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Abstract
Speech emotion recognition is an upcoming subfield of automatic speech recognition that
shares multiple similarities with mood recognition in music signals. Audio signals containing
human speech are used as input to classification algorithms trained to recognize emotions in
the form of audio features. This thesis outlines a study in which a data set of speech
signals—containing semantically neutral recordings of professional actors portraying eight
different emotions by altering their voices—is tested. Low-level descriptors (LLDs) were
extracted as static subfeatures from the speech signals and classified with support vector
machines (SVMs) and convolutional neural networks (CNNs). Furthermore, mel-spectrograms
were extracted and fed into a CNN as 3D image vectors for classificaiton. The resulting
accuracies from both the SVMs and CNNs for LLDs proved to be better than human raters
from a previous study, with the CNN classifyer achieving the highest accuracy. The CNN for
mel-spectrograms failed to achieve similar results, which is explained by lack of computational
resources in the experiment setup.

1. INTRODUCTION

Speech emotion recognition is a field of research that combines elements of computer science,
phonetics, music theory, and psychology. As a form of automatic speech processing, it is derived
from basic digital signal processing methods such as the Fourier transform and convolutional
filters. However, more advanced methods are heavily influenced by the neural computing and
cognitive science that informs the deep learning algorithms for audio created by George E Hinton
[1]. Beyond this, it is important to consider that complete measurable definitions do not exist
of the psychological state referred to as human emotions in general and their relationship to the
human voice in particular. Therefore, the expression of emotion through alterations of voice and
intonation cannot either be said to have been fully explored or quantified. In music emotion
recognition, sometimes referred to as mood classification, it is important to separate the notion
of subjective emotions perceived by a listener when a particular piece of music is played back to
them from the notion of musical mood. The latter notion shares many similarities with speech
emotion recognition, and both research fields make use of similar audio features for classification
tasks, where the goal is to automatically detect a portrayed emotion on the basis of some audio
input into a classification algorithm and outputting one of a set of emotions or moods. This
means that standardized features for general audio processing that have been used and tested
both in music information retrieval and in automatic speech processing. Such features are used
and tested in the present study as well, however the aim of the study was to compare these with
newer processes of extracting features through deep neural networks.

This thesis outlines an experiment where a data set—containing audio recordings of professional
actors portraying eight different emotional states by altering their voices—was used to train and
test neural networks for audio classification. The data set was chosen on the basis of being
publicly available and containing a larger set of files and range of emotion than other available
data sets. A smaller data set with fewer recordings and fewer classes was further selected to
serve as comparison.
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The experiment was split into multiple steps, where the data was first processed to extract
features and subfeatures. These were then used for classification with a support vector machine
classifier and used as a baseline. The same feature set was subsequently used to train a convolu-
tional neural network and classified by a fully connected neural network. Finally, a convolutional
neural network was used to extract its own features from audio spectrograms—created from the
original speech recordings—and a fully connected network was oncemore employed to classify
these features.

2. PREVIOUS STUDIES

2.1. Audio Processing and Classification Using Convolutional Neural Networks.
Deep neural networks have been applied to the task of audio classification, both in the form of
recurrent neural networks (RNNs) and convolutional neural networks (CNNs). Bock & Schliiter
[2] were influential in using spectrogram images as input for CNNs to detect musical onsets in
audio signals. Similar approaches to using CNNs as feature extractors and predictors for speech
signals have been taken for ASR [1], for speech synthesis [3], and for speaker and language
detection [4]. RNNs combining audio and text data for emotion recognition were employed by
[5], however the use of text data heavily influences the outcome, and the present study focuses
solely on audio data.

2.2. Speech Emotion Recognition. Early research on the topic of emotional speech was
largely focused on vocal prosody, with pitch as represented by fundamental frequency (Fg) enve-
lope and range being the most thoroughly studied feature [7, 8, 9, 10]. It has been shown [7, 8,
9, 10] that the emotions anger and happiness are represented by large, near-identical values for
Fy envelope and range, with fearful speech having similar yet smaller values. On the other end
of the spectrum, sadness displays the least amount of variety in Fy envelope, and the smallest F
range. The emotions neutral and boredom display similar values for both range and envelope,
yet are both somewhat more varied than sadness, whilst simultaneously being significantly less
varied than neutral speech. These findings are somewhat reflected, yet less prominently, for
temporal features 7, 8, 9, 10]. The emotions sadness and boredom are both depicted by slower
speech rhythm than neutral speech, whilst fearful speech in turn displays the fastest speech
rhythm.

More recent research has shifted the focus toward feature extraction of low-level descriptors
(LLDs) from speech signals, and the classification thereof using methods of machine learning.
The INTERSPEECH 2009 Emotion Challenge [11] was influential in standardizing a feature
set for emotional speech, wherein LLDs and functionals were extracted and used for classifica-
tion. As such, mean, maximum, minimum, range, standard deviation, etc, were calculated from
extracted features such as root mean square (RMS) amplitude, zero-crossing rate (ZCR), and
mel-frequency cepstral coefficients (MFCCs). Extracting these standard features from utter-
ances in a data set consisting of emotional speech in combination with support vector machine
(SVM) classifiers, Zhang, Essl, & Mower Provost [12] were able to accurately classify 80% of
utterances; whereas human raters achieved only 62% accuracy on the same data set.

The application of DNNs for speech emotion recognition is quickly emerging, with recent papers
employing RNNs, in particular Long Short-Term Memory-Networks (LSTMNs) [13] showing
promising results. However, image processing based CNNs are currently gaining popularity for
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emotion recognition, in particular as feature extractors used together with fully connected net-
works as classifiers [14, 15]. Thus far, however, features extracted by CNNs from spectrogram
images have generally not been able to achieve the same accuracy levels as the standardized
feature set from INTERSPEECH 2009 Emotion Challenge [11].

3. METHODS

3.1. Short-Term Fourier Transform. When processing audio signals, blocks of hop size ‘H
are used to process overlapping frames of the signal, each with length K [16]:

is(n) =1isn—1)+H

io(n) = is(n) + K — 1

where i5(n) is the start sample and i.(n) is the stop sample of frame n. The reason for selecting
shorter frames rather than continuous signals of arbitrary length comes down to the fact that
the content of the audio signal may vary over time, and extracting information of value can
become more difficult. Therefore, the FT is usually calculated over a signal frame x(i) instead
of an entire signal and is then referred to as the Discrete Fourier Transform (DFT) [16]:

T

X(GAQ) = §{x(i)} =) a(i)e A

i

Il
o

where AQ is the angular frequency difference between two frequency bins [16]:

2r 2w fs
K-T, K

AQ =

The frame length I and sample rate fs can be used to calculate the frequency of a bin at index
k using the formula [16]:

Finally, a Short-Term Fourier Transform (STFT) is calculated [16]:

ie(n)
X(k,n) = Z $(i)exp( — gk (i — zs(n))%>

i=is(n)

where K = i.(n) — is(n) + 1 is the length of the nth frame of a DFT. When plotting an SFTF
along a time axis, it can be visualized as a spectrogram depicting the magnitude of each fre-
quency component of the signal over time.
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3.2. Audio Feature Extraction. Subfeatures in the form of low-level descriptors (LLDs) were
extracted from audio vectors containing the speech recordings after first computing the STFT
for each raw audio recording according to the formula above. Previous research and current
state of the art in speech emotion recognition [12] have used the standardized LLD subfeature
set OpenSMILE to extract audio features. In the present study, LLDs matching the feature set
defined by OpenSMILE at the INTERSPEECH 2009 Emotion Challenge [11] were reproduced.
After using predominantly the Python audio processing library librosa [17] to extract audio
features in the form of time series data, LLDs and functionals thereof were whence calculated as
static features. Thus, arithmetic mean, standard deviation, minima, maxima, and range values
were extracted from standard features for speech signals: mel-frequency cepstral coefficients,
fundamental frequency/pitch, root-mean-square amplitude, and zero-crossing rate. In addition,
LLDs and functionals were computed from spectral features more commonly used in music in-
formation retrieval: centroid, bandwidth, rolloff, contrast, and flatness. Beyond this, rhythm
features in the form of a spectral flux onset envelope with its local auto-correlation as well as
estimated global tempo were considered and used to calculate LLDs.

3.2.1. Low-Level Descriptors. Sub-features in the form of static functionals of each audio feature
are extracted and used for classification. The LLDs calculated are:

Maximum
Minimum
Range
Arithmetic Mean
Standard Deviation

Maxima and minima are found in each feature vector, and the range is calculated as mazx(y) —
min(y). The arithmetic mean is calculated as [16]:

ie(n)

and the standard deviation is given as [16]:

ie(n)

o) = 2 @)= mn)’

The resulting feature set thus contained 94 feature vector for each audio recording, leading to a
feature matrix F' = [1536, 94].

3.2.2. Mel-Frequency Cepstrum Coefficients. The mel scale was introduced by and Stevens &
Volkmann [18] as a means to correlate acoustic frequency and perceived pitch in human psy-
choacoustics in a series of experiments. One step of the mel scale represents the change between
what human subjects perceived to be two different tones, i.e. a change in mels equals a change in
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pitch. The resulting non-linear mel scale can be modeled as such using the natural logarithm [16]:

f
— 1000 - 1o J
me(f) = 1000 10g2( +1000Hz>

It can equally be modeled using log base 10 [16]:

me(f) = 2595 - logio (1 n 700f HZ)

Mel-Frequency Cepstral Coefficients (MFCCs) are widely used in speech processing as a way to
describe the filter of the filter-source theory, where the source is the vocal cords and the filter
represents the vocal tract. The length and shape of the vocal tract are decisive for the output of
speech sounds, and by calculating the cepstrum of an audio signal it is possible to separate the
source from the filter. Furthermore, cepstral coeffecients display an uncorrelated variance, which
stands in contrast to spectral coefficients, which in turn are correlated across separate frequency
bands [19]. A cepstrum (a word formed by reversing the spec part of the word spectrum), then,
is the spectrum of the log of the spectrum [19] and is computed by taking the log of each value
of a power spectrum. Whereas a power spectrum of a signal depicts the frequency on the z axis
and the amplitude on the y axis, a cepstrum is created by moving the z axis from the frequency
domain into the time domain. The cepstrum is formally defined as the inverse Discrete Fourier
Transform (DFT) of the log magnitude of the DFT of a signal x(n) [19]:

N-1 N—1
- 27 - 27
c(n) = Z log( Z z(n)e I nkn >67Nk”
n=0 n=0

To calculate the MFCCs, a non-linear mel-warped spectrum was created by computing a series
of 128 overlapping triangular filters. The frequencies of the input signal were mapped to 128
frequency bins corresponding to the amount of filters. The logarithm of each frequency bin was
taken, and a Discrete Cosine Transform (DCT) was finally computed [16], similar to the DFT
but using only real numbers. Along the input signal’s time axis, 20 coefficients were calculated,
thereby effectively creating a compact spectral envelope [16]:

v?chc(n) = i log (|X'(K',n)]) - cos(j . <k/ B %>%)

k'=1

where | X'(k’,n)| is the mel-warped spectrum at the time of the jth coefficient and the latter
part of the formula describes the DCT [16].

Only the 13 first calculated MFCCs were saved and used, as these contained most useful infor-
mation on the signal filter representing the vocal tract, while simultaneously being separated
from any information about the signal source. Finally, subfeatures in the form of arithmetic
mean, standard deviation, minimum, maximum, and range values were calculated for each of

the 13 MFCCs.

3.2.3. Fundamental Frequency and Pitch. The fundamental frequency (f0) of a speech signal
represents a speaker’s pitch and correlates to the frequency with which the speaker’s vocal folds
generate sounds. One common implementation of a pitch tracking algorithm is to calculate the
autocorrelation function (ACF) of a speech signal and then to locate the first real maximum
in the ACF. The fundamental frequency is equal to the time period between 0 and the first
maximum. Typical f0 values for speech signals are ca 120 Hz for male speakers, and ca 210 Hz



for female speakers.

A different algorithm for finding the f0 is implemented here based on quadratic interpolation by
fitting a parabola to the nearest samples of a peak’s neighbourhood consisting of three samples
[17]. An interpolated peak location is given as a bin index:

1 a—vy
=—-—————¢c|—1/2,1/2
P=5aagys €121/

where the sample indices are given as o = y(—1), 5 = y(0), and v = y(+1). After detecting the
peak location, its magnitude can be calculated thus:

y(p) =B~ 4l —p

The calculation returns a vector of peak frequencies and magnitudes from which local maxima
and minima are extracted as peaks and troughs. Global maximum and minimum are calculated
from the resulting vector and in turn used to estimate pitch range and global mean f0.

3.2.4. Chroma. Chroma perception is a way describe the perceived notion of octaves, where fre-
quency intervals of 2:1 are perceived to be similar [16]. Similar to the mel scale for human pitch
perception, chromagrams are calculated by creating a set of 12 filter banks, each representing
a pitch class within its octave. The filter banks are used to map the frequencies of a power
spectrum to chroma bins and are subsequently normalized for each frame of an input power
spectrum [17]:

Cle,n) = Z Y(p.n)

{p€[0,127] | p mod 12=c}

for chroma bin ¢ € [0,11], and where p is a pitch as given by its corresponding MIDI identifica-
tion number, and Y(p,n) is a log-frequency spectrum:

Vip,n)= Y [X(kn)
)

keP(p

3.2.5. Root-Mean-Square Energy. Sound intensity is measured as root-mean-square (RMS) am-
plitude for each frame of an input audio signal. It corresponds to the human perception of
loudness and is an important feature in the classification of emotion in speech signals, with
larger values corresponding to emotions such as anger and happyness, whereas smaller values
indicate less enthusiastic speech such as neutral and sadness. The calculation of RMS is per-
formed as [16]:

1 ie(n)

vrrs(n) = | 1= > a(iy?

i=is(n)

which returns a value between [0,1] per frame, where values closer to 0 indicate silence and
values closer to 1 indicate loudness.
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3.2.6. Zero-Crossing Rate. The amount of times a waveform passes 0, that is to say, the fre-
quency with which it changes sign between - and + is known as the zero-crossing rate. In speech
signals it commonly used both to detect voiced and unvoiced segments of a signal, and to calcu-
late the fundamental frequency of the voiced segments. This is performed by directly correlating
the amount of times the signal passes zero within a time frame to a signal’s lowest pitch period.
It can be assumed that longer periods of similar values across frames indicate periodic sounds,
correlating to vowels in speech signals, and highly varied and very large values indicate white
noise, correlating to unvoiced phonemes in speech signals. The formula is defined as [16]:

+e(n)
1 ) )
vzc(n) = _IC Z sign|x(i)] — signf[z(i — 1)]]

where sign is defined as:

1, if (i) >0
sign[z(k)] =< 0, if (i) =0
—1, if (i) <0

The calculation returns a frame-wise value in the range 0 < vze(n) < 1.

3.2.7. Spectral Shape and Timbre. Timbre can be defined as the subjective aspect of a sound
that cannot be reduced to pitch and/or loudness. That is to say, the timbre of a sound reveals
some information about the sound source, regardless of the amplitude or frequency with which it
is represented. For example, the timbre of the human voice is distinct from that of a trombone,
even if both are presented at the same pitch and loudness. Formally, timbre can be explained
as the relative amplitude and distribution of a sound’s harmonics [16] and can be described and
modeled with a set of spectral measures described below: spectral centroid, spectral bandwidth,
spectral rolloff, spectral contrast, and spectral flatness.

3.2.8. Spectral Centroid. The center of gravity (COG) of a signal’s spectral energy is referred
to as its spectral centroid. The centroid—or mean—of the spectral energy describes an audio
signal’s "brightness,” or ”sharpness” [16]. It can be calculated in steps by first computing a
magnitude spectrogram of a signal and then treating the spectrogram as a frequency-weighted
sum thereof. Finally, each frequency-weighted frame of the spectrogram is normalized by its
unweighted counterpart and the centroid is framewise extracted [4]:

Vo k| X (k)|
WX (k)|

The calculation returns a frequency bin index in the range 0 < vgem(n) < K/2 — 1, which was
subsequently used to compute the centroid frequency f per bin index k using the formula [16]:

AQ, fs

UVscm (n> =

where fs is the sample rate, and A is the angular frequency difference between two frequency
bins [16]:

2r 2w fs
K-T, K

AQ =
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3.2.9. Spectral Bandwidth. A signal’s instantaneous bandwidth can be described as the stan-
dard deviation of a magnitude spectrum around its spectral centroid. The result depicts the
spectral spread of the signal from its centroid at a given frame, which for speech sounds can
be understood as indicating the difference between transients in the form of consonants, and
periodic sounds in the form of vowels. The formal definition is [16]:

W (ke — vsom(n))? - | X (k,n) |2
o X (kyn) 2

vSB,m(n) =

where vgc,, is the spectral centroid calculated from the magnitude spectrum. The calculation
returns a frequency bin index in the range 0 < vgp,(n) < K/4, which is subsequently used to
compute the bandwidth around the centroid frequency per bin index.

A p-ordered bandwidth can equally be calculated as such [17]:

vsp = (st — 1)

where S(k) is the magnitude of the spectrum at frequency bin k, f(k) is the frequency at bin
k, and f. is the value of spectral centroid calculated from the magnitude spectrum. A p value
of 2 returns a weighted standard deviation of the signal.

3.2.10. Spectral Rolloff. The maximum, minimum, and bandwidth frequency for each frame of
a signal can be approximated by calculating the spectral rolloff. The rolloff can be described as
a frame’s center frequency for a spectrum bin [17], meaning that the center frequency contains
the accumulated magnitudes of the STFT X (k,n) [16] when these pass above a given threshold.
The formula is given thus [16]:

vsr(n) =1
o | X (ko) |=K- i 2 | X (k)|

where IC is the threshold, which in the present study was set to 0.85. The calculation returns
a frequency bin index in the range 0 < wgr(n) < K/2 — 1, which was subsequently used to
compute the center frequency per frame.

3.2.11. Spectral Flatness. A way to describe an input audio signal’s tonal quality in terms of
whether it contains more noise or periodic components is spectral flatness. It is calculated as
"the ratio of geometric mean and arithmetic mean of the magnitude spectrum” [16]:

IR X (kym)| eap(2/K - 08 tog(1X (k)
2/K - S0 la X (kyn) 2/K - S u e X (kyn)

vry(n) =

where the result is a value between [0,1] for each frame of an input magnitude spectrum. Values
closer to 0 indicate tonal spectra and larger values closer to 1 indicate a noisier spectrum.
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3.2.12. Spectral Contrast. Octave-based spectral contrast is calculated by computing spectral
peaks and troughs for six frequency sub-bands for each frame. By doing so, the spectral con-
trast reflects both the relative spectral characteristics and the distribution of harmonic and
non-harmonic components of for each frequency sub-band. the algorithm is based on finding
local maxima and minima in a neighbourhood by calculating whether a value in a frame is larger
or smaller than other values in its neighborhood by a given «a value. The contrast, then, is the
difference between a peak and a trough [20]:

SCy = Peaky — Troughy,

where Peak; and Trough; are calculated, respectively:
1< ,
Peaky, = lOg{a_N} Z = 1X;,

1 [e%
T'roughy, = ZOQ{E} Z = 1XI/C,N—1+1

where N is the total number of the kth sub-band in the set k € [1,6] and X’ is an FFT vector
of the kth sub-band sorted in descending order: {X;, > X, >,...,> Xj y}. The value a was
set to 0.02.

3.2.13. Rhythmic Features. Early research in speech emotion recognition used speech rate and /or
speaker rate as measurements of speaker tempo. These measurements are based on the calcula-
tion of spoken syllables in a transcription of an utterance divided by the duration of the signal.
The present study does not make use of transcriptions and instead works solely with the actual
audio signals, and thus instead implements onset envelopes and beat histograms to measure the
tempo of a speech signal. Periodicities in the signal’s amplitude envelope are detecting and as-
sumed to reflect syllabilic structure of the speech signal as represented by vowels and consonants.

3.2.14. Spectral Flux Onset Envelope. Onsets of spectral information can be calculated as nov-
elty functions that indicate the rate of spectral change in an audio signal, a notion that some
new information is presented. Onset detection can thus be understood as the slope of an audio
signal’s envelope computed over its peaks. A spectral flux onset envelope with local maximum
filtering is calculated according to the formula given by [22]:

m=M
SF*(n) = Y H(Xiog,rar(n, m) — X2, (n — pim))
m=1
where p is a frame offset parameter and the maximum filtered spectrogram is:
Xiog.rit(n,m) = mazx(Xjpog, fir(n,m — 1 :m + 1))

and the log filtered spectrogram is:
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Xiog,pite(n, m) = logio(| X (k,n)| - (F(k,m) + 1)

where m is a bin index of a scaled frequency and F' being a triangular filter from a filterbank
used to calculate the scale. In the present study, the mel scale was used to map the input signal
to 128 mel bands [17]. The calculation returns a vector of values for onset strength over time
representing the onset envelope.

3.2.15. Autocorrelation Beat Histogram. Once a novelty function has been computed, the on-
set envelope can be used to calculate an autocorrelation function. The ACF detects a signal’s
similarity with itself and can be used to detect a signal’s beat histogram by detecting peaks
representing beat periods in a local autocorrelation. The ACF is calculated as [22]:

T4, 1) = At 1)

for each BPM tempo 7 = 60/(r -1),l € [1 : N], where r is a step size and [ is a time lag of the
ACF. A(t,1) is the ACF as defined by [22]:

At1) — Znez A(ZVAJ(:L;L_Z)Z W (n, t)

for time ¢ € Z and time lag [ € [0 : N], and where W is a windowing function. The calculation
returns a localized autocorrelation that is used to find a maximum value which in turn is used
to estimate the global tempo in beats per minute (BPM).

4. CLASSIFICATION: SUPPORT VECTOR MACHINES

4.1. Hyperplanes. Support Vector Machines (SVMs) are a group of classifiers based on sepa-
rating data points in a p-dimensional space with a p — 1-dimensional hyperplane and assigning a
class to each data point, depending on which side of the hyperplane it is located. A hyperplane
is defined as [23]:

Bo+ b1 X1 + foXo+ ... + 5,X, =0

where f3; are model parameters, such that any point for which the equation holds true is a point
on the hyperplane. With input data X = (z1, o, ..., x,), it follows then, that if either

Bo + Brxi + Baxio + ... + Bpip > 0
or
Bo + Brizit + Batio + ... + Bpaip <0

is true, then the data point is located on either side of the hyperplane. What this in turn means,
is that in the case of a binary classification task, the two classes y1, ..., y, € [—1, 1], are assigned

as:

y; =1 it By + B + Bawio + ... + Bpwip > 0



14

and
yi=—11f Bo+ frwa + Paziz + ... + Bpzip <0

Depending on the nature of the data, the simultaneous existence of an infinite number of hy-
perplanes is possible. As discussed further below, support vector machines are used to find the
hyperplane that maximizes the distance between data points and the hyperplane.

Hlustration from [23]: Left: Three possible hyperplanes separating blue and red data points.
Right: A hyperplane illustrating two subspaces, where data points in the blue space are assigned
one class, and data points in the red space are assigned another class.

4.2. Maximal Margin Classifier. The distance between a data point and a hyperplane is
known as the margin. Out of infinitely many possible hyperplanes, the best fit model is the one
that maximizes the margin, so that the hyperplane is located with equal margin on each side to
two data points of different classes that lie the closest to each other in the data space. This can
be formalized as [23]:

maximize Mg, s, .. 5,

P
subject to Zﬁ? =1,

j=1
Zh(ﬁo + Bll”ll + ,BQLUZ'Q + ...+ Bpmp) > MVi= 1, ., N

where M is the margin given the coefficients 5y, 31, ..., B,. The constraints are given so that each
data point is assigned the correct class depending on the side of the hyperplane it is located and
that its distance to the hyperplane is larger than the value given by M. The data points that
maximize the margin are known as support vectors because moving them in either direction of
the feature space will equally move the separating hyperplane.
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Hlustration from [23]: A hyperplane with the data points that mazimize the margin. Dotted lines
indicate support vectors.

4.3. Support Vector Machine Classifier. Since real data rarely is as easily classifiable as
implied above, SVMs differ from maximal margin classifiers in that they implement a kernel
function to account for non-linear classification. Rather than classifying the input samples
themselves, SVMs calculate the inner product of the input [23]):

p
K(Z‘Z‘, (L’i/) = Z x,»jxi/j
j=1

where K is a linear kernel function. By calculating the inner product similarity between two
input values, a class can be assigned to each data point by taking the entire data set into account
without being computationally expensive. The SVM decision function for a test point x can be
formalized as [24]:

h(x) = sz’gn( i i K (z;, ) + ,0)

where a; > 0 is a regularizing weight and p is a bias term that both are learned for each data
point. By setting «; = 0 for data points that are considered further away from the hyperplane,
the algorithm reduces the amount of data needed for classification.

4.4. Multiclass SVMs: One vs One. For non-binary classification tasks, as in the present
study with K = 8 classes, multiple SMVs are constructed and classes are compared pair-wise.
That is to say, K - (K — 1) /2 classifiers are constructed and each one trains on and classifies
data from two classes. This way, (X) classifiers are trained and every data point is classified by
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each of them. Every data point is finally assigned to the class to which it was most frequently
assigned during the eight pair-wise classifications [23].

5. FEED-FORWARD NEURAL NETWORKS

Artificial neural networks are, in their most basic form, nested functions that consist of layers,
where each layer performs some function and feeds its output to the next layer of the network
architecture. A single layer network would thus be:

y = fnn(z)
and a 3-layered nested network would be [25]:

y = fan(@) = fs(f2(fi(2))))

where f; and fy are functions. Each network layer performs some function that can easiest be
explained through matrix multiplication, such as X = Y Z with dimensions [, m for Y and m,n
for Z [26]:

k=m
Lij = E :yi,kzk,j
k=0

resulting in a matrix of dimension [,n. Thus, a neural network function can be described as
matrix multiplication of weights W, input X, and the addition of a bias term B [26]:

L=XW+B

where L is the output of the layer, and W and B are learned during training through a process
known as stochasticgradientdescent. Knowing this, the function y = fyy(x) can be rewritten
as [25]:

f1(2) == g(Wiz + by)

where [ is the index of the layer and ¢ is an activation function. When using feef-forward neural
networks as classifiers, a probability distribution is given over all possible classes for an obser-
vation, and a loss function is calculated to evaluate the fit of the model [26]:

Pr(A(z)) = o(zW +b)
L(x) = ~log(Pr(A(z) = a)

where o is a softmax classifier and L is the loss function. For detailed descriptions on each of
these functions, see further below.
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6. CONVOLUTIONAL NEURAL NETWORKS

Convolutional Neural Networks, often abbreviated as CNNs, or sometimes ConvNets, are a spe-
cial kind of feed-forward neural network, where the initial, and often multiple subsequent, layers
consist of a convolutional layer. A convolution, in the DSP sense, is merely the combination
of two signals to create a third. The simplest form of a convolution by that definition is a
function = convolved with an impulse response h, resulting in an output y:

y=x%*h

When describing CNNs, the ¢ function is referred to as input and the impulse response is referred
to as a filter kernel or simply kernel. The output is called a feature map and contains infor-
mation about the input, similar to the way that the output signal from a linear combination of
a 0 function and an impulse response reveals information about the input signal and vice versa.
In brief terms, CNNs make use of a neural network architecture known as convolution and pool-
ing, which recognizes and extracts predicative patterns from larger structures and produces new
vectors containing these features. Thus, locally informative sub-feature vectors are extracted
from input audio feature arrays and used to match similar sub-feature vectors. Each layer of
the network extracts features from the previous layer and inputs these into the next according
to some function assigning weights to input features and thereby producing model parameters.
Thus, just like the aforementioned impulse response, a signal x at time ¢ can be detected and es-
timated in a new function s using a convolution operation applying weights w to each x at ¢ [27]:

s(t) = (@ x w)(t)

The kernel can be thought of a window that slides across the input signal in increments and per-
forms some function outputting the feature map while learning weights and bias terms in such a
way that the function best describes the input. The input signal may be multidimensional and
can therefore be convolved over multiple axes, which combined with an equally multidimensional
kernel K (here with a 2D input array I) can be described as below [27]):

SGJ) = (L K) (i) = 30 32 1= m.j = n)K(m,n)

For example, imagine a two-dimensional input signal in the form of a 3 x 3 matrix, P, and an
equally shaped filter kernel, F' [25]:

>
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S = O
— =
O = O
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o N O
W = N
S = W

By performing a convolution operation on the two matrices P and F', an output matrix con-
taining the dot products is computed. As the input matrix only contains positive values on
positions pia, Pai.22.23, and pse and all other values of P are 0, the output matrix will reflect this
shape; matrices with positive values located at identical indices will result in larger output values:



18

P F
0 1 0 0 2 ‘ 3 ‘ 0-0 1= 0:3
overlay sum
1 1 1 conv 2 4 1 > 157 1-4 1-1 - > 12
0 | 0 ’ 0 3 0 ‘ 0-0 I <3 0-0

Hlustration from [25]: Convolution of input and filter.

It is worth noting, that CNNs historically were developed to mimic visual perception in humans
and thus were designed with the intention of being used for image processing. Is is therefore
easy to explain their operations by describing such a use case.

6.1. Filter Kernel. Every value of an input matrix to a CNN can be thought of as a pixel in an
image. Grayscale images contain values between 0, for black, and 255, for white, whereas color
images contain values between 0 and 255 in three separate dimensions, or channels, representing
the colors red, green, and blue. The size of the matrix corresponds to the width and height
dimensions of the image.

Each convolutional layer in the network architecture contains multiple filters, each of which
consists of a kernel that slides across the pixels of the image at a step size, or stride, that is set
beforehand. At every step, the filter performs some function on the input image and outputs
the resulting values into the feature map. For each iteration of the network function, weights
and bias terms are learned by the system to optimize the output values. A sliding kernel with a
size of 2 x 2 and a stride of 2, meaning that each computation is calculated on adjoined but not
intersecting neighborhoods of the input matrix, performing four convolutions on a 4 x 4 input
matrix and outputting the results is depicted below:
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However, as the spectrograms contained in the dataset used for the study are color images with
3-dimensional RGB values, each convolution is performed thrice by the same filter kernel, once
for each color channel. The combination of all three channels is referred to as a volume, and
the output value in the illustrated example below is calculated as the sum of the dot product of
all channels in the volume and the filter kernel, and finally adding the bias term [25]:

(—2:3+3-14+5:4+1-1)+(=2:243-(=1)+5:(=3)+—1-1) +(—=2-143-(=1)+5-2+—1-(-1))+(-2)

Volume
3 2 | 4 2 1 3 -2 1 1 2
4 0 5 -3 1 0 1 1| 0
2 1 0 -1 2 3. 2 0 4 3
1 1 2 1 ol 2 -5 | 1 2

Tllustration from Burkov (2019): Convolution of 3D RGB volume.
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One important aspect of convolution is padding, which allows the filter to slide across the values
closest to the boundaries of the image matrix, even if the size of the kernel is larger than the
remaining amount of input pixels. It is typical to pad the image with zeros, as these do not
interfere with the computation of the output feature map, yet still allow the convolution to make
use of the entire input matrix, regardless of stride value.

6.2. Non-linear Activation Function. The description above of the input P and the filter
F' could be formalized as a simple linear function:

y=XW

where X is the input and W the weights assigned by the filter. However, if this was the only
property of a neural network, then adding more layers in a deeper architecture would not result
in anything that could not already be captured by the first layer. This property can be described
with linear units U being fed into a network layer V' for matrix multiplication [26]:

y = (zU)V

=z(UV)

It follows then, that with the product of U and V being W: W = UV, adding further layers
to the system does not introduce more information about the input than what is already cap-
tured by y = XW. For this reason, a non-linear activation function is introduced between each
convolution layer. Frequently used, including in this study, is the rectified linear unit (ReLU),
which picks the max value in an input argument and sets negative values to 0:

p(x) = maz(x,0)

where p is the activation function ReLU. An important property of ReLU is that the output
range of the function goes from 0 to co. This means that finding the gradient of the output
value, which is effectively how the network calculates its loss function and updates its weights,
is easier than with a limited range of output values. This solves a common problem for network
architectures without non-linear activation functions, where the gradient can reach values ap-
proximating zero, causing the gradient to virtually explode or vanish [26].

6.3. Pooling. As mentioned further above, CNNs make use of an architecture referred to as
convolution and pooling. Together with the convolution layer containing the filter kernel and
the activation function, the other aspect of the architecture is a pooling layer. In comparison to
the convolution layer, the pooling layer does not produce any model parameters, but instead re-
duces them. However, pooling still provides information about the feature map. This procedure
is performed by once more letting a window slide across the image, similar to the filter kernel.
For each window, or patch, some statistics are provided, such as either local max or average
value, or global max or average. Depicted below is local max pooling:



21

Image
Output
38|14 31814
5126 - ® 5126 |- ol b
Pool 1 Pool 3 5
3| 5] 9|1 35|91
41572 41572
3| 8]1] 4 38| 1] 4
8 | e 8| 6
51216 |- 5126 |-
Pool 2 Pool 4 519
35|91 3591
4| 5| 7|2 41572

Hlustration from [25]: 2D Max pooling.

Pooling dramatically reduces the amount of parameters in the network by providing only sta-
tistics on the input and outputting these into the next layer. This simultaneously serves to
enhance the speed of the network.

6.4. Loss Function: Cross-Entropy. While training a neural network to recognize any data,
it is necessary to be able to detect how well the network is performing and to what degree the
weights need to be updated in each iteration. Cross-entropy loss is a function that estimates
the negative of a cross-entropy, which in turn is a function to measure how similar two distribu-
tions are [25]. When used as a loss function, it defines how incorrect a model prediction is when
classifying input features. Consider the following cross-entropy loss function X (Charniak, [25]:

X(®,z) = —In pe(az)

where @ is a model parameter, = is a feature, and p is a value from a probability distribution
that sums up to 1 and refers to a class a. In the present study, 8 classes were present in the
dataset, meaning that the probability for each class is % and the classification is performed by
a softmax function (see further below) assigning probabilities to each class to determine how
likely they are to best explain the input. The most likely class receives the largest value in
the probability distribution, e.g. 0.7. The loss function, then, is the negative log probability of
that value (0.3), such that the larger the class probability value, the smaller the loss value and
vice versa. The log value is used, because the natural logarithmic function Inz increases rapidly
between values 0 and 1, precisely the values in the probability distribution [25].

The network outputs feature vectors containing real numbers, so in order to get probabilities for

classification and subsequently the calculation of the loss function, a softmax function is utilized
[25]:
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where o is the softmax and = the input value. Since the exponential value of z is taken, it
will always be a positive number, divided by the sum of all possible values of z, which, again,
is %, resulting in probabilities for input C' belonging to class ¢ for ¢ € [0,1,...,7] [25]. Thus,
a probability distribution is assigned by turning the input vector containing pixel values, into
values between 0 and 1 for use in the loss function. The input values to the softmax function

are referred to as logits.

6.5. Stochastic Gradient Descent. The computation of the loss function serves to update
the weights w; and bias b; for each unit in the network iteratively and is referred to as back
propagation. To update the values of the weights, the gradient of the loss function is calculated,
which gives the method its name: stochastic gradient descent, or SGD. The stochastic part
of the name refers to the procedure of setting a value called batch size that decides how many
gradients should be calculated before updating the parameter values, as updating after each
single calculation would be computationally expensive. To further reduce the computational
power needed, rather than to search for the global minimum of the gradient, SGD finds a local
minimum of the loss function and uses this value as an approximation.

6.5.1. Updating the bias parameters. Logits [; can be described as a linear function: the dot
product of input and weight plus bias [25]:

lj:bj+X'Wj

This simply indicates that a change in bias or weights will be reflected by the logit. It follows
then, that an altered value of I;, which is used to calculate the probability values, subsequently
alters the cross-entropy, which in turn is used to update the values in the next iteration. This
can be formalized by looking in turn at the gradient of the loss function with respect to the bias
term, the logit, and the weights. Below is the formula for the gradient with respect to the bias
term b; [25]:

0X(®) 0l 0X(®)
ob;  0b; 0l

However, the first partial derivative can also be written out as such:

o, 0

where w; ; is the ith weight of jth linear unit [25]. This goes to say, that the derivative of the
loss function with respect to b; is 1, as a change in bias plus the linear function described above
only affects the bias value itself.

The derivative with respect to the logit I, is slightly different. As explained further above, the
logit is used to calculate the probability p of belonging to a class a by the softmax function.
Thus, the only term that is affected by the probability is X, with [; causing the change in
probability [25]:

0X(®)  Op. 0X(9)
8lj a 81] 8pa
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This can be further developed as a change in probability with respect to the logit:

0X(¢) _ Ipa 1

= —1 -
apa alj ( npa) Da

where the probability of the jth value belonging to class a is assigned by the softmax function o:

pa _00a(l) _ J(1=pjlpa  a=j
ol dl; —PjPa a+#j

Combining the equations above to find the derivatives with respect to bias and logits, the for-
mula for updating the bias terms of the network is [25]:

Aby = L (I=pj)  a=j
—p; a#j

where L represents the hyperparameter learning rate, which regulates the value by which the
parameters will be updated with each iteration.

6.5.2. Updating the weight parameters. Once the derivatives have been found for logit and bias,
calculating the cross-entropy as a function of the weights is not far. The equation for finding
the partial derivatives with respect to the weights, is given as such [25]:

0X(®) 0l 9X(®)

8wm N awm GZJ

where the second partial is equal to that of the bias term’s described above and can be reused.
The first partial derivative can be written out as [25]:

OX(®) 0
awi,j = 8wi’j (bj + (wl,jxl + ...+ Wy, 54 + )) = ;

Finally, the formula for updating the weight parameters is defined as [25]:

Awm = —ﬁl'zaX—@

dl;
where the minus sign is necessary to decrease the loss as a function of the updated parameter.

6.6. Measures against Overfitting. A trade-off exists between model complexity and explain-
ability, but also between model complexity and model bias: The more parameters a model has,
the more likely it is fit its parameters perfectly to the training data. With CNNs being located
on the farther side of the complexity spectrum, it is not unusual for a network to have millions of
trainable parameters, which easily can lead to overfitting, especially on a smaller dataset like the
one used for this particular study. The following measures were undertake in the present study:
regularization, dropout, batch normalization, and data augmentation. Each are described below.
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6.6.1. Regularization. In traditional machine learning, the use of L1 and L2 regularization serves
to control against overfitting. Regularization can easiest be explained as introducing a cost func-
tion for values that rise too quickly, controlled by a hyperparameter A\ that is multiplied by the
L1 or L2 term. A larger A\ value will shrink the input coefficients increasingly closer to zero,
whereas a A value of 0 will perform no regulation at all. Shrinking the coefficients will reduce
variance between training set and test set, as values become more aligned with each other [23].
The difference between L1 and L2 regularization is simply that L1 applies the cost function on
the sum of all input coefficients, whereas L2 applies to the sum of squares. Shrinking the L1
features will result in some features being set to 0, a form of penalization that effectively works
as feature selection [23]. L2 regularization, on the other hand, is computationally efficient and
performs well as a means against overfitting in many tasks, but does not inherently perform any
feature selection.

In the study at hand, regularization was used for penalizing the activity function in the first
classification network.

6.6.2. Dropout. One of the most commonly employed strategies against overfitting is to leave
out a set amount of units in each iteration. This simply goes to say that the network does not
look identical every time the data is fed through it. A hyperparameter with a value of 0.5 means
that for each batch of input matrices, the network assigns a probability of 0.5 to each nonoutput
unit in the architecture [27]. By doing so, there is a 50% chance for each network unit to be
included in each iteration. In the end, this means that the units are forced to see some new
data in each iteration, rather than simply memorize the data, which would lead to overfitting.
However, using a larger value for the dropout hyperparameter, or adding multiple dropout layers
to the architecture can lead to slower training time for the network, or even underfitting.

6.6.3. Batch Normalization. It has been shown that not only does training converge faster, but
also that the need for dropout is reduced by the introduction of batch normalization. The input
data is whitened, that is to say, the data of the input layer is linearly transformed to have zero
mean and unit variance, similar to Principal Component Analysis [28]). Since each network
layer uses the output of the previous layer as its input, whitening can be introduced at multiple
layers in the network. Indeed, adding batch normalization together with each activation function
results in a normalized input at every iteration. Furthermore, batch normalization regularizes
parameter values and aids in controlling against vanishing gradients. The algorithm introduced
by [28] effectively whitens each input batch to have zero mean and variance of 1. Applying
normalization to mini batches rather than the entire data set leads to reduced training time and
higher accuracy in comparison to multiple dropout layers. Consider x as input u + bias b, and
X = (z1,...,xN) [28]:
. r — Elx]
St N
Varz] + €
where Elz] = + SV

For a mini batch of input data (z1, ..., z,,) being computed with stochastic gradient descent,
an estimate of mean and variance for the data set is estimated at each iteration. This means
that at each parameter value update, statistics are provided for normalization. Thus, the linear
transformation BN gives two new learnable parameters, v and 3, that are updated together
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with the weights [28]:

BN,g:x1,...;Tm = Y1, . Ym
where y; are the linearly transformed input values. This way, any input x will now instead be
whitened as BN (x). In the very same way, a convolution layer, with its ReLu activation func-
tion g, that can be read as z = g(Wwu+b) will after batch normalization instead be written as [28]:

2 = g(BN(Wu))

where the bias term b is replaced by the BN parameter 3, since normalization entails subtraction
of the mean, effectively cancelling the addition of bias. For each convolution layer’s output
feature map, BN applies the linear transformation on the input batch, such that both the
values and spatial locations in the feature map are considered. This way, for each feature map,
the v and [ parameters are learned and the input values are linearly transformed [28].

6.6.4. Data Augmentation. Data augmentation is an important step of preprocessing the dataset.
It makes the dataset robuster for generalization to unseen data by altering the original dataset
according to some function. In image processing, it is common to e.g. scale, flip by an axis,
or alter the coloration of the data. For every augmentation operation, the dataset increases in
volume by a factor of 2, thus enhancing the size of the dataset, which in and of itself is useful—in
particular when using a smaller dataset, as is the case in the present study.

After converting the audio waveforms to mel-spectrograms, each mel-filter bank is processed
to randomly warp the frequency axis of the mel-spectrogram, thereby simulating differences
in speaker vocal-tract length. Traditionally, Vocal Tract Length Normalization (VTLN) has
been used to normalize speech data, whereas Vocal Tract Length Perturbation (VTLP) achieves
the opposite by generating new data, in which an input mel-spectrogram is used to output a
frequency-warped version thereof, effectively imitating a different speaker with a longer or short
vocal tract [29].

The formula for linear scaling VTLN is given thus, with « values given by [29] as ranging be-
tween 0.9 and 1.1 for VTLP, instead of VTLN values between 0.8 and 1.2:

B af’ nggf()
G(f)_ {—fﬁ:zo}{)o(f_fO)'}_afOu fOSfomam

The a values were uniformly randomized within the given range to create an augmented train-
ing set, twice as large as the original dataset, whereas the test set contained only spectrograms
without perturbation.

7. DATA SETS

7.0.1. RAVDESS. The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS)
described in Livingstone & Russo (2018) [30] was used as dataset for the project. The data set
contains 1440 recordings of semantically neutral utterances that were produced in Toronto,
Canada using 24 English speaking actors (whereof 12 are male and 12 are female). Two differ-
ent sentences were spoken: “Kids are talking by the door” and “Dogs are sitting by the door.”
Each of the sentences contain seven syllables. Eight separate emotional states are represented:
neutral, calm, happy, sad, angry, fearful, disgust, and surprised. The data set was validated by
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319 human raters, achieving 62% average accuracy for the data set. The average length of each
audio recording was ca 3 seconds.

3

Mel-spectrograms calculated from the RAVDESS dataset. Each image depicts one emotion from
the same sentence and the same speaker. Top row, left to right: angry, calm, disqust, sad; bot-
tom row, left to right: fearful, happy, neutral, surprised.

7.0.2. Berlin EmoDB. The Berlin Database of Emotional Speech [31], developed at TU Berlin
will be tested as well. The data set consists of 535 utterances from 10 German speakers (whereof
five are male and five are female). Seven separate emotional states are represented: neutral,
bored, happy, sad, angry, fearful, and disgust. The data set was validated by 20 human raters,
achieving 80% average accuracy for emotional domain. However, due to the limited size of the
database it was only sparsely tested in the present study in order to verify the generalization of
one model from one data set to another.

8. PROCEDURE

The experimental design for recognizing emotions in speech signals was set up in several separate
steps. Largely, the experiment was split into three separate tests: one concerning LLDs with
SVMs, one concerning LLDs using CNNs, and one concerning mel-spectrograms with CNNs.
The classifications using traditional SVMs were used as baseline to compare the results of the
newer and less tested CNN procedure.

8.1. Data Pre-Processing. All audio recordings were loaded into a computer using the script-
ing language Python. All audio signals were sliced to remove silence at beginning and end of
the recording. The data set thus at first consisted of raw audio vectors that each were split
into a matrix of shape A = [m, n|, where m were the audio vectors and n were the 8 emotional
classes. Furthermore, the matrix was organized to account for the 24 different speakers that
each contributed equal amounts of audio recordings to the data set.

Every raw audio vector was first processed using STFT and the resulting vectors were sub-
sequently used to extract audio features and finally subfeatures according to the algorithms
outlined in section further above.

This, in turn, meant that standardization and normalization of every audio feature was done
separately for each speaker, in accordance with standard procedure for speech emotion recog-
nition [12]. After doing so, the data matrix was again transformed to combine all speakers per
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emotional class, such that:

speaker; | audio feature; | audio feature;,; | audio feature, | emotion class;
speaker; 1 | audio feature; | audio feature;,; | audio feature,, | emotion class;
speaker,, | audio feature; | audio feature;,; | audio feature,, | emotion class;

for all 94 LLDs extracted from the input audio signals and for all 8 classes. The resulting data
matrix was shuffled randomly and split into training set and test set with an 80/20% partition.

8.2. Low-Level Descriptors with Support Vector Machines. A classification scheme was
created where all input vectors were loaded from a matrix and fed into an SVM classifier. Model
feature selection was calculated according to the formula [24]:

Var[X] = p(1 —p)

where p is a probability value. If the p value is not significantly different from the mean, the fea-
ture is discarded. This means that the variance is maximized and only features that contribute
new information to the model are used for classification. After perform model feature selection,
37 feature vectors of the original 94 were used per sample.

8.3. Low-Level Descriptors with Convolutional Neural Networks. The CNN used for
further extracting features and classifying these was base on the VGG16 architecture [32]. A
total of 25 layers were used, whereof the final five consisted of a fully connected vanilla neural
network. The architecture can be visualized as:
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Figure from [33]: VGG16 CNN architecture.

Following feature extraction using the initial 20 layers of convolution, pooling, and batch normal-
ization, the features were saved in a vector that subsequently was loaded into the fully connected
top model for classification. With input dimensions (nsampies, 94, 1, 1) the entire data set could
fit in memory, and there was no need to use generate mini batches. The model was trained and
evaluated over 200 epochs.

8.4. Mel-Spectrograms with Convolutional Neural Networks. After calculating mel-
spectrograms for every audio vector, as well as augmenting the data set with VTLP spectro-
grams, all the spectrograms were plotted and the resulting image matrices used for classification.
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The resulting vectors contained pixel values of the dimensions 432 x 288 x 3, which were fed
into the CNN. Multiple network architectures were tested using different optimization algorithms
and the learning rate values 0.001, 0.01, and 0.1. With input dimensions 432 x 288 x 3, a data
generator was built to fit the model, and mini batches of size 32 were feed to the network at a
time.

8.5. Model Evaluation.

8.5.1. F1 Score. The performance of the multiclass SVM classifier was measured using average
F1 score over all classes, with F1 calculated as:

precision - recall

F=2 —
precision + recall

where precision is true positives over true positives and false positives:

ip
tp+ fp

and recall is true positives over true positives and false negatives:

tp
tp+ fn

8.5.2. Categorical Cross-Entropy. The performance of the CNN and its classifying fully con-
nected network using a softmax function was measured using categorical cross-entropy. The
cross-entropy is calculated by the loss function of the network, as explained in the methods
section. It is important to note, that the cross-entropy accuracy is not updated with the rest of
the model parameters during training. The cross-entropy accuracy is given as a mean accuracy
of all classes for all predictions.

9. RESULTS

9.1. Low-Level Descriptors with Support Vector Machines.

9.1.1. RAVDESS. The feature set containing LLDs from the RAVDESS data set was tested us-
ing an SVM classifier. The classification achieved an average accuracy of 0.68 across all classes.
The average precision across all classes was 0.70 and the average recall across all classes was 0.69.
The standard deviation from the predicted accuracies over all eight classes was 0.11. Student’s
t tests were calculated and the p value for each class compares the statistical difference from the
average of all classes, where values < 0.05 are considered statistically significant. The precision,
recall, and F1 score for all classes are listed in the table below:



30

Class Precision ‘ Recall ‘ Accuracy | Accuracy p
Neutral 0.47 0.78 0.58 0.33
Calm 0.72 0.72 0.72 0.31
Happy 0.77 0.83 0.80 0.10
Sad 0.67 0.71 0.69 0.43
Angry 0.73 0.48 0.58 0.26
Fearful 0.62 0.86 0.72 0.27
Disgust 0.57 0.40 0.47 0.04
Surprised 0.89 0.77 0.83 0.07
Average 0.70 0.69 0.68 -
Standard Deviation 0.12 0.16 0.11 -

The class that achieved the largest precision value was surprised at 0.89, whereas the lowest
precision was achieved for the neutral class at 0.47. The precision of the surprised class was the
only one that was larger than the average precision of 0.70 with a value larger than the overall
standard deviation of 0.12. The precision of the classes neutral and disqust were smaller than
the average precision value with values larger than the standard deviation 0.12.

The class with the largest value for recall was fearful, whereas the lowest recall was found for
the class disqust. The recall of the fearful class was larger than the average recall of 0.69 with
a value larger than the standard deviation of 0.16. The recall of the classes disgust and angry
were smaller than the average recall value with values larger than the standard deviation of 0.16.

The class with the best overall accuracy was surprised, whereas the lowest accuracy was cal-
culated for disqust. The disqust class differs significantly from the average accuracy with p =
0.04, whereas surprised with p = 0.07 does not with a = 0.05. However, with @ = 0.1, surprised
would also be considered statistically significant. The class happy matches a« = 0.1. No other
classes achieved accuracy levels that differed significantly from the mean accuracy.
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Confusion matrix for the SVM classification of LLDs for RAVDESS.

The confusion matrix heat map visualizing predictions for the test set displays the most spread
across classes for the disgust class, reflected by the lowest recall value. The classifications for
the class neutral shows the greatest disparity between precision (0.47) and recall (0.78).

9.1.2. Berlin emoDB. The feature set containing LLDs from the Berlin emoDB data set was
tested using an SVM classifier. Note that only seven classes were available Berlin emoDB set.
The classes surprised and calm were not available for the Berlin emoDB data set, and the class
bored was instead available. The amount of available recordings in the data set was unbalanced
and hence only 46 audio files per class were randomly selected in order to balance the classes.
The classification achieved an average accuracy of 0.74 across all classes. The average preci-
sion across all classes was 0.76 and the average recall across all classes was 0.75. The standard
deviation from the predicted accuracies over all eight classes was 0.15. Student’s t tests were
calculated and the p value for each class compares the statistical difference from the average of
all classes, where values < 0.05 are considered statistically significant. The precision, recall, and
F1 score for all classes are listed in the table below:
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Class Precision ‘ Recall ‘ Accuracy | Accuracy p

Neutral 0.77 1.00 0.87 0.17

Bored 0.57 0.33 0.42 0.03

Happy 083 | 083 | 0.83 0.23

Sad 0.86 1.00 0.92 0.10

Angry 100 | 060 | 0.5 0.38

Fearful 0.70 0.78 0.74 0.45

Disgust 0.60 1.00 0.75 0.38
Average 0.76 0.75 0.74 -
Standard Deviation 0.14 0.23 0.15 -

The class that achieved the largest precision value was angry at a perfect 1.0, whereas the low-
est precision was achieved for the calm class at 0.57. The precision of the angry class was the
only one that was larger than the average precision of 0.76 with a value larger than the overall
standard deviation of 0.14. The precision of the classes calm and disqgust were smaller than the
average precision value with values larger than the standard deviation 0.14.

The classes with the largest value for recall was neutral, sad, and disqust that all achieved a
perfect 1.00; whereas the lowest recall was found for the class calm. The recall of the classes
neutral, sad, and disqust were all larger than the average recall of 0.75 with a value larger than
the standard deviation of 0.23. The recall of the class calm was smaller than the average recall
value with a value larger than the standard deviation of 0.23.

The class with the best overall accuracy was sad, whereas the lowest accuracy was calculated
for calm. The calm class differs significantly from the average accuracy with p = 0.03, whereas
sad with p = 0.10 matches o = 0.1. No other classes achieved accuracy levels that differed
significantly from the mean accuracy.
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Confusion matrix for the SVM classification of LLDs for Berlin emoDB.

The confusion matrix heat map visualizing predictions for the test set displays the most spread
across classes for the bored class, reflected by the lowest recall value. The classifications for the
class angry shows the greatest disparity between precision (1.00) and recall (0.60).

9.2. Low-Level Descriptors with Convolutional Neural Networks. The feature set con-
taining LLDs (see section [CROSS-REFERENCE]) from the RAVDESS data set (see section
[CROSS-REFERENCE]) was tested using an CNN classifier (see section [CROSS-REFERENCE]).
The classification achieved an average accuracy of 0.79 across all classes. The classification al-
gorithm of the CNN was evaluated with an average cross-entropy loss function across all classes
and did not output individual accuracy levels for each class.

10. DISCUSSION

10.1. Low-Level Descriptors Comparison. The SVM classifier for the Berlin emoDB set
achieved an accuracy of 74%, yet the data set was too small to use for the CNN. The SVM
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classifier for the subfeature set from the RAVDESS data set achieved an average accuracy of
68%, and the convolutional neural network achieved an average accuracy of 79%.

The best accuracy was thus achieved by the CNN for the RAVDESS set. While the mAP dif-
fered with 11 percentage points in favour of the CNN—a considerable value when evaluating
classification algorithms—a student’s t-test was calculated and with a p value = 0.16 > a =
0.05, there was no statistically significant difference between the two models on the data set.
The CNN for RAVDESS set was 5 percent points better than the SVM for Berlin emoDB, but
with a p value = 0.36 > a = 0.05, there was no statistically significant difference. The two SVMs
on both data sets differed by 6 percentage points in favour of the Berlin emoDB set, but with a
p value = 0.29 > a = 0.05, there was no statistically significant difference between the classifiers.

10.2. Low-Level Descriptors Compared to Previous Studies on RAVDESS.

10.2.1. Comparison to Human Raters. In the paper accompanying the RAVDESS data set
[REFERENCE], human raters achieved an average accuracy of 62%, which was beaten by both
the SVM and the CNN. The SVM classifier did not achieve a statistically significant difference
with a p value = 0.16 > a = 0.05, but the CNN did with p value = 0.04 < o = 0.05.

10.2.2. Comparison to Previous SVM Study. In the paper by Zhang, et al [12], testing SVMs
on LLDs from the RAVDESS set, an average accuracy of 80% was achieved. It should however
be noted, that only six classes: angry, happy, neutral, sad, calm, and fearful were used. In
the present study, the SVM classification of the RAVDESS LLDs achieved only 68%, a differ-
ence of 12 percentage points. However, with a p value of 0.05, it matches an o = 0.05, but
cannot be said to be statistically significant. The CNN used in the present study achieved an
accuracy of 79%, a difference in only 1 percentage point, which gives a p value of 0.35 > « = 0.05.

10.3. Mel-Spectrograms with Convolutional Neural Networks. The mel-spectrograms
with dimensions 432 x 288 x 3 proved to be too computationally expensive for an i7 CPU with
16 GB RAM to properly handle. While transfer learning using weights from the ImageNet [32]
and other models from [33] was implemented and tested, the much smaller size of the RAVDESS
data set lead to overfitting, where training set achieved accuracy levels near 1.0 within 10 epochs.
The evaluation and test sets, however, never reached accuracy levels above 0.33. To account for
this, learning rates were lowered to 0.001 but without the proper computational power of a GPU,
model training of over 2 weeks were not possible to handle without running out of memory.
Without transfer learning from a pre-trained network, the model was not able to properly read
enough data from the image vectors and achieved average accuracy levels at 0.15, here inter-
preted as chance over eight classes.

Smaller models of no more five layers were equally tested, but with over 5 million model param-
eters for input dimensions 432 x 288 x 3 for only 3072 input vectors (original and augmented
image vectors), even the smaller models lead to overfitting, regardless of optimization, learning
rate, or dropout values.
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11. CONCLUSIONS

While the CNN feature extractor and classifier for the sparse RAVDESS LLD subfeature set
achieved the best accuracy of all tested classifiers, no statistically significant difference could be
found against the SVM classifier in the study. It did however prove to be a better classifier than
human raters.

Much effort was put into the mel-spectrogram feature set extracted and augmented from the
RAVDESS data set, but the lack of computational power in the form of a GPU rendered the
experiment unsuccessful. Furthermore, a much larger data set would be needed to fully make
use of the possibilities of CNNs, yet a lack of publicly available data for emotional speech makes
this problematic. A suggested solution would be further data augmentation, such as e.g. random
slicing of the audio files. However, in the data set used, the average duration of the recordings
was ca 3 seconds before slicing silence at end and beginning. Further slicing could lead to a lack
of useful data if e.g. pitch envelope across the recording could not be extracted.
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