






Abstract

Human beings are naturally inclined to discover, comprehend, and respond to their surroundings in a
rhythmic way by focusing on the emergence of patterns and distinct events. The perception of language
and music is no exception. Linguists claim that languages get the rhythmic feel from the systematic
patterns in the timing with the accent, whereas musical rhythm studies concern a regularity in the
beat that a listener can tap their foot to. Yet, it has been an open question in speech rhythm research
whether one can identify certain features of stimuli and the listener as correlates of perception. This
study incorporates techniques from the field of Music Information Retrieval to quantify rhythmicity in
spoken language and validates them with a listening experiment that is conducted on two groups of
people: musicians and non-musicians. We hypothesized that rhythmicity perception of subjects with
music education background show higher correlation with results of beat detection algorithms. Results
have shown that participants with varying music expertise do not tend to rate speech rhythmicity
differently. We have also tested the influence of stimulus type and length by presenting stories and
poems in whole length as well as chunked form. For this analysis, we predicted that poems and
whole length stimuli should result with a higher rating of rhythmicity due to the effect of metrical
organization and completeness. As predicted, perceived rhythmicity scores of poems and whole-length
stimuli were respectively higher than stories and 10-second chunks although the algorithms have
suggested a significant difference of rhythmicity in neither case. Furthermore, comparative evaluation
of beat histograms that are extracted from various novelty functions demonstrated different levels
of association with the perceived rhythmicity ratings. The broad implication of the present research
is that musical expertise solely based on training hours does not play a role in the perception of
spoken language rhythmicity and this perception is strongly affected by the contextual factors that
beat histograms do not capture and represent. Future research should further develop and confirm
these initial findings by applying different set of measure not only to classify test subjects but also for
describing the objective rhythmicity in an accurate way.





Zusammenfassung

Menschen sind natürlicherweise geneigt, ihre Umgebung auf rhythmische Weise zu entdecken, zu
begreifen und auf sie zu reagieren, indem sie sich auf die Herausbildung von Mustern und eindeuti-
gen Ereignissen konzentrieren. Die Wahrnehmung von Sprache und Musik ist keine Ausnahme.
Sprachwissenschaftler argumentieren, dass Sprachen das rhythmische Gefühl aus den systematischen
Mustern im Timing mit dem Akzent erhalten, während es bei musikalischen Rhythmusstudien um
eine Regelmäßigkeit im Takt geht, auf die ein Zuhörer mit dem Fuß wippen kann. Dennoch war es in
der Sprachrhythmusforschung eine offene Frage, ob man bestimmte Merkmale von Stimuli und dem
Zuhörer als Korrelate der Wahrnehmung identifizieren kann. In dieser Studie werden Methoden aus
dem Bereich des Music Information Retrieval zur Quantifizierung der Rhythmizität in gesprochener
Sprache eingesetzt und mit einem Hörversuch validiert, der an zwei Gruppen durchgeführt wird:
Personen mit und ohne musikalische Ausbildung. Wir stellten die Hypothese auf, dass die Rhythmiz-
itätswahrnehmung von Probanden mit musikalischem Bildungshintergrund eine höhere Korrelation mit
den Ergebnissen von Beat-Erkennungsalgorithmen aufweist. Die Ergebnisse haben gezeigt, dass Teil-
nehmer mit unterschiedlicher Musikerfahrung nicht dazu neigen, die Sprachrhythmizität unterschiedlich
zu bewerten. Wir haben auch den Einfluss von Stimulustyp und -länge getestet, indem wir Geschichten
und Gedichte sowohl in ganzer Länge als auch in zerstückelter Form präsentiert haben. Für diese
Analyse haben wir vorausgesagt, dass Gedichte und Stimuli in ganzer Länge aufgrund des Effekts der
metrischen Organisation und Vollständigkeit zu einer höheren Bewertung der Rhythmizität führen.
Wie angenommen, waren die Bewertungen der wahrgenommenen Rhythmizität bei Gedichten und
vollständigen Stimuli höher als bei Geschichten und 10-Sekunden-Stücken, obwohl die Algorithmen in
beiden Fällen keinen signifikanten Unterschied in der Rhythmizität erkennen konnten. Darüber hinaus
zeigte die vergleichende Auswertung von Beat-Histogrammen, die aus verschiedenen Novelty-Funktionen
extrahiert werden, unterschiedliche Assoziationsgrade mit den Bewertungen der wahrgenommenen
Rhythmizität.Die weitreichende Implikation der vorliegenden Forschung ist, dass Musikerfahrung,
die ausschließlich auf Trainingsstunden basiert, keine Rolle bei der Wahrnehmung der Rhythmizität
der gesprochenen Sprache spielt und dass diese Wahrnehmung stark von den kontextuellen Faktoren
beeinflusst wird, die Beat-Histogramme nicht erfassen und darstellen. Künftige Forschungsarbeiten
sollten diese ersten Ergebnisse weiterentwickeln und bestätigen, indem sie verschiedene Maßeinheiten
nicht nur zur Klassifizierung der Testpersonen, sondern auch zur genauen Beschreibung der objektiven
Rhythmizität anwenden.
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1 Introduction

Psychology studies the behaviour of human beings - their external, directly observable
behaviour as well as the inner, psychic processes, including perception, thinking, recognition,
feeling, remembering, imagining, learning and motivation. When psychologists deal with
rhythm phenomena, the focus is on the inner and outer behaviour patterns with which people
create temporally structured sequences of events or react to temporal structures in their
environment. People encounter rhythms in many areas of life, for example in processes and
movements in the natural environment and in social life, in body movements, in music and
while speaking. Nevertheless, there is no generally accepted definition of rhythm in psychology.
The respective understanding of rhythm depends on the area of phenomena under investigation
as well as on the theoretical and methodological approaches used in the research of these
phenomena.

Rhythm is one of the foremost mechanisms for the human brain to translate a piece of auditory
information. As is known, phone numbers are preferably separated into shorter groups to make
it easier to be remembered with its evenly paced sequence. This is because human brain is
more prone to process rhythmic grouping patterns [5]. In this regard, speech having inherently
a serial structure of vowels and consonants which could be also considered as a material to
employ the tools of musical rhythm analysis. Similar rhythm analysis metrics have been
developed in the latter years to decipher the underlying temporal patterns of spoken languages
[6, 7, 8, 9]. This leads us to the idea of incorporating the recently developed computer-aided
rhythm analysis metrics with a comprehensive study that encompasses both neurobiological
and behavioral aspects of language perception. As a part of the EU-funded project “The
NEurobiology of RHYthm: effects of MUSical expertise on natural speech comprehension”
(NERHYMUS) 1, it is investigated how rhythm expertise of musicians may affect the way
they process the rhythm of spoken language. In order to achieve this, both musicians and
non-musicians have gone through a variety of tests: an online questionnaire for quantification
of musical experience, behavioral measures of rhythmicity perception in language and EEG
experiments. Whilst these tasks are conducted at the Maastricht University, the infrastructure
of the behavioural experiment and data analysis has been carried out within the framework
of this thesis.

Following parts of Chapter 1 provides an overview of the related past research in different

1https://cordis.europa.eu/project/id/794455
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1 Introduction

domains, with the intention to clarify the motivation and the reasoning behind the methodology
that is implemented in the thesis. The section on related work consists of three main
subsections: the first presents anthropological, evolutionary, and developmental aspects of the
comparative manner in language vs. music research; the second presents rhythm definitions
attempts from various fields, particularly in the sense of linguistics and music theory; and
finally, the third reviews the speech metrics that have been previously developed to obtain
rhythmicity level and style in different languages; the fourth summarizes the state-of-the-
art regarding automatic beat detection and its applications in speech. In Chapter 2, the
primary principles of musical rhythm and signal processing are briefly delivered to explain the
implemented methods and tools within the thesis. Chapter 3 describes how the behavioral
experiment is designed and executed to gather the desired data set to be used in the statistical
analysis. Then in Chapter 4, the results are tabulated, visualized and discussed with respect
to the expected outcomes of the thesis. Finally, Chapter 5 states the achievements and future
outlook in this theme supported by thoughts and suggestions.

1.1 Related work

1.1.1 A Comparative Approach to Language & Music

Before proceeding to rhythm definitions in speech and music, we initially discuss the rela-
tionship between two phenomena in a comparative manner to highlight the psychological
motivation behind the research approach. Following compilation of studies has encouraged
our paradigm by displaying similarities and differences solidifies.

Evolutionary theories imply that music and speech may have had a common foundation in
the structure of an early communication system based on vocalizations and body gestures.
Drawing evidence from a wide range of disciplines, Mithen [1] claims that while both language
and art are most likely limited to Homo sapiens, musicality has a significantly earlier presence
in human evolution and was used by various ancestors and relatives. As shown in Figure 1.1,
he names this evolutionary theory as “Hmmmmm” 2 for being the type of communication
used by ancestors of Homo sapiens in Africa.

Rousseau was also supporting the idea claiming that human beings were passionate before
being rational language grew out of music for the sake of a social organization [10]. Although
they may show divergence in the different social contexts, each relies on codes that connect
the mechanisms of sound that they use for physical-biological purposes. Both music and
language are evident on time and comprise of hierarchically organized components, unlike
many other communication modalities and domains of human expertise [11]. Language and
music are cross-cultural skills whose use distinguishes humans from other species. In all
cultures there are stories, texts, meanings, words. Likewise, each culture has its own music,

2holistic, manipulative, multi-modal, musical, and mimetic
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1.1 Related work

Figure 1.1: The evolution of music and language suggested by Mithen [1]

whether instrumental or vocal in the combination of language and music, as songs. It is
therefore not surprising that language and music play a decisive role in the communication and
coordination of groups and for social cohesion [12]. Social groups are characterized not only
by a group-specific language, but often also by group-specific music, which is transported and
received in special media formats on radio, internet and television. In evolutionary research
there are discussions about common roots of music and language, whereby both phenomena
presumably developed as different specializations of a common referential predecessor, the
so-called musilanguage [13, 14, 15]. In the further development of mankind, music then
crystallized and developed as a means of conveying emotions, while language is used for the
referential-content-based mediation.

Morever, both phenomena also show similarities in child development. For example, the
developmental and learning mechanisms of statistical learning and implicit learning can be
found in both [16, 17]. Children do not know anything about the grammatical structure of
sentences, about word forms, verbalization and inflection possibilities, yet they usually apply
the rules correctly. They also sing the melody of a song without knowing anything about scales,
tonality and intervals. Particularly at the beginning of life in the pre-linguistic phase, when
the infant begins to focus its attention on language and discover its first words, the brain does
not seem to process music and language in different domains. At this stage of development,
language is more like music to the brain [12]. At the beginning of speech development, the
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1 Introduction

infant has to pay attention to and analyse the prosodic or musical elements with speech
melody, speech contour, speech rhythm, dynamics, intonation, in order to recognise the first
sounds and words in the mother tongue. This enables babies to distinguish between languages
directly after birth due to the language-typical alternation of stressed and unstressed syllables,
and to observe the contours [18, 19]. In this way the infants analyse the linguistic input
primarily on the basis of its musical-acoustic characteristics. In the further course of typical
language acquisition, special attention to the prosodic elements of language diminishes and
the children are increasingly able to analyse the input in terms of language structure. They
are no longer dependent on prosodic additional information when recognising syllables, words
and sentences, as they can increasingly draw on language-specific knowledge [20, 21].

Nevertheless, the melodies and contours in the spoken utterance differ clearly from sung
melodies. For example, the range of a singer’s voice with more than two octaves is considerably
larger than that of a speaking voice [22]. In addition, when singing, the pitches and tone
durations are precisely defined and the ratio of vowel durations to consonants is shifted many
times over in favour of these pitches. No matter what the cultural background is, musical
pieces follows a scale that incorporates limited group of tones in an octave, where as the speech
intonation does not follow harmonic sequences in a tonal way [23]. In contrast, the differences
between speaking and singing voices are smaller in the child directed speech, because the
persons relating to infants speak in a higher pitch and with a higher speech melody, which
brings them very close to singing. The infant uses this clear emphasis of pitches and melody
progressions for better speech understanding. Wermke [24] was able to show that infants
from different languages already differ in their crying expressions through different contour
progressions. In adult speech processing, melodic additional information can be used to learn
new words better. For example, in an experiment on language learning, it has been found that
adults learn three-syllable artificial words when they are presented to them by singing [25].
Language learning was demonstrated in two different conditions. Firstly, each syllable was
assigned a very specific tone and was always sung on exactly this tone. But the words were
also learned when the allocation of syllables and pitches was random and different. In contrast,
the words were not learned when performed monotonously at one pitch. As possible reasons
for these findings, Schön and colleagues [25] mention that singing makes the phonological
boundaries between syllables clearer, and thus, increases feeling and attention.

Furthermore, another interesting study was able to address an significant connection between
melodic deviations of languages and music. They calculated the acoustic characteristics
of English and French language excerpts by analyzing vocal durations and fundamental
frequencies for each syllable [26]. They then compared these language-typical characteristics
with English and French instrumental music of the late 19th and early 20th centuries. They
were able to show that English instrumental music of this period shows a great variability
of successive intervals and this is comparable to the English language, where successive
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vowels also differ significantly in terms of duration and fundamental frequency. In contrast,
French music shows a low variability with often only semitone steps. This corresponds to the
acoustic value for the French language, where the characteristic values for vowel duration
and fundamental frequency are much lower. Essentially, this inherent similarity between two
phenomena has become visible through the surface of the music with patterns that reflected
rhythm of the native language.

1.1.2 Rhythm Definitions and Perception

In order to investigate the rhythm concept and its perception independently of the form
and style, it is necessary to take a relatively broad definition of rhythm and to bring it
to a manageable level under cognitive and psychological aspects. Approaching it from a
post-cognitivist and philosophical way, Christopher Hasty [27] describes it as follows:

“Rhythm is significant in that it provokes us to contemplate the problems of
temporality and elapsing, not as a mere abstraction, but as felt reality. It could be
stated that rhythm is the actual course of things in its execution, a felt execution
- a feeling or sense of change and difference. By pointing us to what is actually
happening, rhythm always involves movement, change, continuous activity. Rhythm
can not be thought of apart from the time passing by. All life can be understood in
one way or another as rhythmic.”

Originally developed from the earliest surviving works of dramatic theory, metre and rhythm
in particular have a long history of terms and meanings. Already Aristoxenos worked up
the claims of Plato ,who defined rhythm as the order of movement, and developed ideas on
musical meter, whereby in Greek antiquity rhythm and meter were related to each other as a
pair of terms mostly in the context of spoken poetry [28].

Rhythm is an essential element in both music and languages. However, there are few studies
that attempt to compare linguistic and musical rhythms. This is mainly due to the fact that
it is difficult to define rhythm in a universal way. The term is often used in connection with
terms like biorhythm, pulse and brain frequency and equated with periodicity [29]. However,
not all rhythmic patterns are periodic, while all periodic patterns are perceived rhythmic.
According to Snyder [30], if two or more events take place within the duration of the short-term
memory, a rhythm is already established. Snyder combines his definition of rhythm with a
perceptually relevant observation by stating that two consecutive acoustic events occur as one
after the other, they are psychologically transformed into a metre of impulse and dissolution.
An impulse element is interpreted as a tension that dissolves into the following pulse elements.
The sum of these elements results in the rhythm as a differentiation in meter. In this process,
physical and mental rhythm are inseparably connected with each other in our perception and
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always include processes of shape perception such as groupings, accentuation, and regularities
within the psychic presence time [31].

With regard to musical rhythm perception, most significant works were the ones of Fraisse [11]
and Lerdahl and Jackendoff [32]. Nonetheless, several others, such as Essens [33] or Cooper
and Mayer [34], also attempted to formulate their own theories on the representations of
rhythmic experience and the structure of temporal hierarchies in music and dance. A major
difference between models is that rhythm is seen on one hand as a mental construct and on
the other hand as an actually existing acoustic event. While Fraisse [11], for example, starts
out from the general perception of time and describes rhythmic representations as relations of
durations perceived in this way, other studies focus on the measurable characteristics of the
rhythmic stimuli that the listener is exposed to. On the other hand, according to a definition
provided in [32] rhythm develops over three different structure type:

1. the grouping of the musical sounds such as phrases and sections,

2. the organization of elements with accentual difference on the musical surface (e.g high
or low register, harmonic change),

3. structure of alternating strong and weak beat predictions on a well-formed grid.

Concerning language and music, there are also complex models that attempt to distinguish
from one another and to relate them to each other. For Patel [35], language and music are
similarly characterized as systematic temporal, accentuated and phrasal acoustic patterns and
thus rhythmically analyzable. Grouping of linguistic or musical units within phrases is an
essential rhythmic characteristic. In music, each piece of music has a certain time signature
and a given tempo. The time signature results in tones that are more strongly emphasized
(main counts) and unaccented tones (secondary counts). Musical phrases are characterized
not only by melodic and harmonic relationships but also by these rhythmic peculiarities
and pauses. In language, one speaks of prosodic groupings [36]. These groupings can occur
as a result of the interaction of serially ordered segments (e.g. consonants and vowels) or
suprasegmental levels that a often extend over syllables, words, or phrases. In this regard,
phonological and syntactic structure of a sentence also plays a role, yet it is not solely affected
by this [37].

Figure 1.2: Representation of durations for both speech and music units. (Extended from the definitions
provided in [2])

6



1.1 Related work

Figure 1.2 compares the duration scales of language segments and musical units on the same
time span. Greenberg [38] shows in his study that even heavily stressed vocalic segments do
not exceed the 500 ms range. Furthermore, on the question of musical rhythm, sounds and
sound patterns in the range of 100 ms to 5–6 s draws most of our interest considering the
human perception and interaction skills, making this visualization a consistent way of showing
the commonalities in the temporal range [39]. As both speech and music are composed by
varying temporal intervals, it would be fair to assume that they would both be acoustically
marked with tempo-spectral properties leading to anticipations as beats3. Although they
merely originate from a rather musical point of view, studying beat perception in the context
of neural entrainment and resonance theory has received an enthusiastic response from the
scientific community [41]. Entrainment describes the phase alignment process when the neural
oscillations are driven by a rhythmicity in the environment, which, in a very general sense,
enables the sensory interaction with the stimulus [42]. According to neural resonance theory,
musical rhythm elements such as meter and tempo are main reference points that enable
neural rhythms to synchronize with the auditory stimulus, which then establishes the dynamic
attention and gives rise to beat prediction as well as motor coordination [43]. Albeit there is a
lack of clear separation between the prelexical units in a continuous speech signal. Therefore,
auditory neuroscience and speech processing fields have focused on quasi-rhythmic energy
fluctuations (amplitude envelopes) in the speech signal and have taken it into account for
the comparison with neural responses [44, 43]. This way, phases of high energy in the speech
signal are expected to be associated with a high neuronal response rate. Studies have show
that there is a noteworthy correspondence between average durations of speech units and the
frequency ranges of cortical oscillations as shown in Table 1.1 [45]:

Table 1.1: Shared time scales of speech units and brain oscillation types

Speech unit Cortical oscillation
type duration (ms) type Frequency range (Hz)

Phonetic features 20 - 50 gamma > 50
beta 15 - 30

Syllables & words ∼250 theta 4 - 8

Prosodic phrases 500 - 2000 delta < 3

Neuroimaging studies has remarked a shared mechanism for both music and speech processing
that takes place in anatomically overlapping brain structures and highlighted that supple-
mentary motor area as a crucial brain region involved in the temporal processing of speech
[46]. Further research has addressed the multitude of regions in both cortical and subcortical
parts contribute in the mechanism of temporal grouping [47] revealing the complex interplay

3Beat refers to the perceived pulses which are approximately equally spaced and define the rate at which
the notes in a piece of music are played[40]. Further information is provided in Section 2.1
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between the contextual and temporal brain activities.

Behavioral studies on rhythm perception mostly favored measuring the abilities with motor
response tasks such as finger tapping in which subjects were observed while they perform
certain physical actions synchronized to given stimuli [48]. Furthermore, various studies
involved subjects’ judgments on the deviation from isochrony4 based on single events as well
as the tempo changes occurring on an entire auditory sequence [50].

On one hand, most of these approaches had certain drawbacks considering the difficulty
level of the tasks demanded from the test persons. In case of lacking cognitive and memory
skills required for following instructions and beat production, beat perception induced by
the stimulus only is altered by the quality of the task performance [51]. On the other hand,
musical forms of stimuli have primarily been more under the spotlight of most studies as
opposed to sequences of speech utterances, since it consists of noticeably periodic pulses,
which is preferred for motor skill activities and speech has a relatively irregular temporal
structure. This also brings up the question about how speech can possess abstract periodic
patterns and still induce perceptual regularities in the human brain [52]. Moreover, it is
also reported that listeners who grow up in a musical environment with temporally irregular
beats are capable of synchronizing with this asymmetric sound structure. This indicates that
synchronizing with or detecting periodicities to a large extent depends on familiarity and
enculturation rather than on physically measurable periodicity [53]. Poeppel [54] combine this
hierarchy in the time scales of brain activity with the hemispheric lateralization. He proposed
the idea of asymmetric sampling which points out that temporal functionalites in different
frequency ranges spatially distribution in left and right lobes of the brain.

Although psycholinguistic studies (e.g. [55]), have revealed that the human brain responds
to the interchange of strong and weak beats under certain conditions, the validity of the
idea that assumes brain signals are representing the stimulus envelopes faithfully, is also a
topic of discussion. In [43], it has been made evident that time-frequency rhythms happen
to be dissociable from the beat perception and therefore it is recommended to combine
neuroimaging with creative behavioral paradigms in order to produce more consistent results
in understanding the speech rhythm perception.

1.1.3 Speech Rhythm Description

In the field of a linguistics, the rhythm of a particular language is always associated with
the pattern of its speech phenomena, which are characteristic of that specific language. The
distinction between the languages of the world into two rhythmic classes goes back to Lloyd
James [56], recognizes that some languages are similar or dissimilar to English in rhythmic
terms. He uses two terms, ”Morse-code rhythm” and ”machine-gun rhythm”. The former
referst to the impression of the the Morse-code, in which long and short impulses follow each

4Principle by which phonological units tend to be equally spaced in time [49]
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other. In languages with ”machine-gun rhythm”, on the other hand, syllable durations seem to
be of equal length. This division of languages into one of two rhythmic classes is taken up by
Pike [57], who also replaces the somewhat aggressive terms ”Morse code” and "machine-gun"
with "stress-timed” and "syllable-timed". Thus, the classification of Abercrombie [58] is
adopted and further developed, combined with the assertion that every language falls into
one of these two categories. This division is called rhythmic dichotomy. According to this

Figure 1.3: Visual representation of rhythmic dichotomy [3]

paradigm, in stress-timed languages such as English and German, stressed syllables were
claimed to occur at regular temporal intervals, whereas in syllable-timed languages such as
Italian and French, syllable onsets were claimed to be evenly timed. Since the core idea of
these assumptions arises from the observation that in spoken language there are basically
isochronous intervals of one or the other type of equal length,they are collectively called the
isochrony hypothesis.

However, the assumption that each language belongs to one or the other rhythmic class says
very little about certain individual languages or language groups. In fact, there has been
various phonetic attempts to save the isochrony hypothesis. The most promising of these
shift the isochrony concept from the sound event to its perception by and try to explain
the divergences between perception and speech signal by means of other intervening factors
[59, 60].

Moreover, a substantial amount of evidence is also demonstrated through behavioural experi-
ments that the perceived timing is not necessarily reflecting the measured inter-stress intervals
[61, 62]. Morton [63] proposed that the psychological moment of occurrence, in other words
P-center (Perceptual Center) does not overlap with the signal onsets as expected. In parallel
to all these discussions, Liberman [64] interestingly refuses to concern isochrony. He separates
the hierarchically organized strong-weak components from the grid of temporal elements.
This induced more motivation to address the rhythm’s role in the field of phonology. On
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the phonetic-phonological side, the rhythmic classification has also not simply been dropped
but has been reformulated. In later studies, it has been suggested that stress-timed and
syllable-timed languages differ fundamentally from one another on the basis of several rhythmic
factors such as syllable structures, lexical compositions, processes of reduction (both for vowel
and consonant) and intonations [65]. Hence, the impression of the regularity in segmental
isochrony could be altered by the aforementioned factors, which implies, the idea of strict
classification becomes even more obsolete. Eventually, it encouraged others for the develop-
ment of certain measurement methods based the consonant/vowel segmentation and variation
[6, 7]. In the two studies mentioned above, a consonant and a vocal variability measure were
proposed as acoustic rhythmic correlates. In [6], these are the percentage duration during
which a speech signal is vocal (%V) and the standard deviation of consonant intervals (∆C).
In [7], consonant and vocal variability are measured using a measure that calculates average
differences between two consonant or vocal intervals following each other (Pairwise Variability
Index; PVI). Since all acoustic rhythm correlates are based on measurements of the duration of
vocal and consonant intervals, it can be assumed that these interval durations are influenced by
speech rate (fast speech = shorter interval durations, slow speech = longer interval durations).
Besides, it will never be possible to take this influence into equation since it is non-linear
[66]. Galves [8] introduced an index of local regularity of the speech signal under the name of
sonority. This was a mapping of the signal spectrogram into a function of time scaled between
0 to 1. At each time step it computes the relative entropy between adjacent normalized bins
of the spectrogram. A local average of these relative entropies is then mapped through a fixed
decreasing function to define the current value of the sonority. In comparison to the other
linguistic attempts, this procedure has the principal benefit that it can be performed in a
completely automatic way, with no need for the prior hand-labeling of the acoustic signal.
With the rapid expansion of its commercial applications, rhythm description tools of Music
Information Retrieval (MIR) gained traction and has already penetrated the field of speech
signal processing. Motivated by the need in automated genre classification beat detection
algorithms has been proposed in the literature in varying representation formats such as Beat
Histogram [67], Beat Spectrum [68], Tempogram [69]. Their use in language identification
systems has already given promising results employing different novelty functions based on
multiple audio features [9]. The use of the novelty functions has served as an important
source of information for temporal behaviour of onsets, especially in music signals. Bello [70]
introduced multiple calculation methods based on the frequency shifts, phase irregularity and
amplitude variations. Lykartsis [71] extended these methods by specifying the relevant signal
quantities and illustrating their temporal trajectories as most explanatory novelty functions.
Relying on satisfactory results achieved in the framework of language identification tasks, we
believe it could provide as a foundation for further behavioral experiments and shed light on
the ambiguities of previously proposed rhythm typology.
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1.2 Thesis Aim and Application

Aforementioned quantification attempts have contributed in the research in conjunction with
many neuroimaging and behavioural experiments, yet it has failed to give globally consistent
and robust results as discussed in [72]. This brought us to the following questions: Can
the evolutionary commonalities of speech music be a motivator for a shared methodology in
rhythm analysis? Does spoken language embody a pattern of time intervals within a sequence
that constitutes the quasi-rhythmic acoustic cues? To what extent are the humans conscious
of the rhythmicity concept in natural speech? If yes, does the musical training play a role in
this?

The scope of the thesis is designated to complement the neurobiological findings that are
achieved as a part of the NERHYMUS project. In specific, the remaining part of the project
will focus on brain activation with electroencephalography (EEG), in order to find out whether
musical expertise affects beat perception in language processing. The results of the proposed
project can develop theoretical accounts of rhythm perception and inspire experts to use
targeted rhythm-based therapies to treat stroke-induced or developmental language deficiencies.
In this regard, we have focused solely on the behavioral experiment side of the entire project.
Psychophysical responses of the subjects are collected to specify a reference variable for
rhythmicity in speech perception. The control variables are identified in a way that results
can serve for the benefit of all stakeholders of the multifaceted project. On one hand, speech
rhythm analysis suggested in [73] are put to test. On the other hand, the influence of the
musical expertise, stimulus type and stimulus length are taken as control factors on the
determination of speech rhythmicity. Accordingly, the the scope of the thesis is defined as:

• Programming and technical support of the listening experiment

• Data analysis and reporting following the completion of the experiment

In order to deliver the expected outcomes successfully, we applied the following steps:

1. Writing a program script that can be operated in the circumstances of the laboratory of
the fellow research team

2. Specifying a practical and scalable data storage format to be used later stages of the
analysis

3. On-site technical support to secure the right implementation of the experiment practices

4. Establishing a trackable sheet where experiment participation can be remotely monitored
and/or logged

5. Compiling data segments into a single finalized dataframe

• Post-processing of online musical expertise questionnaire

11
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• Definition and computation of the set of subfeatures and novelty functions that
could reflect the concepts of interest (such as rhythmicity, speech rate) accurately
from the beat histogram

6. Selection and implementation of the statistical measures for feature association and
group comparison

Although this topic extends from neural fundamentals of timing to novel derivations of
linguistic and musical metrics, it is intended to give an overview of the current state of
psycho-linguistic research on natural speech comprehension as well as it is correlation with
the musical rhythm analysis.

Using these as our starting point, we hypothesized that people who had musical training are
more capable to sense periodicity in speech than the ones without music training. Assuming
that there are periodicities of anticipated cues in speech, we have specified beat histograms
as our central tool to generate subfeatures for defining rhythmicity and speech rate in a
statistical sense. In this regard, we also hypothesized that methods based on features with
perceptual relevance outperform others in correlating with people’s conscious evaluation of
speech rhythmicity. Finally, on the stimulus side, we predicted to have results showing how
people are being affected by the context and length of the stimulus types and rate them as
more rhythmic. In this way, we aimed to identify the cognitive network of information when
a speech rhythm processing task is translated to a response. Results are expected to motivate
further research that combines psycho-linguistics and MIR to improve the accuracy in speech
rhythm definition.
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2.1 Elements of Musical Rhythm

Before explaining the rhythm analysis procedure, it is necessary to define the basic musical
terms. Beat, meter, and partly also tempo are often used in everyday life in an undifferentiated
way, sometimes even synonymously. However, as the terms differ in their actual meaning, an
exact definition is essential as a basis for further work with the terms. These are not only
phenomena of music, but also occur in contexts such as poetry, language itself, architecture,
drama, in films, athletics, the dance, in body movements or biological processes like the
heartbeat. In the following, the relevant terms are described with regard to their use in Music
Information Retrieval, and thus, the focus is on the context of Western music theory as well
as general signal processing practices.

Beat The basic element of rhythmic structures in music is the beat. On the level of musical
description, it is understood as a singular point without a temporal extension. Physically
seen, however, it is a sound having a certain duration that indicates a musical event. The
point in time when the musical “event” occurs, in other words when there is a change in
signal characteristics, is also referred to as the onset. It is the earliest cue point the event
can possibly be detected at. The distance between two beats is defined as Inter-Beat interval
(IBI), Inter-Onset Interval (IOI, or Inter-Stimulus-Onset Interval (ISI) and usually refers to a
sequence of beats [74]. The beat is usually not continuously audible in music but is indirectly
generated by the rhythm of the music. Rhythm and beat are closely related. The rhythm is
based on the beat, but the latter is only established by the respective rhythm [31].

Pulse A series of auditory events, in this case a sequence of beats that occur at a recurring
time interval from one another, is called a pulse [34]. The pulse is derived from a multitude of
events and as a first rhythmic layer forms the most important reference and orientation point
for the perception of other rhythmically relevant elements [74]. With a pulse, all beats have
the same emphasis. Since this occurs in the rarest cases of musical events, it is therefore an
abstract description of the temporal course. As a basic process of rhythm perception, the
recognition of a pulse indicates the periodicity in this course.
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Meter Meter is used to define the equal subdivisions of the pulse with the marking of the
strongly accented pulse that signifies the beat [37]. Thus, it represents a structure of the
pulses, where this structure is realized by the beats. The hierarchical structure is represented
in musical pieces with time signature notation which also informs about the locations of the
beat without demonstrating durational value.

Figure 2.1: Musical rhythm units according to the cognitive processing order [4]

Tempo It is the rate at which perceived pulses with equal duration units occur at a moderate
and natural rate [75]. This perceived tempo is called the "tactus" and is sometimes simply
referred to as the foot tapping rate [32]. For segments of music with constant tempo, the
tempo T in BPM can be computed using the length of the segment ∆ts in seconds and the
number of beats B in the segment:

T = B · 60s
∆ts

[BPM]

If you represent rhythms on a time axis, a faster tempo only compresses this axis, while a
slower tempo stretches it. The tempo usually has no influence on the underlying metre or
rhythm. However, despite the same rhythmic notation, tempo variations can occur within a
piece and greatly change the character of the music. The local tempo Tl can be determined
by identifying the time of the occurrence of each beat tb and the calculation of the tempo
between successive beats i and i + 1:
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Tl(i) = 60s

tb(i + 1) − tb(i)

For the calculation of the total pace of the piece, two terms must be distinguished: Firstly,
there is the average tempo, which is represented by the average of all local tempi. This variant
often does not correspond to the perceived tempo. Second one is the main tempo which is
specified with the highest frequency of occurrence. This frequency distribution is visualized
usually in a histogram and the the tempo is determined from its peak point.

2.2 Audio Signal Processing

The practice of beat histogram extraction does not work directly with the audio signal, but
with feature trajectories extracted from the audio signal x(t). The audio signal is a continuous
sequence of samples x(i) in the digital domain. The sampling rate is fs = 44100 Hz for all
time signals treated in this thesis. However, as a part of the pre-processing, all the signals
were converted to mono and downsampled to 22500 Hz to increase the computation speed.
Short-time signal sections (frames) are cut out of x(i) and analyzed for certain characteristics
to generate the novelty functions. For the following parts of this chapter, Alexander Lerch’s
Audio Content Analysis is taken as the main reference to compile relevant definitions and
notations [75].

Short-time Fourier Transform Short-time signal analysis corresponds to a data transforma-
tion which reduces the amount of data to be processed and considers only a small section of
the signal. A short-time Fourier transform is a Discrete Fourier Transform (DFT) windowed
in the time domain. Based on the Fourier transform, it is the most convenient method to
determine the frequency response of a signal over time. The signal under consideration is
divided into individual time frames by means of an analysis window. A frame length with an
acceptable computational effort is chosen and it is assumed that the spectral characteristic
remains reasonably stationary with in that frame. This section of the signal is also called a
window and means a multiplication of the signal section with a window function. The window
of length K is denoted as:

K = ie(n) − is(n) + 1

where ie and is denote the sample index of the last and the first samples of the signal frame
having the index n. This window is shifted along the signal with a certain hop size and the
DFT is calculated in each step. This gives the STFT with the formula:
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X(k, n) =
ie(n)∑︂

i=is(n)
x(i) exp

(︃
−jk · (i − is(n)) 2π

K

)︃

with the frequency expressed with bin k:

f [k] = kfs

K

2.2.1 Frame-based Features

In the context of this thesis, the speech signals are processed based on trajectories of some of
the conventional instantaneous features. As mentioned in Section 1.1.2, rhythmic groupings
and patterns manifest over several types of occurrences which can be identified by using both
statistical and spectral quantities. A selection of these quantities are presented in this section.
Different congregations of these the statistical and spectral features will then form the rhythm
analysis techniques such as onset detection (novelty function) and beat histogram. Therefore,
the definitions and calculation methods are simply given to explain the building blocks of the
rhythm analysis procedure of the respective signals.

2.2.1.1 Statistical Features

These measures can be applied to both, the time- domain signal block as well as the spectrum.
While the definitions below use x(i) as input signal, it could be substituted by X(k, n), by a
series of feature values v(n) or by any other signal of interest. Theoretically, the statistical
properties presented below require a signal of infinite length, however, in practical applications
they can be assumed to be sufficiently accurate as long as the block length is adequate.

Arithmetic Mean It is calculated by simply taking the sum of a all the samples in the block,
then dividing that sum by the count of the samples in that block:

µX(n) = 1
K

ie(n)∑︂
i=is(n)

x(i)

Geometric Mean The geometric mean is an average measure for array of positive numbers
that are ordered on a varying scale,such as logarithmic. It represents the central tendency in
skewed datasets where arithmetic fail to help a valid interpretation. Unlike arithmetic mean,
here, the value of samples are multiplied and divided by the count of samples, which can also
be expressed in logarithmic sum.
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Mx(0, n) = x

√︄ ∏︂
i=is(n)

x(i)

= exp

⎛⎝ 1
K

ie(n)∑︂
i=is(n)

log[x(i)]

⎞⎠

Variance Variance is a measure of the dispersion of the probability density around its
expected value. Mathematically it is defined as the mean square deviation of a real random
variable from the arithmetic mean:

σ2
X(n) = 1

K

ie(n)∑︂
i=is(n)

(x(i) − µx(n))2

2.2.1.2 Instantaneous Features

Root Mean Square (RMS) Intensity and loudness of the piece play a major role, however
they they differ on the physical and perceived level. Intensity is a measurable unit which
describes the strength of a sound, whereas the loudness is characterized only by a human
listener. Although they hold very close meanings, then there is there is a non-linear connection
between the two expression [76]. Therefore, in audio feature analysis computations one should
always refer to the intensity. As a measure of intensity, the effective value, in other words
Root Mean Square (RMS), should be introduced as one of the major audio features. The
calculation is based on an audio block K with the length of several hundred milliseconds:

vRMS(n) =

⌜⃓⃓⃓
⎷ 1

K

ie(n)∑︂
i=is(n)

x(i)2

Spectral Flux (SF) The spectral flux measures the amount of change of the spectral shape.
It is defined as the average difference between consecutive STFT frames:

vSF(n) =

√︂∑︁K/2−1
k=0 (|X(k, n)| − |X(k, n − 1)|)2

κ/2

Spectral Centroid (SC) The Spectral Centroid is one of the statistically determinable values
of the spectrum and defines the center of gravity of the spectral energy of an audio signal. In
the form of a formula, it describes the frequency-weighted sum of the spectrum, normalized
with its unweighted sum:
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vSC(n) =
∑︁K/2−1

k=0 k · |X(k, n)|2∑︁K/2−1
k=0 |X(k, n)|2

The resulting result is usually converted to the unit Hertz. High values indicate a large
proportion of high frequencies in the signal. Within the analysis section of this thesis, Spectral
Centroid was not used for the determination of novelty functions. However, its formula was
utilized in the extraction of beat histogram subfeatures to be used as a descriptive of speech
rate.

Spectral Flatness (SFL) The ratio between the geometric and arithmetic mean of the
magnitude spectrum indicates the spectral flatness:

vSFL(n) =
κ/2

√︂∏︁κ/2−1
k=0 |X(k, n)|

2/κ ·
∑︁κ/2−1

k=0 |X(k, n)|

This feature belongs to the group of measures that represent the signal tonalness. Tonalness
refers to the existence of predominant periodicities regardless of the musical harmony. For
that reason, high values of spectral flatness signify a high amount of noise components and
thus could be also interpreted as an audio quality measure. It ranges between zero and one,
where “0” theoretically is descriptive of a perfect sinusoidal signal and the latter is of white
noise [75].

Mel Frequency Cepstral Coefficients (MFCC) MFCC is also a measure to describe the
spectral progression with additional recognition of human perception range. They have been
used frequently in connection with the classification of genres [77, 67]. When determining
the coefficients, the spectrum of the audio signal is calculated first. This is followed by
the logarithmization of the magnitude values and a mapping of these to the Mel-Scale [78],
which approximates the frequency distribution to the human auditory system. Finally, a
Discrete Cosine Transform (DCT) is performed, which is comparable to the DFT, but only
the real components are included in the calculation. The result corresponds to a strong energy
compression, which is why most signal information is concentrated in a few low frequency
components of the DCT. In the current study, we have used thirteen (13) coefficients that are
denoted by the coefficient index j. The calculation steps have been implemented according to
the formula below:

vj
MFCC(n) =

K′∑︂
k′=1

log
(︁⃓⃓

X ′ (︁
k′, n

)︁⃓⃓)︁
· cos

(︃
j ·

(︃
k′ − 1

2

)︃
π

K′

)︃
where |X ′ (k′, n)| denotes the Mel-warped magnitude spectrum of the signal frame.
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Spectral Pitch Chroma (SPC) Human brain is capable of detect the similarity between two
musical pitches if they are exactly octave apart from each other, such as C1 and C2. Pitch
representations consist of two components: chroma (letter) and the tone height (number).
One octave is divided into 12 equal semitones which are represented by the western musical
notations: [C, C♯, D, D♯, E ,F, F♯, G, G♯, A, A♯, B]. Tonality and harmony, however, can not
be read directly from the spectrum or spectrogram of a signal, since spectral components of
a sound can be distributed over several octaves. Therefore, the spectrogram is reduced to
twelve-dimensional vector. When applied to the spectrogram, all frequency bins that correlate
to a given pitch class are aggregated into a single coefficient for a given local time frame.
Being perceptually driven, it allows us to represent spectral change on a different frequency
scale.

2.2.2 Rhythm Analysis Features

Novelty Function In event based signals like music or speech, transients or onsets are great
source of information to identify energy changes as a temporal array. Even in non-note based
music, trajectories are manifested by spectral changes which can function as marker. To
follow these markers, novelty functions are generated by calculating the specified audio feature
through a frame-based processing. Novelty functions are the basis of periodicity detection
and thus the beat identification. As an example, novelty functions based on spectral flux
of a speech signal and a music signal is compared in Figure 2.2. For the speech signal, we
picked one of the spoken poems that was used in the current study and a well-known disco
song “Stayin Alive” by BeeGees. Both signals are 10 seconds long. This figure shows the how
accurate novelty functions can depict the periodicity in music signal, while for speech signals
hardly demonstrate periodic changes.
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Figure 2.2: Novelty functions of a speech signal and a music signal

Autocorrelation Autocorrelation function (ACF) is a method that can help reveal overarching
structure within a pattern, specifically repeating temporal sub-patterns. In a general sense, it
is the correlation of a time series data, such as novelty function, with a delayed copy of itself
at different time lags and shown as a function of time. The correlation describes the similarity
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of two signals at different displacements to each other. For finite, discrete signals x(i) and
y(i), the products of all samples lying on top of each other are summed up for every possible
shift η of the signals. ACF is a special case of the correlation function when the input signals
are identical. It becomes a measure of self-similarity and used for expressing the periodicity
in the signal. Using the notation above, it is referred as:

rxx(η, n) =
ie(n)−η∑︂
i=is(n)

x(i) · x(i + η)

The result of the process is a vector of these sums at the different time lags between the two
signals:

vη
ACF(n) = rxx(η, n) with η = 1, 2, 3, . . .

When one or more events in the two signals overlap a peak appears in the vector. The more
the events overlap at a certain lag, the higher the peak in the function, suggesting that a
sub-pattern might repeat after a duration that equals this lag. Real-world patterns, however,
are often not isochronous and any rhythmic structure usually contains some amount of swing
or error. Therefore, these pulse streams are represented on histograms based on occurrence
rates.

Beat Histogram The Beat Histogram (BH) is graphical display of the distribution of multiple
beat periodicities in a signal.In speech signals and music signals in which no clear periodicity
is evident, use of a global tempo is redundant. At that point, we refer to beat histograms to
elaborate the rhythmic characteristics of the signal. One should note that BH is essentially a
empirical representation of various periodicities in the signal and can be potentially calculated
using various methods. Analogous to Discrete Fourier Transform, the horizontal axis is denoted
by a unit of frequency, BHs can be further analyzed with the help of spectral audio features.
Here, we extract the beat histograms from the auto-correlated novelty functions. In Figure
2.3, the beat histograms derived from the novelty functions in Figure 2.2 are presented. As it
is seen from the plots, histogram curve for the music signal is highly smooth in comparison
with the speech signal. Such signals are classified as “rhythmic”, which is almost impossible
to see in natural speech. In the present study, we quantify their closeness to this ultimate
curve trend by defining statistical or spectral subfeatures. These subfeatures are explained in
detail under Section 3.2.
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Figure 2.3: Beat histograms of a speech signal and a music signal
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3 Methodology

In this chapter, we present an overview of the empirical studies that we have accomplished in
the framework of the behavioural experiment we have conducted in the facilities of the fellow
research team in Maastricht. These studies comprise of the design, conduct and data analysis
of the experiment following sections summarize the practices employed in each aspect with
providing details about the materials and tools that have been used for each step.

3.1 Behavioural Experiment

Design The experiment design was planned by the fellow supervisor in Maastricht and
provided as a set of requirements. These requirements included the user interface, scoring
scale for the participant, lists of audio stimuli showing the the playback order. The listening
experiment is programmed accordingly using the MATLAB version R2012B (The MathWorks
Inc., US) and Psychophysics Toolbox Version 3 [79]. This free toolbox provides an ex-
haustive set of functions that are employable for neuroscience research offering a high level of
control on auditory stimuli and the design of experiment interface. Later on, the technical
maintenance of the experiment setup will be handled remotely.

Participants A total of twenty six (26) undergraduate participants were recruited for the
study, all of which were undergraduate students in the Faculty of Psychology and Neuroscience
of Maastricht University. Mean age was 21,5 years and there were more females (n = 19;
76%) than males (n = 6; 24%). All participants completed a pre-screening form containing
the inclusion and exclusion criteria and they were all found eligible for the study. They were
German natives and right-handed. None of them had a neurological or psychiatric record or
had been diagnosed with any language or other developmental difficulty. Participants were
informed about the study, registered for their first session and where granted with credits
through the Sona System, a cloud-based participant pool management software. At each one
of the three sessions, the participant’s informed consent was obtained.

Music Background Questionnaire Music and dancing background was measured with the
MMHQ (Montreal Music History Questionnaire) [80]. In order to group participants into
musicians and non-musicians, we collected information on the participants’ past experience in
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vocal, instrumental or dance training. Additionally ,we used a modified version with additional
questions assessing language skills. The questionnaire was administered on the online survey
tool LimeSurvey running on the server of the International Laboratory for Brain, Music and
Sound Research (Brams). It consisted of a total of 299 questions; subjects had to answer
only these questions which were relevant to their experience. Participants were registered in
the LimeSurvey environment using their ID number given from the researchers to keep the
personal data protected.

Audio Stimuli According the project requirements, stimuli should comprise two male and
two female recordings, each in a clear background-free sound environment for specific text
types (poetry and short stories) in German. Nine poems and six stories were selected and
studied in written format.

Table 3.1: Titles and the authors of the poems used in the experiment

Poem Title Author List code
Der faule Hanns Felix Dahn P01
Der Streit um die Krone Felix Dahn P02
Das Lied vom blöden Ritter Heinrich Heine P03
Wie der Teufel den Schwanz verlor Heinrich Hoffmann P05
Jetzt wohin? Heinrich Heine P07
In der Fremde Heinrich Heine P08
Wir saßen am Fischerhaus Heinrich Heine P09
An Luna (Schwester von dem ersten Licht) J. W. von Goethe P10
Guter Rat Heinrich Heine P12

Table 3.2: Titles and the author of the stories used in the experiment

Story Title Author List code
Monolog eines Kellners Heinrich Böll S01
Es wird etwas geschehen Heinrich Böll S02
Das Leben ist ein Würfelspiel Francois Loeb S04
Nachspielzeit Francois Loeb S05
Stehauf-Mädchen Petra Müller S08
Weihnachtsstress Konni Mente S10

Fellow researchers recruited four students, who were semi-professional actors and actresses.
The recordings were completed in the sound proof EEG chamber of the Faculty for Psychology
and Neuroscience in Maastricht University. Recorded stimuli were then normalised and
segmented with the track codes listed in Table 3.3 to ease the designation of material in
simultaneously running experiments. To keep the total duration of each session similar, these
segments were planned to be presented in three lists (List A, List B, List C). However, the
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playback order was subject to change according the prompt input in the very beginning of
the each experiment session. Since the experiment design follows a within-subject assessment,
six pseudo-randomized orders of stimuli are created from which the the user could select
blindly on the opening screen by putting in a number. This way, it was aimed to mitigate the
sequence effect by partially counterbalancing [81].

Table 3.3: List of stimuli with coded naming

List 1 Speaker List 2 Speaker List 3 Speaker
P0101 F1 P0201 M1 P0501 F1
P0102 F2 P0202 M2 P0502 F2
P0103 M1 P0203 F1 P0503 M1
P0104 M2 P0301 F2 P0504 M2
P0105 F1 P0701 M1 P0801 F1
P0106 F2 P1201 M2 P0901 F2
S0401 M1 S0201 F1 P1001 M1
S0402 M2 S0202 F2 S0801 M2
S0501 F1 S0203 M1 S0802 F1
S0502 M1 S0204 F1 S1001 F2

S0101 M2 S1002 M1
S0102 F2 S1003 M2

S1004 F1

Instruments The experimental sessions were conducted in Audiolab 1 of the Faculty of
Psychology and Neuroscience in Maastricht University. The actual setup was placed in an
acoustically isolated cabinet room, where the participant screen was duplicated and also
streamed on one screen next to the control computer where the session was administered. The
research assistant was able to monitor the screen of the participant as the session continued.
The desktop computer was connected to the outboard audio interface M-Track Eight (M-Audio,
US). The scripts were running in MATLAB version R2012B (The MathWorks Inc., US). Audio
samples are trasmitted are transmitted to the audio interface which converts from digital
domain to analog and sends out the signal. For the experiment playback the headphone
outputs of the interface was used. The sound goes directly to the headphones Sennheiser HD
600 (Sennheiser electronic GmbH, Germany).

Procedure For each participant, three sessions were scheduled. Subjects had to listen
German poems and stories in two ways; the first time they listened to the whole story or poem
and the second time they listened to the same story or poem cut in 10 sec chunks. After each
poem or story and after each chunk of them as well, the participant was asked to evaluate the
rhythmicity of the part they had just heard. Participants rated the rhythmicity of German
poems and stories on a Likert scale ranging from 1 to 7 [82]. Meanings of these responses are
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on the keyboard and therefore saved in the scoring matrix as integer. The first step of data
handling process started with pivoting of this matrix and was followed by concatenation of
the stimuli in order to have one scoring in each data row. Same procedure was applied at
all sessions and then dataframes of all sessions are joined vertically to construct the final
dataframe. Concurrently, a separate cell array was generated for each of three lists to store the
audio samples similarly to the previous step in the experiment playback. This one, however,
was used to serve as a collection of input files to enable the calculation of beat histogram
subfeatures. Subfeatures were calculated in two steps:

1. Extraction of beat histogram for each audio sample using the base algorithm that has
been implemented in the procedures of [83].

2. Computation of subfeatures from each beat histogram analogous to the audio feature
extraction routines.

The subfeatures are as follows:

• Peakiness represents the inverse of the spectral flatness. It is calculated simply by
subtracting the spectral flatness from 1, since it denotes the distribution characteristics
with a value between 0 and 1. In the context of beat histograms, It allows us to see if
certain BPMs behave “peaky”, in other words, stand out.

• Variance gives of the squared difference of the occurrence values of each BPM in
histogram from the mean. In this regard, it estimates how far y-axis values are spread
out from their average value. As a boundary condition, one could say the variance equals
to zero if all BPMs had the same number of occurrences. In contrast, the rhythmicity
of the signal should raise as the variance in its beat histogram increases.

• Centroid marks the center-of-mass for of the BPM distribution and indicates dominant
region of BPMs. In the lack of a single dominant BPM, the centroid gives a more
robust information about the speech rate than the peak of the beat histogram. This is,
therefore, rather a measure of the speech rate and not of rhythmicity. It is included in
order to enable the comparison that was stated in the Section 1.2.

The calculations of these subfeatures are repeated on five beat histogram versions having five
different novelty functions (MFCC, RMS, SF, SFL, SPC ). For the selection of the novelty
functions, it was aimed to include one from each group of audio features. With this list
of features, we consider trajectories of intensity, spectral shape(both linear and Mel-scale),
tonalness, and perceptual tonality. Before starting with the comparison of these variables, on
each variable Z-score standardization is applied in order to avoid outlier issues. This way, data
is centralized around zero with a rescaled distribution.Since mutual information calculation
requires discrete data types, subfeatures are, then, also recoded into new subfeatures arrays
with a 7-bin discretization. Subsequently, 15 arrays of numeric and 15 arrays of integer data
are pivoted and merged with the main dataframe.
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Table 3.5: Complete set of variables categorized under data type

factor integer numeric
item session total_musical_expertise_hours
participant list peakiness_MFCC
chunk clipindex peakiness_RMS
rhythmCond Age_in_years peakiness_SF
musicianship Amount_of_Languages peakiness_SFL

P_MFCC peakiness_SPC
P_RMS var_MFCC
P_SF var_RMS
P_SFL var_SF
P_SPC var_SFL
V_MFCC var_SPC
V_RMS centroid_MFCC
V_SF centroid_RMS
V_SFL centroid_SF
V_SPC centroid_SFL
C_MFCC centroid_SPC
C_RMS
C_SF
C_SFL
C_SPC

As the final step, the LimeSurvey output of the MMHQ was processed to calculate the total
hour spent in the training in vocal, instrumental and dance performance. Resultant number
is saved under the variable name total_musical_expertise_hours. Separation of focus
groups in musicianship is accordingly defined as another variable. In addition to that, the
number of languages subject can speak is also captured.

Eventually, we have generated a [1269 x 49] dataframe storing the relevant variables we
aimed to have for further evaluation. This dataframe is then processed and analyzed in
different software units depending on the purpose. Calculation of non-linear associations are
done with using the dedicated files [84]. Pattern Recognition and Machine Learning Toolbox
[85] Statistical analysis was conducted in SPSS Statistics - Subscription Build Number

1.0.0.1347 (IBM Corp.,US) and R [86] using Rstudio version 1.2.1335 (RStudio PBC,
US) as the IDE. Figures were produced using the package ggplot2 [87].
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In the first section of the chapter, it is aimed to put perceptual assessment comparison versus
automatic machine-retrieved information and to test the plausibility of computational methods
in speech rhythm description. In the second part, we assessed the significant differences in
perceptual scorings using the control factors based on the poem-story and whole-10 seconds
length comparison. The results of the statistical analysis are shown in following Tables (4.1 -
4.5) as well as Figures (4.1 - 4.5) and interpreted accordingly.

There are number of measurement methods to seek that relationship, however they differ
from each other in their basic assumptions and implementations. First part comprises linear
correlation, mutual information and cosine similarity [88, 89]. In the second section, the
non-parametric tests are applied and tabulated to show the influence of the stimulus properties
on the rhythmicity scorings. As the non-parametric test, we have used Mann-Whitney test,
since it delivers consistent results for ordinal variables and unequal sizes of groups [90].

The mean rhythmicity scoring from the behavioural experiment for musician group (M =
4, 44; SD = 1, 64) was greater than the mean of non-musician group (M = 4, 37; SD = 1, 59).
There has been sixteen (n = 16; %64) non-musicians and nine (n = 9; %36) musicians
identified between the test subjects. Hence, we collected 8051 rows of the data frame from
the non-musicians and 4644 rows from the group that is labeled as musician. If we look
from the stimulus side, 7048 rows of the dataframe is coming from the poems and 5647
are from the stories. The mean rhythmicity scoring from the behavioural experiment for
for poems (M = 5, 22; SD = 1, 184) was greater than the mean of non-musician group
(M = 1, 463; SD = 1, 59). More extensive comparison of the groups is provided in the
following sections.

4.1 Validation of Rhythmicity Subfeatures

4.1.1 Results

As described in Section 3.2, we have attempted to introduce various subfeatures of the beat
histogram. With a hypothesis driven approach, these subfeatures were defined to describe
rhythmicity wit regard to the shape of the histogram. Peakiness and Variance were expected
to capture whether signal has emphasized BPMs, in other words periodities. An increasing
Centroid, on the other hand, indicates the presence of rather higher BPMs or small IOIs. Since
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Table 4.1: Linear correlation between rhythmicity scorings and the subfeatures extracted from different
Beat Histograms versions

Beat Histogram
Subfeatures

Novelty function versions
MFCC RMS SF SFL SPC

(For all participants)
Peakiness ,021* ,041** -,142** -,194** -,080**
Variance ,021* ,045** -,138** -,352** -,157**
Centroid ,202** ,143** -,013 -,192** -,088**

(For non-musicians only)
Peakiness ,024* ,038** -,176** -,228** -,108**
Variance ,024* ,042** -,173** -,403** -,202**
Centroid ,231** ,155** -,02 -,222** -,115**

(For musicians only)
Peakiness ,015 ,043** -,085** -,137** -,034*
Variance ,015 ,047** -,080** -,268** -,082**
Centroid ,151** ,121** -,004 -,142** -,043**

p < 0, 05 *, p < 0, 01 **

Table 4.2: Mutual Information between rhythmicity scorings and the subfeatures extracted from
different Beat Histograms versions

Beat Histogram
Subfeatures

Novelty function versions
MFCC RMS SF SFL SPC

(For all participants)
Peakiness 0,0754 0,0413 0,0424 0,0430 0,0412
Variance 0,0773 0,0471 0,0319 0,1167 0,0513
Centroid 0,0829 0,0324 0,0350 0,0549 0,0480

(For non-musicians only)
Peakiness 0,1030 0,0595 0,0588 0,0564 0,0542
Variance 0,1037 0,0652 0,0447 0,1615 0,0861
Centroid 0,1134 0,0442 0,0481 0,0743 0,0795

(For musicians only)
Peakiness 0,0552 0,0418 0,0323 0,0361 0,0400
Variance 0,0581 0,0440 0,0291 0,0688 0,0364
Centroid 0,0660 0,0358 0,0265 0,0432 0,0303

subfeatures. When the musicianship considered, mutual information curves follow a fairly
similar trajectory. Nevertheless, the level of the curve is higher for non-musician on the entire
range of subfeatures.

In a similar manner, Cosine Similarity values from the Table 4.3 are also plotted against the
discretely grouped subfeatures. In this graph, there is no clear variation between the groups
of musical expertise. Nevertheless, there is a distinctive increase in the score for MFCC and
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can also be concealed by a third variable that is heard less frequently [92]. In this case a
causal relationship only manifests itself in a correlation if the third variable is controlled
experimentally or statistically, which becomes difficult where rhythm perception is proven
to be a complex network of cognitive tasks [43, 47]. Valsiner [93] emphasizes, correlations
provide information about samples or, in generalized terms, about populations, but not
about the individual observation units. At this point, mutual information (MI) becomes
useful, since it is rather a favored measure of the relatedness between two random variables.
It is conventionally calculated by their joint probabilities estimated from the frequency of
observed samples between some set of response alternatives (e.g Likert scale) [94]. Nevertheless,
the estimation of MI, especially for continuous data, relies strongly on the selection of the
partitioning parameters involved such as the number of bins [95]. Considering the potential
instability of the method, cosine similarity has been employed to crosscheck the earlier results.
Hybridization of two methods has been suggested in the machine learning literature in the
context of classification accuracy improvement [89]. If we look at their results in Figures 4.2
and 4.3, it can be argued that MI gives more insight about the difference between groups,
whereas Cosine Similarity displays the performance difference between subfeatures more
clearly. In Figure 4.2, the yellow curve, which represents non-musicians, lies above the
purple curve that indicates the values for musicians, with a clear separation. This means
the correlation of subfeatures with the perceptual ratings are even higher for non-musicians
which contradicts the initial hypothesis. In Figure 4.3, it gets even more difficult to speak of
a group’s superiority, as curves of two groups follow very similar paths. The ranges do not
vary for different groups, and therefore the differentiation between the cosine similarities of
subfeatures is more pronounced and generalizable.

Regarding the influence of musical experience, there was no increase in relatedness for subjects
having music training in their past. In contrast, previous studies has shown significant
influence of music experience on speech rhythm perception and suggest shared neurocognitive
resources for rhythm perception in speech and language [96, 97, 98]. Most of these studies were
experimenting with highly controlled and reduced experimental designs in terms of listening
conditions and stimulus types. Yet, in line with the ideas of [99], we incorporated more
naturalistic experimental designs. Besides, the present experiment design has not demanded
any motor tasks. For that reason, these results still do not disprove the theories stating
that musical experience modulates perceptual effects of speech rhythm. It is important to
note that subjective judgement of participant does not necessarily represent their skills of
identifying the rhythmic pattern. Conversely, it might just be that these specific features
(novelty functions, beat histograms and subfeatures) do not capture rhythm in the same way
as participants do. People might indeed have a common processing of rhythm for speech and
music on a higher cognitive level, but it is not traceable by these features.

Concerning the parametrization efforts of rhythmicity, MFCC-based subfeatures outperformed
others in all relatedness measures. Since MFCCs are known with its strength in representing
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perceptual properties of a signal, it was hypothesized that they will end in a better matching
with the human evaluation. Initially, they were introduces by Davis [100] as a tool for speech
recognition systems. MFCCs have been classified as a perceptual feature due to the fact that it
approximates some parts of both the speech production (source-filter model) and the auditory
processing in the cochlea [101]. Without applying a rhythm analysis, MFCCs were already
a tool in use for language classification [102]. On the rhythm-based language classification
studies the focus has lied rather on amplitude and spectral shape features (e.g RMS, SF) [9].
However on the rhythm-based genre classification side, results have shown high accuracy rates
for MFCCs [103], which was already a great incentive for the current study. As shown in
Figure 4.3, RMS novelty function remains as a good indicator of the rhythmic progress of
a signal, however SF novelty functions exhibited lower similarity with the perceived rating.
Apparently, human hearing mechanism for speech is not as sensitive as it is for others, to the
dynamic range of Spectral Flux, although it stood out as one of the most accurate features in
[9]. Another interesting point in Figure 4.2 was that the drastic increase of MI for Variance
based on Spectral Flatness. A similar peak for SFL was observed in the context of language
accuracy in [9].

We have also had difficulties with recruiting professional musicians in Maastricht, and thus
the musicianship of the participants were solely judged by the questionnaire results. The
separation between non-musicians and musician was adequate in terms of musical training
hours. Although the music questionnaire was collecting the musical experience as a composite
score that combined information about hours spent in vocalic, instrumental and dance training,
it suffers from a narrow perspective on quantifying the musical experience. We believe, in times
where people have access to information and artistic content more than before, the instrumental
and vocal training surveys are slightly outdated to reflect the modern ways of self-education.
A recent study on the learning practices of electronic music producers highlights dedicated
practice, extended listening, and motivation without having any connection formal practices of
musical training [104]. In music genres like hip-hop or electronic dance music, where rhythmic
instruments and vocal use plays the biggest role, most people become professionals without
having a formal music training. Especially when the the concept of rhythm is investigated,
these individuals should become more and more a point of interest.

4.2 Influence of Stimuli Properties

4.2.1 Results

In this section, we examined the effect of stimuli properties on the rhythmicity scorings and
considered stimulus type and length as the control factors. Stimulus type corresponds the
separation of data into poems and stories, whilst the length factor is evaluated with the
differentiation between whole length and 10 second chunks. In order to compare mean rank
we applied non parametric tests in both aspects of the analysis. Additionally, the distribution
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of scorings are visualized in Figures 4.4 and 4.5.

Firstly, for the variable scoring, we have observed whether the types poem and story play a
role; the distributions in the two groups differed significantly (Mann–Whitney U = 6862746,
npoem = 7049, nstory = 5647, p < 0,01). A substantial difference has been found between the
mean ranks showing that poems (8197,78) were rated higher that the stories (4039,29). Same
procedure has been applied for the calculated subfeatures to see the same sort of differentiation
was reflected in them as well. The mean ranks for all variables mentioned are listed in Table
4.4. Secondly, similar Mann-Whitney test was conducted for the the stimulus length. The
distributions in the two groups differed significantly (Mann–Whitney U = 4091865, nwhole

= 763, n10sec = 11932, p < 0,01). However, the differentiation was not significant for the
calculated subfeatures. The result can be seen in detail in Table 4.5.

Figure 4.4: Violin and box plot graphs showing the influence of the stimulus type with the consideration
of musicianship
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Figure 4.5: Violin and box plot graphs showing the influence of the stimulus length with the considera-
tion of musicianship

Table 4.4: Nonparametric Test on the stimulus type

Variable
name

Mann-
Whitney U Z Sign.

(2-tailed)
Mean Rank

poem story
scoring 6862746 -64,625 0 8197,78 4039,29
P_MFCC 19462962,5 -2,203 0,028 6285,99 6425,4
P_RMS 19791570 -0,544 0,587 6332,61 6367,21
P_SF 15883903 -25,238 0 5778,18 7059,2
P_SFL 17045569 -15,168 0 5943 6853,48
P_SPC 19029682 -4,525 0 6471,49 6193,87
V_MFCC 19628967,5 -1,357 0,175 6309,54 6396
V_RMS 19821053 -0,395 0,693 6359,21 6334,01
V_SF 16746142 -16,476 0 5900,51 6906,51
V_SFL 8176987 -64,347 0 4684,69 8423,98
V_SPC 14433582 -27,561 0 5572,4 7316,03
C_MFCC 12944110,5 -34,755 0 7334,93 5116,21
C_RMS 15847710 -20,721 0 6922,96 5630,39
C_SF 19067757 -4,341 0 6229,91 6495,38
C_SFL 14595609,5 -27,292 0 5595,39 7287,33
C_SPC 16745212,5 -15,755 0 5900,38 6906,67
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Table 4.5: Nonparametric Test on the stimulus length

Variable
name

Mann-
Whitney U Z Sign.

(2-tailed)
Mean Rank

whole 10-sec
scoring 4091865 -4,77 0 6951,14 6309,43
P_MFCC 4508735 -0,457 0,648 6291,22 6351,63
P_RMS 4548603 -0,036 0,971 6352,53 6347,71
P_SF 4390495,5 -2,123 0,034 6559,75 6334,46
P_SFL 4475231 -0,854 0,393 6448,69 6341,56
P_SPC 4317392 -2,551 0,011 6655,56 6328,33
V_MFCC 4510441 -0,436 0,663 6293,46 6351,49
V_RMS 4517370 -0,363 0,717 6393,46 6345,09
V_SF 4445671,5 -1,162 0,245 6487,43 6339,08
V_SFL 4493186 -0,676 0,499 6270,84 6352,93
V_SPC 4343875 -2,195 0,028 6620,85 6330,55
C_MFCC 4496318,5 -0,582 0,56 6421,05 6343,33
C_RMS 4473892,5 -0,836 0,403 6450,44 6341,45
C_SF 4424938,5 -1,386 0,166 6514,6 6337,35
C_SFL 4510141,5 -0,451 0,652 6402,94 6344,49
C_SPC 4312352 -2,503 0,012 6662,16 6327,91
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4.2.2 Discussion

Results show that type of the stimulus creates a contextual illusion in rhythm perception.
Although measured variables do not display a similar differentiation, perceptual scoring
appears to differ strongly. This is a strong indicative for the fact that the listeners classify the
stimulus in their minds as poems once they hear the rhymes and metrical structure. We relate
this to the incentive triggered by the potential variations of speed in which a poem is likely to
be read. This speed is influenced particularly by certain pauses, expansions, vowel lengths
and consonant clusters. In the recordings, we aimed to minimize the theatrical effects to
avoid periodic patterns of build-ups and releases. Loots [105] suggests that, in poetry reading,
once the metrical pattern is recognized, the reader retraces the grid that author sets. He also
emphasis that the foot boundaries could be minimally realized in the sense that they were
triggered by lengthened syllables even if the speech pauses or pitch changes do not take place.
When we compare the mean ranks for the other variables that are listed in Table 4.4, it is clear
that the scorings are biased in a way that the poems are score with higher ratings, although
no difference was in computed values. Removal of linguistic components by low pass filtering
has been introduced in infant studies and provided consistent results [106]. Although it
contradicts with the naturalistic experiment paradigm, overlaying the signals’ envelope curves
with sine and noise carrier signals has helped other behavioral studies to get unbiased results
[107, 108]. However, other studies like [109] points out the pragmatic sides of combining rich
contextual setting in experiments when neurobiology and psychology of language is concerned.
Hence, there is still no consensus on the right methodology of behavioral testing of language
rhythm. Similarly, a significant mean rank difference was found in the second part of the
non-parametric test. The idea that longer segments establishes prosodic groupings has been
a topic of discussion [36, 37]. Although, some studies propose that human perception for
grouping is limited in duration [39], there is also substantial amount of evidence showing that
longer sequences of words enables the listener to predict the coming speech segments [110].
Therefore, it could be deemed likely that increase in the feeling of predictability has lead
to these results in the experiment. All in all, our hypothesis on how people’s decision may
influenced by stimulus’ properties has been validated.
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5.1 Contribution

Rhythm points to a sensual or felt course of events. Events must be distinguishable and at
the same time create a flow or sequence in which difference in the course of events is created.
There is no rhythm without articulation or difference and no rhythm without continuity or
flow, in which difference arises precisely from the process of connecting. The articulation and
flow of the speech rhythm not only takes place in the bodily movements of the speaker, but also
in the experience or feeling of the listener. With this thesis, we have drawn attention to the
usability of novel approaches introduced in music analysis domain in order to set mathematical
descriptions for this so-called experience. Aspects of speech rhythm can be quantifiable in
different ways. We propose to examine the frequency distribution of periodicities in a speech
signal using beat histograms and to evaluate if the way through the suggested features is
sensible. The change of instantaneous values and intensities in the signal guides our perception
to a certain extent. Yet, how exactly human brain processes and classifies remain them as a
trivial topic - for instance, speech can be seen as more or less rhythmic; where there is less
change, less variation, one may think it still constitutes less rhythm. This consideration needs
to be continuously validated with innovative psycho-physical paradigms. Only if we grasp
the concept of the rhythmicity as perception in a broader sense, both human-human and
computer-human communication can go far beyond the question whether rhythm is artistic
or internal in the strict sense.

Throughout this study, we have analyzed speech rhythm perception of musicians and non-
musicians with a behavioural experiment and results have shown that that the conscious
judgement of speech rhythmicity does not vary with the factor of being a musician. Never-
theless, in parallel to the main goal of the thesis we have investigated different variations
of rhythm analysis methods by including novelty functions based on different audio content
features and perceptually measured the relevance of these methods through hypothetically
defined rhythmicity subfeatures. We have implemented tools of music data analysis for a
problem that was analysed in the framework of psychology and linguistics and brought a new
perspective to the speech rhythm description. As we provide our motivation for our research
on rhythm, we have also provided a comprehensive review of literature that pertains to the
commonalities of language and music across different social and technical fields and collected
evidence to show why further comparative research on these two phenomena should continue.
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With regard to the effect of music training, we have not identified any difference of correlation
between the musicians and non-musicians. For the most part of the results, MFCC and RMS
novelty functions were showing better performance in reflecting the rhythmicity. Unlike other
spectral novelty functions, variance of the of SFL based beat histograms was interestingly
showing high mutual information with people’s responses. Finally, we have seen how test
subjects have been influenced by the context and the meaning of the stimulus and consider
poems as more rhythmic when they were asked to rate rhythmicity for poetry and story. We
have also seen that long an complete stimuli were scored with higher rating as opposed to 10
second chunks.

Despite practical limitations, this thesis has contributed to speech rhythm research by
introducing the strength of automatic beat detection algorithms to the field of spoken
language rhythm which has remained simplistic for a long time by usually focusing on the
duration changes. We have also suggested multiples novelty functions, which were expected to
convey information on the energy changes and intonations of speech with a more sophisticated
formulation that the features that are usually used in linguistics studies. This approach not
only adds more depth to the acoustic dimensions of the language analysis, but also eliminates
the manual annotation of segments that has been a necessity as well as a burden in linguistic
research.

5.2 Future Outlook

We believe findings in the relation to musical rhythm can foster many new ideas for further
applications. Though, the grouping of the test subjects with respect to their musicianship
requires primarily a better definition of musicianship notion per se. Especially, when referring
to the rhythm cognition and its relation to the human speech production skills, effects of close
engagement with music becomes a great point of interest. However this engagement includes
multiple layers such as dancing, listening, training, and performing. Furthermore these layers
also differ in cultures, genres and platform. Therefore, limiting the musicianship only to the
measures of formal training hours fails to describe the actual engagement level. Experiments
targeting different levels of music engagement could could get more specific by applying more
specific questionnaires or musical aptitude tests.

Except for infant experiments, the native language of the test person becomes a crucial
factor in their perception. In the naturalistic experiments where realistic stimuli are used,
native speakers would always apply their knowledge to the processing of which cues are more
important than others and accompany the noticeable regularity. Even the adults who are not
familiar with the language in use, would perceive the the regular pattern by comparing with
their own language phonology. Therefore, a complex effect of native language is undeniable and
further work is certainly required to disentangle these complexities of language-specific effects.
Test subjects who were recruited for the present study could speak at least two languages,
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however these languages were limited to German, English, and Dutch. Clearly, all three of
these languages are very similar in term of rhythm structure (stress-timed). Experimental
studies could be widened with people who speak only syllable-timed languages (e.g. French,
Italian, Spanish, Turkish) and people who speak at least one from each group of languages.
Since syllable-timed languages demonstrate less vocal reduction, it may conform feature-based
beat detection algorithms. This provides a good starting point for further research.

The selection of instantaneous features and rhythm analysis features were adopted from the
recent language identification studies [71]. However, in the music rhythm analysis there have
been vast amount of methods developed to capture the rhythmicity [111]. Future studies
should aim to replicate results in a larger set of features and look into rhythm descriptors
that represents rhythm changes over time. Analogous to the the transformation between
DFT Magnitude Spectrum and STFT Spectrogram, time dependant representations of Beat
Histogram could increase the set a new ground of rhythm information, especially for highly
irregular signal types like speech.
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