
peter vasil

G R A P H I C A L D E S I G N O F P H Y S I C A L M O D E L S F O R
R E A L - T I M E S O U N D S Y N T H E S I S

Peter Vasil: Graphical Design of Physical Models for Real-Time Sound
Synthesis, Implementation of a Graphical User Interface for the Synth-
A-Modeler compiler, © July 2013

supervisors:
Prof. Dr. Stefan Weinzierl
Dr. Edgar Berdahl

A B S T R A C T

The goal of this Master of Science thesis in Audio Communication
and Technology at Technical University Berlin, is to develop a Graph-
ical User Interface (GUI) for the Synth-A-Modeler compiler, a text-based
tool for converting physical model specification files into DSP exter-
nal modules. The GUI should enable composers, artists and students
to use physical modeling intuitively, without having to employ com-
plex mathematical equations normally necessary for physical model-
ing. The GUI that will be developed in the course of this thesis allows
the creation of physical models with graphical objects for physical
masses, links, resonators, waveguides, terminations, and audioout
objects. In addition, this tool will be used to create a model for an
Arabic oud to demonstrate its functionality.

Z U S A M M E N FA S S U N G

Das Ziel dieser Master Arbeit am Fachgebiet Audiokommunikation
der TU Berlin, ist die Entwicklung einer graphischen Umgebung für
die textbasierte Software, Synth-A-Modeler compiler, welche es erlaubt,
ein speziell dafür entwickeltes Datei Format für physikalische Mod-
elle, in externe DSP Module umzuwandeln. Die Software macht
es Komponisten, Künstlern und Studenten möglich, physikalische
Modellierung intuitiv zu anzuwenden, ohne die komplexen mathe-
matischen Formeln, welche normalerweise für physikalische Model-
lierung nötig sind, anwenden zu müssen. Die graphische Umgebung,
die im Zuge dieser Arbeit entwickelt wird, erlaubt es dem Benutzer
physikalische Modelle mithilfe von graphischen Bausteinen, welche
physikalische Elemente, wie z. B. Masse, Federn, Resonatoren oder
Wellenleiter representieren, selbst zu erstellen. Im Rahmen der Ar-
beit wird die graphische Umgebung ausserdem dazu verwendet, eine
arabische Laute zu modellieren, um die Funktionalität der Software
zu demonstrieren.

iv

A C K N O W L E D G M E N T S

I would like to thank my partner Kathleen Reinhardt and my parents
Ilona and Stefan Vasil. I would also like to thank Tobias Preuss for
his valuable input and discussions regarding the implementation of
the application for this thesis.

Last but not least I would like to thank my supervisors Stefan
Weinzierl and especially Edgar Behrdahl, for his feedback and sup-
port during my work on the thesis.

v

C O N T E N T S

i introduction 1

1 introduction 2

1.1 Goals/Objectives . 2

1.2 Motivation . 3

1.3 Thesis outline . 3

ii fundamentals 5

2 fundamentals 6

2.1 Physical Modeling . 6

2.1.1 Digital Waveguide Synthesis 6

2.1.2 Mass-Interaction Synthesis 8

2.1.3 Modal Synthesis . 8

2.2 Prior work . 9

2.2.1 GENESIS . 9

2.2.2 Modalys . 10

3 synth-a-modeler compiler 12

3.1 Technical background . 12

3.1.1 Requirements . 12

3.1.2 Overview . 13

3.1.3 Faust . 13

3.1.4 Dataflow . 14

3.2 Modeling . 16

3.2.1 The model specification file 16

3.2.2 Abstractions . 17

3.3 Compilation result . 19

3.4 Creating externals . 19

3.4.1 Pure Data . 19

3.4.2 SuperCollider . 21

3.4.3 Qt/GTK . 23

iii synth-a-modeler designer 24

4 design 25

4.1 Specification . 25

4.1.1 Visual specification . 25

4.1.2 Technical specification . 29

4.2 Software Architecture . 30

5 technology selected 32

5.1 JUCE C++ Library . 32

5.2 Regular Expressions . 35

5.3 Git . 36

5.4 Github . 37

6 implementation 38

vi

contents vii

6.1 Application components . 39

6.1.1 Core components . 39

6.1.2 Internal MDL representation 43

6.1.3 MDL parsing and writing 46

6.1.4 Views . 48

6.1.5 Controllers . 54

6.1.6 Executing external commands 59

6.1.7 Command-line support 61

6.1.8 Unit testing . 62

6.2 Automatic positioning of objects 63

6.2.1 Force-directed algorithm 64

6.2.2 Graph drawing components 66

6.2.3 Graph drawing examples 67

6.3 Extending Synth-A-Modeler Designer with a new object . 71

6.4 Problems and limitations . 81

7 modeling the oud 83

7.1 The Oud . 83

7.1.1 History . 83

7.1.2 Principle of operation . 84

7.2 Modeling the oud in Synth-A-Modeler 85

7.2.1 The modeling . 85

7.2.2 Commuted Synthesis . 87

8 conclusions 89

8.1 Conclusion . 89

8.2 Future work . 90

iv appendix 91

a appendix 92

a.1 Example .mdl file . 92

a.2 Oud model . 93

a.3 Emacs support . 97

a.4 Vim support . 98

a.5 Building Synth-A-Modeler on a Beagle-Board 100

a.6 Class hierarchy . 101

bibliography 103

L I S T O F F I G U R E S

Figure 1 Schematic relationship between physical mod-
eling synthesis paradigms in Synth-A-Modeler . 6

Figure 2 Digital waveguide model of a simple string . . 7

Figure 3 FAUST dataflow diagram 14

Figure 4 Block diagram of a spring generated by FAUST 15

Figure 5 Synth-A-Modeler internal dataflow diagram . 15

Figure 6 Synth-A-Modeler dataflow diagram 16

Figure 7 “touch a resonator” PureData patch 21

Figure 8 Standalone applications 23

Figure 9 Mockup of the main Synth-A-Modeler Designer
interface . 26

Figure 10 Mockup of Synth-A-Modeler pull-down menus 27

Figure 11 Mass-like object icons 28

Figure 12 Link-like object icons 28

Figure 13 Waveguide and audioout object icons 28

Figure 14 Comparison, unsegmented and segmented con-
nections . 29

Figure 15 Collaboration of Model View Controller (MVC)
components . 31

Figure 16 Synth-A-Modeler Designer user interface 48

Figure 17 Object component inheritance 50

Figure 18 Window for editing object parameters 51

Figure 19 Setting font color of a CommentComponent . . . 53

Figure 20 FAUST code input and edit window 53

Figure 21 Misc tab in preferences window 54

Figure 22 Exporter tab in preferences window 55

Figure 23 Window for setting redraw options 67

Figure 24 An unordered guiro model 67

Figure 25 The guiro model after applying CircleFlowAlgorithm 68

Figure 26 The guiro model after applying ForceBasedAlgorithm 68

Figure 27 Cube model layout comparison 69

Figure 28 Big cube model layout comparison 69

Figure 29 Percussion model layout comparison 69

Figure 30 Random mass interaction model layout com-
parison . 70

Figure 31 Another random mass interaction model lay-
out comparison 70

Figure 32 Random model layout comparison 70

Figure 33 Icon of the pulsetouch object 71

Figure 34 Oud front and rear view 84

Figure 35 Simple schematic of a guitar 85

viii

Figure 36 A string in Synth-A-Modeler 86

Figure 37 The oud model in Synth-A-Modeler 86

Figure 38 Class hierarchy diagram 102

L I S T O F TA B L E S

Table 1 MDL object types and their parameters 18

L I S T I N G S

Listing 1 A simple spring represented in FAUST 14

Listing 2 A simple model specification 16

Listing 3 ”touch a resonator” FAUST file 19

Listing 4 “touch a resonator” SuperCollider class 22

Listing 5 Example CommandIDs 41

Listing 6 Example usage of CommandIDs 41

Listing 7 Synth-A-Modeler Designer user settings file . . . 42

Listing 8 Pseudo code for an UndoableAction to add an
object . 43

Listing 9 Internal representation of an MDL file 44

Listing 10 Example assembling an MDL file structure . . 45

Listing 11 Class for parsing an MDL file 47

Listing 12 Class for writing an MDL file to disk 47

Listing 13 Function for fixing parameter value if not for-
matted properly 51

Listing 14 Function for adding a new object 56

Listing 15 Representation of a mass object when copied
to the clipboard 58

Listing 16 SAMCmd class . 59

Listing 17 Default exporter commands 61

Listing 18 Help text of the Synth-A-Modeler Designer command-
line interface . 62

Listing 19 Pseudo code of the force-based graph drawing
algorithm . 65

Listing 20 New code in ObjectFactory.cpp 71

Listing 21 New code in ObjectsHolder.cpp 73

Listing 22 New code in LinkComponent.cpp 74

Listing 23 New code in ResourceLoader.cpp 75

Listing 24 New code in Application.cpp 76

ix

Listing 25 New code in CommandIDs.cpp 76

Listing 26 New code in ContentComponent.cpp 76

Listing 27 New code in ObjectPropertiesPanel.cpp . . . 77

Listing 28 New code in ObjectComponent.cpp 79

Listing 29 New code in MDLParser.cpp 79

Listing 30 New code in SAMRegex.cpp 80

Listing 31 New code in MiscUtilities.cpp 80

Listing 32 New default values 80

Listing 33 New values in SAMLookAndFeel.cpp 81

Listing 34 A complete mdl file 92

Listing 35 The model of an oud 93

Listing 36 Source of sam-mode for Emacs 97

Listing 37 Vim support source 98

A C R O N Y M S

API Application Programming Interface

DSP Digital Signal Processing

GUI Graphical User Interface

RE Regular Expression

SCM source code management

MVC Model View Controller

x

Part I

I N T R O D U C T I O N

1
I N T R O D U C T I O N

Physical modeling is a well-known and extensively developed tech-
nique to virtually create instruments as well as sounds. It is using
mathematical models consisting of a set of equations and algorithms
to simulate a physical source of sound. The parameters can be con-
stants, which describe physical material and dimension of a real in-
strument, as well as time-dependent parameters, which describe the
interaction of a player with the instrument. It has been an established
research topic for decades, and many scientific texts have been pub-
lished on the topic. However, creating physical models of instruments
is a difficult process involving the creation of highly complex equa-
tions. Its challenge is to create a model, which sounds exactly like
the instrument or sound it is imitating. Especially for non-western
instruments this is a highly difficult process [1]. However, there are
no widely accessible tools for composers or students to use this tech-
nique of physical modeling in order to create physical models with-
out having to know or to use its mathematical context. Especially for
real-time control it is a rarely employed technique.

1.1 goals/objectives

This thesis will be part of creating the open-source Synth-A-Modeler
modular design tool, which is being developed by Dr. Edgar Berdahl [2].
The Synth-A-Modeler compiler will not produce any sound directly.
Instead, it will generate DSP external modules for the Digital Signal
Processing (DSP) programming language, FAUST1 which then can be
used to produce modules for different environments, like SuperCol-
lider, Max/MSP or PureData.

The goal of this thesis is to create a Graphical User Interface (GUI)
for the Synth-A-Modeler compiler, the Synth-A-Modeler Designer. This
will enable composers or artists to create physical models visually
with the use of representations of real-world physical objects like
masses, links, resonators, waveguides, terminations, and audioout
objects. Furthermore, the Synth-A-Modeler Designer will be used to
create a physical model for a non-western instrument, the Arabic oud,
to demonstrate its functionality.

1 Faust is a programming language for real-time audio signal processing. http://

faust.grame.fr/

2

1.2 motivation 3

1.2 motivation

Several tools exist that implement physical modeling in a modular
way, so that the user does not have to program the equations. In-
stead, the user specifies physical systems, which consist of mechani-
cal, acoustical or electrical elements connected together. This way it
is much easier and more accessible for musicians to create new types
of instruments and sounds without having to know and understand
the mathematical details behind the complex physical systems.

Due to their high costs for purchasing, however, these tools are not
very accessible to musicians or students. In order to work with the
Modalys modal synthesis environment for example, the user needs
to buy Max/MSP and the IRCAM Forum Recherche [2] at a high price.
Similarly, GENESIS is a modeling environment, which provides a GUI

for the creation of mass-interaction systems and can be purchased
from the Association pour la Création et la Recherche sur les Outils d’Expression [2].

There are also non-commercial open-source software packages avail-
able for physical modeling. The BlockCompiler by Matti Karjaleinen
is a very complex software. To create models, the user has to be able
to program Lisp [3]. Another software package is the Synthesis Tool
Kit (STK), which is written in C++.2 However, to create new physical
models the user has to write difference equations directly in C++ [2].

Thus, the interested user had to either invest financially in expen-
sive commercial programs, or he had to be proficient in program-
ming languages like Lisp or C++. These unnecessary barriers for
using physical modeling were motivations that led to the creation of
the Synth-Modeler compiler, in order to provide an accessible tool for
sound synthesis with physical models.

This thesis contributes to the Synth-A-Modeler project through the
development of a GUI for the Synth-A-Modeler compiler, which will
enable the user to create physical models visually.

1.3 thesis outline

This thesis is composed of two parts. Part one describes the funda-
mentals for the development of the Synth-A-Modeler Designer appli-
cation. In part two, the development process will be described in
detail.

Chapter 2 lays out the fundamentals for this thesis and for the
development of Synth-A-Modeler Designer. The first section presents
three physical modeling paradigms that are implemented in Synth-A-
Modeler, and outlines their capabilities. The second part of the section
presents an overview of existing software with functionalities similar
to the ones in Synth-A-Modeler. It gives a brief technical overview and
describes their user interfaces. Chapter 3 covers the Synth-A-Modeler

2 https://ccrma.stanford.edu/software/stk/

1.3 thesis outline 4

compiler. The section describes the compiler’s technical details, such
as the software structure, how it uses the FAUST compiler and its
dataflow. The next section covers the modeling task, in particular the
model specification file and physical objects. The following section
describes the compilation output of the Synth-A-Modeler compiler. The
chapter ends with the description on how to create externals with the
compilation output and the FAUST compiler.

The second major part starts with Chapter 4, which describes the
software design of the Synth-A-Modeler Designer, followed by an out-
line of the selected technology for the development in Chapter 5.
Chapter 6 goes into detail on the implementation of the Synth-A-
Modeler Designer. In particular, it describes the implementation of the
application’s main components and the automatic graph redrawing.
The following section goes step by step through the process of extend-
ing the Synth-A-Modeler Designer with a new object. The chapter ends
with a section on problems and limitations of the Synth-A-Modeler De-
signer. Chapter 7 gives a brief historical and technical overview on
the Arabic oud and provides a description of the modeling process
of such an instrument in Synth-A-Modeler Designer.

The last chapter on page 89 provides a conclusion and desirable
extensions for the application in the future.

Part II

F U N D A M E N TA L S

2
F U N D A M E N TA L S

2.1 physical modeling

Physical Modeling is a sound synthesis technique for generating wave-
forms and sounds using mathematical models of virtual acoustical
systems. The aim is to simulate a physical sound source virtually.
Such models incorporate descriptions of physical laws to simulate
the physical properties of a sound. The properties can include sev-
eral parameters such as the material or size information of instrument
components as well as interaction parameters describing how an in-
strument is played by a musician, i. e. plucking a string or hitting a
membrane.

This section will describe three physical modeling synthesis paradigms
that are implemented in Synth-A-Modeler. Figure 1 shows the rela-
tion of these three physical modeling synthesis paradigms in Synth-A-
Modeler. The parts that intersect represent new modeling paradigms
implemented by Synth-A-Modeler.

Figure 1: Schematic relationship between physical modeling synthesis
paradigms in Synth-A-Modeler

2.1.1 Digital Waveguide Synthesis

Smith III [4] writes, “Digital waveguide synthesis models are com-
putational physical models for certain classes of musical instruments
(string, winds, brasses, etc.) which are made up of delay lines, digi-
tal filters, and often nonlinear elements.” Furthermore he states, that
digital waveguide models have the following characteristics in com-
mon:

6

2.1 physical modeling 7

“Sampled acoustic traveling waves, follow geometry and physical
properties of a desired acoustic system, efficient for nearly lossless
distributed wave media, and losses and dispersion are consolidated
at sparse points along each waveguide. [4]”

A digital waveguide is represented by an bidirectional delay line
as show in fig. 2, which consists of a sampled traveling wave element
and has a characteristic wave impedance R. The wave impedance can

Delay 1

Delay 2

Termination + Termination
Audio output

Figure 2: Digital waveguide model of a simple string

be determined via the following relationship:

R ˆ
√
Kε

K

c
εc (1)

and can be seen as the geometric mean of the two physical impedi-
ments to displacement: the string tension K and the linear mass den-
sity ε [1]. To be able to measure traveling waves and get physical
values out of it, such as force, pressure and velocity, their compo-
nents have to be summed (see fig. 2). The connection of physical
media with different characteristic wave impedance cause scattering
at the border/junction between them. For instance, when two one-
dimensional waveguides with wave impedance R1 and R2 are con-
nected together, an incoming wave from the first waveguide reflects
back with coefficient

k1
R2 − R1
R2 + R1

(2)

A string for example, has boundaries, and the wave is not traveling
infinitely, but has a constraint that is called termination. The simplest

2.1 physical modeling 8

case is a rigid termination, which means that the wave cannot move at
the termination. Rigid terminations reflect displacement, velocity and
acceleration waves with sign inversion, which can also be calculated
with (2), by setting the terminating impedance to infinity [4].

Synth-A-Modeler supports digital waveguide synthesis and defines
the objects waveguide, termination and junction and will be de-
scribed later in section 3.2. Only velocity waves are simulated directly
in Synth-A-Modeler using the waveguide element.

2.1.2 Mass-Interaction Synthesis

According Castagne and Cadoz [5], mass-interaction synthesis is an
aproach to physical modeling, which enables the composition of mod-
els with elementary modules, such as masses and springs. The mod-
eling process is very modular and the different elementary parts are
easy to understand because they are based on simple physical behav-
iors. Mass-interaction modeling is not specifically dedicated to for
generating sounds, but it is well-suited for sound synthesis. Further-
more, the mass-interaction paradigm represents physical models in a
more understandable way in contrast of using mathematical formu-
las to describe the physical models [5]. The latter makes the physical
modeling process easier to understand, also for non-technical and
non-mathemtical users. According to Castagne and Cadoz [5], mass-
interaction modeling allows the representation of physical objects in
a more general way, not only focusing on the the physical cause that
generates a sound.

Synth-A-Modeler supports mass-interaction synthesis by providing
elementary physical objects and the possibility to combine them to
create physical models. More information on these objects will be
provided in section 3.2.

2.1.3 Modal Synthesis

The third pyhsical modeling paradigm that is supported in Synth-A-
Modeler is modal synthesis. Van den Doel and Pai [6] write, that when
a solid object is hit, struck or involved in other interactions it get de-
formed by forces that are acting at the contact point, which causes the
object to vibrate and to emit sound waves. Musical instruments that
work with this principle are bells, marimba or vibraphone. Van den
Doel and Pai [6] go on to state, that these musical instruments can
be modeled with modal synthesis, which utilizes a bank of damped
harmonic sine oscillators that are activated by some stimulus. The
number of oscillators and their frequencis are determined by the ob-
ject itself and its material properties. With modal synthesis in general,
it also becomes possible to model any linear object that is vibrating,
such as engines or other virtual music instruments.

2.2 prior work 9

Synth-A-Modeler provides a resonator object, which can have a vari-
able number of resonace frequencies to perform modal synthesis and
wil be discussed later in section 3.2.

2.2 prior work

This section focuses on physical modeling software environments, al-
lowing a user to model physical systems in order to create virtual
instruments or physical objects. In particular, two systems are de-
scribed, which are commercial and proprietary. The fact that the
two systems are, as mentioned before, proprietary and commercial,
creates a barrier to accessibility by the community and are therefore
not well-suited for research, educational or artistic applications in the
maker scene. Of course, the commercial background allows these
systems to be developed using greater resources.

2.2.1 GENESIS

GENESIS is a software environment designed to be used in a mu-
sical context for musicians. The software is created by the company
ACROE-ICA, and it lets the user model masses and interactions graph-
ically. The first version of the software was released in 1995, in form
of a beta3 software and in 2000 a final version was published [8]. In
2009, the third version of the GENESIS software was released, with
the version name G3. The software uses the CORDIS-ANIMA lan-
guage [9] which allows to build physical networks. A network is
made of

“elementary material modules <MAT> connected with phys-
ical interactions <LIA>” [8].

The modules stand for physical parameters, like mass, stiffness, vis-
cosity and other types of interaction. G3 has three main interfaces:
the graphical modeling window, a textual modeling window and the
simulation window. As the name suggests, the modeling window is
the place where the user designs and creates a physical model. In
the simulation window the user evaluates a model and obtains the
synthesized sound. G3 offers in comparison to G1 a more sophisti-
cated 2D graphical representation of models, which let the user di-
rectly change parameters of elements and the ability to zoom into the
model. With the simulation interface the user can visualize the model,
see the waveform of the sound file, that has been generated from the
physical model or change the simulation engine between an offline
and real-time engine. Furthermore, Castagné et al. [8] write that not

3 Beta describes the state of an application in software development, when the soft-
ware is almost ready to launch but is still being tested [7],

2.2 prior work 10

only graphical editing is from interest. That is the reason for imple-
menting also the possibility to edit models textually. G3 provides a
scripting language called Physics Network Scripting Language, which is
based on Tcl4. PNSL does not represent the state of a physical model,
but it allows users to do the modeling activity by “programming” [8].
G3 is a very mature modeling environment due to its predecessor G1

and more 10 years work in this field. The aim of G3 is also to stabilize
the GENESIS principles and to improve the capabilities and usability.
In order to purchase GENESIS which is priced at approximately 500

Euro per workstation, it is necessary to have a personal relationship
with employees of at ACROE-ICA.

2.2.2 Modalys

Modalys is a software system, which brings sound synthesis design
into the scope of musical composition and uses modal synthesis for
physical modeling. Modal synthesis “consists of solving the vibratory
equations of the involved physical structures on a modal coordinate
basis. A mode of vibration is an eigenvalue (frequency and loss) and
an eigenvector (modeshape) of the characteristic equation of a phys-
ical system ” [11]. The basic user interaction in Modalys is done in
a Lisp-like language, in particular, an extension of the Scheme5 lan-
guage, which consists of primitive structures. These structures are
objects, connections and controllers (in other words: physical struc-
tures) the interaction between these structures and time-varying pa-
rameters. There are two steps needed to create sound with Modalys.
Creating an instrument, which is the assembly of structures and con-
nections, and “executing” and instrument, that is sending controller
data to these connection to make the instrument vibrate [11].

While Modalys has a textual user interface to the modeling part,
there is Modalys-ER, a graphical environment for creating physical
models and generating sound. But this environment is limited in
terms of mapping controller data to the physical model’s parameters.
Thus, Modalys-ER is not well suited for performance, MIDI interac-
tion or Standard Western Notation [12]. For this reason Modalys-ER
has been partially ported to OpenMusic. OpenMusic is a visual pro-
gramming language based on CommonLisp6. Programs are created
by assembling and connecting icons, which represent functions and
data structures [13]. The ported library for OpenMusic is called MfOM
and has been developed at IRCAM.7 The aim of MfOM is to provide
an interface for Modalys to be used in a musical context. A sim-

4 Tcl, an abbreviation for “Tool Command Language”, is a simple, multiparadigm
open source programming language. See [10],

5 http://groups.csail.mit.edu/mac/projects/scheme/

6 CommonLisp is a dialect of the Lisp programming language http://common lisp.

net/

7 http://www.ircam.fr/

2.2 prior work 11

ple percussion instrument consist of a mass, which strikes a tuned
plate. A second rectangular plate is included to limit the distance of
the mass. This limitation makes sure that the distance of the strik-
ing mass is kept within a certain size, even if there is too high force
applied to the mass. MfOM provides also a feature, called parametriza-
tion, which enables the user to create a simple instrument and dupli-
cate it and assign automatically generated parameter values to. Also,
it is possible to use MIDI files to play the generated instruments. The
parametrization further makes it easier to create complex models, be-
cause modeling by hand can be very exhausting, especially when the
user needs to change parameters of multiple objects. The original
instrument acts like a template, and if the user changes some values,
they will be assigned to the duplicates. The generated parameter val-
ues could also be accomplished algorithmically. In addition to the
parametrization feature, there is also a function called build-instrument,
which makes the creation of instruments even easier, by generating
them algorithmically. The user only has set a few initial parameter set-
tings, consisting of the resonator type, interaction type, list of pitches
that it should be able to play, material and the number of modes in
the resonator [12].

3
S Y N T H - A - M O D E L E R C O M P I L E R

The Synth-A-Modeler compiler is a collection of short scripts to gen-
erate DSP modules from MDL files, which will be later discussed in
section 3.2.1. It is the central unit in the Synth-A-Modeler Designer,
the GUI part of Synth-A-Modeler and main topic of the thesis. The
main goal of the Synth-A-Modeler compiler is to provide a toolchain
for artists to create DSP modules for different sound synthesis envi-
ronments with mechanical analog model specifications. It was also
important to make possible to target different environments and not
depend on a particular system. For this reason Synth-A-Modeler is
using the FAUST programming language to generate efficient DSP

code and use its ability to output its code to many external modules,
i. e. Max/MSP, SuperCollider, PD, VST and many more. Synth-A-
Modeler is the first software environment to facilitate the design of
physical models that contain components from the paradigms of dig-
ital waveguide (Stanford University), mass-interaction (ACROE), and
modal modeling techniques (IRCAM).

3.1 technical background

3.1.1 Requirements

According to Berdahl and Smith III, the design of the Synth-A-Modeler
compiler was led and influenced by several requirements.
“Synth-A-Modeler should be

• capable of efficient real-time synthesis for different host appli-
cations

• free and open-source

• modular

• easy to modify and extend

• a platform for education of the physics of mechanically vibrat-
ing systems

• accessible for artists, who have little or no experience in pro-
gramming, DSP or physics

• enable development of MIDI synthesizers

• compatible with haptic force-feedback systems [2].”

12

3.1 technical background 13

3.1.2 Overview

To provide as much modularity as possible, the Synth-A-Modeler
compiler is divided into several scripts with different functionality.
The compiler basically parses an MDL file and generates FAUST code.
The package consists of the following files:

• Synth-A-Modeler

• SAM-preprocessor

• SAM-regex

• physicalmodeling.lib

• SAM-fx.lib

All scripts except the file physicalmodeling.lib and SAM-fx.lib are
written in the programming language Perl.8 To make the parsing
more efficient, SAM-preprocessor pre-processes the input MDL file,
tidies its contents and removes clutter from it by eliminating unnec-
essary text. SAM-regex provides all Regular Expressions,9 which are
used for extracting the contents from an MDL file. Synth-A-Modeler
is the main script and does all the parsing of an MDL file and the gen-
eration of the output FAUST file. physicalmodeling.lib contains all
physical modeling primitives written in FAUST code, and SAM-fx.lib

provides DSP code for past-processing the audio outputs from the
models.

3.1.3 Faust

FAUST (Functional AUdio STream) is a functional programming lan-
guage, which is designed for real-time signal processing and synthe-
sis [15]. FAUST is a specification language, providing a notation for
describing signal processors. Programs are compiled, not interpreted.
The code is compiled into C++ source code, aiming to produce very
efficient code. The main-line version works at sample level in the time
domain, which makes it straightforward to implement low-level DSP

functions. It is self-contained and does not depend on external code,
which makes it easy to embed it in hardware. The FAUST language
is block-diagram oriented, and it essentially implements functional
programming using algebraic block diagrams. FAUST is designed to
make it easy to deployed on a large variety of audio platforms and
to describe signal processors with inputs and outputs. Because most
audio processors are signal processors with inputs, outputs and con-
troller parameters, they can be modeled easily with FAUST [15].

8 http://www.perl.org/

9 Regular Expressions provide a mechanism to select specific strings from a set of
character strings [14]

3.1 technical background 14

Figure 3 shows a schematic diagram of FAUST’s dataflow from
the FAUST code to an external. The usage of FAUST in Synth-A-

Faust
.dsp
file

Pd external

SuperColllider
external

Max/MSP
external

VST plugin

Custom host

Faust
compiler

.

.

.

Figure 3: FAUST dataflow diagram

Modeler enables the generation of efficient real-time audio synthesis
code. According to Berdahl and Smith III [2], there have been already
physical models implemented in FAUST in the past before Synth-A-
Modeler.

Listing 1: A simple spring represented in FAUST

spring(k) = (,) : - : *(k) : <: (*(-1.0),);

process = spring(100.0); �
Listing 1 shows a spring, modeled in FAUST. It takes to values as
input, represented with , subtracts them and multiplies the result
with the spring constant k. In this example k 100 (see listing 1).
Because physical forces are always bidirectional and FAUST’s signal
flow is from left to right, the output has to be delayed and fed back
to represent the force’s operation from both sides. This delay is repre-
sented in the FAUST code by a multiplication of the output with −1.
Figure 4 shows the block-diagram generated by FAUST.

3.1.4 Dataflow

As described in section 3.1.2, the Synth-A-Modeler compiler consists
of five files. Figure 5 shows the individual stages when compiling a
model specification file (.mdl) into a FAUST file (.dsp). The first step

3.2 modeling 16

Faust
.dsp
file

Pd external

SuperColllider
external

Max/MSP
external

VST plugin

Custom host

Faust
compiler .

.

.

Model
specification

file
.mdl

Synth-A-Modeler
compiler

Figure 6: Synth-A-Modeler dataflow diagram

3.2 modeling

3.2.1 The model specification file

Synth-A-Modeler uses a very simple structured and human-readable
format for specifying models. It is basically a list of objects and its de-
sign is influenced by the netlist format, which can be found in many
contexts. The most popular use is in circuit design and serves as a
universal exchange format [16]. It describes the connectivity of enti-
ties for a design. The Synth-A-Modeler specification file lists all the
model’s mechanical objects and their connections. Listing 2, adopted
from Berdahl and Smith III [2], shows a very basic model definition:

Listing 2: A simple model specification

link(4200.0,0.0),ll,m1,g;

touch(1000.0,0.03,0.0),tt,m1,dev1;

mass(0.001,0.0,0.0),m1;

ground(0.0),g;

port(),dev1;

audioout,a1,m1,1000.0; �
The model represents a very simple synthesizer with one resonance
frequency. It consist of mechanical elements that connect to the user’s
finger allowing the user to touch a virtual mechanical resonator. The
values require SI units and English names. A user would read the
model as follows: The mass m1 with 0.001 kg is connected to the

3.2 modeling 17

ground g1 with the position 0m via the linear link ll, which has a
combination of a spring with a stiffness of 400N m−1 and a damping
value of 0.001N m−1 s−1. This connection makes the mass resonate.
The port dev1, which represents to connection to the outside “world”
is connected to the mass m1 via the touch link tt. The touch link is
similar to the linear link, except a force is only exported if one object
pushes “inside” the other. The last object, the audioout a1 represents
an audio output, which outputs the position of a connected object,
in the example in listing 2, it output the position of the mass object
m1. A full MDL file with all possible entities, can be found in the
appendix. The general syntax of an object is the following:

objectname(parameters),unique identifiers,optional other objects;

The first word is the object name followed by a parameter list be-
tween parenthesis. The number of parameters depends on the object.
Following the parameter list, the next value is a unique identifier, fol-
lowed by a variable number of other values. In our simple example,
the link object has two other values after the identifier, which name
the other objects it links together. Table 1 shows all possible objects
that can be contained in an MDL file. The specific parameters are
specific to an object, like for a mass object its mass in kg. The generic
parameters are values like the unique identifier, which are needed for
almost all objects. In the case of link-like objects, the generic param-
eters can be also the connecting elements at the left and right side.
Last but not least, an MDL file can have text or comments which is
ignored when processing the file. These lines can be recognized by
the hash or pound sign (#).

3.2.2 Abstractions

Synth-A-Modeler is designed to make it easy to implement abstrac-
tion for models that are often used. For example there is already one
abstraction implemented. The resonator abstraction. It could have
been implemented in Synth-A-Modeler by using a mass object and a
ground object, connected with a linear link. It is often used and it is
handy to have a shortcut for it. The implementation lets us specify
multiple resonators in one object by putting additional values into
the parameter list. A definition would look like the following code
snippet:

resonators(400.0, 0.2, 0.01, 300.0, 0.2, 0.02),res1;

To specify more than one resonance frequency the three needed pa-
rameters are repeated in the list. For this reason the amount of pa-
rameters has always to be a multiple of 3.

3.2 modeling 18

Table 1: MDL object types and their parameters

Object type object parameters generic parame-
ters

mass mass in kg, initial position in
m, initial velocity in m s−1

unique identifier

port — unique identifier

ground initial position in m unique identifier

resonators frequency in Hz, Decay time
in s, Equivalent mass in kg,
. . .

unique identifier

link stiffness in N m−1, damping
in N m−1 s−1, center position
offset in m

unique identifier,
left connection,
right connection

touch stiffness in N m−1, damping
in N m−1 s−1, offset for en-
gagement in m

unique identifier,
left connection,
right connection

pluck stiffness in N m−1, damping
in N m−1 s−1, minimum dis-
placement difference for con-
tact in m, offset for engage-
ment in m

unique identifier,
left connection,
right connection

junction offset displacement in m unique identifier

termination type of termination (reflec-
tion coefficient in range of -
1.0 to 1.0, low pass strength
in non-negative integer)

unique identifier

waveguide characteristic wave
impedance in N m−1 s−1,
type of string (maximum
time delay in s, current time
delay in s)

unique identifier,
left connection,
right connection

audioout — unique identifier,
linear combina-
tion of source
identifier names
specifies the mix

faustcode — raw FAUST code

3.3 compilation result 19

3.3 compilation result

When compiling a MDL file with Synth-A-Modeler the result is a
FAUST .dsp file as shown in listing 3.

Listing 3: ”touch a resonator” FAUST file

import("physicalmodeling.lib");

bigBlock(m1p,gp,dev1p) = (m1,g,dev1,a1) with {

// Link-like objects:

ll = (m1p - gp) : link(4200.0,0.001,0.0);

tt = (m1p - dev1p) : touch(1000.0,0.03,0.0);

// Mass-like objects:

m1 = (0.0-ll-tt) : mass(0.001,0.0,0.0);

g = (0.0+ll) : ground(0.0);

dev1 = (0.0+tt);

// Additional audio output

a1 = 0.0+m1*(1000.0);

};

process = (bigBlock)~(,):(!,!, ,); �
The first line consists of the physical modeling library import and also
other imports, if present, would be located in the beginning of the file.
The next part is the bigBlock. It defines all the paths and feedback
paths. In listing 3 the objects m1, g1 and dev1 are fed back. The
letter “p” is added to all fed back objects and means “previous”. All
variables, like m1, g1, dev1, ll, tt, a1 are defined within the bigBlock

as output variables and are only accessible there.

3.4 creating externals

One important feature of the combination of Synth-A-Modeler and
FAUST is the possibility to generate externals in many formats and
for many different audio hosts. The combination of FAUST and the
gcc10 compiler makes it possible to generate these targets. Based on
Smith III [18], this section will describe the process of creating ex-
ternals for PureData, SuperCollider and Qt/GTK. The example MDL
file will be the touch a resonator.mdl and its compiled FAUST file
touch a resonator.dsp.

3.4.1 Pure Data

This section will describe how to generate a PureData [19] plugin
using the FAUST compiler, its architecture file puredata.cpp and the
script faust2pd. The latter was implemented by Albert Gräf [20] and

10 GCC is the compiler suite of the GNU project. It consist compiler frontends for many
languages like C, C++, Objective-C etc. [17]

3.4 creating externals 20

uses the Pure programming language.11 The section will not go into
detail with PureData and it is assumed that the reader is familiar
with it. The following commands will be automatically issued if the
user has installed the required components and uses the command
make puredata.

3.4.1.1 Generating a PureData plugin

A plugin for PureData can be compiled on Linux or MacOSX with
following commands on the command-line:

$ faust -a puredata.cpp -o touch a resonator.cpp touch a resonator.dsp

$ g++ -DPD -Wall -g -shared -Dmydsp=touch a resonator \

-I/usr/include/pdextended \

-o touch a resonator~.pd linux touch a resonator.cpp

The command on the first line generates a C++ file, which encap-
sulates the code for a PureData compatible plugin. PureData has
an Application Programming Interface (API) which lets the user pro-
gram a plugin, an externally compiled loadable module. The second
line creates the actual PureData plugin. Its a dynamic loadable bi-
nary object file with the name touch a resonator~.pd linux. For
this to work, PureData needs to be installed and as in the command
visible, the path /usr/include/pdextended has to be present on the
machine, consisting of the PureData C header files, with the main
file m pd.h. The last could be installed in some other place and it is
advised to look up its location before compiling. On Mac OS X the
PureData include files are usually in the application’s directory, in
/Applications/Pd-extended.app/Contents/Resources/include/ and
the second command has to be changed accordingly.

3.4.1.2 Using faust2pd to generate a PureData patch

Although the PureData plugin generated in section 3.4.1 is fully func-
tional, it is only the “raw” PureData object. To use it in PureData the
user has to create a patch. The FAUST install includes the faust2pd

script, which generates a PureData patch automatically. It has the
advantage that it creates also sliders and other elements, which were
specified in the MDL file as raw FAUST code. As already mentioned
the script is written in the Pure programming language and it is of
course necessary to install it before using the script. Install instruc-
tion can be found on the Pure website12. To generate the patch file
following commands have to be executed on the command-line:

$ faust -xml -a puredata.cpp -o touch a resonator.cpp \

touch a resonator.dsp

$ faust2pd touch a resonator.dsp.xml

11 https://code.google.com/p/pure lang/

12 https://code.google.com/p/pure lang/

3.4 creating externals 21

faust2pd uses the touch a resonator.dsp.xml file, which is gener-
ated by faust when using the option -xml. The generated patch can
be loaded in PureData and could look like the patch shown in fig. 7.

Figure 7: “touch a resonator” PureData patch

3.4.2 SuperCollider

SuperCollider is a real-time programming environment for sound
synthesis and algorithmic composition [21]. It is assumed that the
reader is familiar with SuperCollider. For further reading and in-
depth information it is suggested to read Wilson et al. [22]. With
FAUST it is also possible to create an external from a dsp file for Su-
perCollider, because it has also a plugin API similar to the one, Pure-
Data provides. The resulting plugin is a dynamic loadable binary
object. FAUST provides the script faust2supercollider to generate
a SuperCollider plugin:

$ faust2supercollider touch a resonator.dsp

On Mac OS X additional steps are needed to be able to compile the
dynamic library. Usually the SuperCollider ditribution does not in-
clude the header files, which are needed for the compilation process,
you also have to download the SuperCollider source code and set the
environment variable SUPERCOLLIDER HEADERS to point to the source
folder. You have to set this variable in ~/.bash profile (if you use
bash) by adding the following line to it

SUPERCOLLIDER HEADERS=pathtoSCsource/common/Headers

export SUPERCOLLIDER HEADERS

where pathtoSCsource is the root of the SuperCollider source direc-
tory. The output is a SuperCollider class file, with the extension .sc,
as shown in listing 4 and a dynamic load library with the extension
.so on Linux and .scx on Mac OS X.

3.4 creating externals 22

Listing 4: “touch a resonator” SuperCollider class

FaustTouchAResonator : MultiOutUGen

{

*ar { | in1, in2, mass of resonator(0.001), stiffness of

resonator(4200.0), touch interaction damping(0.03), touch

interaction stiffness(100.0) |

^this.multiNew(’audio’, in1, in2, mass of resonator,

stiffness of resonator, touch interaction damping,

touch interaction stiffness)

}

*kr { | in1, in2, mass of resonator(0.001), stiffness of

resonator(4200.0), touch interaction damping(0.03), touch

interaction stiffness(100.0) |

^this.multiNew(’control’, in1, in2, mass of resonator,

stiffness of resonator, touch interaction damping,

touch interaction stiffness)

}

checkInputs {

if (rate == ’audio’, {

2.do({|i|

if (inputs.at(i).rate != ’audio’, {

^(" input at index " + i + "(" + inputs.at(i) +

") is not audio rate");

});

});

});

^this.checkValidInputs

}

init { | ... theInputs |

inputs = theInputs

^this.initOutputs(4, rate)

}

name { ^"FaustTouchAResonator" }

} �
These files has to be placed into SuperCollider’s extension folder to
make it availabel to SuperCollider. The extension folder differs on
different operating systems. On Mac OS X it is

~/Library/Application Support/SuperCollider/Extensions

on Linux it is usually

~/.local/share/SuperCollider/Extensions

3.4 creating externals 23

3.4.3 Qt/GTK

With FAUST it is possible to generate standalone applications, which
are compatible with the JACK Sound Server.13 The user can choose
between a Qt14 and a GTK15 standalone application. The difference
is that the GUI framework that is used to create the application. There
are two scripts provided by FAUST, faust2jaqt and faust2jack. To
generate a standalone application following commands have to be
run on a dsp file:

$ faust2jaqt touch a resonator.dsp

for a Qt application or

$ faust2jack touch a resonator.dsp

for a GTK application. The output of these scripts is an executable
called touch a resonator on Linux and an executable touch a resonator.app

on Mac OS X. The resulting applications are shown in fig. 8.

(a) Standalone Qt application (b) Standalone GTK application

Figure 8: Standalone applications

13 http://jackaudio.org/
14 https://qt-project.org/
15 http://www.gtk.org/

Part III

S Y N T H - A - M O D E L E R D E S I G N E R

4
D E S I G N

Synth-A-Modeler Designer, the application developed in the course of
this thesis, is the front-end for the Synth-A-Modeler compiler [2] dis-
cussed in chapter 3. Its main purpose is, as the applications’ name
already suggests, to design and create physical models graphically,
without having to edit the textual form of the model. Additionally
it should give easy access to physical modeling for composers, artist
and students, who prefer visual thinking. A GUI would improve some
of Synth-A-Modeler’s usability requirements, which were discussed
in section 3.1.1. It would be an even more descriptive educational
platform for the exploration of vibrating mechanical systems. Fur-
thermore the graphical representation and graphical design could be
also included in the creative process of physical modeling, but of
course this idea has to be evaluated more intensively, by observing
the usage of the GUI over a longer range of time following the com-
pletion of this thesis.

4.1 specification

The design of Synth-A-Modeler Designer can be divided into two cat-
egories. The first category describes the visual functionalities, for
instance how the application’s appearance should be and what ac-
tions can be performed by the user. This also would describe each
component of the application, i. e. which detail information can be
seen on them. Additionally it will outline which user interface con-
cepts have been adopted. The second category will describe technical
parameters, which have been formulated to create an usable applica-
tion. To provide a good usability experience, both, the visual and the
technical specification, have been derived from established concepts
seen or experienced in other applications.

4.1.1 Visual specification

The main component of the application, the model editing window,
will show the physical models loaded from a model specification file
and on a canvas-like area where the objects will have a variable posi-
tion. A quite similar concept can be seen in visual programming envi-
ronments such as Max/MSP16 and PureData.17 The objects are shown
on a canvas and their position can be changed by dragging them with

16 http://cycling74.com/products/max/

17 http://puredata.info/

25

4.1 specification 26

the mouse to the desired location. This concept is very suitable for
Synth-A-Modeler Designer, because it has to visualize physical models
and make it possible to change their positions and arrangement and
interact with them by clicking or dragging. The application will also
have a menu bar with pull-down menus, consisting of all actions that
can be performed on the MDL file. Because Synth-A-Modeler Designer
will utilize the Synth-A-Modeler Compiler, an area will be necessary
which shows the text that the compiler generates when executed. Fig-

Figure 9: Mockup of the main Synth-A-Modeler Designer interface (by Edgar
Berdahl)

ure 9 shows a mockup of the main interface, with the model editing
window, the compiler output window and the menubar. The win-
dows are floating and resizeable and the content of the model editing
window is also zoomable and has scroll bars to allow to adjust the
view. If there are a lot of objects on the canvas it can be helpful to
restrict the viewing area to a smaller part of the model. In this case
the scroll bars can be used to visit other parts of the model. The
top bar of the window should show the model name to help to nav-
igate through windows in the case when having many models open.
There will always be only one compiler output window, which will
show the compiler output from all models. The menu bar will have
the standard entries, such as “File” and “Edit” but also entries which
are specific to Synth-A-Modeler Designer. The location of the menubar
will be managed by the operating system, for example on Mac OS it
will be in the Mac menu bar, and on other operating systems like Win-
dows and Linux it will be located in the window itself. The mockup
in fig. 9 shows also an “Insert” entry, which will provide the neces-
sary actions to insert physical objects and a “Generate” entry with the
commands to run the Synth-A-Modeler Compiler and the FAUST com-
piler to generate externals. The “File” menu entry (fig. 10a) provides

4.1 specification 27

(a) “File” pull-down menu (b) “Edit” pull-down menu

(c) “Insert” pull-down menu (d) “Generate” pull-down menu

Figure 10: Mockup of Synth-A-Modeler pull-down menus (by Edgar Berdahl)

all actions needed to manage the MDL file. Here the user can open,
save, create a new and close the model as well as quit the application.
The “Edit” (fig. 10b) entry provides actions for copy and paste, undo
and redo, selection of objects and defining raw FAUST code, which
is shown as “define variables.” It shows also actions for zooming in
and out, reversing direction of the connection of objects. The “Insert”
menu (fig. 10c) will show a list of all possible physical object that are
available in Synth-A-Modeler Designer, and upon selecting one of the
items, the object will be added to the canvas. The color of the entries
indicate the color of the corresponding physical objects available in
Synth-A-Modeler Designer. The “Generate” (fig. 10d) menu has two
main entries, Generic Faust Code and External Object. When clicking
the first one the Synth-A-Modeler Compiler will be called to generate
a .dsp file from the .mdl file. When clicking on the External Object
item, the FAUST compiler will be called to generate an external object.

4.1 specification 29

Not segmented Segmented

Figure 14: Comparison, unsegmented and segmented connections

code there is another window, which can be opened on clicking on
“define variable” item in the “Edit” pull-down menu. It provides the
user a text-editor like interface to enter FAUST code line by line. The
gain values of audio outputs are set in a dialog window which opens
when the user clicks on an audio connection between an object and
an audioout object.

4.1.2 Technical specification

In addition to the visual specifications in section 4.1.1, also technical
specifications have been defined for Synth-A-Modeler Designer, to en-
sure a positive user experience while editing physical models. This
section will discuss the most important points.

Due to the fact that not all objects can be connected to each other,
Synth-A-Modeler Designer should prevent such cases. Mass-like ob-
jects are only connected via link-like objects and vice versa. That
means for example, that two link-like objects should not be able to
get connected. A direct connection between a mass and a port object
should also be prevented.

Also for waveguide objects there are certain connection rules. A
waveguide object can only be connected to a termination or a junction
object, and link-like objects but no mass-like objects can connect to a
junction object, with the additional restriction of maximum one link-
like object per junction. An exception is the audioout object, which
only can be connected to all other objects via a special audio connec-
tion object, which only will be visible in the graphical representation
of an .mdl file, not in the file itself. Additionally, the physical model
specification file format has to be extended, to store the graphical po-
sition on the editing canvas. It has been decided to store the x and y
values at the end of the objects line as “commented text” with a pre-
ceding # sign. An object with position values (100,150) would look
like the following code snippet from an .mdl file:

4.2 software architecture 30

mass(0.001, 0.0, 0.0), m1; # 100, 150

Please note the end of the line. This notation would prevent the Synth-
A-Modeler Compiler to parse the values and eventually fail because
of the unsupported code. In case of missing position data, Synth-
A-Modeler Designer should be able to assign position values and align
the objects automatically. The specific method and its implementation
will be discussed later in this thesis in section 6.2.

As discussed in section 4.1.1 the editing canvas has to be zoomable.
When the canvas is zoomed in and not everything of its contents
is visible, scroll bars should make it possible to get to all parts of
the viewport. This behavior should be controlled not only by click-
ing and dragging the scroll bars with the mouse, but also with key
bindings and with commands in the pull down menus. It should
also be prevented to assign the same identifiers to two objects and
therefore the parameter editing window should automatically imple-
ment a method to prevent this. Furthermore, it should be possible to
do common interactions, that are standard in many applications and
which the user is familiar with, such as copy, paste and cut of objects.
The parameters have to be copied along with the objects, however the
identifiers have to be changed automatically. Additional housekeep-
ing should also be implemented, to correct values that are entered
by the user and does not fulfill format specifications, e. g. when the
user enters a numeric value as integer, it should be automatically
corrected to a floating point value, because Synth-A-Modeler Compiler
only handles floating point values.

4.2 software architecture

The Synth-A-Modeler Designer is intended to be a desktop application
for the platforms Mac OS, Windows and Linux and multiple archi-
tectures, such as Intel18/AMD19

32 and 64 bit processors as well as
ARM20 processors. The main critical part for a good performance of
the application is the graphical visualization of the physical objects
and should be carefully designed. Apart from an object oriented and
modular design, which makes a collaboration and later extension of
the application easier, it has been decided to implement the appli-
cation using the MVC pattern. The MVC pattern is a group of three
class types and originates from Smalltalk-8021 [23], where it has been
used to build user interfaces. It consists of three kinds of objects:
the Model, the View and the Controller. That means that the func-
tionality of an application is divided into these three groups. The

18 http://www.intel.com

19 http://amd.com

20 http://www.arm.com/

21 Smalltalk is a object-oriented, dynamically typed programming language http://

smalltalk.org/

4.2 software architecture 31

model holds the data to be presented and implements also logic of
the data structures and is independent from the controller and view.
The view is responsible for displaying the data of the model and also
for the interaction between user and application. Usually it knows
about the model and about the controller, but it is not responsible
for processing data generated from user interactions. The controller
manages views and gets commands from them and sends them to
the model to manipulate its data. A schematic of the MVC compo-
nents collaboration shows fig. 15. This kind of decoupling of com-

Figure 15: Collaboration of MVC components22

ponents makes the design of the application more flexible, reusable
and modular. It will be easier to modify and add functionality later
to the application, which accommodates the general requirements of
the Synth-A-Modeler project. The decoupling of the view and model
is established by a subscribe/notify protocol [23]. Furthermore, as
Erich et al. states, a view has to mirror the state of the model ex-
actly with its appearance [23]. Every time the data of the model
gets changed, it notifies dependent views to update themselves. This
strategy allows having different views for the model. In the case of
Synth-A-Modeler Designer, the different views would be the represen-
tation of the objects on the canvas on the one hand and the listing of
object parameters on the other. Both views get their data from the
same model but they provide a different representation of it. MVC

also allows to modify the response to user input without modifying
its visual display, e. g. it is possible to change a responding action,
which is caused by performing a keyboard shortcut command.

22 Source: https://commons.wikimedia.org/wiki/File:MVC Process.svg

5
T E C H N O L O G Y S E L E C T E D

This chapter will focus on the technology selected for the develop-
ment of Synth-A-Modeler Designer. The goal was to find the opti-
mal tools for the tasks needed for the development, matching the
requirements and optimizing development time. For example, it
has been decided to build a cross-platform application in order to
make it as accessible as possible, which made the pool of options
smaller. The JUCE Library is the C++ toolkit used to develop Synth-
A-Modeler Designer. Also the Regular Expression Library for parsing
the model specification file had to be chosen to support all platforms.
Google’s re2 library fulfilled the needs for this task while being fast,
having small overhead and simple syntax. The following sections will
give a deeper insight into the specific tools used to develop Synth-A-
Modeler Designer.

5.1 juce c++ library

The JUCE (Jules’ Utility Class Extensions) library23 is a general pur-
pose C++ class library for the development of cross-platform applica-
tions. It has been released in 2004 and is developed and maintained
by Raw Material Software24 and has a dual GPL/commercial license.
The library is similar to C++ libraries like Qt25 or wxWidgets26 and
contains almost all parts and tools needed for the creation of applica-
tion, which use GUIs, graphics, sound or networking. It provides also
wrapper classes for common audio plugins like VST, AudioUnit27

and ProTools’28 RTAS29 and AAX30 formats. With the JUCE library
it is possible to write applications and deploy them on various plat-
forms with the same codebase. The supported platforms are the fol-
lowing:

• Windows XP, Vista and Windows 7,

• Mac OS 10.4 and later,

23 http://rawmaterialsoftware.com/juce.php

24 http://rawmaterialsoftware.com

25 https://qt project.org/

26 http://wxwidgets.org/

27 AudioUnit is a audio plugin architecture developed by Apple http://developer.

apple.com/documentation/MusicAudio/Conceptual/AudioUnitProgrammingGuide/

28 Misc production software by the company Avid http://www.avid.com/products/

family/Pro Tools

29 RTAS is an audio plugin architecture used in ProTools
30 AAX is an audio plugin architecture used in ProTools

32

5.1 juce c++ library 33

• iOS 2.1 and later,

• Linux with kernel 2.6 and later, and

• Android with NDK-v5 and later.

JUCE supports the use of following compilers:

• GCC version 4 and later,

• LLVM Clang version 1.5 and later, and

• Microsoft Visual Studio Visual C++ version 6 and later.

As the JUCE website [24] states, JUCE provides an extensive range of
features, which consist of classes for graphical user interfaces, graph-
ics, OpenGL, networking, cryptography, image processing, audio,
XML parsing and other features. With this capacity, the usage of
third-party libraries can be reduced to a minimum. Compared to
other libraries like Qt and wxWidgets, JUCE has a lot of audio related
features, originating from the fact that JUCE was developed as part of
the development of the audio sequencer software Tracktion.31 JUCE
has a very good and thorough documentation,32 a user forum,33 and
provides very good example projects which are a good starting point
for development with the JUCE library. Although it is possible to set
up JUCE projects manually, an application called Introjucer has been
developed for the purpose of creating and managing projects. The
user has to specify the files and settings for a project, and then the
Introjucer generates the necessary project files for the various plat-
forms. It generates the Xcode project on Max OS and for iOS, Visual
Studio project files on Windows, Linux Makefiles and Ant34 builds for
Android. JUCE provides also the visual GUI editor application “The
Jucer”, which makes possible to edit and create user interface com-
ponents and save them as C++ code. JUCE has been awarded with
Dr. Dobb’s Jolt Productivity Award35 and has been used in many free
and commercial projects.36 As stated in the beginning of this section
JUCE has a dual license. It is released under the GNU General Public
License version 2 [25], which means that it can be copied and dis-
tributed freely and does not cost anything, when used in open-source
applications. This also means it has some restriction regarding the us-
age of third party libraries, and it has to be made open-source. It is
also possible to purchase a commercial license to avoid the restric-
tions and to be able to use JUCE for closed-source projects.

31 http://www.tracktion.com/

32 http://rawmaterialsoftware.com/juce/api/classes.html

33 http://rawmaterialsoftware.com/index.php

34 Ant is a tool for automated building of Java software http://ant.apache.org/

35 http://www.drdobbs.com/joltawards/jolt productivity awards app libraries a/

227200111

36 http://rawmaterialsoftware.com/wiki/index.php/3rd party JUCE

Applications

5.1 juce c++ library 34

Until February 2012,37 JUCE was a regular C++ library, which had
to be built as a static or dynamic library in order to link against it
and use it in a project. However, the developer of JUCE, Julian Storer
recently transformed it into a “unity build.” As OJ Reeves writes in
his article, a unity build is technique to save compilation and link time
by including many cpp files (in this case the whole JUCE library) into
a single separate cpp file and to compile only that unity cpp file [26].
Additionally, JUCE is divided into several logical modules for the
purpose not having to include all the functionality provided by JUCE,
only the needed. The modules are the following:

• audio basics
• audio devices
• audio formats
• audio plugin client
• audio processors
• audio utils
• browser plugin client
• core
• cryptography
• data structures
• events
• graphics
• gui basics
• gui extra
• opengl
• video

For the development of the Synth-A-Modeler Designer not all of
JUCE’s functionality is required and the only modules needed are

• core
• cryptography
• data structures
• events
• graphics
• gui basics
• gui extra

With this feature to separate the library, compilation time can be
saved and also the compiled executable size will be smaller. The
selection of the modules happens in the Introjucer. There is also the
option to include the JUCE codebase into the project to guarantee a
specific version of the library while under development. The other
option is to have JUCE at an external location and not to include it
in the project. For the time of the development the latter option will
be used to be able to follow the steady development of JUCE. When
Synth-A-Modeler Designer will be released, it will be switched to the

37 https://github.com/julianstorer/JUCE/commit/aa6e9d38deca22d661218cabcbb745f6a0fea64b

5.2 regular expressions 35

first option to prevent breakage in case of some changes in the JUCE
API.

When creating a project with the Introjucer tool, it creates a reason-
able directory structure as the following structure shows:

JuceExampleProject/

Builds/

Linux/

Makefile

JuceLibraryCode/

module/

AppConfig.h

BinaryData.h

BinaryData.cpp

JuceHeader.h

Source/

Main.cpp

JuceExampleProject.jucer

A project directory holds the Introjucer project file (JuceExampleProject.jucer),
the Builds directory with files needed to build the application (in the
example only a Linux makefile is shown), the JuceLibraryCode direc-
tory with the JUCE library files and of course the Source directory
with the application’s source files. The folder JuceLibraryCode consists
of an additional modules folder, which contains the JUCE header files.
AppConfig.h has all preprocessor definition for the JUCE modules.
When having a binary file, i. e. the application’s icon or images for
the user interface, the usual way is to include them in Introjucer and
mark them as binary files. Introjucer automatically converts them into
the source files BinaryData.h and BinaryData.cpp which then can be
included in the project. This way it is not necessary to distribute as-
sets separately, but rather including them directly into the application
binary file. The file JuceHeaders.h is the file which has to be included
in the example application to be able to use JUCE code.

5.2 regular expressions

For the lexical analysis and tokenization of an MDL file in Synth-A-
Modeler Designer, it has been decided to use regular expressions.
“Regular Expressions (REs) provide a mechanism to select specific
strings from a set of character strings” [27]. With REs it possible to
define patterns that represent a set of character or the order of a set
of character. There are many cross-platform RE libraries written in
C++. Two popular libraries are PCRE38 and Boost.Regex.39 The latter
has been integrated into the latest C++ standard C++11,40 but to be

38 http://pcre.org/

39 http://www.boost.org/doc/libs/1 53 0/libs/regex/doc/html/index.html

40 http://www.open std.org/jtc1/sc22/wg21/docs/standards#14882

5.3 git 36

compatible with older compilers, which do not implement C++11, it
has been decided to use an external library. One criteria for the RE

library was to be cross-platform. Both mentioned libraries are cross-
platform. Another criteria was also to have a small footprint, i. e. to be
very small and with no or few dependencies. PCRE and Boost.Regex
do not match these criteria and other libraries had to be evaluated. Fi-
nally, it has been decided to use Google’s RE2.41 It uses also the Perl
syntax like PCRE. RE2 is very fast, because in contrast to the other
mentioned libraries, it uses automata theory [28] which guarantees
a linear search run time. Details about the implementation can be
found in Cox [29]. The library is not completely compatible with the
Windows operating system, but there is a Windows port42 available
which is used in the Windows version of Synth-A-Modeler Designer.
This section will not go into detail how REs work and the RE syntax,
however it will only describe parts, which are related to the usage in
Synth-A-Modeler Designer. Consider a line from an MDL file like the
following:

mass(0.001, 0.0, 0.0),m1;

In order to read and separate all values, we do not go through the
line character after character, instead we define a RE pattern which
matches and extracts the values. The matching RE pattern is the fol-
lowing:

\A\s*(mass)\(\s*(\s*[^\n\r\a\e\f]*\s*)\s*\)\s*,\s*([a-zA-Z\d]*)\s*;\s*$,

which would achieve the same result in Perl. This RE would extract
the type of the object (mass), the list of parameters (0.001, 0.0, 0.0)
and the unique identifier (m1). The parameter list has then to be
extracted into single parameter values separately. A full list of RE2’s
syntax can be found on the RE2 website.43

5.3 git

Git44 has been chosen to be the source code management (SCM) sys-
tem for the development of Synth-A-Modeler Designer. Git is a dis-
tributed revision control and SCM system and was developed by Linux
Torvalds for the development of the Linux kernel. Its main require-
ment was to be very fast and to ensure the integrity of the source
code which is managed by Git [30]. The integrity is secured cryp-
tographically and it is guaranteed that same code that goes into the
system and comes out, remains exactly the same and will not be cor-
rupted. As mentioned before, Git is a distributed system and unlike
other popular and widespread SCM systems like Subversion,45 which

41 https://code.google.com/p/re2/

42 https://code.google.com/p/re2win/

43 https://code.google.com/p/re2/wiki/Syntax

44 http://git scm.com/

45 http://subversion.apache.org/

5.4 github 37

keeps its content in a central repository, you can commit changes lo-
cally and no network connection is needed to perform these actions.
Its feature to merge changes reliably and fast and additional useful
features like stashing uncommitted changes and committing changes
line-by-line enhance productivity enormously. Git is used by many
major open-source projects like the Linux kernel, Gnome or Android
and companies like Google, Twitter and Netflix. Git has been used
in many personal projects in the past and has been proven as very
reliable and flexible.

5.4 github

Github46 is a web-based hosting service for source code and software
development. As the name suggests it uses Git as SCM system. Github
was founded in 2007 and is with more than 3 million user the most
popular47 web service for software development. The company offers
free accounts with public repositories as well as paid accounts which
enable the use of private repositories. Github not only enables hosting
of the source code, it is possible to set up a Wiki and a Bug tracker
and an Issue system. The Wiki host the helps system for Synth-A-
Modeler and all feature discussions and bug reporting will happen on
Github. With Github’s collaboration features it is a very good platform
to work together it was an easy decision to choose the hosting of
Synth-A-Modeler Designer. The project’s URL is:

https://github.com/ptrv/Synth-A-Modeler

46 https://github.com/

47 https://github.com/blog/865 github dominates the forges

6
I M P L E M E N TAT I O N

This chapter describes the implementation details of the Synth-A-
Modeler Designer application in its final state. Additionally, section 6.3
documents how to extend Synth-A-Modeler Designer with a new type
of object, and particularly it will go into detail which steps are needed
for the extension and where exactly in the source code new code has
to be added to make the new object fully functional. The final section
of this chapter (section 6.4) will describe some limitations that have
come up during implementation.

The project’s source code directory structure is the following:

Synth-A-Modeler/

SaM/

extras/

gui/

juce/

The SaM directory consist of the Synth-A-Modeler Compiler, the di-
rectory juce contains the JUCE source code, while the directory gui

holds all files for the Synth-A-Modeler Designer. All other files, such
as installer scripts, model specification file syntax highlighting for
two popular text editors Emacs48 (see appendix A.3) and VIM49 (see
appendix A.4) and files not primarily related to Synth-A-Modeler Com-
piler and Designer can be found in the directory extras. This chapter
will only describe the contents of the gui folder, whose content is
shown below.

gui/

BinaryData/

Builds/

Docs/

JuceLibraryCode/

Libs/

re2/

Source/

Testsuite/

Because of the fact that the project was created with the Introjucer
program, it is based on an directory structure shown in section 5.1,
and therefore only parts of it will discussed, which has not been cov-
ered in section 5.1. The folders BinaryData, Docs and Libs are self
descriptive and contain the documentation files, the binary files used

48 https://www.gnu.org/software/emacs/

49 http://www.vim.org/

38

6.1 application components 39

in the graphical interface and the external libraries that are used in
the project, such as the re2 regular expressions library.

The structure of the source files is grouped thematically into folders
and is the following:

Source/

Application/

Controller/

Graph/

Models/

Utilities/

View/

6.1 application components

This section will provide in-detail information about Synth-A-Modeler
Designer’s application components and their implementation. This
includes the implementation of the core components (section 6.1.1)
which are responsible for the application’s main infrastructure, such
as the main application class, managing windows or the undo/redo
mechanism that has been implemented to provide common desktop
application functionality. In addition, the section will describe other
major components and functionality, for example the internal rep-
resentation of a model specification file (section 6.1.2), the different
view components (section 6.1.4) or the interaction of Synth-A-Modeler
Designer and external tools (section 6.1.6), such as the Synth-A-Modeler
Compiler, described in chapter 3 and the FAUST exporter tools, de-
scribed in section 3.4.

6.1.1 Core components

One of the core components of Synth-A-Modeler Designer is the class
SynthAModelerApplication which is a subclass of JUCEApplication

and the main entry point o the application. It gets instantiated in
Main.cpp with the macro START JUCE APPLICATION and handles the
initialization and shutdown of the application. Every JUCE appli-
cation has to declare a subclass of JUCEApplication and implement
its pure virtual functions. This way, JUCE handles all the platform
specific code under the hood and the library user does not have to
implement it by himself or herself. The SynthAModelerApplication

class is also responsible for the window management. It consists of
an instance of OutputWindow, which is an read-only text editor win-
dow displaying the output from the Synth-A-Modeler Compiler and
FAUST tools. When running Synth-A-Modeler Designer there is only
one instance of OutputWindow and when editing multiple models, all
compilers write to that one instance, using the function

void writeToDebugConsole(const String& title,

6.1 application components 40

const String& textToWrite,

bool isBold)

or

void writeToDebugConsole(const String& textToWrite,

bool isBold)

The former also prints a title before the actual text. The last function
argument, bool isBold, can be used to influence the font type for text
to print. Setting it to true prints the text with bold font and using
false, prints the text with a regular font. SynthAModelerApplication
also has a list of MainAppWindow objects, stored as pointers in an
OwnedArray data type. OwnedArray is a array-like data type provided
by JUCE for holding pointer type objects, which takes the ownership
of the object and will delete the object automatically when it is re-
moved from the array or the array itself gets deleted.
MainAppWindow is the model editing window, which is a subclass of

DocumentWindow. It is basically a re-sizable window with a title bar,
close, minimize and maximize buttons. A DocumentWindow functions
as a frame for holding a content component, which will contain all
view components related to model editing functionality and will be
later discussed in detail in section 6.1.4. A new window is created
for every MDL file, except for the case when the window only con-
tains an untitled model, e. g. a model which has no file attached to
it. In that case the MDL file will be loaded into the untitled window.
The MainAppWindow is therefore responsible to close, open and set the
MDL file properly. Another important role of the MainAppWindow is to
hold the two controllers, the MDLController and the ObjController,
which are responsible to delegate all actions coming from the view to
the model and vice versa and will be discussed later in section 6.1.5.
The controllers are wrapped with a ScopedPointer, which is a data
type similar to a regular pointer with the exception that it gets deleted
when it goes out of scope, e. g. when the MainAppWindow gets deleted
by closing an MDL file. This makes memory management easier, be-
cause the implementation does not have to take care of the deletion
of the object and ensures that the memory will definitely be freed.

The menu bar is also generated in SynthAModelerApplication. It
has to be made sure that a proper platform specific menu bar gets
created individually. On a machine with Mac OS running the menu
bar is different. It is placed on top of the screen and not like on
Windows and Linux in the application window itself. JUCE offers the
function setMacMainMenu(MenuBarModel* menuBarModel) to activate
the Mac specific menu. When Synth-A-Modeler Designer is running on
a Mac this function gets called and it sets the menu bar. The menubar
entries are not generated all in one place, rather they get added to
the menu bar in the classes, where its functionality appears. For
example, the menu bar item for closing the application gets added

6.1 application components 41

to the menu bar in the SynthAModelerApplication class, because it is
a functionality for the whole application, however the menu item to
insert a new object to the model editing canvas will be added to the
menu bar in their respective components because it is a command
which is related to a model and its window and not to the whole
application. This way the menu items appear only where they have
functionality. Otherwise they are deactivated.

To improve readability of the source code, all commands that are
passed within the application have named values. These commands
are for example used when clicking a menu item. The commands are
integer values and can be used in switch statements. Listing 5 shows
some CommandIDs

Listing 5: Example CommandIDs

namespace CommandIDs

{

static const int newFile = 0x200010;

static const int open = 0x200020;

static const int closeDocument = 0x200030;

static const int saveDocument = 0x200040;

static const int saveDocumentAs = 0x200045;

} �
and listing 6 demonstrate how they are used.

Listing 6: Example usage of CommandIDs

switch (commandID)

{

case CommandIDs::newFile:

// create new mdl file

break;

case CommandIDs::open:

// open mdl file

break;

} �
To provide persistent user settings for the application throughout
multiple sessions, the class StoredSettings has been introduced. The
primary function of this class is to read and write customizable ap-
plication parameters to a settings file. It is implemented as a sin-
gleton class, which is a pattern, whose intent is to ensure that a
class has only one instance with a global point of access to it [23].
This pattern guaranties that the application is not writing the file
twice at the same time. It also provides a mechanism to save the
settings file at a default platform specific location. On Linux it is
the user’s HOME folder, whereas on Mac OS settings are stored in

6.1 application components 42

~/Library/Application Support/. The settings file itself is an XML-
formatted50 file as shown in listing 7.

Listing 7: Synth-A-Modeler Designer user settings file

<?xml version=" 1.0 " encoding="UTF−8"?>

<PROPERTIES>

<VALUE name="currentexporter" val="puredata"/>
<VALUE name=" recentFiles " val=" "/>
<VALUE name=" lastFi les " val=" "/>
<VALUE name="showcompilerwindow" val="1"/>
<VALUE name="lastMainWindowPos" val="241 120 800 600"/>
<VALUE name="lastDebugWindowPos" val="1 47 400 400"/>

</PROPERTIES> �
An additional core feature of Synth-A-Modeler Designer, which also
has been specified in the requirements for the application, is undo
and redo of user interactions and edits on the elements of a model.
These include adding and removing objects, changing positions or
changing the parameter values of objects. It is also a feature, which
is implemented in many application and makes it possible to switch
between different changes and also to revert back to an older state
of the model. The user will be able to use this feature by click-
ing on the corresponding menu item or executing the shortcut key
combination, which is Ctrl+Z for undo and Ctrl+Shift+Z for redo.
On Mac OS the shortcut uses the Cmd key instead of the Ctrl key.
JUCE provides classes to implement this functionality. The relevant
classes are UndoManager and UndoableAction. The UndoManager man-
ages a list of undo and redo actions and makes it possible to move
backward and forward through the list. The actions are subclasses
of UndoableAction, which perform all needed commands. To per-
form an actual action, an object has to be created and passed to the
UndoManager’s perform() function with the signature:

bool UndoManager::perform(

UndoableAction* action,

const String & actionName = String::empty

)

UndoManager also supports grouping of actions. A group is called a
“transaction” and contains all performed actions between calls to the
function beginNewTransaction(). When performing an undo or redo,
the “transaction” with the grouped actions gets undone or redone.
In Synth-A-Modeler Designer every open model instantiates its own
UndoManager, which provides a separate undo/redo history for each
open model. As mentioned, an action is an instance of a subclass of
UndoableAction, which has to be created for all actions that should

50 http://www.w3.org/TR/REC xml/

6.1 application components 43

be undo-able or re-doable. Listing 8 shows the pseudo code for a
AddObjectAction, which adds an object and removes it when the user
performs an undo.

Listing 8: Pseudo code for an UndoableAction to add an object

class AddObjectAction : public UndoableAction

{

public:

AddObjectAction()

{

}

~AddObjectAction()

{

}

bool perform()

{

Object* obj = new Object();

addObject(obj);

objectAdded = obj;

return true;

}

bool undo()

{

removeObject(objectAdded);

return true;

}

private:

Object* objectAdded;

}; �
Writing an UndoableAction involves the implementation of a perform()

and an undo() function and in the case of AddObjectAction also to
store the new value. Listing 8 is a very much simplified example
and the creation of an element involves a lot more then the code
suggests. Further details will be discussed later in section 6.1.5 and
all UndoableActions can be observed in the class ObjectActions.h in
Synth-A-Modeler Designer’s source code.

6.1.2 Internal MDL representation

When parsing a model specification file in Synth-A-Modeler Designer,
it has to be transformed into objects within the application. This
procedure is mandatory for having access to its contents and to be
able to use the model for further processing. This is a common pro-
cess in software development when dealing with data and is called
serialization. Consequentially, data-types for all possible model ele-
ments have to be generated. In the case of Synth-A-Modeler Designer
it has been decided to use the ValueTree class, provided by JUCE, for
the purpose. ValueTree is a tree structure data-type for storing data

6.1 application components 44

without a strict form and also supports the UndoManager. It stores
its content in a list of named properties and can hold any number of
sub-trees. Each ValueTree has a type name, essentially like an XML
tag in an XML file, and can be also converted easily to an XML file
and vice versa. The best practice for ValueTrees, according the JUCE
documentation [31], is to create each object on the stack because its
contents are store as shared objects types, which means, an instance
is only a reference to the original value and can be copied around
cheaply. To actually create a deep copy of a ValueTree, an explicit
call to createCopy() is required. The documentation explains fur-
ther, that all methods of ValueTree that change data take an optional
UndoManager object, which is used to track changes to the object [31].
A simple model specification file as shown in listing 2 is represented
internally in Synth-A-Modeler Designer like in listing 9 and is created
by ValueTree’s method toXmlString().

Listing 9: Internal representation of an MDL file

<?xml version=" 1.0 " encoding="UTF−8"?>

<synthamodeler mdlName="simple .mdl" mdlPath="/tmp/simple .mdl">
<masses>

<mass posX="368" posY="264" identifier="m1">
<parameters>

<parameter value=" 1.0 "/>
<parameter value=" 0.0 "/>
<parameter value=" 0.0 "/>

</parameters>

</mass>

<ground posX="365" posY="390" identifier="g">
<parameters>

<parameter value=" 0.0 "/>
</parameters>

</ground>

<port posX="195" posY="293" identifier="dev1"/>
</masses>

<links>

<link identifier=" l l " startVertex="m1" endVertex="g">
<parameters>

<parameter value="0.001 "/>
<parameter value="0.001 "/>
<parameter value=" 0.0 "/>

</parameters>

</link>

<touch identifier=" t t " startVertex="m1" endVertex="dev1">
<parameters>

<parameter value="0.001 "/>
<parameter value="0.001 "/>
<parameter value=" 0.0 "/>

</parameters>

</touch>

6.1 application components 45

</links>

<audioobjects>

<audioout posX="515" posY="264" identifier="aLeft " optional="
">

<sources>

<audiosource value="m1*(1000 .0) "/>
</sources>

</audioout>

</audioobjects>

</synthamodeler> �
As previously stated, the internal representation is analog to the XML
file and will be used for further explanations, e. g. the root tag synthamodeler

is analog to the root in the ValueTree, whose name property is synthamodeler.
An important detail of ValueTrees is that the property name has to
be an Identifier object, which represents a String identifier and is
very fast to copy but slow to initialize. Therefore Synth-Modeler De-
signer initializes all identifiers when the application starts in the class
ObjectIDs.h. All identifiers are within the namespace Ids and to
access an identifier, it has to be called like a regular variable by its
name, i. e. Ids::value. Listing 10 shows how to create an ValueTree

structure.

Listing 10: Example assembling an MDL file structure

ValueTree mdl(Ids::synthamodeler);

ValueTree masses(Objects::masses);

mdl.addChild(masses, -1, nullptr);

ValueTree mass(Ids::mass);

mass.setProperty(Ids::identifier, "m1", nullptr);

masses.addChild(mass, -1, nullptr); �
The addChild() function has the following signature.

void addChild (const ValueTree &child,

int index,

UndoManager *undoManager)

The second argument index specifies the index when inserting a child.
Using -1 inserts the child at the end of the list. The function signature
of setProperty() is

ValueTree& ValueTree::setProperty(const Identifier & name,

const var & newValue,

UndoManager * undoManager)

The root ValueTree that represents the root of an MDL file is stored
in the class MDLFile, which is the model for a model specification file
in Synth-Modeler Designer and is a subclass of JUCE’s FileBasedDocument

6.1 application components 46

class and ValueTree::Listener class. By subclassing ValueTree::Listener

and registering MDLFile on the root ValueTree, it is possible to get
events from the root ValueTree when it changes. The following call-
back methods have to be implemented to use the ValueTree::Listener.

• valueTreePropertyChanged (ValueTree& tree,

const Identifier& property);

• valueTreeChildAdded (ValueTree& parentTree,

ValueTree& childWhichHasBeenAdded);

• valueTreeChildRemoved (ValueTree& parentTree,

ValueTree& childWhichHasBeenRemoved);

• valueTreeChildOrderChanged (ValueTree& parentTree);

• valueTreeParentChanged (ValueTree& tree);

As previously mentioned, MDLFile inherits from FileBasedDocument,
which is a JUCE class that “takes care of the logic involved with the
loading and saving of some kind of document [31]”. The MDLFile is
exactly such a document, which needs to be loaded, saved and which
has to take care of the history of opened files. Therefore MDLFile has
to implement following pure virtual functions:

• String getDocumentTitle();

• Result loadDocument (const File& file);

• Result saveDocument (const File& file);

• File getLastDocumentOpened();

• void setLastDocumentOpened (const File& file);

By implementing the latter functions, MDLFile is provided with all
functionality that is involved with opening and saving an MDL file,
which also includes presenting the user with all dialog windows that
are necessary when performing these actions. It also keeps track of
whether the MDL file has changed since it was last loaded or saved.
When something gets changed, its changed() method gets called and
a flag will be set to be aware of whether it needs to be saved.

6.1.3 MDL parsing and writing

One of the key functionalities of Synth-A-Modeler Designer is the abil-
ity to read and write MDL file. The classes that provide these features
are MDLParser and MDLWriter, which are quite small classes providing
only the parsing and writing functionality. Listing 11 and listing 12

show the header files with the function signatures for parsing and
writing MDL files.

6.1 application components 47

Listing 11: Class for parsing an MDL file

class MDLParser

{

public:

MDLParser(MDLFile& mdlFile);

bool parseMDL(const File& f);

private:

MDLFile& mdlFile;

}; �
Listing 12: Class for writing an MDL file to disk

class MDLWriter

{

public:

MDLWriter(MDLFile& mdlFile);

bool writeMDL(const File& saveFile);

String getMDLString();

private:

MDLFile& mdlFile;

}; �
Both classes get an MDLFile reference in the constructor, which is as-
signed to an instance variable. Passing a reference ensures that the
MDLFile instance is valid and not a null pointer. The only public func-
tions these classes provide, is a parseMDL(), which takes the input
file as argument and writeMDL(), which takes the output file respec-
tively. The MDLWriter has also a private function getMDLString(),
which actually generates the string that will be written to a file. Pars-
ing an MDL file is straight forward, by iterating its content line by
line and applying regular expressions to recognize the type of objects.
Using JUCE’s ValueTree, as mentioned in section 6.1.2, the internal
structure of the MDL gets assembled within the parseMDL() function.
Lines consisting the # sign and blank lines, will be skipped. There
is one exception, however, when a line starts with two # signs. This
is the keyword for a comment object. It is to mention that the MDL
file is only iterated once and the type of object is identified by testing
a line sequentially against all possible types. When writing an MDL
file to disk, the file gets generated every time from scratch and the
original file, stored on the hard drive, gets overwritten. A better solu-
tion would be to only update the parts that has been changed. This,
however, would involve much more logic and it has been decided to
postpone the implementation of this feature to a future release.

6.1 application components 48

6.1.4 Views

This section will discuss the graphical components of the Synth-A-
Modeler Designer. Most of the user interface is accomplished with the
following classes and objects. A screenshot of the user interface is
shown in fig. 16.

Figure 16: Synth-A-Modeler Designer user interface

To be able to use JUCE’s extensive GUI functionality, all user in-
terface components have to subclass some of these classes. To be
precise, all components that are part of the user interface in Synth-A-
Modeler Designer are subclasses of the Component class, which is the
base class for all JUCE interface objects. The JUCE Component class
provides all basic functionality for GUI components. It manages the
component hierarchy, visibility properties, position and bounds of
components, mouse interaction and the functionality for painting it-
self on the screen. A full description with all functions can be viewed
in the online documentation [31]. As discussed in section 6.1.1, the
MainAppWindow class holds the content component — the main GUI

component, which is implemented in the ContentComp class. The lat-
ter is a container for the ObjectsHolder class, which holds all compo-
nents representing physical elements. It also implements the zoom
functionality of the editing canvas by wrapping it with the Viewport

class, which consists of the ObjectsHolder class.
Another important role of ContentComp is to build all menubar en-

tries, that are specific to editing. As previously stated, ObjectsHolder
represents the model editing canvas. Besides holding all object com-
ponents, it also provides a LassoComponent, a component that acts as

6.1 application components 49

a rectangular selection region, which the user drags with the mouse
to select groups of objects [31]. The selectable objects are collected
in a container data structure of the type SelectedItemSet. To be
able to get added to a SelectedItemSet, the objects have to subclass
SelectableItem, which provides an isSelected function, that sets
the selection state. ObjectsHolder subclasses LassoSource to provide
the functions for finding out which items are within the lasso and to
change the list of selected items, by implementing the two pure vir-
tual functions findLassoItemsInArea() and getLassoSelection().

The LassoComponent works the following way. In ObjectsHolder’s
mouseDown or mouseDrag event, the beginLasso() method is called. By
passing it a suitable LassoSource object, such as the ObjectsHolder

class, it can use it to find out which items are in the active area. When
ObjectsHolderreceives a mouseDrag event, lassoDragged() has to be
called to update the lasso’s position. The LassoSource will calculate
and update the current selection. When the drag finishes and the
mouse button is released, endLasso() should be called, which makes
the lasso rectangle invisible. ObjectsHolder is also responsible for
displaying a visual grid for helping to align objects, dispatch com-
mands comming from the user interface to the objects controller and
to initiate automatic redrawing of the objects. Automatic redrawing
will be discussed in detail in section 6.2.

The main actors on the editing canvas are the object components,
representing the physical elements from a model specification file.
The base class for object components is the class BaseObjectComponent,
which is subclassed by all physical objects. Its purpose is to provide
the connection to the controller and therefore to the actual data of the
model. This is done by storing a reference to ObjController. It also
implements the context menu, which gets displayed when clicking
on an object with the right mouse button. All object components are
also subclasses of SelectableObject, which provides the interface for
the use with the LassoComponent. The relation between component
classes can be seen in fig. 17. A more detailed overview about the
class hierarchy is shown in fig. 38 on page 102.

By the time of writing, there are four types of object components:

• ObjectComponent

• LinkComponent

• AudioOutComponent

• CommentComponent

These classes implement individual functionality for specific element
types, because not all objects have the same properties, from the per-
spective of a GUI component. The ObjectComponent is a subclass of
BaseObjectComponent and is the class that is used for all objects that
can stand alone, such as mass-like objects. For example, links can

6.1 application components 51

All objects share some identical features, however, they implement
these differently, for example when the user double clicks an object.
All objects except the AudioOutConnector and the CommentComponent

open a PropertiesPanel window for editing the object parameters as
shown in fig. 18. The PropertiesPanel is a small window containing

Figure 18: Window for editing object parameters

all parameters for an object. The entries can be changed by modify-
ing the values in the TextEditor boxes. The content component of
the PropertiesPanel is an individual subclass of the abstract class
ObjectPropertiesComponent. It consist of all basic functionality that
all subclasses share, such as applying and canceling changes and all
callback function for the text editors. It also provides two pure vir-
tual functions, readValues() and writeValues(), that the subclasses
have to implement. The individual implementations for the different
object types set up also all individual GUI elements, such the number
of text fields and labels for the parameters. All modifications made
in the PropertiesPanel are managed by the MDL’s UndoManager and
hence they are undoable and redoable. Furthermore, the text fields
provide basic corrections when the user entered a parameter value
that is not formatted properly. Listing 13 shows the function for cor-
recting parameter values.

Listing 13: Function for fixing parameter value if not formatted properly

String Utils::fixParameterValueIfNeeded(const String& paramVal)

{

if(paramVal == String::empty)

return " 0.0 ";

String tmpVal;

StringArray operators;

StringArray params;

6.1 application components 52

if(paramVal.containsAnyOf("*+−/"))
{

String tmp = " ";
for (int i = 0; i < paramVal.length(); ++i)

{

if(paramVal[i] == ’ * ’ || paramVal[i] == ’+’
|| paramVal[i] == ’−’ || paramVal[i] == ’/’)

{

String op = " ";
op << paramVal[i];

operators.add(op);

params.add(tmp);

tmp = " ";
}

else

{

tmp << paramVal[i];

}

}

if(tmp.compare(" ") != 0)

params.add(tmp);

for (int i = 0; i < params.size(); ++i)

{

tmpVal << params[i];

if(params[i].containsOnly("0123456789")
&& params[i].indexOf(" . ") == -1)

tmpVal << " .0 ";
if(i < operators.size())

tmpVal << operators[i];

}

}

else

{

tmpVal = paramVal;

if (tmpVal.containsOnly("0123456789")
&& tmpVal.indexOf(" . ") == -1)

tmpVal << " .0 ";
}

return tmpVal;

} �
The function’s purpose is to check whether the entered parameter
has a floating point notation with the decimal point. It checks also
combinations of variables and values for correct formatting. Double
clicking an AudioConnectorComponent opens a small window with a
text field for setting the gain value for that connection. Again, when
setting this value, the result gets assigned to the gain value of the
connected audioout object. Double clicking on an CommentComponent

has no effect. Its only settings are the font size and color and the
displayed text. To change font properties, the context menu has an

6.1 application components 53

entry for changing the text color, which opens a tooltip window with
a ColourSelector object, as shown in fig. 19.

Figure 19: Setting font color of a CommentComponent

The next user interface element is the FaustcodePanel, which can
be used for entering and editing raw FAUST code. FAUST code is
represented in the model specification file as lines beginning with
the following text: “faustcode:”. The panel consist of a TextEdit

component, which is a basic text editor. The text will be saved in the
MDL exactly as it is displayed in the FaustcodePanel, and the user is
able to perform common text editing functionality such as cut, copy
and paste.

Figure 20: FAUST code input and edit window

The preferences panel provides access to the application settings
and exporter commands. As previously described in section 6.1.1, all
values that are available for modification in the settings window, are
stored on hard disk. Its content component is a tabbed pane with the
following three tabs:

• Misc

• Exporter

6.1 application components 54

• About

The Misc tab provides various important settings such as the Data
Directory and Faust executable paths as well as custom settings for the
interaction with the application. The former will be discussed in sec-
tion 6.1.6. A screenshot is shown in fig. 21.

Figure 21: Misc tab in preferences window

The Exporter panel provides a two column table, which lists all
exporter commands and will be described in detail in section 6.1.6.
Here the user can specify commands for exporting models to various
binary formats such as externals. One of these commands is set in
the menu bar as default commands and gets executed when the user
runs the generate binary command via keyboard shortcut or menu
bar. Figure 22 shows the commands list in the preferences window.

6.1.5 Controllers

One of the three key components within the MVC pattern is the con-
troller. As discussed in section 4.2, the controller serves as the bridge
between the model and the view. The Synth-A-Modeler Designer has
two controller classes, MDLController and ObjController.

6.1.5.1 MDLController

MDLController handles all actions that are related to the MDLFile. Ev-
ery MDL file has one instance of a MDLController and the MDLFile

instance is created within this class with a ScopedPointer, which
helps to manage allocated memory by automatically deleting the ob-
ject when closing the file. This way the MDLFile is tightly bound to
the controller. It also provides functions for opening, saving and clos-
ing an MDL file. For instance, when the user clicks on the menubar

6.1 application components 55

Figure 22: Exporter tab in preferences window

entry for opening a new MDL file, the click event gets delegated from
the view class to the MDLController, where the actual opening of
an existing file gets performed. Another domain of this controller is
the management of the exporting functionality of Synth-A-Modeler De-
signer. Therefore an instance of the class SAMCmd, which implements
the functionality for executing external commands, is stored here.
The SAMCmd class will be discussed later in section 6.1.6 and so no
further details will be mentioned here. All commands for exporting
the MDL file from the menubar or keyboard command are delegated
to the MDLController where the relevant functions generateFaust()

and generateExternal() are called.

6.1.5.2 ObjController

The second controller, which manages all actions related to visual
objects is the ObjController. Visual objects are the graphical repre-
sentation of the objects in an MDL file. Additionally ObjController

and is one of most prominent classes within Synth-A-Modeler Designer,
consisting of the complete logic for controlling the visual objects and
view components. Therefore ObjController keeps track of all objects
by storing them in OwnedArrays, a data structure which takes own-
ership of the inserted elements. When removing an element from
an OwnedArray it also can be deleted automatically. The behaviour
is controlled with a boolean function parameter. This is quite prac-
tical for memory management. Once an object is created with the
keyword new and inserted into an OwnedArray, the only step needed
to remove the element from the array is to delete the object and free
its memory allocation. The following arrays are member variables in
ObjController, which store all of the graphical objects of a model:

6.1 application components 56

• OwnedArray<ObjectComponent> objects

• OwnedArray<LinkComponent> objects

• OwnedArray<AudioOutConnector> objects

• OwnedArray<CommentComponent> objects

Another important member variable is the list of selected objects,
which is stored in the variable SelectedItemSet<SelectedObject*> sObjects.
Every time the user selects a physical object on the editing canvas
with the lasso tool or by clicking on an object, it gets added to sObjects,
and if the object becomes deselected, it is removed from the set.

An additional important functionality of ObjController is the han-
dling of object actions, such as adding and removing objects or chang-
ing their positions. Therefore, all types of objects (ObjectComponent,
LinkComponent, AudioOutComponent and CommentComponent) have a
set of functions to provide this functionality. For ObjectComponent,
these functions are:

• void addNewObject(ObjectsHolder* holder,

ValueTree objValues);

• ObjectComponent* addObject(ObjectsHolder* holder,

ValueTree objValues, int index, bool undoable);

• void removeObject(ObjectComponent* objComp,

bool undoable, ObjectsHolder* holder);

The other three object types have similar function declarations but
the function parameters and implementations differ somewhat. The
addNewObject() function gets called when the user adds a new ob-
ject with the user interface, so within the function there is only a
call to addObject() and a call to sObjects.selectOnly(). The lat-
ter sets the newly added object as the only selected object. The call to
addNewObject() is also ab undoable action. addObject() is more com-
plex. It performs all steps to register the new object within the appli-
cation. When the last argument, undoable is true, an UndoableAction

gets created in order to perform the adding of an object and to make
the action undoable. The AddObjectAction’s perform function calls
the addObject() function in turn, but this time with undoable set to
false. Then the code in the else part gets called, which is actually
the code for adding the object. Listing 14 shows the implementation
of addObject().

Listing 14: Function for adding a new object

ObjectComponent* ObjController::addObject(

ObjectsHolder* holder, ValueTree objValues,

int index, bool undoable)

{

6.1 application components 57

if(undoable)

{

AddObjectAction* action = new AddObjectAction(

this, objValues, holder);

owner.getUndoManager()->perform(

action, "Add new Object");

return objects[action->indexAdded];

}

else

{

const Identifier& groupName = Utils::getObjectGroup(

objValues.getType().toString());

ValueTree mdl = owner.getMDLTree();

ValueTree subTree = mdl.getOrCreateChildWithName(

groupName, nullptr);

subTree.addChild(objValues,-1, nullptr);

idMgr->addId(objValues.getType(),

objValues[Ids::identifier].toString(),

nullptr);

ObjectComponent* objComp = new ObjectComponent(

*this, objValues);

objects.insert(index, objComp);

holder->addAndMakeVisible(objComp);

holder->updateComponents();

changed();

return objComp;

}

} �
removeObject() is pretty similar to addObject(), but with the func-
tionality to remove an object and unregister it within the application.
It also consists of the same conditional to check whether the removal
is undoable or not. Additionally it checks also if the object to remove
has connected links and audio connections. If there are connections,
it deletes them before removing the object. As already mentioned,
the other three object types have also these functions, but they will
not be described in detail, because they are principally the same and
the only difference is the code that is related to how these objects are
created.

Changing the position of objects is also implemented in ObjController,
by providing the functions startDragging(), stopDragging(), dragSelectedComps()
and moveSelectedComps(). These functions get called when the user
drags objects or moves their position with the arrow keys. It han-
dles not only changing positions of a single object, but also man-
ages setting position of multiple selected objects. The breakdown for
changing the position of objects, into these functions is important,

6.1 application components 58

because all steps need different implementation. startDragging()

stores the start position of objects, dragSelectedComps performs the
actual position change by calling the objects’ setPosition() function
and stopDragging completes via the UndoManager transaction. The
latter is needed to have one undoable transaction for the end position
and the start position but not for the intermediate positions between.
The object’s setPosition() function is quite similar to addObject()

by the means of having a conditional, which checks whether setting
the position is undoable or not. If it is undoable, an UndoableAction is
created to perform the position change by calling the setPosition()

function again.
ObjController implements cut, copy and paste functionality. JUCE’s

ValueTree is a major help to perform these actions. It provides a func-
tion to get the objects as XML string, createXml. When calling the
function copySelectionToClipboard, the selected objects’ XML rep-
resentation gets copied to the system clipboard as a String with a
special XML Tag, SAMOBJECTS. Listing 15 show a clipboard entry that
contains a mass object.

Listing 15: Representation of a mass object when copied to the clipboard

<SAMOBJECTS>

<mass posX="304" posY="200" identifier="m1">
<parameters>

<parameter value="massOfResonator"/>
<parameter value=" 0.0 "/>
<parameter value=" 0.0 "/>

</parameters>

</mass>

</SAMOBJECTS> �
When the user pastes the previously copied content, the paste() func-
tion looks for the special tag in the system clipboard. If the special
tag is present, it recreates the ValueTree with help of the function
fromXml().

An additional functionality in ObjController is the tidyUp() func-
tion. As the function name suggests it tidies up the objects by align-
ing the objects horizontally or vertically depending on the positions
of the objects. The implementation is based on the function with the
same name in PureData.

The Synth-A-Modeler Designer offers also a more advanced feature
to automatically set the position of objects and will be discussed in
section 6.2. It uses a graph based algorithm and is mentioned here
because all references to the objects are stored in the ObjController

and creating the graph is done by calling the function makeGraph,
which assembles a directed graph from the objects.

6.1 application components 59

6.1.6 Executing external commands

One of the key features of the Synth-A-Modeler Designer is to generate
FAUST source code and other binary externals from model specifi-
cation files. This is done by executing external programs, such as
the Synth-A-Modeler Compiler and the FAUST executable or exporter
scripts provided by FAUST. This section will describe how this is im-
plemented in Synth-A-Modeler Designer.

First of all, there are two actions the user can perform from the
“Generate” menu in the menu bar or with keyboard shortcuts:

• Generic Faust code

• Binary

The first calls the Synth-A-Modeler Compiler, the second calls what-
ever command is specified in the preferences under the “Exporter”
tab (see section 6.1.4). When the user performs one of these actions,
it gets sent from the MainAppWindow to the MDLController functions
generateFaust() or generateExternal(). Then, these two functions
call other functions from within the SAMCmd class, which implements
all functionality regarding external commands. Before discussing the
SAMCmd class, the Data Dir, which has previously been mentioned in
section 6.1.4, has to be elaborated upon. The fact that that Synth-A-
Modeler Designer works with external commands implies that prob-
lems regarding installation paths and working directories of these
programs can occur. For example, when running the Synth-A-Modeler
Compiler, it has to be assured that physicalmodeling.lib is installed
within the same directory, or else the compiler cannot import it prop-
erly. This would result in the compiler not being able to create the
output. To work around this issue, it has been decided to introduce a
directory called the Data Dir, where the compiler and all other manda-
tory scripts and libraries are installed and which is also the output
directory for the compilation results. The user can set this directory
via the preferences panel.

The SAMCmd, whose class declaration is shown in listing 16, is a very
small class.

Listing 16: SAMCmd class

class SAMCmd

{

public:

SAMCmd();

~SAMCmd();

bool isSynthAModelerCmdAvailable();

bool isSAMpreprocessorCmdAvailable();

bool isCmdAvailable(const String& cmdStr);

bool isPerlAvailable();

6.1 application components 60

bool isFaustAvailable();

const String generateFaustCode(const String& inPath,

const String& outPath,

bool useSamConsole = true);

const String generateExternal(const String& mdlPath,

const String& exporter,

bool useSamConsole = true);

private:

const String runPerlScript(const String& script,

const String& inPath,

const String& outPath,

bool useSamConsole);

}; �
It has only functions for checking the existence of the needed external
programs and functions for running these.

generateFaustCode() runs the two Perl scripts SAM-preprocessor,
and Synth-A-Modeler and the output of this function is the FAUST
source code containing the current model. The function parameters
are self explanatory input and output paths. The third argument is
used to switch the output of the scripts to the OutputWindow on or off.
When running the GUI it is set to true, but when running the appli-
cation from the command-line (see section 6.1.7) or in unit tests (see
section 6.1.8), the graphical components are not available and thus, it
has to be prevented from calling the OutputWindow functions. Inter-
nally generateFaustCode() calls the function generatePerlScipt(),
which is marked as private because it is intended to be used only
within SAMCmd.

generateExternal() is used to generate the external binaries. Its
parameters are the path to the MDL file and a String exporter, con-
taining the command to run. The function is very generic and basi-
cally it is possible to run all kinds of commands, not only the FAUST
executable.

Both generateExternal() and generateFaustCode() use an inter-
nal function that starts a child process from within the application,
by using architecture specific functions.

In section 3.4, commands for generating externals were discussed
and presented. The only difference of the previously mentioned com-
mands to the ones used in the Synth-A-Modeler Designer is that in
the case of the Synth-A-Modeler Designer, placeholder variables can
be employed. These are DATA DIR, MDL NAME and FAUST DIR. When
the user specifies them within the command, they will be replaced
by the actual value. This makes the commands independent from
the user’s settings and installation paths. The names are self ex-
planatory, DATA DIR gets changed to the current Data Dir, MDL NAME

is the file name of the current MDL file without the file extension

6.1 application components 61

and FAUST DIR is the location of the FAUST executable. Listing 15

shows the default exporter commands that are provided by the Synth-
A-Modeler Designer

Listing 17: Default exporter commands

<?xml version=" 1.0 " encoding="UTF−8"?>

<PROPERTIES>

<VALUE name="puredata" val=" faust −xml −a puredata .cpp −o $(
DATA_DIR)/$(MDL_NAME) .cpp $(DATA_DIR)/$(MDL_NAME) .dsp;mkdir
−p $(DATA_DIR)/puredatadir ; g++ −DPD −fPIC −Wall −O3 −

mfpmath=sse −msse −msse2 −msse3 −ffast−math −shared −Dmydsp
=$(MDL_NAME) −I/usr/include/pdextended −o $(DATA_DIR)/
puredatadir/$(MDL_NAME) ~.pd_linux $(DATA_DIR)/$(MDL_NAME) .
cpp; faust2pd −r 10 −s $(DATA_DIR)/$(MDL_NAME) .dsp.xml; mv
−f $(DATA_DIR)/$(MDL_NAME) .pd $(DATA_DIR)/puredatadir"/>

<VALUE name="puredata makefile" val="make −C $(DATA_DIR)
puredata SAMTARGET=$(MDL_NAME) "/>

</PROPERTIES> �
An exporter is defined by its name, which is displayed in the “Gen-
erate” menu bar entry and its value, which is the actual command
that get executed. The first exporter command in listing 17, might
look very complicated but after careful observation, it can be seen
that it consist only commands already presented in this thesis (see
section 3.4) and other commands that move the output to a special
folder. A collection of other commands can be viewed and edited on
the project’s Wiki page on Github:

https://github.com/ptrv/Synth-A-Modeler/wiki/Exporters

6.1.7 Command-line support

Generating the desired output or external binary with the Synth-A-
Modeler Designer or the Synth-A-Modeler Compiler involves many steps.
For example, when the user wants to create a PureData external from
a model specification file without opening the Synth-A-Modeler De-
signer, the steps for that would be

• Run SAM-preprocessor script to generate intermediate .mdx file
from the .mdl

• Run Synth-A-Modeler compiler script to generate .dsp FAUST
source file

• Run commands to generate the desired external binary

Of course the user can use one of the Makefiles that are shipped with
the Synth-A-Modeler Designer package. There are several Makefiles for
different output external. However, to provide a unified user experi-
ence and to minimize the amount of different tools and scripts the

6.1 application components 62

user has to use in order to get to the “final product”, Synth-A-Modeler
Designer offers a command-line interface to aggregate all these com-
mands. Listing 18 shows the output, when running Synth-A-Modeler
Designer from the command-line with the --help flag.

Listing 18: Help text of the Synth-A-Modeler Designer command-line inter-
face

./Synth-A-Modeler-Designer --help

JUCE v2.0.37

Synth-A-Modeler!

Usage:

Synth-A-Modeler --compile /path/to/mdl file /path/to/dsp file

Compiles a mdl file to a dsp file.

Synth-A-Modeler --binary exporter name mdl file

Generates a binary.

Synth-A-Modeler --list-exporters

Lists all available exporter commands.

Synth-A-Modeler --list-exportersd

Lists all available exporter commands with detail.

Synth-A-Modeler --print-xml /path/to/mdl file

Prints xml structure of mdl file to stdout.

Synth-A-Modeler --clean

Cleans DATA DIR.

Synth-A-Modeler --version

Prints version information. �
Besides compiling a model to FAUST code, the user also can generate
binary externals, using one of the specified exporter commands. The
possible exporter commands are set in the Synth-A-Modeler Designer
preferences, as already described in section 6.1.4 and section 6.1.6. It
is also possible to list all available exporters in short and detailed
format or to clean up the Data Dir. i. e. removing all temporary files.

6.1.8 Unit testing

During the development of the Synth-A-Modeler Designer the format
of the model specification file changed several times and therefore
the MDLParser and MDLWriter classes had to adopt these changes in
order to provide the desired functionality and to work properly. Thus
a unit test suite has been developed in parallel for testing critical code.
Unit testing is a procedure in software development, which tests dif-

6.2 automatic positioning of objects 63

ferent units of the source code to decide if they work as expected [32].
Of course, unit tests are not implemented for all components of the
Synth-A-Modeler Designer, since GUI components and user interactions
cannot be tested without the actual user that performs the actions.51

However there are a few test for some critical parts of the software.
The test suite provides tests for MDLFile, MDLParser, MDLWriter and
the SAMCmd. Every class to test has a counterpart test class, which
runs functions to compare the output of the class to test with an ex-
pected value. In the case of the development of the Synth-A-Modeler
Designer, when the model specification format changed, running the
test resulted in failure. Depending on the amount of the tests, the
parts that did not work correctly after the changes has been made,
could be detected easily. After fixing the code, the tests have been
run to verify the new implementation. When the test succeeded, the
new code worked as expected, or when it failed, further adjustments
had to be made. This had to be repeated until all test succeeded. This
was an easy and efficient way to find and debug erroneous code.

Fortunately, JUCE provides classes for unit testing. The two key
classes are the UnitTest class and the UnitTestRunner class. The
former is the base class that has to be subclassed in order to imple-
ment a unit test, and the latter is a helper class that runs a set of unit
tests. The test classes are included into the Synth-A-Modeler Designer’s
source code, but are only compiled into the application if it is com-
piled with debug symbols. This way release builds are not affected
and the application binary size can be reduced. To run the tests, the
special keyword --test has to be passed to the application when exe-
cuting. It starts and exits the unit tests before all GUI components get
initialized.

6.2 automatic positioning of objects

One of the requirements for the Synth-A-Modeler Designer was to im-
plement a strategy for automatic positioning of objects, which means
that the objects should have their position on the editing canvas as-
signed automatically. This can be useful in several situations. For
example, some Synth-A-Modeler models were created before the Synth-
A-Modeler Designer has developed and before having the possibility to
edit model specification file visually, the user would have had to edit
the source file of a model manually in a text editor. However, posi-
tion data was introduced with the Synth-A-modeler Designer, so early
models did not have position data. Loading old models caused the
Synth-A-Modeler Designer to place all the objects at the origin, and the
user had to reposition each objects manually.

51 A simulator could be implemented to simulate the user, but this is too extensive for
the scope of this work.

6.2 automatic positioning of objects 64

Another consideration was the integration of the visual represen-
tation of the physical objects into the creative process and therefore
to provide the user with the possibility to reorganize and restructure
the model visually. For these reasons, the functionality to automat-
ically reposition the objects has been introduced in Synth-A-Modeler
Designer by implementing a force-directed algorithm that acts on the
graph of objects to align their position. This section will describe the
algorithm, how it was implemented in the Synth-A-Modeler Designer
and will show some example models and their visual representations
when applying the algorithm.

6.2.1 Force-directed algorithm

One of the most versatile algorithms for the calculation of graph lay-
outs consisting of simple undirected graphs are according Tamassia
force-directed algorithms, also known as spring embedders Tamassia
[33]. Tamassia writes that these algorithms calculate the graph layout
only using information from the graph structure itself, instead of us-
ing domain-specific information. Tamassia goes on to argue that the
results are aesthetically pleasing, very symmetrical and have crossing-
free layouts Tamassia [33].

As the name already suggests, force-directed algorithms assign
forces to the edges and nodes of a graph. The algorithm of Eades
from 1984 and the algorithm of Fruchtermann and Reingold, use
spring forces, such as in Hooke’s Law to simulate the attraction be-
tween the nodes [33]. However, if the forces were only attractive,
then the objects would tend to dump up over one another. Hence,
repulsive forces are also implemented, similar to those of electrically
charged particles, acting on the nodes and are based on Coulomb’s
law.

Forced-based algorithms, works best when applied to small graphs,
while using them with large graphs result in poor performance. Ac-
cording Tamassia, the scalability of force-based algorithms is affected
by two main reasons. The first is that physical models have typically
a lot of local minima52 and even with sophisticated improvements of
the algorithms in order to avoid them, do not result in good layouts.
The second reason for bad scalability of large graphs is caused by
resolution problems, because the vertex separation in this case is very
small and therefore can lead to unreadable graphs Tamassia [33].

The force-based algorithm applies two forces: Coulomb’s law (see
(3)) and Hooke’s law (see (4)) [34].

FCij β
~xi − ~xj

‖~xi − ~xj‖3
(3)

52 These are multiple solutions

6.2 automatic positioning of objects 65

Sij
1

2
k(‖~xi − ~xj‖− dij)2 (4)

The repulsive force (3) is based on the physical equivalent of electrical
forces and is similar to the condition when the nodes would have an
electrical charge. The idea is that we add a force FCij to the nodes that
is inversely proportional to the square of the distance between the
nodes. The attractive force (4) that is caused by the spring is zero if
the distance of two nodes is the rest length d of the spring and grows
by the square of its elongation or compression.

Listing 19 shows pseudo code for a basic force-based algorithm,
which is the same that has been implemented in Synth-A-Modeler De-
signer.

Listing 19: Pseudo code of the force-based graph drawing algorithm

set up initial node velocities to (0,0)

set up initial node positions randomly

loop

total kinetic energy := 0

for each node

net-force := (0, 0)

for each other node

net-force := net-force + Coulomb repulsion(this

node, other node)

next node

for each spring connected to this node

net-force := net-force + Hooke attraction(this node

, spring)

next spring

this node.velocity := (this node.velocity + timestep *
net-force) * damping

this node.position := this node.position + timestep *
this node.velocity

total kinetic energy := total kinetic energy + this node

.mass * (this node.velocity)^2

next node

until total kinetic energy is less than some small number �
The first step, when claculating a graph layout, is to set all velocities
to zero and give all nodes a random position. Random position pro-
vides a good distribution of the nodes. Then, all nodes of the graph
have to be iterated. The total force that is acting on one node is calcu-
lated by applying Coulomb’s law on the current and each other node
and to add up the resulting forces. Furthermore the spring attraction
has to be calculated with all connected nodes and added to the total
force. Then the velocity can be calculated for the current node by

6.2 automatic positioning of objects 66

multiplying the total force with the timestep and adding it to the cur-
rent velocity. One crucial parameter is a damping value that has to be
multiplied with the valocity. Without damping, the algorithm would
never stop. The new position can then be calculated by multiplying
the new velocity with the timestep and adding it to the old position.
The total kinetic energy is the sum of all individual node forces and
is used to stop the calculation if it is below a defined value.

6.2.2 Graph drawing components

Although the algorithm used in the Synth-A-Modeler Designer is quite
simple, the focus was not to implement a perfect graph drawing algo-
rithm, but to provide an architecture, that allows the application to be
easily extended with new drawing algorithms. The architecture that
served as model for the implementation of the graph drawing compo-
nents in the Synth-A-Modeler Designer is a simple graph visualization
application for the Processing language, implemented by Kamermans
[35]. It consists of a Node class that all objects have to subclass and
which manages the objects’ positions and the connections to other
nodes by keeping track of incoming and outgoing nodes. Another
component is the DirectedGraph class, which manages the graph
structure and the logic for changing its layout. Functions such as
addNodes() and linkNodes() are used to build the graph structure.
The function setFlowAlgorithm() takes a pointer to a FlowAlgorithm

object, which is an abstract class with its only function reflow().
The latter function has to be implemented by all graph drawing al-
gorithms in order to be able to be used in DirectedGraph as such. Af-
ter the graph has been built, the function reflow() in DirectedGraph

has to be called to initiate the calculation of the new graph layout.
Because the recalculation of the graph is an iterative process, the
reflow() function has to be called several times, until it returns true

to indicate that the calculation is done. The redrawing process can
be started from the menu bar entry Edit → Redraw. The command
gets dispatched in the ObjectsHolder class to the redrawObjects()

function, which takes a CommandID argument with the type of redraw
algorithm. Here, the first step is to create the graph by creating a
new instance of DirectedGraph object and calling makeGraph() on the
ObjController. The next step is to set the FlowAlgorithm and finally
to start the timer function, which calls the algorithm’s reflow() func-
tion repeatably, until it returns true, to indicate that the recalculation
is done.

Due to the sensibility of the parameter settings of the force-based al-
gorithms, the calculated layouts can vary quite much and sometimes
it is necessary to adjust the parameters of the algorithms. Therefore,
a window for setting the force-based algorithm parameters has been
implemented to enable the possibility for the user to experiment with

6.2 automatic positioning of objects 67

different parameter configurations. Figure 23 shows the window with
the different parameters among others, such as mass, spring constant
and damping.

Figure 23: Window for setting redraw options

6.2.3 Graph drawing examples

At the time of writing, Synth-A-Modeler Designer consists of two algo-
rithms for redrawing the graph: CircleFlowAlgorithm and ForceBasedAlgorithm.
The former is a simple algorithm that repositions all mass-like ob-
jects into a circular form and the latter is a force-based algorithm as
discussed in section 6.2.1. A simple unordered model as shown

Figure 24: An unordered guiro model

in fig. 24, changes its form after recalculating its layout with the
CircleFlowAlgorithm to a circle, as shown in fig. 25. Figure 26 shows
the guiro model after applying the ForceBasedAlgorithm.

6.2 automatic positioning of objects 68

Figure 25: The guiro model after applying CircleFlowAlgorithm

Figure 26: The guiro model after applying ForceBasedAlgorithm

The following images (see fig. 27, fig. 28, fig. 29, fig. 30, fig. 31 and
fig. 32) show models before and after their layout has been recalcu-
lated by the force-based algorithm. As can be seen in figs. 26 to 29

and 32 the algorithm clearly has the ability to reveal some structures
in the models to the user. It should be emphasized that, due to the
random initial positions, the final positions can vary widely. How-
ever, this can be seen as a feature — the model designer may wish to
search through some possible ways of visualizing a model in order to
arrive at a visually pleasing result.

6.2 automatic positioning of objects 69

(a) Before (b) After

Figure 27: Cube model layout comparison

(a) Before (b) After

Figure 28: Big cube model layout comparison

(a) Before (b) After

Figure 29: Percussion model layout comparison

6.2 automatic positioning of objects 70

(a) Before (b) After

Figure 30: Random mass interaction model layout comparison

(a) Before (b) After

Figure 31: Another random mass interaction model layout comparison

(a) Before (b) After

Figure 32: Random model layout comparison

6.3 extending synth-a-modeler designer with a new object 72

{

StoredSettings& settings = *StoredSettings::getInstance();

ValueTree newTree(Ids::pulsetouch);

StringArray p;

p.add(settings.getDefaultValue(" pulsetouch_stiffness ", "100.0
"));

p.add(settings.getDefaultValue("pulsetouch_damping", " 0.1 "));
p.add(settings.getDefaultValue("pulsetouch_offset ", " 0.0 "));
p.add(settings.getDefaultValue("pulsetouch_pulsemult", " 0.0 ")

);

p.add(settings.getDefaultValue("pulsetouch_pulsetau", " 0.0 "))
;

p.add(settings.getDefaultValue("pulsetouch_pulselen", " 0.0 "))
;

ValueTree paramsTree = ObjectFactory::createParamsTree(p);

newTree.addChild(paramsTree, -1, nullptr);

newTree.setProperty(Ids::identifier, newName, nullptr);

newTree.setProperty(Ids::startVertex, startObject, nullptr);

newTree.setProperty(Ids::endVertex, endObject, nullptr);

return newTree;

}

// end

// ...

ValueTree ObjectFactory::createNewLinkObjectTree(const Identifier

& linkType,

const String& newName,

const String& startObject,

const String& endObject)

{

if(linkType == Ids::link)

return createNewLinkTree(newName, startObject, endObject)

;

else if(linkType == Ids::touch)

return createNewTouchTree(newName, startObject,

endObject);

// begin

else if(linkType == Ids::pulsetouch)

return createNewPulsetouchTree(newName, startObject,

endObject);

// end

else if(linkType == Ids::pluck)

return createNewPluckTree(newName, startObject,

endObject);

else if(linkType == Ids::waveguide)

return createNewWaveguideTree(newName,

startObject, endObject);

else

return ValueTree::invalid;

} �

6.3 extending synth-a-modeler designer with a new object 73

Listing 21 shows the new code in Views/ObjectsHolder.cpp that gets
executed when the user creates a new object, either from the menu
bar or via context menu.

Listing 21: New code in ObjectsHolder.cpp

bool ObjectsHolder::dispatchMenuItemClick(

const ApplicationCommandTarget::InvocationInfo& info)

{

// ...

switch (info.commandID)

{

// begin

case CommandIDs::insertPulsetouch:

objController.addNewLinkIfPossible(this,

ObjectFactory::createNewLinkObjectTree(Ids::

pulsetouch,

objController.getNewNameForObject(Ids::pulsetouch

),

startObj,

endObj));

break;

// end

}

}

// ...

void ObjectsHolder::showLinkPopupMenu(String so, String eo)

{

PopupMenu m;

m.addSectionHeader("Add. . . ");
m.addItem (1, "Linear Link");
m.addItem (2, "Touch Link");
// begin

m.addItem (3, "Pulsetouch Link");
// end

m.addItem (4, "Pluck Link");
m.addSeparator();

m.addItem (5, "Waveguide");
m.addSeparator();

m.addItem (6, "Audio Connection");

// begin

else if (r == 3)

{

objController.addNewLinkIfPossible(

this, ObjectFactory::createNewLinkObjectTree(

Ids::pulse, objController.getNewNameForObject(

Ids::touch), so, eo));

}

// end

}

6.3 extending synth-a-modeler designer with a new object 74

�
getNewNameForObject() is a function in Utilities/IdManager.h, which
returns a new name for the object and has to be extended with a
member variable SortedSet<String> pulsetouchIds; and added to
Utilities/IdManager.cpp at the obvious places. Next, LinkComponent
has to be extended to be aware of the new object. The constructor gets
extended by the assignment of a new color for the pulsetouch object
and in the function drawPath(), the code for drawing the object needs
to be added. Because it is quite similar to the touch object only a few
lines of code have to be added to generate the outline rectangle, This
is shown in listing 22.

Listing 22: New code in LinkComponent.cpp

LinkComponent::LinkComponent(ObjController& owner , ValueTree

linkTree)

: BaseObjectComponent(owner , linkTree),

lastInputX (0),

lastInputY (0),

lastOutputX (0),

lastOutputY (0),

segmented(false)

{

// begin

else if(data.getType() == Ids::pulsetouch)

{

color = Colour(0xff006f00);

}

// end

}

void LinkComponent::drawPath(Graphics& g)

{

// ...

// begin

else if(data.getType() == Ids::touch ||

data.getType() == Ids::pulsetouch)

{

// ..

// begin

iconPath = ResourceLoader::getInstance()->

getPathForLinkId(

data.getType(), 0, 0, iconWidth, iconHeight);

// end

// ...

// begin

if(data.getType() == Ids::pulsetouch)

6.3 extending synth-a-modeler designer with a new object 75

{

Colour c = currentColor;

g.setColour(Colours::indigo);

Path outlineRect;

outlineRect.addRectangle(0 - (iconWidth * 0.15),

0 - (iconHeight * 0.15),

iconWidth + (iconWidth *
0.3),

iconHeight + (iconHeight *
0.3));

outlineRect.applyTransform(

AffineTransform::translation((-iconWidth/2), -

iconHeight/2));

outlineRect.applyTransform(

AffineTransform::identity.rotated(rotateVal)

.translated((x1 + x2) * 0.5f,

(y1 + y2) * 0.5f)

);

PathStrokeType stroke(6.0f);

stroke.createStrokedPath(outlineRect, outlineRect);

g.fillPath(outlineRect);

g.setColour(c);

}

// end

}

// end

// ...

} �
Listing 23 shows the small addition in Utilities/ResourceLoader.cpp

to return the icon path for the touch when calling it for the pulsetouch
object.

Listing 23: New code in ResourceLoader.cpp

Path ResourceLoader::getPathForLinkId(const Identifier& linkId,

float x, float y, float w,

float h)

{

// begin

else if(linkId == Ids::touch

|| linkId == Ids::pulsetouch)

// end

{

return getPathForTouch(x, y, w, h);

}

} �

6.3 extending synth-a-modeler designer with a new object 76

The next step is to implement the remaining parts in the graphical
user interface, which are the menu entry and the editing properties
window. To show pulsetouch within the menu bar, additions have to
be made in Application/Application.cpp, Application/CommandIDs.h
and View/ContentComponent.cpp, mainly by adding new menu bar
entry code and the new CommandID. Listing 24, listing 25 and listing 26

show these changes.

Listing 24: New code in Application.cpp

PopupMenu SynthAModelerApplication::MainMenuModel::

getMenuForIndex (

int topLevelMenuIndex, const String& /*menuName*/)

{

// ...

else if (topLevelMenuIndex == 2)

{

// ...

// begin

menu.addCommandItem(commandManager, CommandIDs::

insertPulsetouch);

// end

// ...

}

// ...

} �
Listing 25: New code in CommandIDs.cpp

namespace CommandIDs

{

// ...

// begin

static const int insertPulsetouch = 0x2030b3;

// end

// ...

} �
Listing 26: New code in ContentComponent.cpp

void ContentComp::getAllCommands(Array <CommandID>& commands)

{

const CommandID ids[] = {

// ...

// begin

CommandIDs::insertPulsetouch,

// end

//...

};

}

6.3 extending synth-a-modeler designer with a new object 77

void ContentComp::getCommandInfo(CommandID commandID,

ApplicationCommandInfo& result)

{

switch (commandID)

{

// ...

// begin

case CommandIDs::insertPulsetouch:

result.setInfo("Pulsetouch Link", " ", CommandCategories::

inserting, 0);

break;

// end

// ...

}

} �
The inclusion of the pulsetouch object into ObjectPropertiesPanel

involves more changes, because it has to support all individual ob-
ject types and their properties. The amount of the changes depends
on the type of the new object. The more features it has, the more
changes and additions are needed in ObjectPropertiesPanel. The
pulsetouch is a link-like object and it has three additional parame-
ters compared to the regular touch object: the pulse multiplier, the
pulse tau and the pulse length. Listing 27 shows the new code that
has to be added in LinkPropertiesComponent in order to support the
new pulsetouch object, which is basically extending the class with
three additional Label and TextEdit components and adding code to
write and read the additional parameters.

Listing 27: New code in ObjectPropertiesPanel.cpp

class LinkPropertiesComponent : public ObjectPropertiesComponent

{

public:

LinkPropertiesComponent(ObjectPropertiesPanel* op ,

ObjController* objController ,

ValueTree data ,

UndoManager* undoManager)

: ObjectPropertiesComponent(op , objController , data ,

undoManager),

// begin

laPulseMult("laPulseMult", "Pulse multiplier "),
tePulseMult("tePulseMult"),
laPulseTau("laPulseTau", "Pulse tau"),
tePulseTau("tePulseTau"),
laPulseLen("laPulseLen", "Pulse length"),
tePulseLen("tePulseLen")
// end

{

// begin

else if (data.getType() == Ids::pulsetouch)

{

6.3 extending synth-a-modeler designer with a new object 78

tePulseMult.addListener(this);

addAndMakeVisible(&tePulseMult);

laPulseMult.attachToComponent(&tePulseMult, true);

tePulseTau.addListener(this);

addAndMakeVisible(&tePulseTau);

laPulseTau.attachToComponent(&tePulseTau, true);

tePulseLen.addListener(this);

addAndMakeVisible(&tePulseLen);

laPulseLen.attachToComponent(&tePulseLen, true);

}

// end

}

void resized()

{

// begin

else if (data.getType() == Ids::pulsetouch)

{

tePulseMult.setBounds(100, 100, getWidth() - 110, 22)

;

tePulseTau.setBounds(100, 130, getWidth() - 110, 22);

tePulseLen.setBounds(100, 190, getWidth() - 110, 22);

offset = 30;

}

// end

}

void readValues()

{

// begin

else if(data.getType() == Ids::pulsetouch)

{

tePulseMult.setText(data.getChildWithName(Ids::

parameters).getChild(3)[Ids::value].toString());

tePulseTau.setText(data.getChildWithName(Ids::

parameters).getChild(4)[Ids::value].toString());

tePulseLen.setText(data.getChildWithName(Ids::

parameters).getChild(5)[Ids::value].toString());

}

// end

}

bool writeValues()

{

// begin

ValueTree pa5, pa6;

//end

// begin

else if(data.getType() == Ids::pulsetouch)

{

pa3.setProperty(Ids::value,

6.3 extending synth-a-modeler designer with a new object 79

Utils::fixParameterValueIfNeeded(

tePos.getText()),

undoManager);

pa4.setProperty(Ids::value,

Utils::fixParameterValueIfNeeded(

tePulseMult.getText()),

undoManager);

pa5 = paramsTree.getChild(4);

pa5.setProperty(Ids::value,

Utils::fixParameterValueIfNeeded(

tePulseTau.getText()),

undoManager);

pa6 = paramsTree.getChild(5);

pa6.setProperty(Ids::value,

Utils::fixParameterValueIfNeeded(

tePulseLen.getText()),

undoManager);

}

// end

}

private:

// begin

Label laPulseMult;

TextEditor tePulseMult;

Label laPulseTau;

TextEditor tePulseTau;

Label laPulseLen;

TextEditor tePulseLen;

// end

}; �
An additional important change is also in ObjectComponent.cpp. In
order to make the pulsetouch connectable with mass-like objects,
new code has to be added in canBeConnected() function, shown in
listing 28.

Listing 28: New code in ObjectComponent.cpp

bool ObjectComponent::canBeConnected(const Identifier& objId)

{

// begin

if(objId == Ids::link || objId == Ids::touch ||

objId == Ids::pluck || objId == Ids::pulsetouch)

return canBeConnectedToLinks();

// end

} �
Now reading and writing of MDL files have to support the new ob-
ject type. The additional code is shown in listing 29, listing 30 and
listing 31.

Listing 29: New code in MDLParser.cpp

6.3 extending synth-a-modeler designer with a new object 80

bool MDLParser::parseMDL(const File& f)

{

// ...

for (int i = 0; i < lines.size(); ++i) {

// ...

else if(re.fullMatch(SAMRegex::getLinkLine(), line))

{

// begin

else if (values[0].compare("pulsetouch") == 0)

{

linkTree = ValueTree(Ids::pulsetouch);

}

// end

// ...

// begin

if(linkTree.getType() == Ids::pluck ||

linkTree.getType() == Ids::pulsetouch)

numParams = 4;

// end

}

// ...

}

} �
Listing 30: New code in SAMRegex.cpp

const char* SAMRegex::link = " (link|pluck|touch|pulsetouch) "; �
Listing 31: New code in MiscUtilities.cpp

const Identifier& Utils::getObjectGroup(const Identifier& ident)

{

// begin

else if(ident == Ids::link || ident == Ids::touch

|| ident == Ids::pluck || ident == Ids::pulsetouch)

return Objects::links;

// end

} �
The last addition is to add new default values for the new object in
BinaryData/default values.xml, as shown in listing 32 and extend
Application/SAMLookAndFeel.cpp for the desired appearance of the
pulsetouch objects’ menu item color as shown in listing 33.

Listing 32: New default values

<?xml version=" 1.0 " encoding="UTF−8"?>
<PROPERTIES>

<!-- begin -->

6.4 problems and limitations 81

<VALUE name=" pulsetouch_stiffness " val="100.0 "/>
<VALUE name="pulsetouch_damping" val=" 0.1 "/>
<VALUE name="pulsetouch_offset " val=" 0.0 "/>
<VALUE name="pulsetouch_pulsefreq" val=" 0.0 "/>
<!-- end -->

</PROPERTIES> �
Listing 33: New values in SAMLookAndFeel.cpp

static const Colour menuColourInsertPulsetouch(0xff006f00);

void SAMLookAndFeel::drawPopupMenuItem(Graphics& g,

int width, int height,

const bool isSeparator,

const bool isActive,

const bool isHighlighted,

const bool isTicked,

const bool hasSubMenu,

const String& text,

const String&

shortcutKeyText,

Image* image,

const Colour * const

textColourToUse)

{

// ...

// begin

else if(text.compare("Pulsetouch Link") == 0)

textColour = menuColourInsertPulsetouch;

// end

//...

} �
The necessary steps to include a new mass-like object would be

quite similar to the ones that are required for a link-like object and in
most cases new objects are either mass-like or link-like. In the case
of a custom object type, more source code has to be added in order
to fully implement it. The parser and reader class has to get support
for the new type and ObjController would have to be extended with
function that deal with adding, removing or changing position of an
element and also building up the graphical components would need
to get support for a new type. Additional UndoableAction classes for
the new object type would also be required. However, there are four
types of objects implemented in the Synth-A-Modeler Designer, which
can be used as a guidance for creating new objects.

6.4 problems and limitations

Although the current state of Synth-Modeler Designer fulfills all re-
quirements, there are also limitations. A significant limitation is the

6.4 problems and limitations 82

redraw algorithm, which does not work reliably with large models.
The reason is the nature of the algorithm, which does not scale well
for large graphs, and has been discussed in section 6.2.1. With small
models the algorithm produces good results but as soon as the num-
ber of objects grows, several issues occur. The first is the redraw
animation. It gets slow when the model consists of many objects.
The second issue is that the model grows very large in space with big
models, in which case the user has to modify the parameters of the
algorithm to improve the result. Another issue of the redrawing com-
ponents in Synth-Modeler Designer is that the redraw algorithm only
currently works for models that are contiguous. Models that consist
of multiple pieces can not be redrawn yet. This is a result of the graph
building algorithm used in the application, which is capable to build
only one graph out of one model. In the future, this issue could be
solved by first partitioning models into submodels of connected com-
ponents. Then, each submodel would be randomly oriented about
its origins. Finally, the redraw algorithm could be reapplied indepen-
dently to each submodel.

Another limitation in the Synth-A-Modeler Designer is the graphi-
cal rendering. Although the implementation of the rendering engine
works well for small and medium sized models, performance goes
down for large models, which contain thousands of objects. By per-
formance, the author means here the interaction of the user with the
objects. Dragging objects around with the mouse can be slow with
large models. The main cause is here of course that the rendering
is done in software and could be improved by transferring the calcu-
lations on to the graphics card, which however would involve major
changes in the codebase.

7
M O D E L I N G T H E O U D

7.1 the oud

It was decided to create the first published physical model of the
oud using Synth-A-Modeler Designer. The difficulty of designing non-
western instruments with physical modeling is not exactly a technical
one. Finding more information on non-western instruments is an
obstacle which makes it harder to design them. This section will give
a brief historical and technical overview of the instrument.

7.1.1 History

The oud is a plucked, string instrument with a pear-shaped body
made of wood, originating from the Eastern regions [36]. A similar
instrument in the western world is the Lute, which is very much in-
fluenced by the Arabic oud. In Europe the lute was very popular
starting from medieval times to the 18th century. The Arabic oud
was first introduced into Europe during the Moorian occupation of
Spain (711–1492). The Arabic oud was and is played with a plec-
trum, which has been adopted by European players in the beginning.
First evidence of a Moorish oud is shown on paintings from the 9th
and 10th century. Famous players, like Ziryab came to the court of
Andalusian emir Abd al Rahman II (822–852).

Goode [37] writes about the myth around the invention of the Ara-
bic oud,

[T]he oud was invented by Lamak, a descendant of the
biblical Cain. When his son died, Lamak is said to have
hung his remains in a tree and seen in the skeleton the
bowled body and elegant neck.

The oldest evidence of it, dates back to Southern Mesopotamia (mod-
ern Iraq), over 5000 years ago on a seal found by Dr. Dominique Collon
and is nowadays kept at the British Museum. With little differences,
this instrument and close family members are found in all ancient
Middle East civilizations as part of their music culture. Nowadays
there are slightly different versions of the traditional Arabic oud in
Turkey, Greece and Armenia. They have different tunings and also a
different tone compared to the oud use in the Arab world.

The neck of the oud is made of light wood and has no frets, which
makes it for the player easier to play glissandi and vibrato and allows

83

7.1 the oud 84

microtones to be played, as in the Arabic maqam53 system [38]. Fig-
ure 34 shows an oud. As clearly visible in fig. 34, the neck is bent

Figure 34: Oud front and rear view54

backward almost 90°. Although there are different string arrange-
ments, in most cases there are five pairs of strings, tuned in unison,
and a single bass string. Historically the strings were made from gut
or in combination with metal. Nowadays instrument builders use
also nylon strings but gut strings are still available for use. However,
gut strings are more authentic, and they tend to have irregularities
in pitch when the humidity level changes. Nylon strings stay in tune
more reliably but of course with a slightly different sound, which
might not be as authentic [36].

7.1.2 Principle of operation

From the perspective of the principle of operation, the oud, or gener-
ally a lute, is according Rossing the same as guitar-type instruments
and is a system of coupled vibrators [39]. Figure 35 shows a simple
schematic of a guitar which can be applied also to lutes and the oud.
Rossing states, that plucked strings store energy, however they only
emit a small amount of sound [39]. Instead, they transmit the energy,
caused by the vibration, onto the top plate and bridge. These vibra-
tions then are transported to the back plates, ribs and the air cavity.
Thus, sound is radiated by the vibrating plates and the sound hole.
As fig. 35 shows, at low frequencies, acoustic sound radiates from the

53 Maqam is a set of notes with traditions that define relationships between them, ha-
bitual patterns, and their melodic development.

54 Source: http://www.oud.net/acoustic.htm

7.2 modeling the oud in synth-a-modeler 86

plucking or touching of the string. The other two free ends, which
are connected to termination objects represent the fixed points of
the string, which is in the case of an oud, the neck and the bridge.
Figure 36 shows the string in Synth-A-Modeler Designer. The string

Figure 36: A string in Synth-A-Modeler

has to be copied multiple times according to the number of strings on
the instrument. After adding all the 10 strings to the editing canvas, a
port object has to be added, which then has to be connected with the
10 junctions via a pluck link object. This will be the connection to the
“outside”, a port to a external controller, representing the plucking of
the strings. To be able to listen to the sound that this model generates,
two audioout objects will be added, and will be connected to the
terminations. Now, the physical model for the oud is set up and can
be seen in fig. 37.

Figure 37: The oud model in Synth-A-Modeler

Next the parameters of the objects have to be adjusted. The spatial
alignment of the strings can be set by specifying the displacement
parameter of the junctions in meters. From the lowest string to the
highest the distance is around 5 cm and the distance has to be split up
to the strings. The lowest pair of strings has a displacement of 0m the
second lowest 0.01m and so on, until it ends at 0.04m displacement
of the highest pair of strings. There has to be also added a slight
displacement between the string pairs by a couple of millimeters. To

7.2 modeling the oud in synth-a-modeler 87

define the pitch of the strings, the waveguides have to be modified
respectively. Its parameters are the characteristic wave impedance
in N m−1 s−1, which is set to 2.5N m−1 s−1 and the type of string,
which is defined by the maximum time delay in s and the current
time delay in s and is set to 0.027 s and the frequency of the string
respectively. To achieve a more natural sound, each pair of strings
are slightly mistuned with respect to another to achieve beating, as
commonly occurs with real ouds. The beat frequency is the difference
in the frequencies of each pair of strings. These beat frequencies of
the string pairs are adjusted so that they all differ to produce a richer
sound. The source code can be found in the Appendix.

7.2.2 Commuted Synthesis

At the moment sound radiation is not implemented in Synth-A-Modeler,
but it is possible to achieve psychoacoustically similar effects with
commuted synthesis [1]. Commuted synthesis however, can be inte-
grated into the physical models by using FAUST DSP code which pro-
cesses the output audio signal. The following basic definition shows
an audioout object for a fret object.

audioout,a1,(fret)*vol:outputDSP;

The sound of the fret object is multiplied by a volume control and
passed through outputDSP. outputDSP is a dynamic range limiter that
takes care of the output signal in case of clipping.

It is also possible to add reverberation to the output audio signal,
like in the following code:

audioout,a1,(fret)*vol:outputDSP:SAMfreereverb;

To simulate the body modes of a cello, one can apply a filter with the
followin code:

audioout,a1,(fret)*vol:outputDSP:SAMfreereverb:bodyResp2;

These filter coefficients were fit by Esteban Maestre and are defined
as follows in SAM-fx.lib using six two-pole two-zero filters placed in
series:

bodyResp2 =

tf2np(1.0, 1.5667, 0.3133, -0.5509, -0.3925) :

tf2np(1.0, -1.9537, 0.9542, -1.6357, 0.8697) :

tf2np(1.0, -1.6683, 0.8852, -1.7674, 0.8735) :

tf2np(1.0, -1.8585, 0.9653, -1.8498, 0.9516) :

tf2np(1.0, -1.9299, 0.9621, -1.9354, 0.9590) :

tf2np(1.0, -1.9800, 0.9888, -1.9867, 0.9923);

Another option would be, to apply an impulse response from a trun-
cated body with using a filter (also defined in SAM-fx.lib):

7.2 modeling the oud in synth-a-modeler 88

audioout,a1,(fret)*vol:outputDSP:SAMfreereverb:bodyResp1;

Although this method is easier to apply, it is much less efficient to
compute.

In the oud model, the output audio is taken from the string termi-
nations at each end (see fig. 37), which is not physically correct but
sounds interesting. To produce a rich sound, one channel is filtered
using bodyResp1 and the other channel is filtered using bodyResp2.

8
C O N C L U S I O N S

8.1 conclusion

This thesis has given an insight into the development of a cross-
platform application, the Synth-A-Modeler Designer, in order to pro-
vide a graphical environment to physical modeling. For a long time
the mathematical nature of physical modeling provided a large bar-
rier for artist, musicians or students, who were often not able to de-
sign own instruments and sounds based on physical models. While
there already exist several software systems that try to make physi-
cal modeling more accessible to artists, or which provide other than
mathematical approaches, the barriers are still very high to use and
apply these systems. It is either the cost or the complexity that keeps
users away from physical modeling.

With the Synth-A-Modeler project, the main focus is on providing
an open platform for physical modeling. But moreover, to lower the
barrier for artists to start designing physical models in order to create
new sounds. The Synth-A-Modeler Designer software enables users to
create and design physical models visually, and it might also provide
a less complex point of entrance to getting started with physical mod-
eling. In an educational context the Synth-A-Modeler Designer could
be used not only for creating new sounds and instruments, but also
for describing physical mass-interaction systems in general. Addi-
tionally, designing physical models graphically could also be part of
the creative process, which might help to make physical modeling
more accessible.

The Synth-A-Modeler Designer has been developed with free and
open-source software components in order to make it freely available.
But furthermore, to also make it easier to explore, extend and de-
velop it further. Some components, such as the automatic redrawing
feature, has purposely been implemented with a focus on extension
and further exploration.

An early version of Synth-A-Modeler Designer has been used suc-
cessfully in a laboratory session at Stanford University. The students
were able to prototype new physical models graphically and they
could create models which they had not yet imagined before. Letting
the students use the software in its early stage helped also to discover
some bugs and errors, which could only be noticed by an extensive
use of the software.

89

8.2 future work 90

8.2 future work

While the Synth-A-Modeler Designer is already functional and almost
all initial requirements have been implemented, there are some parts
that need improvement. During the development process, additional
ideas came up, which were not considered at the time of planning
and designing.

As already mentioned, the graphical rendering system in the cur-
rent state is not optimal for large models. Therefore, it would be very
important to rewrite the parts of the software that are responsible for
the rendering in order to do calculations on the graphics card.

The automatic redraw system is still very basic in its current state
and it would benefit very much from improvements. Handling multi-
ple graphs in one model is essential, and this should be a main focus
during the expansion process of the application. The redraw perfor-
mance is not very high in its current state, and improving its per-
formance would provide the user with a better usability experience.
However, the performance is influenced by multiple factors, such as
the rendering system and the actual redraw algorithm. Improving
these would most likely boost its performance.

To help new users to start using the Synth-A-Modeler Designer, it
would be advisable to improve the help system, as well as add more
examples that describe the individual objects. In its current state, the
Synth-A-Modeler Designer provides basic example models.

In some cases it might be more convenient to edit the MDL file man-
ually and to add comments for describing parts of the model. When
loading an MDL file, the Synth-A-Modeler Designer ignores these com-
ments. However, when saving an MDL file with the Synth-A-Modeler
Designer, the file gets completely rewritten and the manually added
comments are deleted. A focus of a possible extension should be the
improvement of the save functionality in order to alter only the parts
that have been edited, instead of rewriting the file completely.

Part IV

A P P E N D I X

A
A P P E N D I X

a.1 example .mdl file

Listing 34: A complete mdl file

format [type]([default parameters]),[identifying name],([

label1],[label2],...)

mass is a normal 1-D mass

port is a port to the external world, for example to a haptic

device,

or just for a position

input and force output.

mass(0.01,0.0,0.0),m1;

mass(1e-2,0.0,0.0),m2;

mass(0.03,0.0,0.0),m3;

port(),dev1;

The ground object is like an infinite mass that never moves.

It always

stays at the same position. format [type] [unique identifier]

[label]

[initial position in m] ground g1 g 0 Link-type objects

connect from

one mass-type object to another mass-type object. For that

reason,

each of the links must specify the two mass-type objects that

it

connects.

#

format:

[type]([default parameters]),[identifying name],[starting

vertex],

[ending vertex],([label1],[label2],...)

For instance for a linear link we have link([stiffness in

N/m],[damping in N/(m/s)],[center position offset in

m]),[unique linkname],[starting vertex],[ending vertex],([

label1],[label2],...)

#

Or for a nonlinear, switching "BUT" contact link, we have

contact([stiffness in N/m],[damping in N/(m/s)],[offset for

engagement

in m]),[unique linkname],[starting vertex],[ending vertex],([

label1],[label2],...)

#

Or for a nonlinear plucking link, we have pluck([stiffness in

N/m],[damping in N/(m/s)],[Minimum displacement difference

for contact

92

A.2 oud model 93

in m][offset for engagement in m]),[unique linkname],[

starting vertex],

[ending vertex],([label1],[label2],...)

#

In this model, we have just three simple linear links

link(12000.0,0.003,0.0),l1,m1,m2;

link(12000.0,0.004,0.0),l2,m2,m3;

link(12000.0,0.005,0.0),l3,m2,dev1;

Then a list of audio-only outputs

audioout [index of additional audio outlet] [identifier of

source 1]

[gain 1] [identifier of source 2] [gain 2] ...

Here is a stereo audio output example:

audioout,a1,m1*1000.0;

audioout,a2,l2*100.0; �
a.2 oud model

Listing 35: The model of an oud

MDL file for Synth-A-Modeler

#

Edgar Berdahl, 2012

Audio Communication Group

Technical University of Berlin

#

#

#

This program is free software; you can redistribute it and/or

modify

it under the terms of the GNU General Public License as

published by

the Free Software Foundation; either version 2 of the License

, or

(at your option) any later version.

#

This program is distributed in the hope that it will be

useful,

but WITHOUT ANY WARRANTY; without even the implied warranty

of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

#

You should have received a copy of the GNU General Public

License

along with this program; if not, write to the Free Software

Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

A.2 oud model 94

port(),dev0; # pos 627,709

port(),dev1;

pluck(k,R,maxdisp,0.0),p0,junct0,dev0;

pluck(300.0,0.1,0.003,0.0),p1,junct0cpy,dev0;

pluck(300.0,0.1,0.003,0.0),p2,junct0cpy1,dev0;

pluck(300.0,0.1,0.003,0.0),p3,junct0cpy2,dev0;

pluck(300.0,0.1,0.003,0.0),p4,junct0cpy3,dev0;

pluck(300.0,0.1,0.003,0.0),p5,junct0cpy4,dev0;

pluck(300.0,0.1,0.003,0.0),p6,junct0cpy5,dev0;

pluck(300.0,0.1,0.003,0.0),p7,junct0cpy6,dev0;

pluck(300.0,0.1,0.003,0.0),p8,junct0cpy7,dev0;

pluck(300.0,0.1,0.003,0.0),p9,junct0cpy8,dev0;

waveguide(2.5,simpleString(0.027,(1.0/(noteC-1.0))*relPos-

simpleStringTermDelay(bridgeFc))),wg0,bridge,junct0;

waveguide(2.5,simpleString(0.027,(1.0/(noteC-1.0))*(1.0-relPos)

-simpleStringTermDelay(fretFc))),wg1,fret,junct0;

waveguide(2.5,simpleString(0.027,(1.0/noteC)*relPos-

simpleStringTermDelay(bridgeFc))),wg0cpy,bridgecpy,junct0cpy;

waveguide(2.5,simpleString(0.027,(1.0/noteC)*(1.0-relPos)-

simpleStringTermDelay(fretFc))),wg1cpy,fretcpy,junct0cpy;

waveguide(2.5,simpleString(0.027,(1.0/(noteG-1.0))*relPos-

simpleStringTermDelay(bridgeFc))),wg0cpy1,bridgecpy1,junct0

cpy1;

waveguide(2.5,simpleString(0.027,(1.0/(noteG-1.0))*(1.0-relPos)

-simpleStringTermDelay(fretFc))),wg1cpy1,fretcpy1,junct0cpy1;

waveguide(2.5,simpleString(0.027,(1.0/noteG)*relPos-

simpleStringTermDelay(bridgeFc))),wg0cpy2,bridgecpy2,junct0

cpy2;

waveguide(2.5,simpleString(0.027,(1.0/noteG)*(1.0-relPos)-

simpleStringTermDelay(fretFc))),wg1cpy2,fretcpy2,junct0cpy2;

waveguide(2.5,simpleString(0.027,(1.0/(noteD-1.0))*relPos-

simpleStringTermDelay(bridgeFc))),wg0cpy3,bridgecpy3,junct0

cpy3;

waveguide(2.5,simpleString(0.027,(1.0/(noteD-1.0))*(1.0-relPos)

-simpleStringTermDelay(fretFc))),wg1cpy3,fretcpy3,junct0cpy3;

waveguide(2.5,simpleString(0.027,(1.0/noteD)*relPos-

simpleStringTermDelay(bridgeFc))),wg0cpy4,bridgecpy4,junct0

cpy4;

waveguide(2.5,simpleString(0.027,(1.0/noteD)*(1.0-relPos)-

simpleStringTermDelay(fretFc))),wg1cpy4,fretcpy4,junct0cpy4;

waveguide(2.5,simpleString(0.027,(1.0/(noteA-1.0))*relPos-

simpleStringTermDelay(bridgeFc))),wg0cpy5,bridgecpy5,junct0

cpy5;

waveguide(2.5,simpleString(0.027,(1.0/(noteA-1.0))*(1.0-relPos)

-simpleStringTermDelay(fretFc))),wg1cpy5,fretcpy5,junct0cpy5;

A.2 oud model 95

waveguide(2.5,simpleString(0.027,(1.0/noteA)*relPos-

simpleStringTermDelay(bridgeFc))),wg0cpy6,bridgecpy6,junct0

cpy6;

waveguide(2.5,simpleString(0.027,(1.0/noteA)*(1.0-relPos)-

simpleStringTermDelay(fretFc))),wg1cpy6,fretcpy6,junct0cpy6;

waveguide(2.5,simpleString(0.027,(1.0/(noteF-1.0))*relPos-

simpleStringTermDelay(bridgeFc))),wg0cpy7,bridgecpy7,junct0

cpy7;

waveguide(2.5,simpleString(0.027,(1.0/(noteF-1.0))*(1.0-relPos)

-simpleStringTermDelay(fretFc))),wg1cpy7,fretcpy7,junct0cpy7;

waveguide(2.5,simpleString(0.027,(1.0/noteF)*relPos-

simpleStringTermDelay(bridgeFc))),wg0cpy8,bridgecpy8,junct0

cpy8;

waveguide(2.5,simpleString(0.027,(1.0/noteF)*(1.0-relPos)-

simpleStringTermDelay(fretFc))),wg1cpy8,fretcpy8,junct0cpy8;

termination(simpleStringTerm(-1.0+pow(10.0,-bridgeAtten:float),

bridgeFc)),bridge; # pos 160,146

termination(simpleStringTerm(-1.0+pow(10.0,-fretAtten:float),

fretFc)),fret; # pos 672,146

termination(simpleStringTerm(-1.0+pow(10.0,-fretAtten:float),

fretFc)),fretcpy; # pos 672,178

termination(simpleStringTerm(-1.0+pow(10.0,-bridgeAtten:float),

bridgeFc)),bridgecpy; # pos 160,178

termination(simpleStringTerm(-1.0+pow(10.0,-fretAtten:float),

fretFc)),fretcpy1; # pos 672,258

termination(simpleStringTerm(-1.0+pow(10.0,-bridgeAtten:float),

bridgeFc)),bridgecpy1; # pos 160,258

termination(simpleStringTerm(-1.0+pow(10.0,-fretAtten:float),

fretFc)),fretcpy2; # pos 664,290

termination(simpleStringTerm(-1.0+pow(10.0,-bridgeAtten:float),

bridgeFc)),bridgecpy2; # pos 152,290

termination(simpleStringTerm(-1.0+pow(10.0,-fretAtten:float),

fretFc)),fretcpy3; # pos 688,370

termination(simpleStringTerm(-1.0+pow(10.0,-bridgeAtten:float),

bridgeFc)),bridgecpy3; # pos 152,370

termination(simpleStringTerm(-1.0+pow(10.0,-fretAtten:float),

fretFc)),fretcpy4; # pos 688,394

termination(simpleStringTerm(-1.0+pow(10.0,-bridgeAtten:float),

bridgeFc)),bridgecpy4; # pos 152,394

termination(simpleStringTerm(-1.0+pow(10.0,-fretAtten:float),

fretFc)),fretcpy5; # pos 672,458

termination(simpleStringTerm(-1.0+pow(10.0,-bridgeAtten:float),

bridgeFc)),bridgecpy5; # pos 160,458

termination(simpleStringTerm(-1.0+pow(10.0,-fretAtten:float),

fretFc)),fretcpy6; # pos 680,482

termination(simpleStringTerm(-1.0+pow(10.0,-bridgeAtten:float),

bridgeFc)),bridgecpy6; # pos 160,482

termination(simpleStringTerm(-1.0+pow(10.0,-fretAtten:float),

fretFc)),fretcpy7; # pos 688,562

A.2 oud model 96

termination(simpleStringTerm(-1.0+pow(10.0,-bridgeAtten:float),

bridgeFc)),bridgecpy7; # pos 176,562

termination(simpleStringTerm(-1.0+pow(10.0,-fretAtten:float),

fretFc)),fretcpy8; # pos 696,586

termination(simpleStringTerm(-1.0+pow(10.0,-bridgeAtten:float),

bridgeFc)),bridgecpy8; # pos 176,586

junction(0.04),junct0; # pos 400,136

junction(0.04),junct0cpy; # pos 400,168

junction(0.03),junct0cpy1; # pos 400,248

junction(0.03),junct0cpy2; # pos 400,280

junction(0.02),junct0cpy3; # pos 400,360

junction(0.02),junct0cpy4; # pos 400,384

junction(0.01),junct0cpy5; # pos 400,448

junction(0.01),junct0cpy6; # pos 400,472

junction(0.0),junct0cpy7; # pos 400,552

junction(0.0),junct0cpy8; # pos 400,576

faustcode: freqMIDI=hslider("Frequency [MIDI]", 27.0, 20.0,

84.0, 0.05);

faustcode: freq = 440.0*pow(2.0,(freqMIDI-69.0)/12.0);

faustcode: k=hslider("Pluck stiffness [N/m

]",250.0,50.0,1000.0,50.0);

faustcode: R=hslider("Pluck damping [N/(m/s)

]",0.1,0.0,2.5,0.01);

faustcode: relPos=hslider("Pluck position along length

",0.29,0.01,0.99,0.01);

faustcode: maxdisp=hslider("Pluck half-width [m

]",0.006,0.001,0.01,0.001);

faustcode: bridgeAtten=hslider("Bridge attenuation

",2.5,0.5,7.0,0.01);

faustcode: bridgeFc=hslider("Bridge cutoff freq [Hz

]",5000.0,1000.0,fs,10.0);

faustcode: fretAtten=hslider("Fret attenuation

",2.5,0.5,7.0,0.01);

faustcode: fretFc=hslider("Fret cutoff freq [Hz

]",5000.0,1000.0,fs,10.0);

faustcode: moveStrings=hslider("Waveguides position adjustment

",1.0,0.1,1.4,0.01);

faustcode: vol=hslider("Z Volume",0.3,0.01,1.0,0.01) :

onePoleBLT(10.0); // LP filter with cutoff frequency at 10Hz

smoothes volume control signal

faustcode: outputDSP=highpass(4,20.0);

faustcode: noteF=174.61;

faustcode: noteA=220.0;

faustcode: noteD=293.66;

faustcode: noteG=392.0;

faustcode: noteC=523.25;

A.3 emacs support 97

audioout,a0,(bridge+bridgecpy+bridgecpy1+bridgecpy2+bridgecpy3+

bridgecpy4+bridgecpy5+bridgecpy6+bridgecpy7+bridgecpy8)*vol:

outputDSP:bodyResp1:SAMfreereverb; # pos 59,336

audioout,a1,(fret+fretcpy+fretcpy1+fretcpy2+fretcpy3+fretcpy4+

fretcpy5+fretcpy6+fretcpy7+fretcpy8)*vol:outputDSP:bodyResp2:

SAMfreereverb; # pos 851,336 �
a.3 emacs support

Listing 36: Source of sam-mode for Emacs

;;;

;; Synth-A-Modeler mode (basic syntax highlighting)

;; author: ptrv <mail@petervasil.net>

;; based on the FAUST mode by rukano:

;; https://github.com/rukano/emacs-faust-mode

;;;

;;

;; Installation:

;;

;; Put sam-mode.el to your load-path and add this to

;; your .emacs:

;;

;; (setq auto-mode-alist (cons ’("\\.mdl$" . sam-mode)

auto-mode-alist))

;; (autoload ’sam-mode "sam-mode" "Synth-A-Modeler editing mode

." t)

;;

;;;

(defvar sam-keywords

’("mass" "ground" "port" "resonator" " link " "touch" "pluck"
"waveguide" "termination" " junction" "audioout"))

(defvar sam-functions

’("simpleString" "simpleStringTerm"))

(defvar sam-ui-keywords

’("faustcode"))

;; optimize regex for words

(defvar sam-variables-regexp " [A−Za−z] [A−Za−z]* ")
(defvar sam-arguments-regexp "[0−9]")
(defvar sam-operator-regexp "\\([~!_@, < >:;]\\) ")
(defvar sam-math-op-regexp " [=\+\{\}()/*−]")
(defvar sam-keywords-regexp (regexp-opt sam-keywords ’words))

(defvar sam-function-regexp (regexp-opt sam-functions ’words))

(defvar sam-ui-keywords-regexp (regexp-opt sam-ui-keywords ’

words))

A.4 vim support 98

;; create the list for font-lock.

(setq sam-font-lock-keywords

‘(

(,sam-function-regexp . font-lock-type-face)

(,sam-ui-keywords-regexp . font-lock-builtin-face)

(,sam-math-op-regexp . font-lock-function-name-face)

(,sam-operator-regexp . font-lock-constant-face)

(,sam-keywords-regexp . font-lock-keyword-face)

))

;; define the mode

(define-derived-mode sam-mode fundamental-mode

"SAM"
"Major mode for editing Synth−A−Modeler f i l es "

;; code for syntax highlighting

(setq font-lock-defaults ’((sam-font-lock-keywords)))

;; modify the keymap

(define-key sam-mode-map [remap comment-dwim] ’

sam-comment-dwim))

;; comment dwin support

(defun sam-comment-dwim (arg)

"Comment or uncomment current line or region in a smart way.
For detail , see ‘comment−dwim’ . "
(interactive " *P")
(require ’newcomment)

(let ((deactivate-mark nil) (comment-start "#") (comment-end

" "))
(comment-dwim arg)))

(modify-syntax-entry ?# "< b" sam-mode-syntax-table)

(modify-syntax-entry ?\n "> b" sam-mode-syntax-table) �
a.4 vim support

Listing 37: Vim support source

" There has to be a file called filetype.vim in your ~/.vim

directory

" with the following content:

" sam filetype file

" if exists("did load filetypes")

" finish

" endif

" augroup filetypedetect

" au! BufRead,BufNewFile *.mdl setfiletype sam

" augroup END

"

"

A.4 vim support 99

" Synth-A-Modeler syntax file

" Language: Synth-A-Modeler

" Maintainer: Peter Vasil <mail@petervasil.net>

" Version: 0.1

" Last change: 2012-10-04

" remove any old syntax stuff hanging around

syn clear

"""

" sam primitives

syn keyword samPrims mass ground port resonator link touch

pluck waveguide termination junction audioout faustcode

"""

" sam operators

syn keyword samOps simpleString simpleStringTerm

"""

" sam comments

syn match samComment "#.*$"

" syn region samComment start="/*" end="*/" contains=

samOperator keepend extend

"""

" sam operators

syn match samOperator "+"

syn match samOperator "-"

syn match samOperator "*"

syn match samOperator ":"

syn match samOperator ","

"""

" sam brackets

syn match samAoperator "("

syn match samAoperator ")"

" String

syn region samString start=+"+ skip=+\\\\\|\\"+ end=+"+

" Color definition

hi link samAoperator Statement

hi link samPrims Label

hi link samOps Identifier

hi link samOperator Special

hi link samComment Comment

hi link samString String

" The name of the syntax is sam

let b:current syntax = "sam" �

A.5 building synth-a-modeler on a beagle-board 100

a.5 building synth-a-modeler on a beagle-board

This section will briefly describe how to compile Synth-A-Modeler De-
signer on a Beagle-Board55 with an ARM processor, which is not of-
ficially supported by JUCE. BeagleBoard is small computer used for
embedded computing. The actual hardware, used for testing, a Bea-
gleBoard xM, has been provided by Edgar Berdahl. In order to compile
Synth-A-Modeler Designer, some code has to be modified in the JUCE
sources. The description has been tested on Satellite CCRMA,56 an
Ubuntu57 based Linux distribution, created to serve as “platform for
building embedded musical instruments and embedded art installa-
tions” [40].

1. The first step is, to install the dependencies for JUCE. The fol-
lowing list, taken from a forum entry on the JUCE website,
shows all commands to install the libraries:

sudo apt-get -y install g++

sudo apt-get -y install libfreetype6-dev

sudo apt-get -y install libx11-dev

sudo apt-get -y install libxinerama-dev

sudo apt-get -y install libxcursor-dev

sudo apt-get -y install mesa-common-dev

sudo apt-get -y install libasound2-dev

sudo apt-get -y install freeglut3-dev

sudo apt-get -y install libxcomposite-dev

2. We have to disable shared memory to be able to connect the
Beagle-Board via Ethernet and ssh forwarding. This makes it
possible to use GUIs applications over X11. When using the
Beagle-Board directly, this is not necessary.

In AppConfig.h edit the preprocessor command:

#define JUCE USE XSHM 0

3. We have to disable 64 bit Atomics in

juce/module/juce core/memory/juce Atomic.h

by commenting out the corresponding code

#elif JUCE GCC

#define JUCE ATOMICS GCC 1 // GCC with intrinsics

55 http://beagleboard.org/

56 https://ccrma.stanford.edu/~eberdahl/Satellite/

57 http://www.ubuntu.com

A.6 class hierarchy 101

// COMMENT OUT THE IF STATEMENT HERE------->

//#if JUCE IOS || JUCE ANDROID // 64-bit ops will compile but not link on the

#define JUCE 64BIT ATOMICS UNAVAILABLE 1

//#endif

//===

4. Then we have to specify the target architecture by running the
following command to set the TARGET ARCH environment vari-
able

export TARGET ARCH=-march=armv7-a \

-O3 -mtune=cortex-a8 -mfpu=neon \

-mfloat-abi=softfp

5. Finally we can build the application by executing

cd Synth-A-Modeler/gui/Builds/Linux

make

a.6 class hierarchy

A.6 class hierarchy 102

Figure 38: Class hierarchy diagram

B I B L I O G R A P H Y

[1] J.O. Smith III. Physical audio signal processing. Julius Orion
Smith III Homepage, https://ccrma.stanford.edu/~jos/pasp/,
2004. (Cited on pages 2, 7, and 87.)

[2] E. Berdahl and J.O. Smith III. An introduction to the Synth-A-
Modeler compiler: Modular and open-source sound synthesis
using physical models. In Proceedings of the Linux Audio Confer-
ence, Stanford, CA, 2012. (Cited on pages 2, 3, 12, 14, 16, and 25.)

[3] Rudolf Rabenstein, Stefan Petrausch, Augusto Sarti, Giovanni
De Sanctis, Cumhur Erkut, and Matti Karjalainen. Blocked-
based physical modeling for digital sound synthesis. Signal Pro-
cessing Magazine, IEEE, 24(2):42–54, 2007. (Cited on page 3.)

[4] J.O. Smith III. A basic introduction to digital waveguide
synthesis. Center for Computer Research in Music and Acous-
tics (CCRMA), Stanford University. http://ccrma.stanford.edu/
~jos/swgt, 2006. The reference is recommended for the techni-
cally inclined. (Cited on pages 6, 7, and 8.)

[5] N. Castagne and C. Cadoz. Creating music by means of ’phys-
ical thinking’: The musician oriented genesis environment. In
Proceedings of the fifth annual Conference on Digital Audio Effects,
Hamburg, Germany, 2002. (Cited on page 8.)

[6] Kees Van den Doel and Dinesh K Pai. Modal synthesis for vibrat-
ing objects. Audio Anectodes. AK Peter, Natick, MA, 2003. (Cited
on page 8.)

[7] David Bolton. Definition of beta. http://cplus.about.com/od/

glossar1/g/betadefinition.htm, April 2012. [Accessed 2013-
02-02 16:22:04]. (Cited on page 9.)

[8] N. Castagné, C. Cadoz, A. Allaoui, O. Tache, et al. G3: Gene-
sis software environment update. arXiv preprint arXiv:0911.4642,
2009. (Cited on pages 9 and 10.)

[9] C. Cadoz, A. Luciani, and J.L. Florens. A modeling and simula-
tion system for sound and image synthesis: The general formal-
ism. Computer music journal, 17(1):19–29, 1993. (Cited on page 9.)

[10] Tcl sourceforge project. http://tcl.sourceforge.net/. [Ac-
cessed 2013-02-02 20:27:50]. (Cited on page 10.)

103

bibliography 104

[11] F. Iovino, R. Caussé, and R. Dudas. Recent work around modalys
and modal synthesis. In ICMC: International Computer Music Con-
ference, Thessaloniki Hellas, Greece, pages 356–359, 1997. (Cited on
page 10.)

[12] R. Polfreman. Modalys-ER for OpenMusic (MfOM): virtual in-
struments and virtual musicians. Organised Sound, 7(3):325–338,
2002. (Cited on pages 10 and 11.)

[13] IRCAM Music Representations Team. Openmusic website. http:
//repmus.ircam.fr/openmusic/home, 11 2012. [Accessed 2013-
02-04 14:12:45]. (Cited on page 10.)

[14] The Open Group. Regular expressions. http://pubs.opengroup.
org/onlinepubs/007908799/xbd/re.html, 1997. [Accessed 2013-
03-06 12:58:54]. (Cited on page 13.)

[15] Grame. FAUST. http://faust.grame.fr, 2011. [Accessed 2013-
03-06 13:35:03]. (Cited on page 13.)

[16] Inc. Elgris Technologies. Elgris / edif implementation. http://

www.elgris.com/content/edif overview.html, 2005. [Accessed
Fri Jan 18 2013 19:20:32]. (Cited on page 16.)

[17] GCC Team. GCC, the GNU Compiler Collection. http://gcc.

gnu.org/, 03 2013. [Accessed 2013-03-07 13:26:50]. (Cited on
page 19.)

[18] J. Smith III. Audio signal processing in Faust. online tutorial:
https://ccrma.stanford.edu/~jos/aspf/aspf.html, 2010. [Ac-
cessed 2013-03-06 15:12:24]. (Cited on page 19.)

[19] IEM - Institute of Electronic Music and Acoustics. Puredata
website. http://puredata.info/, 2013. [Accessed 2013-03-08

12:30:36]. (Cited on page 19.)

[20] Gräf Albert. Interfacing PureData with Faust. LINUX AUDIO,
page 24, 2007. (Cited on page 19.)

[21] SuperCollider community. SuperCollider website. http://

supercollider.sourceforge.net/, 2013. [Accessed 2013-03-08

17:12:52]. (Cited on page 21.)

[22] Scott Wilson, David Cottle, and Nick Collins. The SuperCollider
Book. 2011. (Cited on page 21.)

[23] Gamma Erich, Helm Richard, Johnson Ralph, and Vlissides John.
Design patterns: Elements of reusable object-oriented software.
Reading: Addison Wesley Publishing Company, 1995. (Cited on
pages 30, 31, and 41.)

bibliography 105

[24] Raw Material Software. Summary of juce’s features. http://

rawmaterialsoftware.com/jucefeatures.php, 2013. [Accessed
2013-03-12 15:26:10]. (Cited on page 33.)

[25] Free Software Foundation. GNU General Public License, ver-
sion 2. http://www.gnu.org/licenses/gpl-2.0.html, 2013. [Ac-
cessed 2013-03-12 16:05:53]. (Cited on page 33.)

[26] OJ Reeves. The Magic of Unity Builds. http://buffered.

io/posts/the-magic-of-unity-builds, Decenmber 2007. [Ac-
cessed 2013-03-12 18:10:28]. (Cited on page 34.)

[27] The IEEE and The Open Group. The open group base specifica-
tions issue 6, regular expressions. http://pubs.opengroup.org/
onlinepubs/009695399/basedefs/xbd chap09.html, 2004. [Ac-
cessed 2013-03-14 15:17:18]. (Cited on page 35.)

[28] Russ Cox. Regular Expression Matching Can Be Simple And
Fast. http://swtch.com/~rsc/regexp/regexp1.html, 2007. [Ac-
cessed 2013-03-12 17:52:54]. (Cited on page 36.)

[29] Russ Cox. Regular expression matching in the wild. http:

//swtch.com/~rsc/regexp/regexp3.html, 2010. [Accessed 2013-
03-14 16:22:54]. (Cited on page 36.)

[30] Scott Chacon. Pro Git. Apress, 2009. (Cited on page 36.)

[31] Raw Material Software. JUCE Documentation. http://www.

rawmaterialsoftware.com/juce/api/index.html, 2013. [Ac-
cessed 2013-03-29 18:39:29]. (Cited on pages 44, 46, 48, and 49.)

[32] D. Huizinga and A. Kolawa. Automated Defect Prevention:
Best Practices in Software Management. Wiley, 2007. ISBN
9780470165164. URL http://books.google.com.pk/books?id=

PhnoE90CmdIC. (Cited on page 63.)

[33] Roberto Tamassia. Handbook of graph drawing and visualization.
Chapman & Hall/CRC, 2007. (Cited on page 64.)

[34] Mauro Brunato. Advanced business intelligence techniques
13: Force-based graph layout algorithms. Video, http://www.

youtube.com/watch?v=2nA6vbIeX1s, 07 2012. [Accessed 2013-06-
27 10:38:47]. (Cited on page 64.)

[35] Mike Kamermans. Simple graph visualisation. http://

processingjs.nihongoresources.com/graphs/, 2011. [Accessed
2013-04-20 18:52:05]. (Cited on page 66.)

[36] M. Jahandideh, S. Khaefi, A. Jahandideh, and M. Khaefi. Us-
ing the root proportion to design an oud. In Proceedings of the

bibliography 106

11th WSEAS international conference on Acoustics & music: the-
ory & applications, pages 35–39. World Scientific and Engineer-
ing Academy and Society (WSEAS), 2010. (Cited on pages 83

and 84.)

[37] Erica Goode. A Fabled Iraqi Instrument Thrives in Ex-
ile. http://www.nytimes.com/2008/05/01/world/middleeast/

01oud.html, 2008. [Accessed Sat 19 Jan 2013 23:55:31]. (Cited
on page 83.)

[38] Maqam World. What is a Maqam? http://www.maqamworld.

com/maqamat.html, 2003. [Accessed Sat 19 Jan 2013 22:33:00].
(Cited on page 84.)

[39] T.D. Rossing. Science of String Instruments. Springer Verlag, 2010.
(Cited on pages 84 and 85.)

[40] Edgar Berdahl and Wendy Ju. Satellite CCRMA. https://

ccrma.stanford.edu/~eberdahl/Satellite/. [Accessed 2013-
03-21 18:12:54]. (Cited on page 100.)

E R K L Ä R U N G

Hiermit versichere ich an Eides statt, dass ich die vorliegende Mas-
terarbeit ohne fremde Hilfe angefertigt und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt habe. Alle Teile, die
wörtlich oder sinngemäß einer Veröffentlichung entstammen, sind als
solche kenntlich gemacht. Die Arbeit wurde noch nicht veröffentlicht
oder einer anderen Prüfungsbehörde vorgelegt.

Berlin, den 25. Juli 2013

Peter Vasil

