbre.

Frequency Interpolation

We define a formula for frequency interpolation. Let ∆p ε [0, 1) be the pitch offset in
semitones and f̃(v, n) be the sought pitch-dependent frequency interpolation function.
Since frequency behaves exponentially to pitch, and the notes have been recorded using
the equally tempered scale, the following equation applies:

log2(f̃(v, n+∆p))− log2(fn,v)

log2(fn+1,v)− log2(fn,v)
=

1
12
1
12

(n+∆p)− n

(n+ 1)− n
= ∆p. (2.10)

Subsequently, we transform the equation into

f̃(v, n+∆p) = fn,v · 2∆p(log2(fn+1,v)−log2(fn,v)). (2.11)

For the sake of completeness, we define a similar function f̂(v, n) to interpolate on
velocity axis:

f̂(v +∆v, n) = fn,v · 2∆v(log2(fn,v+1)−log2(fn,v)). (2.12)

Since frequency is not expected to differ a lot over different velocity levels, a linear
interpolation f̂lin(v, n) might be a computational less expensive alternative:

f̂lin(v +∆v, n) = (1−∆v)fn,v +∆vfn,v+1. (2.13)
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Even cheaper is simply to use the closest value:

f̂clo(v +∆v, n) =

{
fn,v, if ∆v < 0.5,

fn,v+1, if ∆v ≥ 0.5
(2.14)

It does not matter on which axis the interpolation takes place first. If it is started on
the frequency axis, then two interpolations f̃(v, n+∆p) and f̃(v + 1, n+∆p) have to
be calculated, and afterwards the interpolation f̂(v +∆v, n+∆p).

Frequency Extrapolation

For the extrapolation for a tone, let ∆p ε (−∞,∞) be the pitch offset and α εR a scaling

factor. The searched extrapolation function
˜̃
f(v, n) on the pitch axis is then

˜̃
f(v, n+∆p) = α · fn,v · 2

∆p
12 , (2.15)

where the scaling factor is by default α = 1. But it may happen, that for a certain
point in time the frequency computation function changes from interpolation to ex-
trapolation. This is the case when a deterministic part of fixed length of a voice gets
synthesized, and one of the two frequency matrices (of duration k = K) used for inter-
polation ends earlier than the the other one (which is of size k > K). At window K,
both functions are of equal value:

fn,v,K · 2∆p(log2(fn+1,v,K)−log2(fn,v,K)) = α · fn,v,K · 2
∆p
12 .

It follows that

α = 2∆p(log2(fn+1,v)−log2(fn,v)− 1
12

) (2.16)

This avoids the change from one frequency function to another to be discontinuous.
The factor α can be kept, as long as the extrapolation function is in use. Note that
the change can also happen the other way around, from extrapolation to interpolation.
Yet, there is another, more simple approach to circumvent the problem of different
time axis sizes. For the deterministic mode, this is to fill the missing values with zero
vectors. This would as well lead to a fade out of the sound instead of a sudden stop.
For the stochastic mode, attack and release part are that short, that we will stay with
a constant use of extrapolation.
The described extrapolation function is still very reliable in terms of finding the correct
fundamental frequency value to a pitch value, since we know that for the recordings an
equally tempered scale has been used. Yet, we do not have a model to predict the timbre
change, so a timbre error will be present. We assume that for a pitch offset |∆p| ≤ 0.5
the timbre error will be inaudible. A larger pitch offset |∆p| ≤ 0.5 is not needed in
the normal case, since during a pitch modulation, at any position where ∆p = 0.5, the
interpolated frequency will change from f̃(v, n +∆p) to f̃(v, (n+ 1) −∆p). However,
exactly this change represents a problem, since the sudden change from one timbre
to another is expected to be audible. To avoid this, it is possible to keep n constant
and modulate the pitch change only by ∆p. If pitch modulations of more than half
a semitone shall be possible, the magnitude of course needs to be greater than 0.5.
At a certain threshold, the timbre error will definitely become audible. Thus, the use
of extrapolation introduces a dilemma, which is the main reason why interpolation is
favored over extrapolation.
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There is no change of frequency expected on the velocity axis, so we will not define
another extrapolation function for this case.

Amplitude Interpolation

Opposed to the frequency interpolation, the functions for the pitch and velocity de-
pending amplitude between matrices of different velocity level are not as well defined.
If the four measured sound pressure levels are approximately equally spaced in dB, then
the amplitudes will approximatly grow exponential to the velocity index. To verify this
assumption, we examined a few samples of matrices and compared the root mean square
of the amplitude of the second partial. For a fixed note, the increase of amplitude was
indeed approximately doubling on each velocity level. For that reason, the amplitude
interpolation and extrapolation functions will be modeled as logarithmic interpolation
functions. Furthermore, we also introduce a scaling factor β for both functions. Ac-
cording to this, let ∆v be the velocity offset and the amplitude interpolation â(v, n) is
defined as

â(v +∆v, n) = an,v · 2∆v(log2(an,v+1)−log2(an,v)). (2.17)

Equivalent to the frequency interpolation functions, the amplitude is neither expected
to change much over the pitch axis, nor we know in which functional behaviour it will
change. Hence, we also define three different interpolation functions:

ã(v, n+∆p) = an,v · 2∆p(log2(an+1,v)−log2(an,v)), (2.18)

ãlin(v, n+∆p) = (1−∆p)an,v +∆pan+1,v, (2.19)

ãclo(v, n+∆p) =

{
an,v, if ∆p < 0.5,

an,v+1, if ∆p ≥ 0.5
(2.20)

Amplitude Extrapolation

According to the frequency extrapolation, we also define an extrapolation function
â(v, n) for the amplitude on the velocity axis. We know that amplitude increases
exponentially to velocity, and thus is approximately described by the function

â(n, v +∆v) = an,v · 2∆vβ (2.21)

Opposing to frequency extrapolation on pitch axis, the exact exponent β of the expo-
nential function is not generally known. We derive β individually using the exponent
of the last interpolation function:

β = log2(an,v+1)− log2(an,v) (2.22)

The window index K is again the instant, where the switchover from interpolation
to extrapolation, or the other way around, happens. As a simpler, but less accurate
alternative, β can also simply be set to 2.

2.6.2 Stochastic Modeling

In the sustain part, the signal remains stationary. That is, the transient effect is
finished and the partials reached their desired frequencies. At that point, we can
generate the amplitude and frequency values of every partial from a probability density
function. The principles of this and similar procedures are described by Devroye 1986.
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The generated CDFs are saved as discrete maps with a limited resolution. For every
window k and for each partial i , a new random value xε[0, 1] is generated from a uniform
distribution number generator and then mapped by the ICDF to a value. Therefore,
the result is linearly interpolated from its two closest neighbor values in the ICDF.
Another possibility is simply to set it the closest neighbor value.
The random value vector ~x is generated once for a whole amplitude vector and once
for a whole frequency vector. This vector is reused for all four ICDF vectors on the
pitch-velocity interpolation grid. Every partial has its own random values, from which
some may generate negative deviations from the mean value, and some may generate
positive ones. In this first version of a stochastic modeling, we assume that fstoch,i
and astoch,i of a partial i do not correlate with the frequencies or amplitudes of other
partials. However, this assumption still needs to be proven.

2.7 Sinusoid Generation

Since in this thesis the synthesis is done in time domain, it is important to think about
how to implement the oscillators, whose output signals are taken to create the sinusoids.
Sine and cosine functions of general purpose math libraries often use approximations
like the Taylor approximation. These are unsuitable for real-time applications which
use permanent sine function generation, since they are computationally too intensive.
Our goal is to find a sine generation method with an acceptable performance, suitable
to run on a general-purpose cpu based on the x86 architecture. Acceptable in this
context means that the resulting program should be able to run in real-time, with a
latency as low as possible. It should be able to generate at least one voice without
generating errors or gaps in the resulting signal.

Recursive Oscillators

A comparison of the different sine generation algorithms for additive synthesis was done
by Phillips 1996. The author proposes to either choose recursive oscillators or table
lookup approaches. The theory behind digital recursive oscillators has extensively
been described by Turner 2003. They exist in many different versions, varying on their
ability to produce complex output, their ability to keep their amplitude constant and
on the easiness of frequency modulation. Furthermore, they differ in the number of
arithmetical operations needed for one iteration. Depending on the use context, the
best oscillator to use might be different. The oscillator system can be viewed as a
feedback loop. Hence, the loop gain needs to be 1. Some recursive oscillators suffer
from numerical errors, which are added on every recursion. This error can result in an
unstable system. Depending on the number format (floating point or fixed point) and
on the word length, this problem is more or less critical.
A popular version used for audio synthesis is the biquad oscillator. It onlys needs one
multiplication and one substraction per iteration. It is defined as

x[t] = 2 cos(
2πf

fs
)x[t− 1]− x[t− 2] (2.23)

Figure 2.3 shows the block diagram of the biquad oscillator. This type of oscillator
was used by Hodes et al. 1999 for an implementation of additive synthesis on a T0
fixed point vector microprocessor. The T0 processor uses a vector arithmetic unit to
perform parallel operations on all vector elements at the same time. It also owns a
vector load/store unit. Since the frequency only changes when the computationally
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to every sinusoid signal. There are multiple variations of the table-lookup technique,
which differ in their signal-to-noise ratio (SNR) for a given table size, but also need
a different number of arithmetical operations per lookup. A comparison was done by
Moore 1977, who examind the SNRs of every version. A lookup table is most effectively
used when it has a number of 2n entries. Given the phase as a fixed point argument
with a word length of m bits, where m ≥ n, it can either be truncated or rounded to
the correct word length. In a third version, the result is interpolated between the two
closest table entries. The table size grows exponentially to the SNR. For the truncation
method, the SNR is 6(n− 2) dB, while for the rounding method, it is 6(n− 1) dB. The
interpolated method has even a SNR of 12(n − 1) dB. To reach a fixed SNR of, say,
approximately 60 dB, the rounding method would need 211 table entries, while the in-
terpolated version only needs 26 table entries. A table size reduction of this dimension
generally also results in a faster table lookup, since the cpu cache can be used more ef-
ficiently. Nonetheless, the interpolated table-lookup algorithm needs two table lookups
and additional arithmetical operations per sample, which nullifies these advantages. For
this reason, we use a simple table-lookup algorithm with phase rounding. The table
stores only a quarter of the sine function, since the other parts can be derived from the
symmetry properties of the function. The resulting block diagram is shown in figure 2.4
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3 Implementation

3.1 Architecture

*

1

1 1

1

1

1

1

1

JackClient TestClient

Synth

DataReader

StochasticDataReader

Voice

Interpolator

Sinusoid

GlobalMath

Figure 3.1: A simplified class diagram of the application. The Synth

instance is either embedded into a JackClient or a TestClient in-
stance. It owns a DataReader instance, which, depending on the mode,

may also be a StochasticDataReader instance.

The system was implemented in C++ on a 64-Bit Linux system using a CPU of
x86-architecture. As a MIDI- and audio interface, the sound server JACK was used
(JACK 2017, Newmarch 2017). This software guarantees a permanent low latency and
offers MIDI and audio routing between different applications. The application takes
the role of a client, which offers a callback function to the JACK server. For each audio
frame, this callback function is invoked by JACK, where MIDI events are passed to and
the resulting audio frame is taken from the client. The class JackClient implements
this callback function and thus serves as a wrapper, which organizes the communica-
tion with the jack server. It transforms MIDI messages coming from the server to an
internal control event format. The main class Synth does the actual synthesis and is
designed independently of the surrounding wrapper. There exists a second wrapper,
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called TestClient. This class also serves as a wrapper for Synth and enables the code
to be executed in an offline mode for testing and debugging purposes. It simulates the
process of playing a note by sending a note-on event, a rash of modulation events and
a final note-off event.
The events are passed to the Synth class, the main class of the program, which is
responsible for the creation of other program parts. It creates, stores and removes
Voice instances as a reaction to note events. Since the application is designed as
a polyphonic synthesizer, it can store and synthesize multiple voices at the same
time. Every voice can be addressed by its note index n . Depending on its mode
setting, Synth creates an instance of DataReader in static mode or an instance of
StochasticDataReader in stochastic mode. DataReader reads the amplitudes and
frequencies of fixed partial trajectories into an internal, four dimensional data represen-
tation. This representation corresponds to the data matrices Fn,v and An,v introduced
in 2.4.2. StochasticDataReader is an extension to DataReader, which is also able to
read ICDFs. A more detailed description of both data formats will be done in section
3.1.3.
The Voice class controls the synthesis of a single voice. It uses the current modulation
values to select the proper data vectors for frequency and amplitude. Furthermore,
it organizes the interpolation on the pitch and the velocity axis. The interpolation
functions according to section 2.6 are implemented in the Interpolator class. The
interpolated values are given to a Sinusoid instance. This class executes the actual
synthesis for one frame. It also interpolates the phase and amplitude of every partial
on the time axis as described in section 2.5.2. The GlobalMath class offers data and
methods, which are precomputed in the initialization phase of the program. This helps
to save performance, since some of the data is reused frequently. For example, it ini-
tializes and stores the lookup table, which is needed for the sinusoid generation. The
structure of the program is displayed in the UML class diagram in figure 3.1.

3.1.1 Interpolation Scheme

As figure 3.2 shows, the interpolation process is done in four steps, and the interpolation
on the time axis appears twice. To understand why this has not been done in one step,
it is important to know, that the time axis can be subdivided using different units. The
largest unit is the synthesis window, whose size is the analysis hop size, that is, the
number of samples between two successive analysis windows. Although it is possible
also to choose a different synthesis window size than the analysis window size, it is not
recommended, when the synthesized timbre is supposed to be as close as possible to
the original timbre. The JACK server itself processes audio signals frame-wise, as it is
typical for many digital audio processing systems 1. These are kept in a limited number
in an internal buffer. The frame size is defined by the user and has direct impact on
the latency of the system. To keep the latency low, the frames need to be short. This
may result in a frame size which is only a fraction of the synthesis window size. For our
given data, an analysis window hop size of 256 samples has been used. If the JACK
frame size is set to 64 samples, every synthesis window k consists of 4 frames. That
is, the vectors ~f and ~a will only be refreshed on every fourth frame. As described in
section 2.5.2, we want to interpolate frequency and amplitude linearly from the left
boundary to the right. To enable this, the boundary values for ~f and ~a of every frame
need to be interpolated according to the frame position in the synthesis window. After

1Note that in the JACK documentation, one frame is used synonymous to one sample per channel.
In this thesis, we use the term synonymous as a sequence of samples.
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the values were interpolated on the velocity and pitch axis, the instantaneous phase
and amplitude can finally be computed for each sample.
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create

create

mod values (∆v, ∆p)

transform modulation values to (n ,∆p) and (v , ∆v)

file and row indices (n , v , k )

partial vectors ~a, ~f

interpolate on time axis (per frame)

interpolate on pitch axis

interpolate on velocity axis

interp. on time axis (per sample)

frame synthesis

~a, ~f for boundaries

synthesized frame

request frame

synthesized frame

note events
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JackClient Synth DataReader
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[modulation]

alt

[note on]

Figure 3.2: A simplified sequence diagram which shows the gen-
eral procedure of the synthesis of a frame. The call is initiated by a
JackClient, but could also be done by a TestClient. The alt fragment
shows the creation of a Voice, which only happens due to a note-on

message, or, alternatively, the modulation of an existing voice.
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3.1.2 Control Protocoll

Control Events

The system internally uses a control event format. The JackClient instance converts
incoming MIDI messages into control events of this type. Hence, the systems works
independently from the actual control protocoll. A later extension will implement the
conversion from OSC-messages (OSC 2017) as well, and this implementation can be
done with almost no further modifications of the existing classes.
In the current state, a control event contains the following three parameters:

Control parame-
ter

Description

message type An enumeration type, which indicates the type of the message.
It can assume the values

• note on: A command to start playing a note. All remaining
event values are used.

• note off : A command to stop playing a note.

• pitch modulation: A pitch variation. Only the pitch param-
eter is used.

• velocity modulation: A velocity variation. Only the velocity
parameter is used.

note (nin) An integer number coding a note according to the MIDI specifi-
cation (Moog 1986). This is the discrete part of the pitch value.

pitch (∆pin) A real number, which is used for the vernier adjustment of the
pitch. A value of 0 stands for no pitch offset, a value of −1 shifts
the pitch by one semitone lower, and a value of 1 shifts the pitch
by one semitone higher. The maximum range can be defined in
the configuration file. The controllers parameter range will be
mapped to this value. For example, the range of MIDI values
generated by a pitch bend wheel, which is [0, 16383], would be
centered to zero and then scaled to the defined range.

velocity (∆vin) A real number between 0 and 1. It integrates the velocity value
of a MIDI note-on message as well as the value of a polyphonic
aftertouch message.

Control Parameter Mapping Depending on Mode and State

The control messages are analyzed by the Synth class, which, depending on the message
type, either starts a new voice, deletes an existing voice, or modulates the parameters
pitch or amplitude of an existing voice. When the parameters note, pitch and velocity
are passed to a voice, a second transformation to the parameters n , v , ∆p and ∆v
is done. The resulting values are depending on the current state of the voice. If the
application runs in stochastic mode, the voice passes the states attack and release,
where extrapolation is used. Thus, as long as the Voice remains in the current state,
amplitude and frequency values are constantly taken from the same matrices An,v and
Fn,v. That is, when a modulation occurs, n and v remain the same, while ∆p and ∆v
may assume values greater than one. The parameters for the pitch extrapolation are
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defined as

n = ninit, (3.1)

∆p = (nin − ninit) + ∆pin, (3.2)

where ninit is the input note at the beginning of the state. The velocity parameters are
defined as

v = vinit, (3.3)

∆v = ∆vin · 4− vinit − 1, (3.4)

where vinit is the velocity index at the beginning of the state. As noted in section 2.6,
this is only one approach to avoid problems with the interpolation between matrices,
which are of different size on the time axis. The sustain state uses interpolation,
since the problem cannot occur in the stochastic partial generation, which is time-
independent.
The deterministic mode solves the problem differently. To use extrapolation only would
result in a bigger timbre error, when a modulation over multiple dynamic levels or
semitones occurs. Since in the deterministic synthesis may take up to a few seconds
(which is the duration of the recording), the probability of such a deviation is much
higher than it is in the shorter attack and release parts in the stochastic mode. As
soon as one of the matrices ends, zero vectors are used for the amplitude interpolation
instead. In case of a frequency interpolation, the interpolation value is simply set to
the only existent value. The control parameters are mapped as follows:

n = nin + floor(∆pin), (3.5)

∆p = ∆pin − floor(∆pin), (3.6)

where the function floor(x) rounds its argument down, and

v = ceil(vin · 4)− 1, (3.7)

∆v = (vin · 4)− v, (3.8)

where the function ceil(x) rounds its argument up.

3.1.3 Data Structure

To be able to use both modes, the analysis data has to be stored in 2 different file
formats. Both modes use the same mapping file, which maps a note number and a
velocity level to the file containing the according analysis data. In the deterministic
mode, a simple csv file is used, where every row contains a partial vector. In the
stochastic mode, the YAML data serialization format is used (Ben-Kiki, Evans, and
Net 2009). YAML enables complex hierarchical data structures to be serialized in
a human-readable text format. Every YAML file contains deterministic data for the
attack and release part, as well as the discrete CDF functions. In addition, every
YAML file contains meta data about the analysis process. For the future development
of the application, an adaptive analysis and synthesis process can be considered: For
example, the analysis hop size might be chosen individually for each analysis window.
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3.2 Testing

To facilitate the development of the synthesis application, a focus was set on applying
software testing on two levels: Unit testing and system testing.

3.2.1 Unit Testing

The unit testing enables to reduce the probability of errors in the code. During the
development, new features were encapsulated into own functions and classes (units),
which themselves (in most of the cases) are elemental. That is, they do not invoke
other units in their code. Before a unit was implemented, a test was written, which
were included into a so-called test suite of the Boost unit test framework Rozental and
Enficiaud 2016. This framework organizes the automatic execution of the unit tests.
Some parts of the code have not been tested with unit tests, since these parts mostly
are higher-level functions which pass results from one unit to another. The unit testing
was also done to ensure that the future development of the system will not introduce
errors into the working units.

3.2.2 System Testing and Evaluation

To make sure that the audio output produced by the system fits to the systems descrip-
tion in this thesis, a visual and auditive evaluation was done. For the visual analysis, we
used MATLAB together with MEX. MEX stands for MATLAB external and is an API
which offers the integration of C and C++ source code into MATLAB. A self-defined
MEX function can be used to make C++ functions available in MATLAB, since it then
can be used as normal MATLAB function. Functions from the MEX API are used to
receive parameters from a MATLAB command, then the code is executed and then the
result is again passed by a MEX function to the MATLAB environment. The source
code is compiled by a MATLAB command, which uses a suitable C/C++ compiler,
which was in our case the G++ compiler. We call this type of MEX function a MEX
wrapper. We created two wrappers for the classes Sinusoid and TestClient. The for-
mer offers the function sinusoid process mex, which lets the user pass an amplitude
and a frequency vector for both endings of a frame. A Sinusoid instance then uses this
data to compute the instantaneous amplitude and phase from the first to the last frame
index and then synthesizes the actual audio signal. The wrapper returns not only the
signal, but also the instantaneous amplitude and phase. These values can be visualized
with the MATLAB script sinusoid synthesize test.m. During the development, the
behavior of the sinusoid class was permanently controlled using this visualization. If
the interpolation curves did not behave as they were supposed to, or if the waveform
itself contained an obvious error, this concept enabled the detection of some errors, for
which the unit testing alone was unsuitable.
The other wrapper offers an interface to the class TestClient and hence offers access
to the whole synthesis system by using the MATLAB command synth process mex.
To the according MATLAB function, an array of structs, similar to the control events
described in 3.1.2, the number of frames to be synthesized, the number of partials and
the chosen synthesis mode is passed. The function returns a signal which is equal to
the processed signal of the online version of the system. It also returns the partial
trajectories of amplitude and phase of the whole synthesized signal. The MATLAB
function synth process visualize.m executes an amplitude modulation and visual-
izes the result. Hence, the playing and modulation of a note can be simulated and
examined using the MATLAB plot functions. The function allows to choose between
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different visualizations, which include the waveform, amplitude and frequency trajec-
tories and the pitch and velocity modulation curves. This was already done during the
development process and gave a good visual feedback of the latest code changes.
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4 Evaluation

4.1 Usability Evaluation

Our evaluation includes only a basic usability test of the synthesis system. This in-
cluded the playing of the system using a pad controller. We used the Livid Base pad
controller (Livid Instruments - Base II 2017) for this purpose, which features a grid
of 32 pressure-sensitive buttons. The buttons support aftertouch control, which enable
a continuous velocity modulation. However, it has no additional input for continuous
pitch modulation.

4.1.1 Modulation

The continuous variation of the velocity created a seamless interpolation between the
data matrices of the four different velocity levels. Problems can occur during a fast
modulation at the beginning and especially at the end of the note: If the velocity of
the note is raised, it is possible that the sound signal will decrease in amplitude, since
the higher velocity data matrix ends earlier than the lower velocity data matrix. This
problem only appears in the deterministic mode, because the stochastic mode uses
extrapolation in the deterministic attack and release parts. Another advantage of the
stochastic mode is, that after a note-off message, the sound fades out in a natural way.
In the current version of the deterministic mode, the sound simply stops playing.

4.1.2 Latency

To keep the latency low, the frame size and the number of frames stored in the buffer
need to be as small as possible. If too small values are chosen, the JACK server reacts
with XRUNS. These messages are logged by JACK if a client is not able to compute an
audio frame in the available time. They are also audible as interruptions in the audio
signal. The computation time of a frame can be modeled as follows:

Ttotal = Tconst + T (x). (4.1)

Tconst is the time which is independent of the actual frame size, and which includes the
data selection respectively generation of the partial vectors and the interpolation on
the pitch and the velocity axis. However, it is still linear dependent on the number of
partials used. In the stochastic mode, the influence of this part is significantly higher
than in the deterministic mode, because the partial vector generation by inverse trans-
form sampling is computationally more intensive. T (x) is the processing time which
increases linearly with the frame size x. It includes the time scale interpolation and
the sinusoid generation. The lower boundary of the frame size is thus determined by
Tconst.
Our test computer used a low-latency 64-Bit Linux on a Intel Core i5-3320M CPU and
a M-AUDIO Fast Track audio interface. We chose a sampling rate of 44.1 kHz. The
deterministic and the stochastic mode were tested separately, using 30 partials for the
deterministic and 15 partials for the stochastic mode. It is necessary to reduce the
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number of partials for the stochastic mode, since these highly raise the need of compu-
tational resources. A test with 30 partials was even not succesfull at a frame size of 512
samples. Another important parameter which influences the performance is the lookup
table size, which was set to 216 values. Logarithmic interpolation respectively extrap-
olation was used for the frequency depending on the pitch value and for the amplitude
depending on the velocity value. On the other axes, linear interpolation was used. As
second measure additionally to appearing XRUNS, the JACK dsp load was used. This
value displays the current CPU workload in percent. The first XRUNS appear approx-
imately at 50 % dsp load. The measured values can only be an approximate measure
for the computationally intensivity of the application, since the DSP load also depends
on other processes running on the computer.

Deterministic Mode Using a frame size of 64 samples and three frames per buffer
(4.35 ms latency), it was possible to play a single tone at a DSP load of approximately
28 % without causing XRUNs. The first XRUNs occurred already when two voices were
played simultaneously. With a frame size of 128 samples and three frames per buffer
(8.71 ms latency), it was possible to play a single tone at a DSP load of approximately
20 % without causing XRUNs. In this case, the first XRUNs occurred when 3 voices
were played simultaneously. For a very high frame size of 512 samples (34.8 ms latency)
and three frames per buffer, a tone could be played at approximately 11 % dsp load.
It was possible to play up to 9 tones at the same time.

Stochastic Mode With a frame size of 512 samples and three frames per buffer,
a single tone could be played at a DSP load of approximately 28 %. Three tones
simultaneously caused XRUNs. Smaller frame sizes were not possible using a number
of 15 partials. Note that additional latency can also be caused by zero rows at the
beginning of data matrices. This can result in a much bigger latency than the actual
latency caused by the chosen frame size.

4.2 Synthesis Evaluation

The auditive evaluation of the synthesized signal was done by a simple listening test
by the author of this thesis. The signals were also examined by the visualization tool
described in section 3.2.2.

4.2.1 Deterministic Mode

An unmodulated synthesized signal of a fixed note was compared to its original sound
file using Superlux HD 681 monitor headphones. The deterministic signal stayed very
close to its original. A clearly noticeable difference was the absence of noise, which was
present in the original recording. Modulated tones behaved as expected and interpo-
lated seamlessly. However, a natural sounding modulated tone is also determined by
the capabilities of the controller. The figures 4.1, 4.2 and 4.3 show an unmodulated, a
pitch modulated and a velocity modulated signal. In the author’s opinion, the quality
of the synthesized signal was satisfying. Of course, a more significant and detailed
result can only be achieved with an empiric listening test with a sufficient number of
participants.
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4.2.2 Stochastic Mode

The stochastic signal was still perceived as related to a violin tone, but in a very bad
and distorted quality. The state transitions were clearly audible. As figure 4.4 shows, in
the sustain part the amplitude behaves very differently than in the deterministic mode.
Deterministic and stochastic signals of the same tone have the same probability dis-
tribution in amplitude and frequency, and both parameters move in the same interval.
But in a natural signal, the amplitude takes some time to move from one extremum to
another. In the stochastic mode, for each frame, the amplitude hops from one value to
another, regardless of the amplitude value of the previous frame. Since the amplitude
values are generated by a uniform noise generator, this noise can be relocated in the
signal and is also clearly audible.
Another problem is, that the original recordings still rise and fall in amplitude during
the selected sustain parts. This enlarges the range of the possible output values of the
ICDF and results in a louder noise. Yet, to execute the recording and segmentation
step more accurately will still not lead to a satisfying solution. It seems, that our model
in its current version is not yet suitable to model the parameters astoch,i and fstoch,i in a
satisfying way. In the authors opinion, a modification is required, which also considers
the previous values of amplitude and frequency.



Chapter 4. Evaluation 28

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

−4

−2

0

2

4

·10−2

Time/Seconds

A
m
p
li
tu
d
e

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
0

0.5

1

1.5

2
·10−2

Time/Seconds

A
m
p
li
tu
d
e

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
0

1

2

3

4
·104

Time/Seconds

F
re
q
u
en

cy
/
H
z

Figure 4.1: An unmodulated signal which was synthesized in the de-
terministic mode.
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Figure 4.2: A deterministic signal, where the pitch is modulated over
five semitones.
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Figure 4.3: A determinstic signal, where the velocity is modulated
over the whole velocity scale. On the partial frequency graph, the timbre
change over the different velocity levels can be observed: the frequency

variation becomes less, when the velocity increases.
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Figure 4.4: A stochastic, unmodulated signal. The change to the
sustain part is clearly visible on the partial amplitude graph, since the

signal becomes very noisy.
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5 Conclusion

We successfully implemented an additive sound synthesis system, which can be used
in live performances and studio production. An additional component for the noise
generation is needed to make the synthesis more powerful. Also, the controllability can
yet be extended. The abilities of additive synthesis to control timbre has not yet been
exploited. To achieve this, a mapping concept has to be found.
More evaluation needs to be done on the quality of the sound signal in the deterministic
mode. Since several parameters influence the need of computational resources on the
one hand and the signal quality and usability of the system on the other hand, for
each of these parameters a threshold of the just noticeable difference (JND) should be
found. Latency is definitely an important aspect of the usability of the system, but it
is also a matter of the used controller (Mäki-patola and Hämäläinen 2004). Another
interesting parameter which might influence the usability and/or the signal quality
is the interpolation type on the pitch-velocity-grid. A linear interpolation might be
a computational less intensive alternative for logarithmic interpolation. However, its
impact on the usability and the modulation quality has not yet been measured. Two
other important parameters which only influence the signal quality are the lookup table
depth, which influences the SNR, and the number of partials. Additional listening test
can be applied to find a JND for these, although existing research may already contain
satisfying results. To achieve the best compromise of quality and performance, these
parameters have to be set closely above the JND.
The problem of the interpolation between parameter matrices of different length can
be solved by using only extrapolation. Yet, this would nullify the advantage of the
dynamic timbre selection during a pitch or velocity modulation. This is the most im-
portant reason to find a robust time-independent data generation system. The design
of the stochastic mode of our application was a first attempt to achieve this goal. How-
ever, the result was not yet satisfying and computationally to intensive. We believe,
that in a further development of this technique, a random value should not only be
generated by a global ICDF, but by a ICDF dependent on the previously generated
value. This would avoid noise-like signals and lead to smoother amplitude and fre-
quency trajectories. If we call the currently used ICDFs an ICDF of first order, it is
possible to compute a new ICDF for every possible output value of the ICDF of first
order. This would then be an ICDF of second order. However, this raises new prob-
lems: It needs even more arithmetical operations for the vector generation, and the
need of memory grows exponenentially. The former is a problem, since our evaluation
showed, that the current need of resources is already critical. These problems might
be solved by further code optimizing. An approach to solve the latter problem might
be to find an polynomial approximation for the ICDFs (Olver and Townsend 2013), so
that these can be represented with only a small fraction of the memory needed for a
discrete ICDF representation. Another focus needs to be set on note transitions: In
the current state, timbre changes introduced by the modulation process itself are not
considered. Overall, using stochastic techniques for additive synthesis seems to have a
high potential, which has not yet been discovered.
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Mäki-patola, Teemu and Perttu Hämäläinen (2004). “Latency Tolerance for Gesture
Controlled Continuous Sound Instrument Without Tactile Feedback”. In: Proc. In-
ternational Computer Music Conference (ICMC, pp. 1–5.

McAulay, R. and T. Quatieri (1986). “Speech analysis/Synthesis based on a sinusoidal
representation”. In: IEEE Transactions on Acoustics, Speech, and Signal Processing
34.4, pp. 744–754.

Moog, Robert A. (1986). “MIDI: Musical Instrument Digital Interface”. In: Journal of
the Audio Engineering Society 34.5, pp. 394–404.

Moore, F. Richard (1977). “Table Lookup Noise for Sinusoidal Digital Oscillators”. In:
Computer Music Journal 1.2, pp. 26–29.

Moorer, J. A. (1977). “Signal processing aspects of computer music: A survey”. In:
Proceedings of the IEEE 65.8, pp. 1108–1137.

Newmarch, Jan (2017). “Jack”. In: Linux Sound Programming. DOI: 10.1007/978-
1-4842-2496-0 7. Apress, pp. 143–177.



BIBLIOGRAPHY 34

Olver, Sheehan and Alex Townsend (2013). “Fast inverse transform sampling in one
and two dimensions”. In: arXiv:1307.1223 [math, stat]. arXiv: 1307.1223.

Phillips, Desmond Keith (1996). “Digital Sine Oscillator Design”. In: Algorithms and
architectures for the multirate additive synthesis of musical tones. Durham Univer-
sity, pp. 106–125.

Qian, Xiaoshu and Yinong Ding (1997). “A phase interpolation algorithm for sinu-
soidal model based music synthesis”. In: 1997 IEEE International Conference on
Acoustics, Speech, and Signal Processing. 1997 IEEE International Conference on
Acoustics, Speech, and Signal Processing. Vol. 1, 451–454 vol.1.

Rodet, Xavier and P. Depalle (1992). “Spectral Envelopes and Inverse FFT Synthesis”.
In: AES Convention 93.

Rozental, Gennadiy and Raffi Enficiaud (2016). Boost.Test - 1.64.0. url: http://www.
boost.org/doc/libs/1_64_0/libs/test/doc/html/index.html (visited on
05/21/2017).

Serra, X (1997). “Musical Sound Modeling with Sinusoids plus Noise”. In: Musical
Signal Processing. Studies on New Music Research. Swets & Zeitlinger, pp. 91–122.

Smith, Julius O. (1999). Viewpoints on the History of Digital Synthesis.
Smith, Julius O and Perry R Cook (1992). “The second-order digital waveguide oscil-

lator”. In: Proceedings of the International Computer Music Conference. Citeseer,
pp. 150–150.

OSC (2017). The Open Sound Control 1.0 Specification. url: http://opensoundcont
rol.org/spec-1_0 (visited on 05/29/2017).

Treindl, Gabriel (2016). “Entwicklung und Evaluation eines Controllers zur Tonhöhen-
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