
Technische Universität Berlin
Fakultät I

Institut für Sprache und Kommunikation
Fachgebiet Audiokommunikation und -technologie

Development of a Digital Musical Instrument
with Embedded Sound Synthesis

Masterarbeit

für die Prüfung zum Master of Science im Studiengang
Audiokommunikation und -technologie

vorgelegt von

Pascal Staudt

Erstgutachter: Prof. Dr. Stefan Weinzierl
Zweitgutachter: Dominik Hildebrand Marques Lopes (Universität der Künste Berlin)
eingereicht am: 11.10.2016

Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt gegenüber der Fakultät I der Technischen Universi-

tät Berlin, dass die vorliegende, dieser Erklärung angefügte Arbeit selbstständig und

nur unter Zuhilfenahme der im Literaturverzeichnis genannten Quellen und Hilfs-

mittel angefertigt wurde. Alle Stellen der Arbeit, die anderen Werken dem Wort-

laut oder dem Sinn nach entnommen wurden, sind kenntlich gemacht. Ich reiche

die Arbeit erstmals als Prüfungsleistung ein. Ich versichere, dass diese Arbeit oder

wesentliche Teile dieser Arbeit nicht bereits dem Leistungserwerb in einer anderen

Lehrveranstaltung zugrunde lagen.

Mit meiner Unterschrift bestätige ich, dass ich über fachübliche Zitierregeln un-

terrichtet worden bin und diese verstanden habe. Die im betroffenen Fachgebiet

üblichen Zitiervorschriften sind eingehalten worden. Eine Überprüfung der Arbeit

auf Plagiate mithilfe elektronischer Hilfsmittel darf vorgenommen werden.

Berlin, den Unterschrift

ABSTRACT

Performances with new digital musical instruments (DMIs) are commonplace nowa-

days. In most cases these instruments are gestural controllers connected to a laptop

that runs the sound synthesis. However, a general purpose computer is not primar-

ily intended to be a musical instrument and when it comes to performing on stage,

it can cause issues both technically and artistically. Furthermore the short lifespan

of new DMIs is often linked to the use of personal computers, which threaten the

functionality of the instrument. This work examines the development of a DMI with

embedded sound synthesis – the PushPull embedded (PPEMB) – an instrument that

overcomes these issues by embedding the computing hardware. Therefore, require-

ments concerning the hard- and software are set, before different microcontroller and

microprocessor devices are considered and compared carefully. The iterative and in-

cremental development of a prototype is laid down and three instrument patches

are presented to validate the set requirements and demonstrate the capabilities of

the PPEMB in terms of parameter mapping and sound synthesis. The performance

evaluation shows that a reliable DMI has been developed, with enough processing

resources for the realisation of complex sound synthesis. With a sample rate of

48kHz and a buffer size of 16 samples, up to 80 oscillators can be used without

dropouts or clicks in the sound output and changing between patches stored on the

instrument happens within one second. Taken as a whole, the thesis shows that

recent microcontroller technology has potential to replace general-purpose comput-

ers in DMI designs and consequently enhance the portability and longevity of these

instruments.

i

ZUSAMMENFASSUNG

Performances mit digitalen Musikinstrumenten (DMI) sind heutzutage keine Aus-

nahme mehr. Die Instrumente, welche hierbei verwendet werden, sind zumeist eine

Kombination aus Controller und Laptop. Während der Controller für die Erfassung

von Gesten zuständig ist, dient der Laptop zur Klangsynthese. Die Nutzung eines

gewöhnlichen Computers als Bestandteil eines Musikinstruments, der nicht speziell

als solches konzipiert ist, weist jedoch Probleme auf. Die Nachteile betreffen nicht

nur die Beständigkeit des Instruments sondern auch die technische und künstlerische

Aufführungsaspekte. Gegenstand der Arbeit ist die Entwicklung eines DMIs mit ein-

gebetteter Klangsynthese – das PushPull embedded – ein Instrument, das die eben

genannten Defizite überwindet, indem ein Computer zur Klangerzeugung in den In-

strumentencorpus integriert wird. Hierfür werden die Anforderungen an Hard- und

Software bestimmt, verschiedene Mikrokontroller und Mikroprozessoren in Betracht

gezogen sowie deren Vor- und Nachteile verglichen. Nach begründeter Wahl eines

geeigneten Geräts wird die iterative und inkrementelle Entwicklung des Gesamt-

systems aus Hard- und Software dargelegt. Drei Patches werden vorgestellt, welche

verschiedenste Ausführungen des entwickelten Instrumentenprototyps in Hinblick

auf Parameter Mapping und Klangsynthese demonstrieren. Die Beispiele dienen au-

ßerdem dazu, die gesetzten Anforderungen und Ziele zu überprüfen. Eine Evaluation

der Leistungsfähigkeit des Gesamtsystems zeigt, dass ein zuverlässiges und zudem

leicht zu programmierendes DMI entwickelt wurde, welches genug Rechenkapazitä-

ten für komplexe Klangsynthese bietet. Bei einer Puffergröße von 16 Samples und

einer Samplingrate von 48kHz können bis zu 80 Oszillatoren verwendet werden, ohne

dass wahrnehmbare Unterbrechungen in der Klangsynthese auftreten. Das Wechseln

ii

Zusammenfassung

zwischen auf dem Instrument gespeicherten Patches geschieht innerhalb einer Sekun-

de. Insgesamt zeigen die Ergebnisse der Arbeit, dass moderne Mikrocontroller das

Potential haben, gewöhnliche Computer in DMI Designs zu ersetzten, wodurch die

Autonomie und somit die Portabilität und Beständigkeit der Instrumente verbessert

wird.

iii

CONTENTS

Abstract i

Zusammenfassung ii

Contents iv

List of Figures vii

1. Introduction 1

2. Digital Musical Instrument Design 4

2.1. DMI Models . 5

2.2. Self-contained Instruments . 6

2.3. Sensors . 8

2.4. Feedback . 8

2.5. Parameter Mapping . 9

2.6. Sound Synthesis . 10

3. Related Work 12

3.1. Satellite CCRMA . 13

3.2. JamBerry . 14

3.3. Vega and Gómez (2012) . 14

3.4. D-Box . 15

iv

CONTENTS

3.5. Others . 15

4. The PushPull 17

4.1. Instrument Corpus . 18

4.2. Overview of the Signal Flow . 20

4.3. Capacitive Touch Sensors . 22

4.4. Microphones and Mirophone Pre-Amplification 24

4.5. NeoPixel LEDs . 24

4.6. Sound Synthesis . 25

5. Requirements and Approach 26

5.1. General Requirements . 26

5.2. Requirements for the Synthesis Environment 27

5.3. Iterative and Incremental Development 28

6. Hardware Implementation 30

6.1. Reviewed Hardware Devices . 30

6.2. Comparison and Decision . 32

6.3. Implementation . 33

7. Software Implementation 37

7.1. Serial Communication Protocol . 37

7.2. Axoloti Software . 40

7.2.1. Basics . 40

7.2.2. Instrument Patch Model . 42

7.2.3. Subpatches . 43

7.2.4. Objects . 48

7.3. PSoC 4 Software . 51

7.4. ATmega32 Software . 54

8. Evaluation 59

8.1. Instrument Patches . 59

8.2. Latency Evaluation . 64

v

CONTENTS

8.3. Performance Evaluation . 67

8.4. Evaluation of the Development Process 67

9. Conclusions and Outlook 69

Acronyms 71

Glossary 73

Bibliography 77

Appendices 83

A. Overview of Implemented Axoloti Objects 84

B. Wiring Diagrams 87

C. Source Code 90

C.1. Axoloti Source Code . 90

C.2. PSoC 4 Source Code . 99

C.3. ATmega32 Source Code . 101

D. CD Content 117

vi

LIST OF FIGURES

2.1. DMI model after Miranda and Wanderley 5

2.2. DMI model after Marshall . 6

4.1. Minimal PushPull setup . 17

4.2. The PushPull. 18

4.3. Construction of the bellows. 19

4.4. Construction of the box . 20

4.5. Overview of the signal flow inside the PushPull student edition 21

4.6. Capacitive touch sensing . 22

4.7. Illuminated bellows. 24

6.1. Overview of the signal flow inside the PushPull embedded 34

7.1. Overview of the implemented software 38

7.2. Serial message encoding. 39

7.3. Screenshot of the Axoloti patcher software 41

7.4. PushPull embedded instrument patch model 43

7.5. Model of the pp_sensors subpatch 44

7.6. Implementation of the pp_controller subpatch. 45

7.7. Excerpt from the pp_buttons subpatch. 46

7.8. Excerpt from the pp_rotary subpatch. 47

7.9. Implementation of the pp_mics subpatch. 48

vii

LIST OF FIGURES

7.10. Activity diagram for the serial decoder object 49

7.11. Activity diagram for the PSoC 4 software 53

7.12. Activity diagram for encoding serial messages 54

7.13. Class diagram of the pp_atmega software 57

7.14. Sequence diagram of the pp_mega software 58

8.1. Implemented instrument patches. 60

8.2. Virtual orientation grid. 62

B.1. Simplified wiring diagram of the PushPull student edition 88

B.2. Simplified wiring diagram of the PushPull embedded 89

viii

CHAPTER 1

INTRODUCTION

The invention and rapid evolution of computers gave rise to the Digital Revolution

in the last century. The impact of emerging digital technologies on our life is steadily

growing since then. Computers changed not only our every day lives in many regards

but also our creative processes.

The availability of powerful and inexpensive computing hardware, which expands

the possibilities of software based sound synthesis, is one of the reasons why perfor-

mances with new digital musical instruments (DMIs) are commonplace nowadays

(Cook, 2001). Visual audio programming environments, such as Max/MSP1 and

Pure Data2, furthermore contribute to the fact that more and more musicians and

researchers interested in musical innovation implement their own DMIs for the use

in their musical compositions and performance practices (Miranda and Wanderley,

2006). Numerous new DMIs have been developed in the last decade, however, none

of them have managed to become widespread in the performance scene and "The

need to work out why previous attempts have not had commercial success is critical

to the long-term viability of this field of enquiry" (Paine, 2013, p. 84). Indeed, new

DMIs are brought to the market by the major audio hardware sellers, but still it

seems that they stick to the traditional paradigm of keyboard controlled synthesis.

Numerous innovative DMIs are presented at the International Conference on New

1https://cycling74.com/products/max/
2https://www.puredata.info

1

1. Introduction

Interfaces for Musical Expression3 every year. Even though many of these interfaces

use digital sound synthesis , most of the effort goes into the development of new ges-

tural controllers. These interfaces then become part of a DMI, which consists of

a gestural controller and a synthesis unit – usually a laptop or desktop computer.

Undoubtedly, a lot of musicians exploit the advantages of software synthesizers, but

a desktop computer or laptop is not primarily intended to be a musical instrument

(Lyons and Fels, 2012) and Paine (2013, p. 79) goes as far as saying "the general

public will always be uncertain about the authenticity of a computer music per-

formance." Anyhow, when it comes to performing on stage, the use of a general

purpose computer as a musical instrument can cause issues both technically and

artistically. According to Berdahl and Ju (2011), the short lifespan of new DMIs

is often linked to the use of personal computers, which threaten the functionality

of the instrument, for example when a change to the operating system is applied.

The result is a lack of dissemination and a limited quality of the musical output,

if musicians cannot become experts on their instruments in the short life span of

the instrument (Berdahl and Ju, 2011). One method to overcome these issues is

to embed the sound synthesis unit, i.e. the computing hardware, into the instru-

ment itself. Such a self-contained instrument does not rely on an external computer

and offers several advantages concerning reliability and longevity (Berdahl, 2014).

The aim of this thesis is to explore the development of a self-contained DMI: the

PushPull embedded (PPEMB).

The PushPull (PP) is a DMI that has been designed and developed within the

3DMIN project4. In autumn 2015 the PushPull student edition (PPSE) was built

according to the development stage at the time. Various sound synthesis implemen-

tations have been programmed to examine the possibilities and constraints of the

instrument. The goal and subject of this project has been set to overcome the main

drawback on the initial design – the need of an external computer – by creating a

self-contained prototype of the instrument.

Thereby, the following questions are examined:

3http://www.nime.org/
4Design, Development and Dissemination of New Musical Instruments: http://www.3dmin.org/

2

1. Introduction

• What are the technical requirements for the development of a DMI with em-

bedded sound synthesis?

• To what extent is recent microcontroller/microprocessor technology suitable

for this purpose?

• What possibilities and problems occurred during the development process?

The thesis is structured as follows: the next chapter will give an introduction into

DMI design basics and provide the theoretical framework for the thesis. An overview

of related work is presented in chapter 3. Chapter 4 will provide insight into the

PPSE, as it was the starting point of my work and determined the requirements,

which will be outlined in chapter 5 together with the taken approach of an iterative

and incremental development . Chapters 6 and 7 lay down the implementation of

the hardware and the software. In chapter 8, the technical requirements will be

validated and the results of my work, as well as the development process itself, will

be evaluated. Finally, a conclusion and an outlook is given.

3

CHAPTER 2

DIGITAL MUSICAL INSTRUMENT DESIGN

From the initial idea to a ready-to-play DMI a lot of different design decisions

have to be made. The choice of the sensors, the computing hardware and the

synthesis software affect all stages of the design process right up to performance

aspects. In this chapter, the basics of DMI design are explained. Therefore, two

different models are presented and the term self-contained instrument is introduced.

Furthermore a short overview of different sensor and feedback technologies is given

and the principles of parameter mapping and sound synthesis are laid down. To

start with, a definition of the term "digital musical instrument" is given.

Even though there is no clear definition of the term "digital musical instrument",

the use of digital technologies is implied. While acoustic instruments produce sounds

that can be sensed by the humans auditory system through the resonating of physical

entities that cause the surrounding air to vibrate, DMIs use digital technologies to

generate electronic signals that can be only heard when amplified and converted into

sound waves by an electroacoustic transducer such as a loudspeaker. Miranda and

Wanderley (2006, p. 1) state:

An instrument that uses computer-generated sound can be called a digi-

tal musical instrument (DMI) and consists of a control surface or gestural

controller, which drives the musical parameters of a sound synthesizer in

real time.

4

2. Digital Musical Instrument Design

• Extended instrument

• Alternate controller

The fact that 229 of the 266 instruments that were presented are classified as con-

trollers underline that most of the effort went into the development of new gestural

controllers. Although no specification is made whether the controllers use embedded

sound synthesis, the literature research of NIME papers revealed only few related

attempts (see chapter 3).

To distinguish DMIs with embedded sound synthesis from gestural controllers that

make use of an external sound synthesis unit, terms such as self-contained musical

instrument (Smith and Michon, 2015) or embedded musical instrument (Berdahl,

2015) are used. Throughout this work the term self-contained instrument will be

used for DMIs that combine the gestural controller and the sound synthesis unit in

a single instrument body.

Self-contained DMIs offer several advantages concerning portability, autonomy

and longevity (Berdahl and Ju, 2011). According to Berdahl and Ju, the use of

personal computers as the critical engine of a DMI is the weak link in terms of

longevity and robustness of a DMI. General purpose computers that are also used

to write emails and theses have the potential to be rendered unusable with every

necessary system upgrade or major software update. On the contrary embedded

computers are solely used for their intended purpose (Berdahl and Ju, 2011).

The better portability of self-contained DMIs is directly related to their auton-

omy from an external synthesizer unit and is self-explanatory. The advantages of

portability and autonomy manifest themselves most notably in jam and performance

situations. Who wants to bring his or her laptop (and an audio interface) to the next

jam session and hassle with the set up of the computer, rather than just bringing a

compact instrument that can be plugged into an amplifier, just like an electric piano

or an electric guitar that can be played right away.

7

2. Digital Musical Instrument Design

2.3. Sensors

"A sensor is a device that receives a stimulus and responds with an electrical signal"

(Fraden, 2010, p. 2). Sensors play an important role in DMIs. They are the first

item in the chain when translating performance gestures into sonic output. The

translation happens in two stages: first, the gesture has to be translated into an

electrical signal – this can be done with a wide range of different sensors; second,

after converting this signal into the digital domain – which is most often done by

a microcontroller, the signal is mapped to one or more parameters of the synthesis

system.

Many different sensors can be used in DMI design. Example categories to classify

the different sensor types according to Miranda and Wanderley are:

• Absolute vs. relative

• Contact vs. non contact

• Analog vs. digital

Examples of sensors used in DMIs are: force-sensitive resistors (FSRs), linear and

rotary potentiometers, piezoelectric sensors, capacitive sensors and accelerometers –

just to name a few. Furthermore, Miranda andWanderley give an extensive overview

and description of sensors commonly used in DMI design. A detailed description of

the sensors that are used in the PP is given in chapter 4.

2.4. Feedback

The feedback a DMI provides effects the interaction with the performer and further-

more the expressiveness of the performance. As already mentioned in section 2.1,

feedback can be primary or secondary. Primary feedback involves visual, haptic

and/or tactile feedback while the sound output of the instrument is the secondary

feedback. Bongers (2000) furthermore classifies the different feedback types into

passive vs. active. Active feedback is primarily given by the sound output but can

8

2. Digital Musical Instrument Design

also involve actuators such as tactile stimulators or light sources. The passive feed-

back is determined by the physical characteristics of the instrument and impacts the

control gestures of the performer.

While some feedback types are only accessible by the performer, others can also be

witnessed by the spectators directly – e.g sound and light, or indirectly through the

performed gestures – e.g haptic feedback. Therefore feedback plays an important

role not only for the playability of the instrument but also for its expressiveness

(Arfib et al., 2005). Both primary and secondary feedback may be mainly or partly

influenced by the parameter mapping of the instrument (see Figure 2.2).

2.5. Parameter Mapping

The choice of parameter mapping is a central element in DMI design. As the previous

sections already pointed out, it manifests the linkage between input gestures and

sound output but can also effect the primary and secondary feedback. In DMIs this

linkage is flexible in contrast to traditional acoustic instruments, where the gestural

input and the sound generating entity are combined in the same physical object. For

example, the string of a guitar acts both as gestural input unit and sound generation

source. This separation in DMIs leads to the fact that there is no necessary fixed

causality between a gestural input and the resulting sound of the instrument and

therefore the very same input gesture can lead to entirely different sound outputs

(Miranda and Wanderley, 2006).

Furthermore the mapping layer is also a determining factor for the constraints and

the dimensionality of a DMI. As Magnusson (2010) lays down, "The main bulk of the

time spent in learning [an] instrument involves building a habituated mental model

of its constraints". User studies on dimensionality (Zappi and McPherson, 2014b)

indicate that constraints can even be beneficial for the musical creativity. Since

dimensionality determines how the performer is playing the instrument, it also effects

the audiences perception of expressiveness (Arfib et al., 2005). Multidimensionality

often leads to the fact that it is hard to grasp the link between the sound output

of a DMI and the related performance gesture (Gurevich and von Muehlen, 2001).

9

2. Digital Musical Instrument Design

This can be a problem for both the performer and the audience which expects a

observable primary causation for the the sound that is heard.

Different mapping strategies can be applied to DMIs. Rovan et al. (1997) classify

these strategies into three categories:

• One-to-One-Mapping, where each independent gestural output is linked with

one musical parameter

• Divergent Mapping, where one gestural output is simultaneously linked to

more than one musical parameter

• Convergent Mapping, where one musical parameter is assigned to multiple

gestures

The choice of mapping is usually done by the instrument designer but may also stay

flexible (as in the case of the PP) and thus accessible to the performer. In the latter

case the instrumentalist can modify the mapping according to his or her own needs

and may even switch between different mappings during one performance.

Another way of achieving parameter mappings is to use a software algorithm which

randomly or semi randomly determines the connections. De Campo (2014) presents

Influx, an automated system that helps to find non-obvious mapping strategies. This

concept is described as "Lose Control, Gain Influence".

2.6. Sound Synthesis

Since a gestural controller alone is not able to produce sound, DMIs rely on a sound

synthesis unit. This can be a hardware synthesizer or hardware that runs software

synthesis. Whereas in the past external MIDI synthesizers commonly where used to

run the sound synthesis, today most DMIs use software synthesis run on a laptop

computer. Programming environments like Pure Data, Max/MSP, SuperCollider

et cetera offer a variety of different synthesis techniques from classical additive/-

subtractive and FM synthesis over sample based synthesis to physical modelling

techniques and granular/wavelet synthesis. Explaining all of these techniques would

go beyond the scope of this thesis.

10

2. Digital Musical Instrument Design

The choice of the synthesis method(s) depends on the capabilities of the employed

hardware and the preferences of the instrument designer. It is important to mention

that the inherent separation of gestural input and synthesis unit in DMIs means that

the applied synthesis strategy does not necessarily have to be fixed but is flexible and

thus can be accessed by both the instrument designer and the performer. However,

as Cook (2001) points out in his DMI design principles, beside the advantages this

flexibility offers, programmability can also be a "curse".

11

CHAPTER 3

RELATED WORK

A lot of research on the design of DMIs was published in the last decades. Since

2001, a large variety of DMIs have been presented at the annual International Con-

ference on New Interfaces for Musical Expression (NIME Steering Committee, 2016).

Although artistic and scientific research in this field dates back earlier – the first In-

ternational Computer Music Conference (ICMC) took place in 1974 (International

Computer Music Association, 2016) – the interest in new DMIs has grown due to

the availability of high computing power and sensors of all type, which made per-

formances with DMIs commonplace (Cook, 2001).

While some work deals with the principles of DMI design in general (Cook, 2001;

Magnusson, 2010; Lyons and Fels, 2012; Paine, 2013), other work focuses on specific

aspects such as parameter mapping (Hunt et al., 2003), expressiveness (Arfib et al.,

2005) or dimensionality (Zappi and McPherson, 2014b).

Miranda and Wanderley devote a whole book to "Control and Interaction Be-

yond the Keyboard" but the subject of self-contained instruments stays untouched

(Miranda and Wanderley, 2006). Little research is published that covers the de-

velopment of DMIs with embedded sound synthesis. In the following an overview

of published research is given that has been found during the literature research.

The focus was on projects that use a microcontroller or microprocessor board for

embedded sound synthesis.

12

3. Related Work

3.1. Satellite CCRMA

The Satellite CCRMA is a system that was developed to replace laptop and desktop

computers in DMI designs with "a compact and integrated control, computation

and sound generation platform" (Berdahl and Ju, 2011, p. 1).

Berdahl and Ju state that many new musical instruments and installations subsist

only for a very short time since a lot of effort has to be made to keep them working

over time for real life performance situations. According to the authors this fact

introduces two issues: first, musicians cannot become experts on the instrument for

the simple reason that the lifetime of the instrument is too short and consequently

the quality of the yielded music is limited; second, the lack of dissemination of new

DMIs limits the possibility of sharing knowledge and playing expertise. Berdahl

and Ju blame, among other things, the use of general purpose computers for these

problems.

Technically, the Satellite CCRMA platform is build upon a microprocessor board

which runs an embedded linux system. In the initial version, a BeagleBone Rev 4 1

is used while later versions support the BeagleBoard xM, the Raspberry Pi Model

B2 and the Raspberry Pi 2 (Berdahl et al., 2013; Berdahl, 2015). The employed

microprocessor board is connected to an Arduino nano3 clone sitting on a bread-

board. The Arduino microcontroller manages the sensor input, while the breadboard

provides rapid prototyping.

Several facts make the Satellite CRRMA very convenient for the use in DMI

designs: first, it can run Pure Data which makes the implementation of sound

synthesis very accessible; second, it can be programmed and controlled remotely

via ethernet and third, all of the employed microprocessors support native floating

point computation. Above all, the latter is an important feature for computing

sound synthesis algorithms.

1http://beagleboard.org/bone
2https://www.raspberrypi.org/
3https://www.arduino.cc

13

3. Related Work

3.2. JamBerry

The JamBerry is a standalone device for distributed network performances (Berdahl

and Ju, 2011, p. 1). It is an all-in-one device that "is supposed to be usable in

realistic environments" and is supposed to "be a compact system that integrates all

important features for easy to setup jamming sessions" (Meier et al., 2014, p. 2).

It’s purpose is to give musicians the possibility to jam together in a virtual acoustic

space connected via the internet.

The JamBerry uses a Raspberry Pi (RPI) as sound processing unit. Since this

microprocessor board has no audio input and lacks high quality audio outputs (see

section 6.1), a codec board is attached to the integrated interchip sound (I2S) pin

headers of the microprocessor board in order to provide AD/DA conversion with

sample rates up to 192kHz and a maximum bit-rate of 24bits per sample. The

software implementation is based on an embedded linux system in conjunction with

ALSA4. For the integration of the codec board an appropriate kernel driver had

to be written to provide I2S support. Furthermore a amplifier board is utilised to

allow the connection of different sources to the XLR/TRS connectors and to provide

line-level and headphone output. The audio input to audio output latency of the

JamBerry is below 5ms and shows that the RPI can be used for DMI designs when

extending it with external AD/DA-conversion. However, the effort to achieve this is

quite high. Furthermore the JamBerry does not host sound synthesis processes, so

no conclusions can be made about the use of the RPI for embedded sound synthesis.

3.3. Vega and Gómez (2012)

A similar approach to the Satellite CCRMA is presented by Vega and Gómez (2012).

Their goal was to "build a stable platform for processing and synthesizing audio

signals using an open source, low cost, portable computer" (Vega and Gómez, 2012,

p. 1).

Vega and Gómez implemented a platform based on a lightweight linux distribution

which runs on a BeagleBone microprocessor. JACK and ALSA were used in order to
4Advanced Linux Sound Architecture: http://www.alsa-project.org

14

3. Related Work

process audio with a sample rate of 48kHz and a buffer size of 256 samples. As with

the Satellite CCRMA, Pure Data was used for the sound synthesis. The developers

managed to run synthesis patches including additive/subtractive synthesis and FM

modulation but loading more complex Pure Data objects caused problems.

3.4. D-Box

The D-Box is "a novel DMI based on embedded technologies and specifically de-

signed to be appropriated and repurposed in unexpected ways" (Zappi and McPher-

son, 2014a, 2015; McPherson and Zappi, 2015).

The instrument uses circuits on a breadboard to create hardware-software feed-

back loops that can modified by the performer. Capacitive touch sensors and piezo

pickups are used for the gestural input. The implemented software system runs on

a BeagleBone Black (BBB)5 microprocessor with an extension cape that provides

eight audio in- and outputs. For this, an audio environment based on a Debian6

linux system and the Xenomai7 application programming interface (API) was devel-

oped. The system operates with a buffer size of four audio samples at 22.05kHz

and is capable of running up to 700 oscillators using an oscillator bank.

User case studies by Zappi and McPherson (2014b) showed that the possibilities of

the instrument are not determined by the instrument designer but the creativity of

the performers which used the instrument in a way that went beyond the suggestions

of the original designers .

3.5. Others

Examples with a physical design that is related to the PP are the SqueezeVox (Cook

and Leider, 2000), an accordion like controller for models of the human voice, and the

Accordiatron (Gurevich and von Muehlen, 2001), an accordion inspired instrument

that uses a programmable microprocessor to output MIDI to a computer running

5http://beagleboard.org/black
6https://www.debian.org/
7https://xenomai.org/

15

3. Related Work

Max/MSP. Both of the instruments share similarities with the PP due to their

related gestural input method, but their development was focused on building new

gestural controllers and rather than developing a self-contained DMI.

16

4. The PushPull

of the PPEMB have been set.

The chapter is divided into three main parts. The first part will deal with the

instrument corpus, which determines not only the exterior appearance of the in-

strument but also its haptic properties and constraints. The second part will give

an overview of the technologies that are employed and which provide the technical

functionality of the PPSE. This includes sensor technologies, embedded computing

hardware and further technologies that play an important role in the development

of the PPEMB. The last part briefly deals with the sound synthesis of the PPSE

Figure 4.1 shows an exemplary minimal setup for playing the PPSE. The two

channel microphone output of the instrument is connected with two line inputs of

an audio interface attached to a computer. The gestural input provided by the

sensors of the PP is sent over WiFi via open sound control (OSC) messages to an

external computer which runs the SuperCollider programming environment and is

responsible for the sound synthesis. The resulting digital audio signal is converted

by the audio interface into the analog domain and monitored with active speakers.

4.1. Instrument Corpus

Figure 4.2.: The PushPull. © 3DMIN project, adapted by permission.

18

4. The PushPull

Bellows

The bellows is the main element of the PP. Beside its crucial influence on the

instruments exterior appearance its physical characteristics strongly determine the

gestures of the performer. Its visual appearance is reminiscent of traditional squeeze-

boxes; however, in contrast to the bellows of a squeezebox it can also be rotated to

some degree.

When the bellows is moved an air flow into and out of the valves is produced and

picked up by two microphones. This breathing of the bellows is used as a sound

source and/or as a control for synthesis parameters.

The skeleton of the bellows is made out of perforated cardboard with a mirror

film glued to the inside. Its translucent character allows light to shine through the

kinks of the folded bellows which are coated with latex. Figure 4.3 shows pictures

of the construction.

Figure 4.3.: Construction of the bellows. © 3DMIN project, adapted by permission.

Box

The function of the PPSE’s wooden box is to enclose the components that sit in the

bottom of the instrument: the valves and the microphones, a microphone preampli-

fier, four buttons, two rotary encoders and an ATmega328-PU microcontroller. The

box is made out of laser-cut plywood. The different wooden pieces provide notches

for parts that are accessible from the outside (e.g. the push buttons and rotary

encoders). Figure 4.4 shows pictures of the box assembly.

19

4. The PushPull

Figure 4.4.: Construction of the box. © 3DMIN project, adapted by permission.

Hand Piece

The hand piece forms the upper logical unit of the PP. It’s most important function

is to provide the performer with the possibility to grasp the instrument – via a

neoprene hand strap – and thus to transmit the motion of the hand to the bellows.

Furthermore it includes six capacitive touch sensors (see section 4.3), the mainboard

and the power supply of the PPSE.

The position of the hand block can be adjusted, via two metal rails that are

mounted on the base plate, to match the various hand shapes of different players.

Adjustments can also be made to the position and angle of the part that mounts the

capacitive sensors which can be touched by the index, middle, ring and little finger.

4.2. Overview of the Signal Flow

Figure 4.5 shows a Composite Structure Diagram of the signal flow inside the PPSE.

The light blue boxes represent the three different body parts of the instrument: the

box, the bellows and the hand piece. Each of these parts embeds several electronic

components (dark-blue).

The six capacitive sensors (see section 4.3) are connected to analog inputs of a

Programmable System-on-Chip (PSoC 4) microcontroller (Cypress Semiconductor

Corporation, 2016), which sits on the mainboard in the frame of the hand piece.

The microcontroller samples the sensor data and transmits it asynchronously via a

serial data line to a x-OSC board1.

The x-OSC has several functions in the PPSE. First, it has a built in gyroscope

and accelerometer. The data from these sensors, which capture the position and

1http://x-io.co.uk/x-osc/

20

4. The PushPull

circuit acts as a parasitic capacitance. Once the sensor gets touched the finger acts

as a grounded conductive plane parallel to the sensor pad. This results from the

conductive characteristic of the human skin and the large mass of the body. The

finger consequently acts as an electrical ground. In simplified terms the finger and

the sensor pad act as a plate capacitor with capacitance:

CF =
ε0εrA

d
(4.1)

Where:

• d is the thickness of the overlay material

• ε0 is the free space permittivity

• εr is the relative permittivity of the overlay

• A is the overlapping area of the finger and the sensor pad

Since the parasitic capacitance of the circuit and the finger capacitance are parallel

between the sensor pin and ground, the total sensed capacitance CS results to:

CS = CP + CF (4.2)

Where:

• CF is the finger capacitance from formula 4.3.

• CP is the parasitic capacitance which results from all the conductors on the

PCB (sensor pad, traces, vias and ground planes), any metal in the enclosure

and the internal capacitances of the PSoC 4.

When the sensor pad is untouched only the parasitic capacitance is sensed and there-

fore CS equals CP . The PSoC 4 chip converts the capacitance CS into equivalent

digital counts, which can then be further processed.

23

4. The PushPull

4.4. Microphones and Mirophone

Pre-Amplification

The airflow into and out of the bellows is picked up by two electret microphones

located inside the valves. Electret microphones are condenser microphones which

can be implemented with a minimal amount of space. A supply voltage and pre-

amplification is needed in order to gain a suitable signal level with electret mi-

crophones (see Schneider, 2008). The supply voltage is provided by a microphone

preamplifier that was developed and assembled for the PPSE. Since the microphone

pre-amplifier is obsolete in the PPEMB, no further details about its implementation

are given here.

4.5. NeoPixel LEDs

A primary feedback method of the PP is the lighting from inside of the instrument

(see Figure 4.7). The PPSE uses this visual feedback to indicate which instrument

is loaded.

Figure 4.7.: Illuminated bellows. © 3DMIN project, adapted by permission.

Technically this feature is enabled by eight NeoPixel LEDs, integrated inside

the bellows. NeoPixel is Adafruit ’s3 brand for RGB colour pixels based on the

WS2812 LED drivers (Worldsemi Corporation, n.d.). The pixels can be cascaded and

therefore controlled via one single data line. With the help of a microcontroller that

3https://www.adafruit.com/products/1312

24

4. The PushPull

features PWM and an implementation of the protocol the colour of each individual

LED can be controlled.

4.6. Sound Synthesis

One of the PPSE’s main features is its flexibility in terms of parameter mapping and

sound synthesis. This flexibility results from the fact that the parameter mapping

and sound synthesis are implemented and accessible through SuperCollider, which

runs on an external computer. Different sound synthesis and parameter strategies

can be implemented. These instrument patches share the same gestural control

inputs methods of the PP but lead to different sonic output. This is similar to

keyboard controlled synthesizers which are used to implement a wide variety of

different sounds with the same gestural input methods. The possible synthesis

techniques that can be implemented for the PPSE are theoretically only limited by

the processing power of the utilised computer and the features of the SuperCollider

environment.

25

CHAPTER 5

REQUIREMENTS AND APPROACH

Before the iterative and incremental development of the hardware and software

was started, requirements were set for the PPEMB. The requirements were largely

determined by the characteristics and the PPSE’s range of functions together with

the goal to overcome the need for an external computer as a synthesis unit. They

were divided into general requirements and requirements that concern only the sound

synthesis.

5.1. General Requirements

The most fundamental requirement for the PPEMB was it’s independence from an

external computer during a performance. This means that the employed comput-

ing hardware had to be small enough to be embedded into the instrument corpus.

Requirements that were set based on the characteristics of the PPSE are:

• Incorporation of the sensor and actuator technologies described in chapter 4

• Programmability, i.e. the sound synthesis and parameter mapping has to be

flexible and modifiable

• Possibility of changing between different instrument patches during perfor-

mance

26

5. Requirements and Approach

• High quality audio processing and AD-conversion

Furthermore the following requirements were set, which are important for every

DMI:

• Low audio and control latency

• Stability and reliability

• Durability and Maintainability

These points impact not only the choice of hardware but also the software design

and integration. Maintainability is heavily influenced by a clean and comprehensi-

ble programming style. This includes modular programming as well as a detailed

documentation of the implemented software parts.

5.2. Requirements for the Synthesis Environment

The possible synthesis techniques that can be implemented for the PPSE are the-

oretically only limited by the processing power of the utilised computer and the

features of the SuperCollider environment. It is obvious that PPEMB’s embedded

hardware cannot compete with a laptop or desktop computer in terms of processing

power. Just as it’s software implementation cannot offer the same range of functions

as the SuperCollider environment, which is being developed since two decades. The

goal was not to provide the same theoretical possibilities but the same essential

functionality.

For the PPEMB’s sound synthesis capabilities, the following range of functions was

set as a requirement:

• Additive and subtractive synthesis with different wave forms and multiple

oscillators

• Processing samples, i.e. storing, loading and triggering samples

• Polyphony, i.e. playing more than one voice at the same time

27

5. Requirements and Approach

• Envelope following

• Basic effects such as reverb, distortion and delay

• Dynamic range control such as compression, expansion and limiting

• Flexible parameter mapping and modulation of the oscillators, filters and ef-

fects

A basic prerequisite was that the embedded hardware has enough processing power

to compute the digital signal processing (DSP) algorithms in order to perform these

tasks. Furthermore these synthesis methods have to be implemented for the chosen

hardware.

5.3. Iterative and Incremental Development

Iterative and incremental development combines methods of two different develop-

ment approaches. Incremental development describes a process in which different

parts of a system are developed in subsequent stages and are integrated into the

whole product in the end, while in iterative development the system is implemented

in iterative development cycles, ensuring that reworks of individual parts can be

incorporated quickly (see Cockburn, 2008).

After the hardware for the sound synthesis unit was chosen according to the set

requirements, a simple prototype with limited functionality was developed in the

first iterative development cycle. The compatibility of the hardware was examined

and validated. Therefore, test programs with debugging routines were implemented

which allowed to test individual parts of the software and hardware.

After validating the prototype and examining the requirements for the individual

parts, different models for the software and hardware design were developed. The

unified modeling language (UML) was used to visualise the structure and behaviour

of the system. Composite structure and class diagrams were used for the static

structure of the hardware and software while the behaviour of the designed software

was furthermore modelled with the help of activity and sequence diagrams (see

28

5. Requirements and Approach

Object Management Group, 2015). A detailed description of the UML is beyond

the scope of this thesis and, for the sake of clarity, simplified models are presented

here, showing only the most important details. The models were implemented and

refined in several iterative cycles before the final prototype was evaluated according

to the requirements that were set before.

29

CHAPTER 6

HARDWARE IMPLEMENTATION

Before describing the hardware implementation, an overview is given of the hardware

that was considered for embedding the sound synthesis. This includes a comparison

of devices that were reviewed more closely and an explanation for the final decision

that was made.

6.1. Reviewed Hardware Devices

Microcontrollers have become more convenient since the rise of the Arduino. While

they were hard to program in the past and therefore reserved for experts, they are

now accessible for a considerable number of persons with basic programming skills

(Smith and Michon, 2015). On the one hand their user-friendliness and affordability

make them very popular for use in art installations and the control of sensor input in

DMIs, on the other hand they usually lack fast digital-to-analog conversion (DAC)

and do not offer enough processing power for dedicated sound synthesis. In the

field of instrument design they are mainly used for processing sensor data. Since

the requirements that were set for the sound synthesis environment in section 5.2

cannot be met by conventional microcontrollers, devices such as the Arduino were

not considered for embedding the sound synthesis.

Promising hardware to meet the requirements were so called microprocessor boards,

which bring full featured minicomputers at the size of a credit card that cost less

30

6. Hardware Implementation

than 100e. Various products with different specifications are sold in this category

but mainly two brands got more attention from the DMI developer scene recently

(see chapter 3): the RPI and the BeagleBone. Different derivates of these two prod-

ucts exist of which two were considered for the development of the PPEMB, namely

the Raspberry Pi 2 (RPI2) and the BBB.

Numerous embedded linux systems are available for both devices and they provide

various interfaces for sensor input and the communication with other devices. Fur-

thermore the RPI2 and the BBB both offer hardware floating point support, which

makes them suitable for dedicated audio processing. A main drawback of these two

boards is that they neither provide audio inputs by default, nor offer suitable audio

outputs. Indeed, the RPI2 ships with a consumer quality stereo mini jack output

and the BBB provides audio output via its HDMI connector, but in order to be

able to use convenient analog-to-digital (AD) and digital-to-analog (DA) conversion

further extensions are needed. One can use either a small audio interface connected

to one of the USB ports, or an audio extension cape like the Bela1 for the BBB or

the Cirrus Logic Audio Card2 for the RPI2.

A relatively new hardware device is the Axoloti core (AXOC)3, a powerful micro-

controller board which is graphically programmable via a software that is similar to

Max/MSP and Pure Data. The most important difference to the above mentioned

devices is the fact that the board provides integrated 24bit/96kHz capable stereo

AD/DA conversion, as well as MIDI in- and outputs. Furthermore, unlike the other

hardware devices, it is specially designed for audio applications, and does not come

with a lot of interfaces that aren’t necessarily needed for DMI design (e.g. Ethernet

or high-definition multimedia interface (HDMI)). A critical factor is that the AXOC

was developed by a single person, however it has a growing community of users4

(Taelman, 2016a).

1http://www.bela.io
2https://www.element14.com/community/community/raspberry-pi/
raspberry-pi-accessories/cirrus_logic_audio_card

3http://www.axoloti.com/
4http://community.axoloti.com/

31

6. Hardware Implementation

Device

Specifications RPI2 (Model
B)

BBB (Rev. C) AXOC

CPU 900MHz ARM
Cortex-A7

1GHz ARM
Cortex-A8

168MHz ARM
Cortex-M4

RAM 1 GB SDRAM 512MB DDR3
RAM

8 MB SDRAM

Flash microSD 4 GB on board,
microSD

microSD

GPIOs 40 69 16

Audio IN - - 2 (6.35mm TRS
& connection
pads)

Audio OUT 2 (3.5mm TRS) - 2 (6.35mm TRS
& 3.5mm
headphone TRS)

Floating-Point yes yes yes

Extras 4 x USB,
Ethernet, HDMI

2 x USB,
Ethernet, HDMI

USB, microUSB,
MIDI-IN,
MIDI-OUT

Table 6.1.: Comparison of the three contemplated devices for the sound synthesis unit.
The table shows the relevant specifications for the Raspberry Pi 2 (RPI2),
the BeagleBone Black (BBB) and the Axoloti core (AXOC), including em-
ployed CPU, random-access memory (RAM), Flash memory, number of
GPIOs, audio input and output channels, capability of floating-point cal-
culation and additional interfaces.

6.2. Comparison and Decision

Table 6.1 shows the relevant hardware specifications for the three devices that where

reviewed more closely for comparison. While the BBB offers the most powerful CPU,

the RPI2 has more RAM. Since the AXOC is a microcontroller, which is not intended

to run a general purpose operating system, it comes with far less computing power

and memory. Nonetheless, the fact that its core supports DSP instructions and

has a floating-point unit makes it powerful enough for advanced DSP processing.

All three devices have a micro SD-card slot for storage, the BBB additionally has

4GB on-board flash memory. Furthermore, each device has a sufficient number of

GPIOs for the use in the PPEMB. In terms of audio connectivity the AXOC clearly

32

6. Hardware Implementation

outperforms the other devices since it offers two input and two output channels. The

input channels can be DC-biased for the use of electret-microphones and the output

channels are also available via a headphone connector. The AXOC also offers the

most useful extra features such as musical instrument digital interface (MIDI) input

and output.

Three facts particularly made the AXOC the first choice for the use as a synthesis

unit:

• Its out-of-the box audio connectivity, i.e. no extensions are needed in contrast

to the other two devices

• It offers bias microphone inputs, i.e. the employed microphone amplifier in

the PPSE becomes obsolete

• A software framework is provided and maintained that already offers much of

the required functionality

Admittedly, the other two devices theoretically provide way more processing

power, but as the work presented in chapter 3 shows, it takes a lot of effort to

set up a running system that is suitable for dedicated audio processing to make use

of these capabilities. Furthermore these general purpose devices are shipped with

a lot of extra functionality such as Ethernet and HDMI connectors which were not

attempted to be used in the PPEMB.

6.3. Implementation

As described in chapter 5, in a first iterative development cycle a simple prototype of

the PPEMB with limited functionality was built to validate the compatibility of the

AXOC with the other hardware parts. Tests with a basic software framework gained

promising results and consequently the Axoloti was embedded into the instrument.

Figure 6.1 shows a Composite Structure Diagram (UML) which reflects the changes

to the embedded hardware that were made and the resulting signal flow inside the

PPEMB.

The following changes have been made to the embedded hardware:

33

6. Hardware Implementation

unlike the power regulator of the AXOC, the decision was made to forgo the battery

and power the PPEMB via the usb connector of the AXOC. In a future version, the

power regulator of the AXOC will be coupled with a suitable lithium polymer battery

(LiPo) to provide battery based power supply. Since this was not a main priority

for the PPEMB and would have required major modifications to the box design, this

measure was postponed.

Substituting the x-OSC with an accelerometer module The x-OSC board

is the most expensive element in the PPSE, however it’s WiFi functionality was

not needed anymore and therefore the x-OSC was replaced with an inexpensive

accelerometer module (MMA7361, Apex Electrix LLC, 2013).

Extending the function of the PSoC 4 In the PPEMB the PSoC 4 microcontroller

does not only read the capacitive sensors, but also samples the analog accelerometer

signals. For this purpose the analog outputs of the accelerometer were connected

to the analog inputs of the PSoC 4. The data gathered from the capacitive sensors

and the accelerometer in the hand piece is now transmitted via a serial connection

that was implemented from the serial output (Tx) of the PSoC 4 to the serial input

of the AXOC (Rx) in the bottom of the instrument.

Sampling of the encoders and buttons with the AXOC The sampling of the ro-

tary encoders and buttons in the PPEMB is done by the AXOC. Therefore these parts

were connected to the digital inputs of the board. Consequently, the ATmega328-PU

microcontroller has lost its function. It is now used to drive the NeoPixel LEDs.

Controlling of the NeoPixel LEDs with the ATmega328-PU The AXOC sends

commands for the NeoPixels via a serial data line to the ATmega328-PU, which

controls the LEDs via its PWM output. Theoretically the NeoPixel LEDs could also

be driven by the AXOC itself. However, a first iterative development step showed

that an implementation of the NeoPixel protocol for the AXOC would have required

great effort. Tests with Adafruit’s NeoPixel library for the ATmega328-PU revealed

that the NeoPixels were easier controlled with the help of this microcontroller.

35

6. Hardware Implementation

Changing the wiring of the NeoPixels The order in which the NeoPixels receive

the control signal had to be changed. Whereas initially the signal cascade started

in the top of the instrument, now it starts at the bottom – the location of the

ATmega328-PU. What used to be the last LED in the cascade before has become

the first one and vice versa.

More detailed illustrations of the wiring before and after embedding the sound

synthesis can be found in appendix B.

36

CHAPTER 7

SOFTWARE IMPLEMENTATION

The implementation of the software will be laid down in four sections. The first

section deals with the serial communication protocol that has been implemented for

all three microcontrollers. The following three sections cover the software imple-

mentation for each microcontroller individually. Figure 7.1 gives an overview of the

implemented software components and the associated files.

7.1. Serial Communication Protocol

One of the main efforts in developing the self-contained version of the PP was

implementing the internal communication of the instrument, i.e. the exchange of

information between the three microcontrollers.

Serial communication is widely used for developing embedded systems as it re-

quires only a minimum of wired connections between the peripherals. These con-

nections are called buses and are either synchronous or asynchronous. Synchronous

buses used by protocols such as inter-integrated circuit (I2C) or serial peripheral

interface (SPI) require an additional wire for synchronising the transmission via a

clock signal, whereas in asynchronous serial communication a single wire between

the transmitter and the receiver is sufficient to transmit data in one direction (see

Barr and Massa, 2006).

The minimum number of required wires and the fact that all three microcon-

37

7. Software Implementation

7.2. Axoloti Software

In order to understand the software components that were implemented for the

AXOC, first the basics of the axoloti software environment (ASE) are introduced.

7.2.1. Basics

Firmware

The AXOC is a stand-alone microcontroller board that runs an embedded real-

time operating system (RTOS), which provides the drivers for the hardware inter-

faces. The RTOS and all software that enables the base functionality is part of the

firmware, which is preinstalled on the microcontroller and implements the connec-

tivity with an external computer. Firmware upgrades are uploaded via the Axoloti

patcher software.

Patcher

The Axoloti patcher provides a graphical user interface (GUI) where sound synthesis

patches can be arranged similar to Max/MSP or Pure Data. The GUI is written

in Java and translates the patch into C++ code. Figure Figure 7.3 shows a simple

patch arrangement with the Axoloti patcher software. By clicking the live button,

a binary executable is created and uploaded to the microcontroller. Subsequently,

the GUI is locked and the patch is executed on the microcontroller, whereas control

parameters of the patch can still be accessed and modified in the patcher window

(see Taelman, 2016b).

Objects

A patch contains different objects that perform specific tasks. The modular objects

share data when wires are connected to their inputs and outputs. Five different

main types of in- and outputs exist: audio buffer, integer, fractional, boolean and

string. These types are indicated by different colours and are further subdivided

(e.g. positive and bipolar for integer and fractional values). Furthermore, objects

can include parameters, attributes and displays. Parameters can be modified at run

40

7. Software Implementation

Figure 7.3.: Screenshot of the Axoloti patcher software. The patch includes a sine
oscillator object with frequency control and objets to control the gain
before the audio is output.

time while attributes are set in the editing process. Displays provide the possibility

to show data in the patcher window when the patch is running.

The Axoloti object library offers numerous elements such as oscillators, envelope

controls, filters, effects and many more. Additionally further objects can be imple-

mented. This is done by using either the extensible markup language (XML) and a

standard text editor or by using the provided object editor.

An object includes code sections for srate and krate C/C++ code. While srate

code is executed at the defined sample rate of 48kHz, krate code is executed 3000

times per second, which results from the buffer size of 16 samples (48000/16 = 3000).

The normal range for inputs and outputs (audio, integer and fractional) is from

-64 to 64 or 0 to 64 (integer and fractional) units. In which way these general

units relate to real world units – e.g. the frequency in Hz of an oscillators pitch

input – depends on the implementation of the object. This follows the principle of

modular synthesizers which use a defined control voltage range (-5V to 5V) but can

be confusing for Max/MSP or SuperCollider users who expect to be able to input

frequency in Hz.

41

7. Software Implementation

Subpatches

Patches can also contain subpatches. These are patches inside patches, which usually

combine a block of logic that performs a specific task. They are especially useful

when the same logic is used more than once in the parent patch or in different

patches. Parameters of subpatches can be made visible on the parent patch. Sharing

values between the parent patch and the subpatch is possible via defined inlets and

outlets of the subpatch.

Uploading Patches

Once a patch is finished it can be uploaded to the internal flash memory of the

AXOC as a startup patch or to a secure digital (SD) card. The startup patch is

loaded once the AXOC is powered and the firmware has booted. Only one patch

can run at a time and consequently loading a patch from the SD card has to be done

from within another running patch (this can also be the startup patch). The patch

bank editor provides a tool that can be used to upload an index file to the SD card

with a list of patches. This file helps to load different patches from the SD card via

their index in the created patch bank without having to store the filenames of all

patches in every single patch.

7.2.2. Instrument Patch Model

This section gives insight into the implementation of an instrument patch in the

ASE. Each patch contains a specific parameter mapping and sound synthesis im-

plementation for the PPEMB. The different instrument patches all share the same

gestural input but lead to different styles of performing and sonic output. Fig-

ure 7.4 illustrates how each instrument patch is implemented in the ASE. Specific

implementations are described in chapter 8.

Each instrument patch includes several subpatches (dark-blue rectangles) that

provide the gestural input of the PPEMB and a sound synthesis implementation

which is connected to the input controls via a parameter mapping. Furthermore

it contains a neopixel object for controlling the NeoPixel LEDs and a controller

42

7. Software Implementation

patch is loaded the next time.

For this purpose the objects write calibr and read calibr were implemented. With

the help of these objects together with the table/load and table/save objects, the

calibration results are saved to and loaded from the internal SD card. The objects

are linked through an object reference that is given to all of the four objects. The

process of calibration requires a specific execution order which is triggered via the

GUI or an inlet. This logic includes many different elements which are not shown

in the model and is represented by the green rectangle. A detailed description of all

implemented axoloti objects is given in subsection 7.2.4 and in appendix A.

pp_controller subpatch

The pp_controller subpatch implements the functionality to switch between differ-

ent instruments. Due to the fact that the Axoloti can only run single patches, the

logic to switch instruments has to be included in every instrument. The ASE offers

a handy feature for automatically adding a controller subpatch to every instrument

that is uploaded to the SD card. Once a controller object has been implemented, a

reference to the object can be set in the preferences and, as a result, every patch that

will be uploaded to the SD card with the patch bank tool includes the referenced

subpatch. Figure 7.6 shows the arrangement of the pp_controller patch that was

implemented for the PPEMB.

Figure 7.6.: Implementation of the pp_controller subpatch.

The patch/bankindex object is used to get the index of the last loaded patch. The

index of an instrument depends on the order in which the instruments appear in the

45

7. Software Implementation

axoloti patch bank. To trigger the instrument change, the pp_buttons object is used.

Instead of the pp_buttons subpatch one could also use the pp_rotary subpatch to

change instruments via one of the two rotary encoders. This complies with the

concept of keeping the instrument implementation flexible and easy to modify.

Once one of the defined buttons is released, the pp_controller subpatch loads a

new patch with the given index via the patch/load i object. The index is calculated

by incrementing or decrementing the current instrument index. Furthermore the

logic prevents loading patches with indices that don’t exist. Therefore the sd/n-

patches was implemented, which reads the number of patches in the patch bank.

pp_buttons subpatch

The pp_buttons subpatch provides information about the state of the four push

buttons. To do this, it initialises the digital input pins (sets the pin number and

pin mode) and debounces the sampled button signals. Three boolean outputs ex-

ist for each of the four buttons: button pressed, button released and button down.

While the first two outputs provide trigger signals on momentary changes, the third

one indicates the current state of the button. Figure 7.7 shows an excerpt of the

Figure 7.7.: Excerpt from the pp_buttons subpatch.

pp_buttons subpatch with the elements that are used for one button. The input

pin, to which the button is connected, is configured with the gpio/in/digital object.

In order to provide single trigger pulses on button state changes the logic/counter

object is used for debouncing the signal. This logic is applied twice, one time with

the unmodified signal for the release of the button and another time with the in-

verted signal for detecting when the button is pressed. The inverted signal is also

46

7. Software Implementation

used to determine the current state of the button.

pp_rotary subpatch

The pp_rotary subpatch handles the configuration and decoding of the two rotary

encoders. The configuration is done the same way as within the pp_buttons sub-

patch except that this time two inputs are sampled per encoder, since the decoding

of the rotary encoders is based on two signals. Figure 7.8 shows an excerpt of the

subpatch including the logic for debouncing and decoding one rotary encoder.

Figure 7.8.: Excerpt from the pp_rotary subpatch.

The decoding is done with the logic/and 2 object which performs a logic AND

operation on the debounced signal A from one of the pins and the unmodified

signal B of the second pin. When the encoder is rotated one step clockwise the

logical signals change from (A,B) = (0, 1) to (A,B) = (1, 1) and the logical AND

operation becomes true. The same logic is applied a second time – with the two

signals interchanged – to detect a rotation step counter clockwise.

pp_mics subpatch

The pp_mics subpatch handles the microphone input configuration and provides

control over the microphone pre-amplification. Figure 7.9 shows the underlying

patch arrangement.

The input configuration is done via the audio/inconfig l and the audio/inconfig r

objects. Furthermore the audio/inconfig mic object is used to set a voltage bias on

the inputs (see section 4.4). Gain control from within the parent patch is provided

47

7. Software Implementation

Figure 7.9.: Implementation of the pp_mics subpatch.

by the math/gain objects. The dials of the objects can be set to be visible on the

parent patch. This is indicated by their blue colour.

7.2.4. Objects

This subsection lays down the implementation of the most important axoloti objects

that have been coded to provide the required framework for the PPEMB instrument

patches. A complete overview of all implemented objects is given in appendix A.

serial decoder object

The implementation of the serial decoder object was one of the most challenging

steps in the development of the software framework. Therefore a detailed insight

will be given, including all the crucial steps that had to be taken to render the com-

munication between the axoloti and the PSoC 4 possible. To start with, Figure 7.10

shows an activity digram (UML), which models the program flow that implements

the serial communication protocol in the serial decoder object.

The central element in the program flow is the read serial loop which is imple-

mented as a thread that listens to events which are thrown by the serial interface. It

is important to mention that contrary to most other Axoloti objects, for the serial

decoding a thread has to be invoked which runs separately from the control rate

code and with higher priority. Hence, it is guaranteed that the receive buffer of the

serial interface does not overrun at higher baud rates. Since the receive buffer is set

48

7. Software Implementation

chEvtWaitOneTimeout(EVENT_MASK(1),MS2ST(10));

flags = chEvtGetAndClearFlags(&s4EventListener);

if (flags & CHN_INPUT_AVAILABLE) {

If so, the last byte in the receive buffer is read with sdGet() which removes the byte

from the buffer after calling it:

in_byte = sdGet(&SD2);

The rest of the code in the loop checks if the byte was the predefined terminator

and if that is the case, the parse_msg() function is called and the control flow is

reset with the reset() function. If not, the parse_byte() function is called, which

flips the fifth bit of the byte if necessary:

in_byte ^= U_MASK;

This is done by a U_MASK logical XOR operation on the byte and the predefined

byte mask (0x20). The parse_msg() function will return true, if the message had the

right format and consequently the control value is output with the output_value()

function. In both cases the reset() function is called to reset the program to its

initial state. Another important step inside the loop is too check if a buffer overrun

has happened:

if(flags & SD_OVERRUN_ERROR){

for(uint8_t i = SERIAL_BUFFERS_SIZE; i != 0; --i)

{

sdGet(&SD2);

}

overrun_errors++;

reset();

}

}

If an overrun happened, all bytes from the receive buffer are read in order to empty

the buffer and to be able to receive new bytes. This will set the program to its initial

50

7. Software Implementation

state. If this was not done, the program would get stuck in a buffer overrun state

in which bytes are permanently missed and messages cannot be parsed anymore.

The output_value() function casts the control value and writes it to the proper

variable, based on the received control identifier:

void output_value(){

int32_t value = (int)control_value; /* cast value */

switch(control_id){

case CAP1: cap1_val = value;

break;

case CAP2: cap2_val = value;

These values are then written to the object outputs in the krate code section of the

axoloti object:

outlet_cap1 = this->cap1_val;

outlet_cap2 = this->cap2_val;

The complete source code of the serial decoder object is in appendix C.1.

neopixel object

The neopixel object provides an interface for controlling the NeoPixel LEDs. It has

several inputs to define a command and send it to the ATmega328-PU microcon-

troller. The commands are based on the interface definition in the ATmega328-PU

software (see section 7.4) and are packed into encoded messages according to the

serial communication protocol described in section 7.1. The implementation of the

message encoding is the same as in the PSoC 4 software and is described in the

following section.

7.3. PSoC 4 Software

In order to sample the analog accelerometer signals and send the sensor data to

the AXOC, the PSoC 4 microcontroller had to be re-programmed. This can be

done with the PSoC Creator IDE and a programmer/debugger device such as the

51

7. Software Implementation

MiniProg3 programmer, connected to the debug pins on the mainboard of the PP.

A PSoC Creator project includes several different files:

• The TopDesign.cysch file, which provides a GUI for adding and modifying

predefined objects and making connections between them

• The <projectname>.cydwr file, in which the input and output pins of the

chip are mapped to the inputs and outputs of the objects and where general

settings can be made

• The source code section, in which customised program code can be imple-

mented

The PSoC Creator IDE provides many different library objects that can be added

to the TopDesign.cysch GUI for achieving standard tasks like AD/DA-conversion,

setting up interfaces et cetera. The source code section adds the possibility to imple-

ment customised logic in the C programming language. Before the implementation

in the source code section is explained, a short overview of what has been arranged

in the TopDesign.cysch file is given. Four different objects are employed to provide

the required functionality:

• The UART and EZI2C objects for setting up the serial communication

• The CapSenseCSD object for sampling and processing capacitive touch pads

• TheADC SAR Seq object for sampling and processing the three analog accelero-

meter signals

Each of the objects offers plenty of settings that can be made. The configuration of

the input and output pins is done in the pp_psoc.cydwr file. The chosen settings

can be examined in the project files which are provided on the attached CD.

The reading and sending of the sensor values via encoded serial messages is imple-

mented in the main.c file. Figure 7.11 shows an activity diagram (UML), modelling

the program flow of the software.

The program is divided into two sections: the setup part and the main loop, which

is entered after the setup. The setup part initialises the sampling and processing of

52

7. Software Implementation

Furthermore, the requirement of maintainability is met by following object-oriented

programming (OOP) concepts that enhance the reusability and modularity of the

code.

The ATmega328-PU chip was programmed with the help of an Arduino micro-

controller and the Arduino software library. Additionally, the PlatformIO IDE 1

has been used to simplify the development. The Arduino library is written in the

C/C++ programming language and consequently is the source code which is at-

tached in appendix C.3.

The software contains two modules, namely PushPull_SerialParser and Push-

Pull_NeoPixel, and the main program NeoPixel.ino, which makes use of these mod-

ules. Figure 7.13 shows a class diagram (UML) for the pp_atmega software including

the implemented classes and their public methods.

The PushPull_NeoPixel class inherits from the Adafruit_NeoPixel class, provided

by the Adafruit NeoPixel library, and adds/overrides methods to provide the specific

functionality for the NeoPixel interface as described above. Furthermore, figure 7.14

models the implementation of the software in a sequence diagram (UML).

The implemented logic in the NeoPixel.ino program is divided into two parts:

the setup and the loop that is entered after the setup. The setup part creates

instances of the PushPull_SerialParser and the PushPull_NeoPixel classes and

passes a reference of the NeoPixel object to the Parser. Furthermore it initialises

the NeoPixels by calling the initPixels() method of the NeoPixel object.

In the subsequent loop received serial messages are parsed and the containing

NeoPixel commands are executed. Since a consistent serial protocol has been devel-

oped, decoding serial messages follows the same logic as implemented in the serial

decoder object of the Axoloti software (see subsection 7.2.4). The only difference

is that the program flow is controlled from within the loop function of the main

program here. No separate thread is needed for reading the serial buffer, since no

interruptions happen and consequently the loop is executed fast enough in order to

read the serial buffer in time.

Reading the serial buffer is done via the method readSerial() provided by the

1http://platformio.org/platformio-ide

55

7. Software Implementation

SerialParser class. Once a message is received the parsing method parseMsg() is

called. For checking the format of the received message, the parser object passes the

command identifier to the getCmdLength(id) method, which returns the expected

command length. When the parsing of the message was successful, the command

is copied to the command buffer of the main program and the command is exe-

cuted. Therefore, the colour and current mode of the LEDs are updated with the

setPixelColor(color) and setMode(mode) methods.

Finally the parser is reset to its initial state and the update() method of the

NeoPixel object is called. The parsing only takes place when a message has been

received, whereas the update method is called every loop cycle in order to update

the LEDs. The periodic updating is needed to perform the animations.

56

CHAPTER 8

EVALUATION

In this chapter the result of the hardware and software implementation is evaluated.

Different aspects are considered on the basis of the requirements that were set (see

chapter 5). In the first section three different instrument patches are presented,

which were implemented to test the overall implementation as well as the sound

synthesis requirements. An estimation of the overall latency from sensor input to

audio output is given in the second section. The following parts lay down perfor-

mance aspects of the PPEMB in terms of processing power and stability and finally

the development process itself is discussed.

8.1. Instrument Patches

Figure 8.1 shows simplified composite structures for three instrument patches that

were implemented. A short description of each patch will give insight into their

diverse sound synthesis and parameter mapping implementations.

First Patch

The most distinctive feature of the first patch (breath) is it’s use of the microphone

signals as a synthesis source. These two audio signals are fed into a network of differ-

ent filter types. Touching one or more capacitive touch sensors activates individual

59

8. Evaluation

hand piece to the front↔back.

When monitoring the instrument a feedback loop is created, due to the fact that

the output of the speakers is captured by the microphones inside the bellows. Al-

though this can be used artistically, the feedback has to be constrained in order

to prevent clipping of the audio signal. To accomplish this, the dynamic range of

the audio signal is controlled by a compressor and limiter at the end of the effect

chain. To provide visual feedback, the envelope of the output signal is mapped to the

brightness of the NeoPixel LEDs with the movements of the hand piece controlling

their colour.

The patch demonstrates the use of the microphone signals as synthesis source

together with several effects and dynamic range control. It is capable of produc-

ing various sonic textures like drone sounds, rhythmic pulsations and high pitch

feedbacks.

Second Patch

The second patch (drums) was developed to explore the abilities of the PPEMB as

a sampler instrument. The design is based on a patch implemented by Dominik

Hildebrand Marques Lopes for the PPSE, a drum sequencer with pre-programmed

drum hit patterns that are controlled with the movements of the hand piece in

combination with touching the capacitive sensors.

For this patch, the pp/grid object was implemented. It determines – based on the

x-axis and y-axis acceleration – the position of the hand piece in a virtual orientation

grid with nine different fields (see Figure 8.2). The fields result from combinations

of tilting the hand piece front↔back and left↔right. The four set acceleration

thresholds – two for each acceleration axis – define nine fields with indices 0 − 8.

Given the current x-axis and y-axis acceleration, the grid object outputs the index

indicating the position of the hand piece in the virtual grid. The thresholds are set

as parameters of the grid object.

In the step sequencer section of the patch different note and velocity patterns are

programmed, which trigger the playback of different samples. Related samples are

grouped into five buses. The samples are stored on the SD card as raw header-

61

8. Evaluation

sensors triggers degrees of the mixolydian, respectively ionian scale. Each sensor is

mapped to one degree of the ionian mode on C (I, III, V, VII and VIII), consequently

touching the first three sensors results in a C-major chord (C-E-G). When the hand

piece is tilted to the front, each degree is raised one step, when tilting to the back

the degrees are lowered.

The step modulates the base note either by one semitone or one tone, depending

on the mode that is associated with the field in the orientation grid. For example,

the two orientations centre/centre and centre/front map the capacitive sensors to

the notes from the ionian scale while the fields centre/centre and centre/back map

to the mixolydian scale. Consequently hitting the same three sensors and tilting to

the front results in a D-minor chord (D-F-A) while tilting back results in a Bb-major

chord (Bb-D-F). When adding the fourth voice, major seventh chords are played.

Always two fields represent one of the eight scales, e.g. left/centre and left/front

represent the aeolian scale, left/centre and left/back the phrygian scale etcetera.

With this system a range of 16 semitones can be controlled, either playing melodies

with individual notes or different triad and tetrad chords (e.g. minor, major or

diminished).

Conclusion

The three instrument patches showed that the software implementation is suitable

for deploying different mapping and sound synthesis strategies. The Axoloti object

library provides numerous elements such as oscillators, filters, effects and many more.

The parameters of these objects can be mapped to the gestural input of the PPEMB

trough the implemented subpatches and objects. Extending the patcher software

with your own objects is straightforward. Objects created by the community of

Axoloti users further extend the mapping and sound synthesis possibilities of the

PPEMB. Thus, all set synthesis requirements could be met.

The first instrument patch demonstrates the use of effects and dynamic range

control. The effect objects are easy to use, whereas objects to control the dynamics

take some time to get used to; the input parameters of their controls are in the

axoloti parameter range ([0, 64[) and consequently one may not know to which

63

8. Evaluation

values they refer to (e.g. threshold in dB, compression ratio, etc.). Furthermore,

gain staging turned out to be challenging. The absence of a proper level meter

makes it difficult to avoid digital clipping.

The drum sequencer patch proved that sample based instrument patches are pos-

sible, however, the limits of the embedded hardware were reached when arranging

this patch. A lot of objects were needed to ensure control over the step sequencers

and consequently, the Axoloti ran out of static random-access memory (SRAM) at

some point. The limited amount of SRAM (256kb) made it impossible to add more

objects to the patch. When using a lot of objects or subpatches that contain multi-

ple objects the available memory is consumed. Consequently the number of possible

sequencer units was limited.

The third instrument patch showed that complex mapping strategies can be

achieved and that the PPEMB is able to process polyphonic sound synthesis. This

meets a further requirement that has been set.

8.2. Latency Evaluation

As McPherson et al. (2016, p. 1) state:

"Latency is a fundamental issue affecting digital systems. The delay

between a user’s action and the corresponding reaction (be it auditory,

visual or tactile) can present problems both obvious and subtle."

And although, "Few practitioners of live performance computer music would deny

that low latency is essential" (Wessel andWright, 2001, p. 2), there is no clear answer

to the question "how fast is ’fast enough’?"; thresholds may vary for different musical

contexts (e.g. percussive instruments require a much lower latency then instruments

with continuous gestural input, Lago and Kon (2004)).

Wessel and Wright set the acceptable threshold for the systems audible reaction

to a gesture at 10ms. According to McPherson et al. (2016, p. 1), this value "is

perhaps the most common one still used in the community".

Latency in audio systems is usually measured as the time delay between a signal

excitation at the audio input and the response of the system at its audio output

64

8. Evaluation

(McPherson et al., 2016). The systems input/output latency depends on various

elements in the audio chain, such as AD/DA conversion, audio buffering and digital

signal processing. In the case of a DMI, one has to consider the latency between

sensor input and audio output. McPherson et al. point out that the primary latency

factor in usual DMI setups is the communication link between the microcontroller

and the computer which runs the audio synthesis. The following subsections discuss

the internal audio latency, the audio input to output latency and the serial commu-

nication latency of the PPEMB in order to estimate and evaluate the overall sensor

input to audio output latency.

Internal Audio Latency

The internal audio latency tint of the PPEMB is derived from the audio buffer size n

and sampling rate fs:

tint =
n

fs
(8.1)

The AXOC processes audio in blocks of 16 samples at a sampling rate of 48kHz,

with a resulting audio latency of tint ≈ 0.33ms. Theoretically the board is capable of

sampling at 96kHz but the patcher software and the firmware only support 48kHz

at this time.

Audio Input to Audio Output Latency

Measurements of the audio latency from the analog inputs to the analog outputs

of the Axoloti revealed a latency of tio ≈ 2.04ms (Taelman, 2016c). Compared to

most laptop with audio interface setups this value is outstanding. Furthermore,

one should consider that the latency introduced by the performers distance to the

speaker is about 3ms per meter. Consequently in a real world setup where the

distance between performer and nearest monitor is 1.5m, the sound propagation

through the air would add more than twice as much to the overall latency of the

setup.

65

8. Evaluation

Serial Communication Latency

In order to test the latency of the internal serial communication between the PSoC 4

microcontroller and the AXOC a test patch was implemented with a modified version

of the serial decoder object. The patch measures the time difference between two

subsequent updates of the same sensor data in the patcher. Since the sensor values

are transmitted sequentially this is the worst case latency from a change of sensor

input to the arrival of the new sensor value at the Axoloti.

The test patch revealed a minimum latency of 5.00ms and a maximum latency

of 5.33ms, while the average latency (calculated for 100 values) is 5.20ms. The

theoretical transmission latency is calculated with the given baud rate and the in-

formation about the message encoding. With the employed baud rate (115200Bd),

11520 data bytes are transmitted per second. The sensor values are encoded with

two bytes, consequently it needs a minimum of five bytes to transmit a sensor value

via a serial message if no escape bytes are added (see section 7.1). With nine sensor

values that are sent in total, a minimum of 45 bytes has to be sent until one sensor

value is updated. The resulting theoretical minimum latency is 3.90ms.

The serial communication latency could be reduced if all sensor values were sent

in one message. Consequently a minimum of 21 bytes1 would be required for one

message and the theoretical minimum latency between the arrival of two subsequent

messages would be 1.82ms. But this would not comply with the protocol, which

ensures that a serial message contains only one control value. A change of the serial

protocol is considered for future versions.

Sensor Input to Audio Output Latency

An exact determination of the overall latency from sensor input to audio output can-

not be done with the calculated and measured values from the previous subsections,

therefore an estimation is made.

Assuming that the audio output latency of the system is half the measured input

to output latency of 2.04ms, subtracting the internal latency of 0.33ms, the overall

1A maximum of 39 bytes is sent in the very unlikely case that all data bytes are control bytes
and have to be escaped and therefore one byte is added for each data byte.

66

8. Evaluation

latency is estimated as follows:

t = tser + tint + to (8.2)

Where tser = 5.2ms is the average time it takes for a sensor value to be updated,

tint = 0.33ms is the calculated latency for the processing of one audio buffer and

to = 0.85ms is the output latency of the system. With these values, the estimated

overall latency is 6.38ms. This value is not derived from an elaborate test setup

measuring the latency from sensor input to audio output and considering jitter as

done by McPherson et al. (2016), however, the estimation is considered reasonable

and complies with the upper limit of 10ms set by Wessel and Wright (2001).

8.3. Performance Evaluation

A minimal patch including all objects and subpatches that are needed to make use

of the sensors, microphone signals, buttons and rotary encoders of the PPEMB causes

6-8% DSP load. This leaves enough processing power for the sound synthesis. A test

patch revealed that more than 80 sine oscillators can be used without any dropouts

or clicks in the sound output. The overall system performance is sufficient to process

complex sound synthesis algorithms.

Countless different instrument patches can be implemented and stored on the

internal SD card. Changing between these patches happens in less than one second.

The patches run stable and without any crashes, even after hours of runtime.

These facts make the PPEMB a promising instrument for real life performances

and comply with the requirements set in chapter 5. Furthermore it shows that the

employed hardware is suitable for dedicated DMI designs.

8.4. Evaluation of the Development Process

A development up to this stage would not have been possible within the frame of this

thesis without the software framework provided by the Axoloti developers. Further-

more the Axoloti community forum has been an important source of information.

67

8. Evaluation

This underlines the fact that using open source hardware and software which is used

by a broad community is beneficial for DMI development.

The absence of a detailed documentation of the firmware and the patcher was

problematic. The only way of learning how to implement my own objects was to

look at implementations of the Axoloti library objects. Therefore, especially the

implementation of the serial communication for the Axoloti turned out to be chal-

lenging. It required an elaborate examination of the underlying real time operation

system and its drivers.

The modular character of the developed software components made it possible

to iterate through different prototype stages and make changes and refinements in

each stage. It allowed to test individual parts of the software and to modify them

without having to change all the software parts that were programmed afterwards.

The integration of debugging routines was essential for developing and testing of the

individual software components.

68

CHAPTER 9

CONCLUSIONS AND OUTLOOK

Conclusions

Within the framework of this thesis a self-contained version of the PushPull was

developed – the PushPull embedded. The embedding of the synthesis unit offers

several advantages compared to DMIs which rely on an external computer. This au-

tonomy concerns many aspects such as reliability in live performances and longevity

of the instrument.

The starting point of the development was the PushPull student edition. Based

on this initial design, several requirements were set for embedding the sound synthe-

sis and overcoming the need for an external computer. Different hardware solutions

were considered and compared carefully. The decision was made to choose the Ax-

oloti core, due to the fact that it features out-of-the box audio connectivity and

consequently no further extensions were needed. Furthermore the availability of a

maintained software framework for the AXOC offered much of the required func-

tionality and enabled the development of dedicated instrument patches.

The software and hardware was implemented in an iterative and incremental de-

velopment process. Following the concepts of this method, changes and refinements

to the implementation could be made at each development stage. This was espe-

cially facilitated by the modular character of the developed Axoloti objects and

subpatches together with the object oriented design of all software components.

69

9. Conclusions and Outlook

The most challenging part in the development process was the implementation of

the internal communication. A serial protocol was developed in order to exchange

data between the three microcontrollers inside the PPEMB.

Three diverse instrument patches were implemented for the evaluation of the

hardware and the developed software. The patches showed that complex and flexible

parameter mappings can be applied and that all set requirements for the sound

synthesis unit are met. The limits of the hardware were reached while arranging a

drum sequencer patch. Surprisingly the limiting factor was not the DSP load but

the small amount of SRAM.

The estimated overall latency, from sensor input to audio output is about 6.5ms in

average and complies with the upper limit of 10ms set by Wessel and Wright (2001).

Performance tests showed that the PPEMB offers enough processing resources for the

realisation of complex sound synthesis applications.

Taken as a whole, the thesis showed that recent microcontroller technology is well

suited for the design and development of innovative DMIs with embedded sound

synthesis. It has potential to replace general-purpose computers in DMI designs

and consequently enhance the portability and longevity of these instruments.

Outlook

For the future development of the PPEMB the integration of a battery power supply

and the Axoloti MIDI interface is planned. Therefore a new box design has to

be made. Concerning the software implementation, the latency introduced by the

serial communication can be further reduced and the implementation of a proper

level meter would simplify digital gain staging. Finally, the instrument patches will

be fine tuned in terms of parameter mapping and sonic output. This is one of the

essential steps in every DMI design. Last but not least, I am looking forward to

perform with the PPEMB, learning and mastering its possibilities and constraints

and exposing it in jams and performances with other musicians.

70

ACRONYMS

3DMIN design, development and dissemination of new musical instruments.

API application programming interface.

ASE axoloti software environment.

AXOC Axoloti core.

BBB BeagleBone Black.

DMI digital musical instrument.

DSP digital signal processing.

GPIO general purpose input/output line.

GUI graphical user interface.

HDLC high-level data link control.

HDMI high-definition multimedia interface.

I2C inter-integrated circuit.

I2S integrated interchip sound.

IDE integrated development environment.

LED light-emitting diode.

LiPo lithium polymer battery.

MIDI musical instrument digital interface.

71

Acronyms

OOP object-oriented programming.

OSC open sound control.

PCB printed circuit board.

PP PushPull.

PPEMB PushPull embedded.

PPSE PushPull student edition.

PSoC 4 Programmable System-on-Chip.

PWM pulse-width modulation.

RPI Raspberry Pi.

RPI2 Raspberry Pi 2.

RTOS real-time operating system.

SD secure digital.

SDRAM synchronous dynamic random-access memory.

SPI serial peripheral interface.

SRAM static random-access memory.

UML unified modeling language.

XML extensible markup language.

72

GLOSSARY

Additive synthesis

Sound synthesis method based on the addition of harmonic oscillations.

ATmega328-PU

Atmel 8-bit AVR microcontroller.

Capacitive touch sensing

Technology that measures the capacitance of conductive surfaces in order to

detect touches.

Debouncing

(Software) method that ensures to detect only a single pulse when sampling

an electrical contact switch.

FM synthesis

Sound synthesis method based on the modulation of oscillator frequencies.

Integrated Interchip Sound

Serial bus interface standard to communicate audio data between different

electronic devices.

73

Glossary

Iterative and incremental development

Combines methods of iterative and incremental development (see section 5.3).

Max/MSP

Visual programming language for processing and generating sound and graph-

ics.

Microcontroller

Small electronic device that incorporates a microprocessor and peripheral de-

vices for embedded applications.

Microprocessor

Computer processor which runs computer programs on an integrated circuit.

Often used for embedded applications.

NeoPixel

Adafruit’s brand for RGB colour pixels based on the WS2812 LED drivers (see

section 4.5).

Open Sound Control

Network protocol for the communication between sound and/or multimedia

devices.

Parasitic capacitance

Capacitance that unavoidable appears between all parts of an electronic com-

ponent or circuit. Hence this capacitance is usually unwanted, it is called

parasitic.

Pure Data

Open source visual programming language for processing and generating sound

and graphics.

74

Glossary

RGB

Refers to the RGB colour model in which light of the three primary colours

red, green and blue is composed to archive many different colours.

Sampler

Musical instrument with the ability to store, modulate and playback audio

’samples’, in order to compose new sounds or rhythms based on the employed

audio material.

Sampling

Conversion of a continuous (analog) signal into a discrete-time signal for digital

signal processing.

Sampling rate

Measures the frequency, usually in samples per second, of sampling a continuos

time signal when converting it into a discrete-time signal.

Sound synthesis

General term for different methods of sound generation with electronic devices.

Subtractive synthesis

Sound synthesis method where a usually overtone rich signal is sculpted by

’subtractive’ methods such as filtering or applying envelopes.

SuperCollider

Programming language for real-time audio synthesis and algorithmic compo-

sition.

Touch pad

Sensor surface that is used to detect touches.

TRS

3.5 mm stereo connector also known as stereo jack, widely used for analog

stereo signals in the audio domain.

75

Glossary

XLR

Name of a connector mainly used in professional audio, video, and lighting

applications.

X-OSC

Input/output board that can send data gathered from its on-board sensors

(gyroscope, accelerometer and magnetometer) and its GPIO pins via OSC

messages over WiFi.

76

BIBLIOGRAPHY

Apex Electrix LLC (2013): MMA7361 3-Axis Accelerometer Module. On-

line. URL http://eecs.oregonstate.edu/education/docs/accelerometer/

MMA7361_module.pdf. Access 05.07.2016.

Arfib, Daniel; Jean-Michel Couturier; and Loïc Kessous (2005): “Expressiveness and

Digital Musical Instrument Design.” In: Journal of New Music Research, 34(1),

pp. 125–136.

Barr, M. and A. Massa (2006): Programming Embedded Systems: With C and GNU

Development Tools. O’Reilly Media.

Berdahl, Edgar (2014): “How to Make Embedded Acoustic Instruments.” In: Pro-

ceedings of the International Conference on New Interfaces for Musical Expres-

sion. London, United Kingdom: Goldsmiths, University of London, pp. 140–143.

Berdahl, Edgar (2015): Embedded Musical Instruments with the Rasp-

berry Pi 2. Online. URL http://edgarberdahl.com/tools/2015/09/22/

Satellite-CCRMA-on-RPi-2.html. Access 16.05.2016.

Berdahl, Edgar and Wendy Ju (2011): “Satellite CCRMA: A Musical Interaction

and Sound Synthesis Platform.” In: Proceedings of the International Conference

on New Interfaces for Musical Expression, NIME 2011. Oslo, Norway, pp. 173–

178.

77

BIBLIOGRAPHY

Berdahl, Edgar; Spencer Salazar; and Myles Borins (2013): “Embedded Networking

and Hardware-Accelerated Graphics with Satellite CCRMA.” In: Proceedings of

the International Conference on New Interfaces for Musical Expression. Daejeon,

Republic of Korea: Graduate School of Culture Technology, KAIST, pp. 325–330.

Birnbaum, David M. (2007): Musical vibrotactile feedback. Master’s thesis, McGill

University, Department of Music Research, Schulich School of Music, Montreal,

Canada.

Bongers, Bert (2000): “Physical Interfaces in the Electronic Arts. Interaction The-

ory and Interfacing Techniques for Real-time Performance.” In: Marc Battier

and Marcelo M. Wanderley (Eds.) Trends in Gestural Control of Music. Paris:

IRCAM, Centre Georges Pompidou, pp. 124–164.

Bovermann, Till; et al. (2014): “3DMIN - Challenges and Interventions in Design,

Development and Dissemination of New Musical Instruments.” In: Proceedings

of the ICMC/SMC. Athens, Greeces: National and Kapodistrian University of

Athens.

Cockburn, Alistair (2008): “Using Both Incremental and Iterative Development.”

In: CrossTalk Journal, 21(5), pp. 27–30.

Cook, P and C N Leider (2000): “SqueezeVox: A New Controller for Vocal Synthesis

Models.” In: In Proc. of the International Computer Music Conference. pp. 5–8.

Cook, Perry (2001): “Principles for designing computer music controllers.” In: Pro-

ceedings of the International Conference on New Interfaces for Musical Expres-

sion, NIME 2001. Seattle, pp. 3–6.

Cypress Semiconductor Corporation (2016): AN85951 - PSoC® 4 and PSoC Analog

Coprocessor CapSense® Design Guide. Online. URL http://www.cypress.com/

file/46081/download. Access 4.8.2016.

Davis, Larry (2012): HDLC Protocol HDLC Protocol. Online. URL http://www.

interfacebus.com/HDLC_Protocol_Description.html. Access 01.07.2016.

78

BIBLIOGRAPHY

Fraden, J. (2010): Handbook of Modern Sensors: Physics, Designs, and Applica-

tions. Springer New York.

Gurevich, Michael and Stephan von Muehlen (2001): “The Accordiatron: A MIDI

Controller For Interactive Music.” In: Proceedings of the International Conference

on New Interfaces for Musical Expression, NIME 2001. Seattle, pp. 27–29.

Hinrichsen, Amelie; Dominik Hildebrand MarquesLopes; Sarah-Indriyati Hard-

jowirogo; and Till Bovermann (2014): “PushPull: Reflections on Building a Mu-

sical Istrument Prototype.” In: ICLI 2014 - INTER-FACE: International Con-

ference on Live Interfaces. Lisbon, Portugal, pp. 196–207.

Hunt, Andy; Marcelo M. Wanderley; and Matthew Paradis (2003): “The Importance

of Parameter Mapping in Electronic Instrument Design.” In: Journal of New

Music Research, 32(4), pp. 429–440.

International Computer Music Association (2016): ICMC. Online. URL http:

//www.computermusic.org/page/23/. Access 20.05.16.

Lago, Nelson and Fabio Kon (2004): “The Quest for Low Latency.” In: Proceedings of

the 2004 International Computer Music Conference, ICMC 2004. Miami, Florida,

USA.

Lee, Michael A. and David Wessel (1992): “Connectionist Models for Real-Time

Control of Synthesis and Compositional Algorithms.” In: Proceedings of the

1992 International Computer Music Conference, ICMC 1992. San Jose, Califor-

nia, USA.

Lyons, Michael and Sidney Fels (2012): “Advances in New Interfaces for Musical

Expression.” In: Procdeedings of the International Conference and Exhibition

on Computer Graphics and Interactive Techniques (SIGGRAPH). Singapore, pp.

1–159.

Magnusson, T. (2010): “Designing Constraints: Composing and Performing with

Digital Musical Systems.” In: Computer Music Journal, 34(4), pp. 62–73.

79

BIBLIOGRAPHY

Marshall, Mark T. (2008): Physical Interface Design for Digital Musical Instru-

ments. Ph.D. thesis, McGill University, Department of Music Research, Schulich

School of Music, Montreal, Canada.

McPherson, Andrew and Victor Zappi (2015): “Exposing the Scaffolding of Digital

Instruments with Hardware-Software Feedback Loops.” In: Edgar Berdahl and

Jesse Allison (Eds.) Proceedings of the International Conference on New Interfaces

for Musical Expression. Louisiana, USA: Louisiana State University, pp. 162–167.

McPherson, Andrew P.; Robert H. Jack; and Giulio Moro (2016): “Action-Sound La-

tency: Are Our Tools Fast Enough?” In: Proceedings of the International Confer-

ence on New Interfaces for Musical Expression, NIME 2016. Brisbane, Australia:

Griffith University, pp. 20–25.

Meier, Florian; Marco Fink; and Udo Zölzer (2014): “The JamBerry - A Stand-

Alone Device for Networked Music Performance Based on the Raspberry Pi.”

In: Linux Audio Conference 2014. Karlsruhe, Germany: Zentrum für Kunst und

Medientechnologie.

Miranda, E.R. and M.M. Wanderley (2006): New Digital Musical Instruments: Con-

trol and Interaction Beyond the Keyboard. Computer Music and Digital Audio

Series. A-R Editions.

NIME Steering Committee (2016): Archive of NIME Proceedings. Online. URL

http://www.nime.org/archives/. Access 20.05.16.

Object Management Group (2015): Unified Modeling Language. Online. URL http:

//www.omg.org/spec/UML/2.5/PDF/. Access 20.09.16.

Paine, Garth (2013): “New Musical Instrument Design Considerations.” In: IEEE

MultiMedia, 20(4), pp. 76–84.

Rovan, Joseph Butch; Marcelo M Wanderley; Shlomo Dubnov; and Philippe Depalle

(1997): “Instrumental gestural mapping strategies as expressivity determinants in

80

BIBLIOGRAPHY

computer music performance.” In: Kansei, The Technology of Emotion. Proceed-

ings of the AIMI International Workshop. Genoa: Associazione di Informatica

Musicale Italiana, October, pp. 68–73.

Schneider, Martin (2008): “Mikrofone.” In: Stefan Weinzierl (Ed.) Handbuch der

Audiotechnik, chap. 7. Berlin Heidelberg: Springer, pp. 313–413.

Simpson, W. (1994): RFC1662: PPP in HDLC-like Framing. Online. URL https:

//www.ietf.org/rfc/rfc1662.txt. Access 05.04.2016.

Smith, Julius and Romain Michon (2015): “Emerging Technologies for Musical Au-

dio Synthesis and Effects.” In: Linux Audio Conference 2015. Mainz.

Taelman, Johannes (2016a): Axoloti. Online. URL http://www.axoloti.com/.

Access 20.05.16.

Taelman, Johannes (2016b): Axoloti Patcher. Online. URL http://www.axoloti.

com/axoloti-patcher/. Access 17.08.16.

Taelman, Johannes (2016c): Latency. Online. URL http://www.axoloti.com/

more-info/latency/. Access 17.08.16.

Vega, Rafael and Daniel Gómez (2012): “Using the BeagleBoard as hardware to

process sound.” In: Linux Audio Conference 2012. California, USA: Stanford

University: Center for Computer Research in Music and Acoustics, pp. 189–193.

Wessel, David and Matthew Wright (2001): “Problems and Prospects for Intimate

Musical Control of Computers.” In: ACM Computer-Human Interaction Work-

shop on New Interfaces for Musical Expression. Seattle, USA: Association for

Computing Machinery’s Special Interest Group on Computer-Human Interaction.

Worldsemi Corporation (n.d.): WS2812: Intelligent control LED integrated light

source. Online. URL https://cdn-shop.adafruit.com/datasheets/WS2812.

pdf. Access 6.08.16.

81

BIBLIOGRAPHY

Zappi, Victor and Andrew McPherson (2014a): “Design and Use of a Hackable

Digital Instrument.” In: ICLI 2014 - INTER-FACE: International Conference on

Live Interfaces. Lisbon, Portugal, pp. 208–219.

Zappi, Victor and Andrew McPherson (2014b): “Dimensionality and Appropriation

in Digital Musical Instrument Design.” In: Proceedings of the International Con-

ference on New Interfaces for Musical Expression, NIME 2014. London, United

Kingdom, pp. 455–460.

Zappi, Victor and Andrew McPherson (2015): “The D-Box: How to Rethink a

Digital Musical Instrument.” In: Proceedings of the 21st International Symposium

on Electronic Art.

82

Appendices

83

APPENDIX B

WIRING DIAGRAMS

Figures B.1 and B.2 show wiring diagrams of the PPSE and the PPEMB. The green
boxes indicate the different units of the instrument body as introduced in section 4.1.
Light-blue boxes are PCBs, while individual electronic components are shown in
dark-blue. The white boxes on top of the PCBs are connectors. Not all signal con-
nections are drawn and most lines represent traces on PCBs, except these between
the different PCBs. The illustrations do not contain all electronic parts and connec-
tions, but only the most important ones in order to indicate changes that were made
to the hardware. Furthermore, the pin labels don’t necessarily match the labels of
the real parts and the arrangement in the overview is set to allow a lucid illustration
rather than matching the real physical arrangement of the parts.

87

APPENDIX C

SOURCE CODE

C.1. Axoloti Source Code

Source Code C.1.: pp_axo/objects/pp/serial decoder.axo

1 <objdefs appVersion="1.0.10">
2 <obj.normal id="serial decoder" uuid="de99af16-c883-446a-bf4d-319bda784d26">
3 <sDescription>Decodes the serial messages received from the PSOC 4

microcontroller and outputs the raw sensor data.</sDescription>↪→

4 <author>Pascal Staudt</author>
5 <license>GPL</license>
6 <inlets/>
7 <outlets>
8 <int32 name="cap1" description="Sensor data from capacitive sensor 1"/>
9 <int32 name="cap2" description="Sensor data from capacitive sensor 2"/>

10 <int32 name="cap3" description="Sensor data from capacitive sensor 3"/>
11 <int32 name="cap4" description="Sensor data from capacitive sensor 4"/>
12 <int32 name="cap5" description="Sensor data from capacitive sensor 5"/>
13 <int32 name="cap6" description="Sensor data from capacitive sensor 6"/>
14 <int32 name="accelx" description="X-axis acceleration"/>
15 <int32 name="accely" description="Y-axis acceleration"/>
16 <int32 name="accelz" description="Z-axis acceleration"/>
17 <int32 name="perr" description="Debug output. Number of parsing

errors"/>↪→

18 <int32 name="oerr" description="Debug output. Number of buffer
overflows"/>↪→

19 </outlets>
20 <displays/>
21 <params/>
22 <attribs/>
23 <depends>
24 <depend>SD2</depend>
25 </depends>
26 <code.declaration><![CDATA[
27 /* Define debug and logging macros. Set defines to 1 for debug or logging out-
28 put to the Axoloti window. Be careful, too many outputs in a row will crash
29 the Axoloti application. When defines are set to 0, tsmart compiler will

90

C. Source Code

30 remove the debug code */
31 #define DEBUG 0
32 #define debug_print(...) do { if (DEBUG) LogTextMessage(__VA_ARGS__); } while

(0)↪→

33 #define LOG 0
34 #define log_print(...) do { if (LOG) LogTextMessage(__VA_ARGS__); } while (0)
35

36 #define MAX_MSG_LEN 8 /* The maximum length of the incoming message */
37

38 /* Define control identifiers */
39 #define CAP1 1
40 #define CAP2 2
41 #define CAP3 3
42 #define CAP4 4
43 #define CAP5 5
44 #define CAP6 6
45 #define ACCELX 7
46 #define ACCELY 8
47 #define ACCELZ 9
48

49 const uint8_t ESC_OCTET = 0x7D; /* Escape byte */
50 const uint8_t U_MASK = 0x20; /* Mask for restoring the escaped bytes */
51 const uint8_t TERMINATOR = 0x7E; /* Message terminator */
52

53 /* Define variables to hold the output values */
54 int32_t cap1_val,cap2_val,cap3_val,cap4_val,cap5_val,cap6_val;
55 int32_t accelx_val, accely_val, accelz_val;
56 int32_t parse_errors,overrun_errors;
57

58 uint8_t msg_buffer[MAX_MSG_LEN]; /* Message buffer for storing the read bytes
59 before parsing the msg */
60 uint8_t msg_length; /* Number of bytes expected to be received (without
61 framing byte) */
62 uint8_t in_byte; /* The incomming serial byte */
63 uint8_t control_id; /* The control identifier */
64 uint16_t control_value; /* Variable to store the control value */
65

66 uint8_t received_bytes = 0; /* The number of received bytes */
67 uint8_t escaped_bytes = 0; /* The number of escaped bytes */
68

69 /* Flags for program flow control */
70 int esc_flag = 0; /* Stuff next byte */
71 int buffer_idx = 0; /* Current position in the message buffer */
72

73 /* Definition of the Thread for Reading the bytes from the serial buffer */
74 msg_t ReadSerial() {
75 if (DEBUG) log_print("Debugging on!");
76 if (LOG) log_print("Logging on!");
77 if (LOG) log_print("Waiting for incoming bytes!");
78 reset(); /* Initialize */
79

80 flagsmask_t flags; /* Mask for the status flags of the serial driver */
81 /* Define event listener for the serial status */
82 EventListener s4EventListener;
83 /* Register the event */

91

C. Source Code

84 chEvtRegisterMask((EventSource *)chnGetEventSource(&SD2), &s4EventListener,
85 EVENT_MASK(1));
86

87 debug_print("Started serial read thread");
88

89 /* Loop for checking the serial buffer status and read pending bytes */
90 while (!chThdShouldTerminate())
91 {
92 /* Wait for an event */
93 chEvtWaitOneTimeout(EVENT_MASK(1),MS2ST(10));
94 flags = chEvtGetAndClearFlags(&s4EventListener);
95

96 /* Check if bytes have been received */
97 if (flags & CHN_INPUT_AVAILABLE) {
98

99 /* Read one byte from the serial receive buffer */
100 in_byte = sdGet(&SD2);
101 received_bytes++;
102

103 debug_print("Parse Byte: %x", in_byte);
104

105 /* Check if byte was a terminator */
106 if (in_byte != TERMINATOR){
107 /* Check if bytes have to be escaped and write byte to
108 the message buffer */
109 if (parse_byte()) escaped_bytes++;
110 } else {
111 /* Parse the message, output the value and reset the
112 control flow */
113 if (parse_msg()){
114 output_value();
115 reset();
116 } else {
117 parse_errors++;
118 debug_print("Buffer: ");
119 for (int i=0; i < MAX_MSG_LEN; i++){
120 debug_print("%x", msg_buffer[i]);
121 }
122 debug_print("last Byte %x: ", in_byte);
123 reset();
124 }
125 }
126 }
127

128 /* Check for serial receive errors */
129 if(flags & SD_PARITY_ERROR) debug_print("SD PARITY ERROR");
130 if(flags & SD_FRAMING_ERROR) debug_print("SD FRAMING ERROR");
131 if(flags & SD_NOISE_ERROR) debug_print("SD NOISE ERROR");
132 if(flags & SD_BREAK_DETECTED) debug_print("SD BREAK DETECTED");
133 if(flags & SD_OVERRUN_ERROR){
134 debug_print("SD OVERRUN ERROR");
135 /* If the receive buffer is full, it has to be cleared,
136 in order to be able to receive new bytes */
137 for(uint8_t i = SERIAL_BUFFERS_SIZE; i != 0; --i)
138 {

92

C. Source Code

139 sdGet(&SD2);
140 }
141 overrun_errors++;
142 reset();
143 }
144 }
145 chEvtUnregister(chnGetEventSource(&SD2), &s4EventListener);
146 chThdExit((msg_t)0);
147 }
148

149 /* Define static helper thread with working area in RAM */
150 static msg_t ThreadX(void *arg) {
151 ((attr_parent *)arg)->ReadSerial();
152 }
153 WORKING_AREA(waThreadX, 512);
154 Thread *Thd;
155

156 /*
157 * Function parse_byte()
158 * ---------------------
159 * Parses in_byte and restores the byte if the escape flag is set.
160 *
161 * returns: 1 if byte has been decoded, 0 if not.
162 */
163 int parse_byte(){
164 /* Check if byte is an escape flag */
165 if (in_byte == ESC_OCTET){
166 esc_flag = 1; /* Set the escape flag */
167 return 0;
168 }
169

170 /* Prevent buffer overflow */
171 if (buffer_idx < MAX_MSG_LEN){
172 /* If escape byte was received restore the data and reset flag */
173 if (esc_flag){
174 in_byte ^= U_MASK;
175 msg_buffer[buffer_idx++] = in_byte;
176 esc_flag = 0;
177 return 1;
178 }
179 /* Finally copy the byte to the message buffer */
180 msg_buffer[buffer_idx++] = in_byte;
181 return 0;
182 } else {
183 log_print("Message buffer full! Resetting...");
184 reset();
185 return 0;
186 }
187 }
188

189 /*
190 * Function parse_msg
191 * ------------------
192 * Parses the msg_buffer according to the defined message protocol (see
193 * definition) If the message has the wrong length incomplete it will be dropped

93

C. Source Code

194 *
195 * returns: 1 if the message could be parsed correctly, 0 if the message had the
196 * wrong length
197 *
198 */
199 int parse_msg(){
200 /* First check if the message and the payload had the right length */
201 msg_length = msg_buffer[0];
202 if (received_bytes == msg_length
203 && (received_bytes - escaped_bytes - 2 == 3)) {
204 /* Copy the control identifier and the control value */
205 control_id = msg_buffer[1];
206 memcpy(&control_value, &msg_buffer[2], 2);
207 return 1;
208 } else {
209 debug_print("Wrong number of data bytes received: %i", received_bytes);
210 debug_print("Expected %x bytes", msg_length);
211 debug_print("Bufer idx: %x", buffer_idx);
212 debug_print("Escaped %x bytes.", escaped_bytes);
213 return 0;
214 }
215 }
216

217 /*
218 * Function reset
219 * --------------
220 * Resets the program flow to its initial state
221 *
222 */
223 void reset(){
224 memset(msg_buffer, 0 , sizeof(msg_buffer));
225 buffer_idx = 0;
226 received_bytes = 0;
227 escaped_bytes = 0;
228 }
229

230 /*
231 * Function output_value
232 * ---------------------
233 * Casts the control value to int32_t and writes it to the output based on the
234 * control identifier
235 *
236 */
237 void output_value(){
238 debug_print("Control value (HEX) %x", control_value);
239 int32_t value = (int)control_value; /* cast value */
240 debug_print("Writing value %u to control output %i", value, control_id);
241 /* Output value to the output with the matching identifier */
242 switch(control_id){
243 case CAP1: cap1_val = value;
244 break;
245 case CAP2: cap2_val = value;
246 break;
247 case CAP3: cap3_val = value;
248 break;

94

C. Source Code

249 case CAP4: cap4_val = value;
250 break;
251 case CAP5: cap5_val = value;
252 break;
253 case CAP6: cap6_val = value;
254 break;
255 case ACCELX: accelx_val = value;
256 break;
257 case ACCELY: accely_val = value;
258 break;
259 case ACCELZ: accelz_val = value;
260 break;
261 /* Undefined control */
262 default:
263 debug_print("Undefined control: %i", control_id);
264 break;
265 }
266 }]]></code.declaration>
267 <code.init><![CDATA[cap1_val = 0;
268 cap2_val = 0;
269 cap3_val = 0;
270 cap4_val = 0;
271 cap5_val = 0;
272 cap6_val = 0;
273 accelx_val = 0;
274 accely_val = 0;
275 accelz_val = 0;
276 parse_errors = 0;
277 overrun_errors = 0;
278

279 /* Initialize static ReadSerial Thread with high priority */
280 Thd = chThdCreateStatic(waThreadX, sizeof(waThreadX),
281 HIGHPRIO+5, ThreadX, (void *)this);]]></code.init>
282 <code.dispose><![CDATA[/* Terminate the Thread */
283 chThdTerminate(Thd);
284 chThdWait(Thd);]]></code.dispose>
285 <code.krate><![CDATA[outlet_cap1 = this->cap1_val;
286 outlet_cap2 = this->cap2_val;
287 outlet_cap3 = this->cap3_val;
288 outlet_cap4 = this->cap4_val;
289 outlet_cap5 = this->cap5_val;
290 outlet_cap6 = this->cap6_val;
291 outlet_accelx = this->accelx_val;
292 outlet_accely = this->accely_val;
293 outlet_accelz = this->accelz_val;
294 outlet_perr = this->parse_errors;
295 outlet_oerr = this->overrun_errors;]]></code.krate>
296 </obj.normal>
297 </objdefs>

Source Code C.2.: pp_axo/objects/pp/neopixel.axo

95

C. Source Code

1 <objdefs appVersion="1.0.10">
2 <obj.normal id="neopixel" uuid="9c21e23f-a42e-42e1-ac5a-80b086bbc2de">
3 <sDescription>Sends encoded serial messages with commands for the NeoPixel

LEDs to the ATmega32.</sDescription>↪→

4 <author>Pascal Staudt</author>
5 <license>BSD</license>
6 <inlets>
7 <int32.positive name="cmd" description="command identifier"/>
8 <int32.positive name="r" description="red value (0-127)"/>
9 <int32.positive name="g" description="green value (0-127)"/>

10 <int32.positive name="b" description="blue value (0-127)"/>
11 <int32.positive name="fix" description="predefined colors"/>
12 <int32.positive name="pxl" description="LED index in strip (0-7)"/>
13 <int32.positive name="time" description="time value for animations"/>
14 <bool32.rising name="trig" description="trigger"/>
15 </inlets>
16 <outlets/>
17 <displays/>
18 <params/>
19 <attribs/>
20 <depends>
21 <depend>SD2</depend>
22 </depends>
23 <code.declaration><![CDATA[int ntrig; /* Flag to prevent retriggering */
24

25 /* Define the NeoPixel Interface. Has to match the implementation of
26 PushPull_Neopixel Class in ATmega32 Software */
27 #define MAX_MSG_LEN 8
28 #define MAX_CMD_LEN 6
29

30 /* Animation mode */
31 #define NEOM_OFF 0
32 #define NEOM_STATIC 1
33 #define NEOM_BLINK 2
34 #define NEOM_FLASH 3
35 #define NEOM_RAINBOW 4
36

37 /* Command identifiers */
38 #define NEOCMD_SETOFF 0
39 #define NEOCMD_SET 1
40 #define NEOCMD_SETFIX 2
41 #define NEOCMD_SETALL 3
42 #define NEOCMD_SETALLFIX 4
43 #define NEOCMD_SETANIM 5
44 #define NEOCMD_SETFLASH 6
45

46 /* Color indentifiers */
47 #define NEOC_RED 0
48 #define NEOC_GREEN 1
49 #define NEOC_BLUE 2
50 #define NEOC_MAGENTA 3
51

52 /* Message and command buffers */
53 uint8_t msg_buffer[MAX_MSG_LEN];
54 uint8_t cmd_buffer[MAX_CMD_LEN];

96

C. Source Code

55

56 const uint8_t TERMINATOR = 0x7E; /* Message terminator */
57 const uint8_t S_MASK = 0x20; /* Stuffing Mask for flipping 5th bit */
58 const uint8_t ESCAPE = 0x7D; /* Escape octet */
59

60 /**
61 * Function send_msg
62 * --------------------
63 * Sends bytes via the serial interface
64 *
65 * ch: Pointer to the data
66 * length: Number of data bytes
67 *
68 */
69 void send_msg(uint8_t *msg, uint8_t l){
70 if(!chThdShouldTerminate()){
71 sdWrite(&SD2, msg, l);
72 }
73 }
74

75 /**
76 * Function encode_msg
77 * --------------------
78 * Encodes the message according to the serial communication protocol of
79 * PushPull embedded.
80 *
81 * data: Pointer to the data buffer
82 * size: Number of bytes in buffer
83 *
84 * returns: Resulting message length
85 */
86 uint8_t encode_msg(uint8_t *data, uint8_t size){
87 uint8_t msg_length = 1;
88 if (size <= MAX_CMD_LEN){
89 uint8_t byte;
90 int i;
91 for (i = 0; i < size; i++){
92 byte = *data++;
93 if ((byte == TERMINATOR) || (byte == ESCAPE)){
94 msg_buffer[msg_length++] = ESCAPE;
95 msg_buffer[msg_length++] = byte^S_MASK;
96 } else {
97 msg_buffer[msg_length++] = byte;
98 }
99 }

100 msg_buffer[msg_length++] = TERMINATOR;
101 msg_buffer[0] = msg_length;
102 return msg_length;
103 } else {
104 return 0;
105 }
106 }]]></code.declaration>
107 <code.init><![CDATA[ntrig = 1;]]></code.init>
108 <code.krate><![CDATA[/* Encode and send message whe triggered */
109 if ((inlet_trig>0) && !ntrig) {

97

C. Source Code

110 uint8_t msg_len = 0;
111 uint8_t cmd_len = 0;
112 /* Pack and encode message according to NeoPixel interface definition */
113 switch (inlet_cmd) {
114 case NEOCMD_SETOFF:
115 cmd_buffer[cmd_len++] = inlet_cmd;
116 break;
117

118 case NEOCMD_SET:
119 cmd_buffer[cmd_len++] = inlet_cmd;
120 cmd_buffer[cmd_len++] = inlet_pxl;
121 cmd_buffer[cmd_len++] = inlet_r;
122 cmd_buffer[cmd_len++] = inlet_g;
123 cmd_buffer[cmd_len++] = inlet_b;
124 cmd_buffer[cmd_len++] = inlet_time;
125 break;
126

127 case NEOCMD_SETFIX:
128 cmd_buffer[cmd_len++] = inlet_cmd;
129 cmd_buffer[cmd_len++] = inlet_pxl;
130 cmd_buffer[cmd_len++] = inlet_fix;
131 cmd_buffer[cmd_len++] = inlet_time;
132 break;
133

134 case NEOCMD_SETALL:
135 cmd_buffer[cmd_len++] = inlet_cmd;
136 cmd_buffer[cmd_len++] = inlet_r;
137 cmd_buffer[cmd_len++] = inlet_g;
138 cmd_buffer[cmd_len++] = inlet_b;
139 cmd_buffer[cmd_len++] = inlet_time;
140 break;
141

142 case NEOCMD_SETALLFIX:
143 cmd_buffer[cmd_len++] = inlet_cmd;
144 cmd_buffer[cmd_len++] = inlet_fix;
145 cmd_buffer[cmd_len++] = inlet_time;
146 break;
147

148 case NEOCMD_SETANIM:
149 cmd_buffer[cmd_len++] = inlet_cmd;
150 cmd_buffer[cmd_len++] = inlet_fix;
151 cmd_buffer[cmd_len++] = inlet_time;
152 break;
153

154 case NEOCMD_SETFLASH:
155 cmd_buffer[cmd_len++] = inlet_cmd;
156 cmd_buffer[cmd_len++] = inlet_fix;
157 cmd_buffer[cmd_len++] = inlet_time;
158 break;
159

160 default:
161 /* Undefined */
162 break;
163 }
164 msg_len = encode_msg(cmd_buffer, cmd_len);

98

C. Source Code

165 send_msg(msg_buffer, msg_len);
166 ntrig=1;
167 } else if (!(inlet_trig>0)) {
168 ntrig=0;
169 }
170]]></code.krate>
171 </obj.normal>
172 </objdefs>

C.2. PSoC 4 Source Code

Source Code C.3.: pp_psoc/main.c

30 #include "defines.h"
31

32 uint8 msg_buffer[MAX_MES_LEN]; /* The message buffer */
33 uint8 cmd_buffer[MAX_CMD_LEN]; /* The command buffer */
34

35 int main()
36 { CyGlobalIntEnable;
37 /* Start SCB UART TX+RX operation */
38 UART_1_Start();
39 CapSense_Start();
40 ACCEL_Start();
41 ACCEL_StartConvert();
42

43 CapSense_InitializeAllBaselines();
44

45 /* The main loop */
46 for(;;)
47 {
48 /* Sample the capacitive sensor data */
49 CapSense_ScanEnabledWidgets();
50

51 /* Active wait until cap sense reading is finished*/
52 while(CapSense_IsBusy() != 0){
53 ;
54 }
55

56 /* Read and send the cap values */
57 uint8 cap_idx;
58 for(cap_idx = 0; cap_idx < NUM_CAPS; cap_idx++){
59 uint16 cap_val = CapSense_ReadSensorRaw(cap_idx);
60 uint8 msg_len;
61 cmd_buffer[0] = cap_idx + 1; /* Add the control ientifier */
62 cmd_buffer[1] = cap_val & 0xff; /* Add the first value byte */
63 cmd_buffer[2] = cap_val >> 8; /* Add the second value byte */
64 msg_len = encode_msg(cmd_buffer, 3);
65 send_msg(msg_buffer, msg_len);
66 }

99

C. Source Code

67

68 /* Read and send the accelerometer values */
69 uint8 accel_idx;
70 for(accel_idx = 0; accel_idx < 3; accel_idx++){
71 uint16 accel_val = ACCEL_GetResult16(accel_idx);
72 uint8 msg_len;
73 cmd_buffer[0] = accel_idx + 7; /* Add the control ientifier */
74 cmd_buffer[1] = accel_val & 0xff; /* Add the first value byte */
75 cmd_buffer[2] = accel_val >> 8; /* Add the second value byte */
76 msg_len = encode_msg(cmd_buffer, 3);
77 send_msg(msg_buffer, msg_len);
78 }
79 }
80 }
81

82 /**
83 * Function encode_msg
84 * --------------------
85 * Encodes the msg. If an terminator or escape byte appears in the data, it
86 * encodes the data byte and adds an escape byte before the data byte. Adds the
87 * msg length to the beginning of the msg and a terminator byte at the end.
88 *
89 * data: Pointer to the data buffer
90 * size: Number of bytes in the buffer
91 *
92 * returns: The length of the encoded message
93 */
94 uint8 encode_msg(uint8 *data, size_t size){
95 uint8 msg_length = 1;
96 if (size <= MAX_CMD_LEN){
97 uint8 byte;
98 uint8 i;
99 /* Iterate through the buffer */

100 for (i = 0; i < size; i++){
101 byte = *data++;
102 /* Check if data byte is a control byte */
103 if ((byte == TERMINATOR) || (byte == ESCAPE)){
104 msg_buffer[msg_length++] = ESCAPE; /* Add escape byte */
105 msg_buffer[msg_length++] = byte^S_MASK; /* Flip the fifth bit

*/↪→

106 } else {
107 msg_buffer[msg_length++] = byte;
108 }
109 }
110 msg_buffer[msg_length++] = TERMINATOR; /* Add message terminator */
111 msg_buffer[0] = msg_length; /* Add msg length to the beginning */
112 return msg_length;
113 } else {
114 return 0;
115 }
116 }
117

118 /**
119 * Function send_msg
120 * --------------------

100

C. Source Code

121 * Sends bytes via the serial interface
122 *
123 * data: Pointer to the data buffer
124 * size: Number of data bytes
125 *
126 */
127 void send_msg(uint8 *data, size_t size){
128 uint8 i;
129 for (i=0; i < size; i++){
130 UART_1_UartPutChar(*data);
131 data++;
132 }
133 }

C.3. ATmega32 Source Code

Source Code C.4.: pp_mega/PushPull_NeoPixel.cpp

31 #include "PushPull_NeoPixel.h"
32

33 /* Constructor */
34 PushPull_NeoPixel::PushPull_NeoPixel()
35 {
36 /* Define colors */
37 red = this->Color(255, 0, 0);
38 green = this->Color(0, 255, 0);
39 blue = this->Color(0, 0, 255);
40 magenta = this->Color(255, 0, 255);
41 ;
42 }
43

44 /* Destructor */
45 PushPull_NeoPixel::~PushPull_NeoPixel() {
46 ;
47 }
48

49 /**
50 * Function initPixels
51 * -------------------
52 * Initializes the NeoPixels and sets the pixel type, the number of LEDs, and

the↪→

53 * pixel brightness to the predefined values
54 */
55 void PushPull_NeoPixel::initPixels(){
56 begin();
57 updateLength(NUM_LEDS);
58 setPin(PIN);
59 updateType(NEO_GRB + NEO_KHZ800);
60 setBrightness(BRIGHTNESS);
61 lastUpdate = millis();

101

C. Source Code

62 show();
63 }
64

65 /**
66 * Function update
67 * ----------------
68 * Updates the NeoPixels. Has to be called once per loop cycle, to keep the
69 * animations running
70 *
71 */
72 void PushPull_NeoPixel::update()
73 {
74 /* Check if the time since the last update is greater than the update
75 interval. If so, call the update function for the current
76 pixel mode */
77 if((millis() - lastUpdate) > animationInterval)
78 {
79 lastUpdate = millis();
80 switch(activeMode)
81 {
82 /* Just need to handle modes that need a update */
83 case NEOM_BLINK:
84 blinkUpdate();
85 break;
86 case NEOM_RAINBOW:
87 rainbowUpdate();
88 break;
89 case NEOM_FLASH:
90 flashUpdate();
91 break;
92 default:
93 /* Do nothing */
94 break;
95 }
96 }
97 }
98

99 /**
100 * Function blinkUpdate
101 * ----------------------
102 * Update function for the rainbow animation
103 */
104 void PushPull_NeoPixel::blinkUpdate() {
105 static int toggle = 1;
106 switch (toggle) {
107 case 1:
108 setBrightness(0);
109 toggle = 0;
110 break;
111 case 0:
112 setBrightness(255);
113 restorePixels(); /* Since setBrightness is destructive, the pixel color has
114 to be restored */
115 toggle = 1;
116 break;

102

C. Source Code

117 }
118 show();
119 }
120

121 /**
122 * Function rainbowUpdate
123 * ----------------------
124 * Update function for the rainbow animation
125 */
126 void PushPull_NeoPixel::rainbowUpdate() {
127 uint16_t i;
128 static uint16_t j=0;
129 if(j<256) {
130 for(i=0; i<numPixels(); i++) {
131 setPixelColor(i, Wheel((i+j) & 255));
132 }
133 show();
134 j++;
135 } else {
136 j = 0;
137 }
138 }
139

140 /**
141 * Function flashUpdate
142 * ----------------------
143 * Update function for the flash animation
144 */
145 void PushPull_NeoPixel::flashUpdate() {
146 static bool flash = false;
147 if (flash) {
148 setBrightness(0);
149 flash = false;
150 activeMode = NEOM_OFF;
151 } else {
152 setBrightness(255);
153 restorePixels();
154 flash = true;
155 }
156 show();
157 }
158

159 /**
160 * Function setMode
161 * ----------------------
162 * Sets the current pixel mode
163 *
164 * mode: the pixel mode
165 * time: the time paramter in ms for animations
166 */
167 void PushPull_NeoPixel::setMode(uint8_t mode, uint8_t timems) {
168 if (mode != NEOM_OFF){
169 /* Reset the brightness */
170 setBrightness(255);
171 restorePixels();

103

C. Source Code

172 }
173 activeMode = mode;
174 animationInterval = (unsigned long)timems*10;
175 show();
176 }
177

178 /**
179 * Function setPixelColor
180 * -------------------------
181 * Sets individual pixel to 32bit RGB color
182 *
183 * i: index of the pixel in the strip
184 * c: 32bit RGB color
185 *
186 */
187 void PushPull_NeoPixel::setPixelColor(uint16_t i, uint32_t c) {
188 Adafruit_NeoPixel::setPixelColor(i, c);
189 currentColor[i] = c;
190 }
191

192 /**
193 * Function setPixelColor (overloaded)
194 * -------------------------
195 * Sets the color of an individual pixel
196 *
197 * i: index of the pixel in the strip
198 * r: the red value
199 * g: the green value
200 * b: the blue value
201 *
202 */
203 void PushPull_NeoPixel::setPixelColor(uint16_t i, uint8_t r, uint8_t g, uint8_t

b) {↪→

204 Adafruit_NeoPixel::setPixelColor(i, r, g, b);
205 currentColor[i] = this->Color(r, g, b);
206 }
207

208 /**
209 * Function setAllPixelColor
210 * -------------------------
211 * Sets all pixels to 32bit RGB color
212 *
213 * c: The 32bit RGB color
214 */
215 void PushPull_NeoPixel::setAllPixelColor(uint32_t c) {
216 for(uint16_t i=0; i<numPixels(); i++) {
217 setPixelColor(i, c);
218 currentColor[i] = c;
219 }
220 show();
221 }
222

223 /**
224 * Function setAllPixelColor (overloaded)
225 * -------------------------

104

C. Source Code

226 * Set all pixels to color:
227 *
228 * r: The red value
229 * g: The green value
230 * b: The blue value
231 */
232 void PushPull_NeoPixel::setAllPixelColor(uint8_t r, uint8_t g, uint8_t b) {
233 for(uint16_t i=0; i<numPixels(); i++) {
234 Adafruit_NeoPixel::setPixelColor(i, r, g, b);
235 currentColor[i] = this->Color(r, g, b);
236 }
237 show();
238 }
239

240 /**
241 * Function flash
242 * -------------------------
243 * Sets all pixels to 32bit color for given time interval:
244 *
245 * c: 32bit RGB color
246 * time: the time intercal in milliseconds
247 */
248 void PushPull_NeoPixel::flash(uint32_t c, uint8_t timems) {
249 activeMode = NEOM_FLASH;
250 animationInterval = (unsigned long)timems;
251 setAllPixelColor(c);
252 }
253

254 /**
255 * Function flash (overloaded)
256 * -------------------------
257 * Sets all pixels to color for given time interval:
258 *
259 * r: The red value
260 * g: The green value
261 * b: The blue value
262 * time: the time intercal in milliseconds
263 */
264 void PushPull_NeoPixel::flash(uint8_t r, uint8_t g, uint8_t b, uint8_t timems) {
265 setBrightness(255);
266 activeMode = NEOM_FLASH;
267 animationInterval = timems;
268 for(uint16_t i=0; i<numPixels(); i++) {
269 setPixelColor(i, r, g, b);
270 }
271 show();
272 }
273

274 /**
275 * Function restorePixels
276 * -------------------------
277 * Restores the color of all pixels:
278 *
279 */
280 void PushPull_NeoPixel::restorePixels() {

105

C. Source Code

281 for(uint16_t i=0; i<numPixels(); i++) {
282 Adafruit_NeoPixel::setPixelColor(i, currentColor[i]);
283 }
284 show();
285 }
286

287 /**
288 * Function Wheel
289 * -------------------------
290 * Implements a color wheel that returns a color according to its position in

the↪→

291 * wheel. The colors are a transition from red to green to blue and back to red.
292 * Taken from Adafruit NeoPixel Library example puplished under the GPL license:
293 * https://github.com/adafruit/Adafruit_NeoPixel
294 *
295 * WheelPos: The wheel postion (0-255)
296 *
297 * returns: The color according to the wheel position
298 */
299 uint32_t PushPull_NeoPixel::Wheel(byte WheelPos) {
300 WheelPos = 255 - WheelPos;
301 if(WheelPos < 85) {
302 return Color(255 - WheelPos * 3, 0, WheelPos * 3,0);
303 }
304 if(WheelPos < 170) {
305 WheelPos -= 85;
306 return Color(0, WheelPos * 3, 255 - WheelPos * 3,0);
307 }
308 WheelPos -= 170;
309 return Color(WheelPos * 3, 255 - WheelPos * 3, 0,0);
310 }
311

312 /**
313 * Function getCmdLength
314 * -------------------------
315 * Returns the expected command length for the given command identifier
316 *
317 * id: the command identifier
318 * returns: the command length
319 *
320 */
321 uint8_t PushPull_NeoPixel::getCmdLength(uint8_t id){
322 switch (id) {
323 case NEOCMD_SETOFF:
324 return 1;
325 break;
326 case NEOCMD_SET:
327 return 6;
328 break;
329 case NEOCMD_SETFIX:
330 return 4;
331 break;
332 case NEOCMD_SETALL:
333 return 5;
334 break;

106

C. Source Code

335 case NEOCMD_SETALLFIX:
336 return 3;
337 break;
338 case NEOCMD_SETANIM:
339 return 3;
340 break;
341 case NEOCMD_SETFLASH:
342 return 3;
343 break;
344 default:
345 /* Undefined */
346 return 0;
347 }
348 }

Source Code C.5.: pp_mega/PushPull_NeoPixel.h

29 #ifndef PUSHPULL_NEOPIXEL_H
30 #define PUSHPULL_NEOPIXEL_H
31

32 #include <Arduino.h>
33 #include "Adafruit_NeoPixel.h"
34

35 #define PIN 9 /* Define the pin for the Neo Pixel data line */
36 #define NUM_LEDS 8 /* Define the number of Neo Pixels */
37 #define BRIGHTNESS 255 /* Define brightness of Neo Pixels */
38

39 /* NeoPixel Interface definition */
40

41 /* Pixel mode */
42 #define NEOM_OFF 0
43 #define NEOM_STATIC 1
44 #define NEOM_BLINK 2
45 #define NEOM_FLASH 3
46 #define NEOM_RAINBOW 4
47

48 /* Animations */
49 #define NEOA_RAINBOW 0
50

51 /* Command identifiers */
52 #define NEOCMD_SETOFF 0
53 #define NEOCMD_SET 1
54 #define NEOCMD_SETFIX 2
55 #define NEOCMD_SETALL 3
56 #define NEOCMD_SETALLFIX 4
57 #define NEOCMD_SETANIM 5
58 #define NEOCMD_SETFLASH 6
59

60 /* Color indentifiers */
61 #define NEOC_RED 0
62 #define NEOC_GREEN 1
63 #define NEOC_BLUE 2

107

C. Source Code

64 #define NEOC_MAGENTA 3
65

66 class PushPull_NeoPixel : public Adafruit_NeoPixel{
67

68 public:
69

70 PushPull_NeoPixel();
71 ~PushPull_NeoPixel();
72

73 void
74 initPixels(void),
75 setMode(uint8_t mode, uint8_t timems = 0),
76 setPixelColor(uint16_t n, uint8_t r, uint8_t g, uint8_t b),
77 setPixelColor(uint16_t n, uint32_t c),
78 setAllPixelColor(uint8_t r, uint8_t g, uint8_t b),
79 setAllPixelColor(uint32_t c),
80 flash(uint8_t r, uint8_t g, uint8_t b, uint8_t timems),
81 flash(uint32_t c, uint8_t timems),
82 update(void);
83

84 uint8_t getCmdLength(uint8_t id);
85

86 /* Colors are predefined when class is initialized */
87 uint32_t
88 red,
89 green,
90 blue,
91 magenta;
92

93 private:
94

95 uint8_t activeMode; /* The current pixel mode */
96 unsigned long animationInterval; /* Milliseconds between two updates */
97 unsigned long lastUpdate; /* Time of last update */
98

99 uint32_t Wheel(byte WheelPos);
100 uint32_t currentColor[NUM_LEDS];
101

102 void
103 rainbowUpdate(void),
104 flashUpdate(void),
105 restorePixels(void),
106 blinkUpdate(void);
107 };
108

109 #endif /* PUSHPULL_NEOPIXEL */

Source Code C.6.: pp_mega/PushPull_SerialParser.cpp

29 #include "PushPull_SerialParser.h"
30

31 /**

108

C. Source Code

32 * Constructor PushPull_SerialParser
33 * ---------------------------------
34 * baudRate: The baudrate the serial interface will be set up with
35 */
36 PushPull_SerialParser::PushPull_SerialParser(uint32_t baudRate,

PushPull_NeoPixel *neopixel) :↪→

37 isParsing(false), baudRate(baudRate), msgBufferIdx(0)
38 {
39 neopixel = neopixel;
40 reset();
41 }
42 /**
43 * Destructor
44 */
45 PushPull_SerialParser::~PushPull_SerialParser() {
46 if(msgBuffer) free(msgBuffer);
47 }
48

49 /**
50 * Function initSerial -> code could go to constructor
51 * ---------------------------------
52 * Initializes the serial interface
53 */
54 void PushPull_SerialParser::initSerial(void) {
55 Serial.begin(baudRate);
56 }
57

58 /**
59 * Function readSerial
60 * -------------------
61 * Reads all pending bytes from the serial receive buffer and parses them into
62 * the command buffer.
63 *
64 * returns: true if message was received completely, false otherwise
65 */
66 bool PushPull_SerialParser::readSerial(){
67 /* While bytes are available read them from the reveive buffer */
68 while(Serial.available()>0){
69 inByte = Serial.read();
70 dprint("Received byte: ");
71 dprintln(inByte, HEX);
72 receivedBytes++;
73

74 /* Check if byte was a terminator */
75 if (inByte != TERMINATOR){
76 if (parseByte()) escapedBytes++;
77 } else {
78 return true;
79 }
80 }
81 return false;
82 }
83

84 /**
85 * Function parseByte

109

C. Source Code

86 * -------------------
87 * Parses the received byte. Unstuffs the byte if the escape flag is set and
88 * copies the byte to the message buffer.
89 *
90 * returns: true if byte has been unstuffed, false otherwise
91 */
92 bool PushPull_SerialParser::parseByte() {
93 /* Check if byte is an escape flag */
94 if (inByte == ESC_OCTET) {
95 escFlag = true;
96 return false;
97 }
98

99 /* Prevent buffer overflow */
100 if (msgBufferIdx < MAX_MSG_LENGTH){
101 /* If esape flag was received before unstuff the byte and reset the flag */
102 if(escFlag){
103 inByte ^= U_MASK;
104 msgBuffer[msgBufferIdx++] = inByte;
105 escFlag = false;
106 return true;
107 }
108

109 /* Finaly copy the byte to the message buffer */
110 msgBuffer[msgBufferIdx++] = inByte;
111 return false;
112 } else {
113 dprintln("Message buffer full! Resetting...");
114 reset();
115 return false;
116 };
117 }
118

119 /**
120 * Function parseMsg
121 * -------------------
122 * Parses the message.
123 *
124 * returns: true if message and payload had the right length, false otherwise.
125 */
126 bool PushPull_SerialParser::parseMsg() {
127 /* First check if the message had the right length */
128 uint8_t msgLength = msgBuffer[0];
129 uint8_t payloadLength = (receivedBytes - escapedBytes - 2);
130 uint8_t cmdId = msgBuffer[1];
131 cmdLength = neopixel->getCmdLength(cmdId);
132 if ((receivedBytes == msgLength) && (payloadLength == cmdLength)){
133 if (cmdLength <= MAX_CMD_LENGTH) {
134 /* Copy the command identifier and the data into the command buffer */
135 memcpy(&cmdBuffer[0], &msgBuffer[1], 1);
136 memcpy(&cmdBuffer[1], &msgBuffer[2], cmdLength);
137 return true;
138 } else {
139 dprint("Command exeeded maximum command length: ");
140 dprintln(payloadLength);

110

C. Source Code

141 return false;
142 }
143 }/* If message had the wrong length return false */
144 else {
145 dprintln("Wrong message format!");
146 dprint("Total received bytes: ");
147 dprintln(receivedBytes, DEC);
148 dprint("Expected bytes: ");
149 dprintln(msgLength, DEC);
150 dprint("Payload length: ");
151 dprintln(payloadLength, DEC);
152 dprint("Expected payload length: ");
153 dprintln(cmdLength, DEC);
154 return false;
155 }
156 }
157

158 /**
159 * Function reset
160 * -------------------
161 * Resets the program flow to its initial state
162 *
163 */
164 void PushPull_SerialParser::reset(void) {
165 memset(msgBuffer, 0, sizeof(msgBuffer));
166 memset(cmdBuffer, 0, sizeof(cmdBuffer));
167 msgBufferIdx = 0;
168 receivedBytes = 0;
169 escapedBytes = 0;
170 }
171

172 /**
173 * Function getCmdData
174 * -------------------
175 * Copies the command to the given buffer;
176 *
177 * buffer: pointer to the command buffer
178 * returns: length of the command
179 *
180 */
181 uint8_t PushPull_SerialParser::getCmdData(uint8_t *buffer){
182 memcpy(buffer, cmdBuffer, cmdLength);
183 return cmdLength;
184 }

Source Code C.7.: pp_mega/PushPull_SerialParser.h

29 #ifndef PUSHPULL_SERIALPARSER_H
30 #define PUSHPULL_SERIALPARSER_H
31

32 #include <Arduino.h>
33 #include "PushPull_NeoPixel.h"

111

C. Source Code

34

35 /* Define debugging macros */
36 #define DEBUG 1 // -> replace with ifdef
37 #define dprint(...) do { if (DEBUG) Serial.print(__VA_ARGS__); } while (0)
38 #define dprintln(...) do { if (DEBUG) Serial.println(__VA_ARGS__); } while (0)
39

40 #define MAX_CMD_LENGTH 6 /* The maximum command length */
41

42 class PushPull_SerialParser {
43

44 public:
45

46 PushPull_SerialParser(uint32_t baudRate, PushPull_NeoPixel *neopixel);
47 ~PushPull_SerialParser();
48

49 void
50 initSerial(void),
51 initPixels(void),
52 reset(void);
53

54 bool
55 readSerial(),
56 parseMsg();
57

58 uint8_t getCmdData(uint8_t *buffer);
59

60 private:
61

62 PushPull_NeoPixel *neopixel;
63

64 static const uint8_t // -> better with #define
65 MAX_MSG_LENGTH = 8, /* The maximum length of the incoming message in

bytes*/↪→

66 TERMINATOR = 0x7E, /* The terminator flag */
67 ESC_OCTET = 0x7D, /* The escape octet */
68 U_MASK = 0x20; /* The mask for unstuffing escaped bytes */
69

70 bool
71 escFlag,
72 isParsing;
73

74 uint8_t
75 inByte, /* The incomming serial byte */
76 msgBuffer[MAX_MSG_LENGTH], /* Message buffer for incoming message */
77 cmdBuffer[MAX_CMD_LENGTH], /* Command buffer for incomming command */
78 receivedBytes, /* The number of received bytes */
79 escapedBytes; /* The number of escaped bytes */
80

81 size_t cmdLength; /* The length of the incoming command in bytes */
82

83 uint32_t const baudRate;
84

85 int msgBufferIdx; /* Current postion in the buffer */
86

87 bool parseByte();

112

C. Source Code

88 };
89

90 #endif /* PUSHPULL_SERIALPARSER */

Source Code C.8.: pp_mega/examples/NeoPixel.ino

28 /* Define debugging macros
29 If DEBUG is defined, Serial.print and Serial.println is used to debug
30 IF not, the smart compiler will remove the debug code */
31 #define DEBUG 0
32 #define dprint(...) do { if (DEBUG) Serial.print(__VA_ARGS__); } while (0)
33 #define dprintln(...) do { if (DEBUG) Serial.println(__VA_ARGS__); } while (0)
34

35 #include <Arduino.h>
36 #include <PushPull_NeoPixel.h>
37 #include <PushPull_SerialParser.h>
38

39 uint8_t cmdBuffer[MAX_CMD_LENGTH]; /* Buffer for NeoPixel commands */
40 uint8_t cmdLength; /* Length of the NeoPixel command */
41 uint32_t baudRate = 115200; /* The baud rate for the serial interface */
42

43 /* Instance of the NeoPixel class */
44 PushPull_NeoPixel neopixel = PushPull_NeoPixel();
45 /* Instance of the SerialParser class */
46 PushPull_SerialParser parser = PushPull_SerialParser(baudRate, &neopixel);
47

48 /* Init the program */
49 void setup() {
50 /* Initialize the hardware serial interface */
51 parser.initSerial();
52 dprint("Serial Port is set up with baudrate: ");
53 dprintln(baudRate, DEC);
54

55 /* Initialize the NeoPixels */
56 neopixel.initPixels();
57 /* Set pixel color to red */
58 neopixel.setAllPixelColor(neopixel.red);
59 delay(1000);
60 neopixel.flash(neopixel.green, 100);
61 dprintln("NeoPixels ready for commands!");
62 }
63

64 /**
65 * Program loop
66 * ------------
67 * Every loop cycle all received bytes are parsed and if a complete control
68 * message arrived, the associated NeoPixel command is executed and the NeoPixel
69 * strip is being updated
70 *
71 */
72 void loop() {
73 if (parser.readSerial()){

113

C. Source Code

74 /* Parse the message, execute the command and reset the parser */
75 if (parser.parseMsg()){
76 cmdLength = parser.getCmdData(cmdBuffer);
77 dprint("Received command: (");
78 for (int i = 0; i < (int)cmdLength-1; i++){
79 dprint(cmdBuffer[i], DEC);
80 dprint(", ");
81 }
82 dprint(cmdBuffer[cmdLength-1], DEC);
83 dprintln(")");
84 executeCommand();
85 parser.reset();
86 } else {
87 dprintln("Parsing error. Discarding message!");
88 parser.reset();
89 }
90 }
91 neopixel.update();
92 }
93

94 /**
95 * Function executeCommand
96 * -----------------------
97 * Execute the received NeoPixel command
98 *
99 */

100 void executeCommand(){
101 dprint("Executing Command with type: ");
102 dprintln(cmdBuffer[0], DEC);
103 switch (cmdBuffer[0]) {
104 case NEOCMD_SETOFF:
105 neopixel.setAllPixelColor(0);
106 neopixel.setMode(NEOM_OFF);
107 break;
108

109 case NEOCMD_SET:
110 neopixel.setPixelColor(cmdBuffer[1], cmdBuffer[2], cmdBuffer[3],
111 cmdBuffer[4]);
112 if (cmdBuffer[5] == 0){
113 neopixel.setMode(NEOM_STATIC);
114 } else {
115 neopixel.setMode(NEOM_BLINK, cmdBuffer[5]);
116 }
117 break;
118

119 case NEOCMD_SETFIX:
120 switch (cmdBuffer[2]) {
121 case NEOC_GREEN:
122 neopixel.setPixelColor(cmdBuffer[1], neopixel.green);
123 break;
124 case NEOC_RED:
125 neopixel.setPixelColor(cmdBuffer[1], neopixel.red);
126 break;
127 case NEOC_BLUE:
128 neopixel.setPixelColor(cmdBuffer[1], neopixel.blue);

114

C. Source Code

129 break;
130 case NEOC_MAGENTA:
131 neopixel.setPixelColor(cmdBuffer[1], neopixel.magenta);
132 /* Undefined */
133 default:
134 dprint("Undefined color id: ");
135 dprintln(cmdBuffer[2], DEC);
136 break;
137 }
138 if (cmdBuffer[3] == 0){
139 neopixel.setMode(NEOM_STATIC);
140 } else {
141 neopixel.setMode(NEOM_BLINK, cmdBuffer[3]);
142 }
143 break;
144

145 case NEOCMD_SETALL:
146 neopixel.setAllPixelColor(cmdBuffer[1], cmdBuffer[2], cmdBuffer[3]);
147 if (cmdBuffer[4] == 0){
148 neopixel.setMode(NEOM_STATIC);
149 } else {
150 neopixel.setMode(NEOM_BLINK, cmdBuffer[4]);
151 }
152 break;
153

154 case NEOCMD_SETALLFIX:
155 switch (cmdBuffer[1]) {
156 case NEOC_GREEN:
157 neopixel.setAllPixelColor(neopixel.green);
158 break;
159 case NEOC_RED:
160 neopixel.setAllPixelColor(neopixel.red);
161 break;
162 case NEOC_BLUE:
163 neopixel.setAllPixelColor(neopixel.blue);
164 break;
165 case NEOC_MAGENTA:
166 neopixel.setAllPixelColor(neopixel.magenta);
167 /* Undefined */
168 default:
169 dprint("Undefined color id: ");
170 dprintln(cmdBuffer[1], DEC);
171 break;
172 }
173 if (cmdBuffer[2] == 0){
174 neopixel.setMode(NEOM_STATIC);
175 } else {
176 neopixel.setMode(NEOM_BLINK, cmdBuffer[2]);
177 }
178 break;
179 case NEOCMD_SETANIM:
180 switch (cmdBuffer[1]) {
181 case NEOA_RAINBOW:
182 neopixel.setMode(NEOM_RAINBOW, cmdBuffer[2]);
183 default:

115

C. Source Code

184 dprint("Undefined Animation: ");
185 dprintln(cmdBuffer[1], DEC);
186 break;
187 }
188 break;
189

190 case NEOCMD_SETFLASH:
191 switch (cmdBuffer[1]) {
192 case NEOC_GREEN:
193 neopixel.flash(neopixel.green, cmdBuffer[2]);
194 break;
195 case NEOC_RED:
196 neopixel.flash(neopixel.red, cmdBuffer[2]);
197 break;
198 case NEOC_BLUE:
199 neopixel.flash(neopixel.blue, cmdBuffer[2]);
200 break;
201 case NEOC_MAGENTA:
202 neopixel.flash(neopixel.magenta, cmdBuffer[2]);
203 /* Undefined */
204 default:
205 dprint("Undefined color id: ");
206 dprintln(cmdBuffer[1], DEC);
207 break;
208 }
209 break;
210 default:
211 dprint("Undefined Command: ");
212 break;
213 }
214 }

116

APPENDIX D

CD CONTENT

Pruned directory tree of the attached CD:

/
literature ..cited literature and bibtex file

01-bibliography.bib
software

pp_axo ..software for the Axoloti
copyright.txt
license.txt
banks

instruments.axb
instrument patches

barebone.axp
breath.axp
drums.axp
grid.axp

objects
...
controller

pp_controller.axs
subpatches

pp_buttons.axs
pp_mics.axs
pp_modesynth.axs
pp_rotary.axs
pp_sensors.axs
...

samples
test patches

pp_megasoftware for the ATmega32 microcontroller
copyright.txt
license.txt
PushPull_NeoPixel.cpp
PushPull_NeoPixel.h
PushPull_SerialParser.cpp
PushPull_SerialParser.h
examples

NeoPixel
NeoPixel.ino

pp_psocsoftware for the PSoC 4 microcontroller
copyright.txt
license.txt
pp_psoc.cydsn

defines.h
main.c
pp_psoc.cydwr
pp_psoc.cyprj
TopDesign

TopDesign.cysch
thesis ..full text pdf of the thesis

117

