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Abstract

Identifying musical instruments in polyphonic recordings with computational methods
is a challenging but essential task in the domain of Music Information Retrieval. Such
algorithms can improve music recommendation and genre recognition systems or inform
other tasks like source separation, automatic score notation as well as music tagging.
The following master thesis presents an Instrument Identification, or synonymously, an
Instrument Recognition system for polyphonic classical music material including a pre-
processing method to reduce crosstalk within multi-track recordings.

The above mentioned reduction method is able to adaptively estimate the crosstalk
amount in the spectral domain and subsequently applies spectral subtraction to remove
it. Different datasets with randomly generated crosstalk from anechoic classical music
recordings were employed for development and evaluation purpose. The algorithm shows
promising results regarding the crosstalk reduction performance while only producing a
small amount of musical artefacts. In order to adjust the algorithm for different appli-
cation purposes, the trade-off regarding reduction strength and musical artefacts can be
adapted by parameter scaling. Besides its original function, to pre-process audio material
for labelling, the algorithm can also be utilized as post production effect for multi-track
recordings or as de-noising approach within multi-channel microphone arrays.

The instrument identification system is based upon a convolutional neural network
which is trained on a dataset of multi-track recordings from different classical music con-
certs at the Berlin University of Arts. Those multi-tracks both contain spot microphone
recordings as well as the individual stereo mixtures. By utilizing the above mentioned
crosstalk reduction method, the spot microphone recordings are first pre-processed to
determine the respective instrument activities. Those activities are then transformed
to labelling information by thresholding. Input features for the convolutional neural
net are extracted from the stereo mixtures in form of mel-spectrograms. Both labels
and features are generated on a variety of different time frame sizes. After the training
procedure, the classification model is able to predict the combination of instruments in
a given classical music piece for each frame. Furthermore, the influence of frame size
on the classification performance is investigated. Additionally, this work also evaluates
two different methods based on sliding classification and multiple instance learning to
train a classifier on large time frames but eventually predict on smaller time frames. In
this way, imprecise labels may be employed to classify music recordings more accurately
regarding the time resolution.





Zusammenfassung

Automatische Instrumentenerkennung in polyphonem Audiomaterial mit Hilfe von com-
putergestützten Methoden gilt als anspruchsvolle Aufgabe im Bereich Music Informa-
tion Retrieval. Diese Form von Algorithmen kann dazu beitragen andere Arten von
Audioanalysesystemen zur Musikempfehlung oder Genreerkennung zu verbessern und
dient darüber hinaus als Grundlage für Methoden zur Quellentrennung, automatischen
Musiknotation oder zum Labeln von Audiodaten. Die vorliegende Masterthesis präsen-
tiert ein solches Instrumentenerkennungssystem für polyphone klassische Musik. Dazu
gehört ebenfalls eine eigens entwickelte Vorverarbeitungsmethode um Übersprechen auf
Mehrspurmusikaufnahmen zu reduzieren.

Mit der oben genannten Methode wird zunächst der Betrag des Übersprechens im
Frequenzbereich geschätzt um daraufhin mit spektraler Subtraktion das Übersprechen
zu entfernen. Zur Entwicklung und Evaluation des Algorithmus wurden Orchester-
aufnahmen aus reflexionsarmen Räumen herangezogen. Diese wurden in der Folge
genutzt um verschiedene Datensets mit unterschiedlichen Anteilen von Übersprechen
zu generieren. Testergebnisse zeigen, dass die Methodik in der Lage ist Übersprechen
effizient zu reduzieren und dass das Audiomaterial dabei nur geringfügig beeinträchtigt
wird durch musikalische Artefakte. Die Relation zwischen Betrag der Reduktion und
Anzahl der musikalischen Artefakte lässt sich je nach Anwendungsfall mit verschiede-
nen Parametern steuern. Der Algorithmus kann neben seiner ursprünglichen Aufgabe
als Vorverarbeitungsmethode um Audiodaten zu labeln auch als De-noising Methode
für Mehrkanalmikrofonanordnungen oder als Audioeffekt in der Post-Produktion einge-
setzt werden. Das Instrumentenerkennungssystem basiert auf einem sogenannten Con-
volutional Neural Network, das mit Hilfe von Mehrspuraufnahmen trainiert wurde.
Die erwähnten Mehrspuraufnahmen sind von der Universität der Künste Berlin zur
Verfügung gestellt worden und enthalten verschiedene Arten klassischer Musikkonzerte.
Dabei handelt es sich sowohl um Spuren einzelner Instrumente wie auch deren Stere-
omischungen. Zunächst wurden die Instrumentenspuren mit der oben genannten Meth-
ode von Übersprechen befreit, um aus diesen im zweiten Schritt Labels zu generieren.
Die entsprechenden Features werden als Mel-Spektrogramme aus der zugehörigen Stere-
omischung extrahiert. Der Vorgang wird in beiden Fällen für verschieden große Zeitab-
schnitte, sogenannte Frames, durchgeführt. Nach der Trainingsphase des Netzwerks ist
das berechnete Modell in der Lage, die Instrumentenzusammensetzung für ein beliebiges
Stück klassischer Musik pro Frame zu prädizieren. Darüber hinaus wurde auch der Ein-
fluss dieser Framegröße auf die Klassifikationsergebnisse untersucht. In einem weiteren
Experiment wurden zwei ähnliche Methoden analysiert, die es ermöglichen Modelle auf
größeren solcher Frames zu erlernen, diese aber trotzdem fähig sind kleinere Frames zu
klassifizieren. Dazu gehören

”
Sliding Classifications“ und

”
Multiple Instance Learning“.

Somit können zeitlich grob aufgelöste Labels eingesetzt werden um letztendlich kleinere
Zeitabschnitte zu klassifizieren.
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Schlüter [2017]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.12 Comparison of different spectrogram computations . . . . . . . . . . . . . 19
2.13 Subset of learned representations from raw audio (low-pass filtered) . . . . 21

3.1 Processing steps of the crosstalk reduction algorithm . . . . . . . . . . . . 26
3.2 Three different magnitude spectra excerpts from the unmixed original

bassoon track (left), the artificially generated bassoon mixture with 6 dB
crosstalk (middle) and the crosstalk reduced track (right) . . . . . . . . . 29

4.1 Flowchart of processing steps . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Overview of MIL learning procedure of experiment 2 . . . . . . . . . . . . 43
4.3 Overview of track lengths in seconds in both test and training set together 45
4.4 Evaluation results for the standard learning approach . . . . . . . . . . . 47
4.5 Evaluation results for sliding predictions . . . . . . . . . . . . . . . . . . . 48
4.6 Evaluation results for the multiple instance learning approach . . . . . . . 49



List of Tables

3.1 Example matrix for estimated λl,j values, computed by the gradient de-
scent algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Randomly generated mixing matrix for the -18 dB Mozart dataset, max-
imal values of 0.126 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Correlation of A−1 and (−L + I) . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 BSS evaluation measures for mixtures, crosstalk reduced tracks and their

difference, sorted by dataset and averaged over all four orchestral pieces . 32
3.5 SDR/SIR gain for each mixture set as well as absolute SAR values of the

crosstalk reduced results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.6 Absolute SIR values of the mixtures . . . . . . . . . . . . . . . . . . . . . 34

4.1 Summary of network architecture for 128x16 input mel-spectrogram (1
instance) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Overview of the dataset, separated by instrument . . . . . . . . . . . . . . 46



1 Introduction

We can describe music by low level attributes such as key, tuning, tempo and instrument
ensemble or try to categorize music on higher levels, for example in terms of genres or
tags. While humans are relatively skilled to determine such attributes, deriving func-
tions or models to discriminate and classify music by algorithms is significantly more
challenging. However, this is what Music Information Retrieval (MIR) is concerned with.
One such MIR task that is investigated in the present thesis is called Instrument Identifi-
cation or, synonymously, Instrument Recognition (IR). In most cases, the input to MIR
systems only consists of the most basic description of sound, a digitalized waveform.
Because of recent technological advances, a plethora of audio nowadays exists in such
a digital form in order to be stored or distributed over network systems. At the same
time, machine learning methods have proven their ability to learn discriminations from
big data, in a similar way that humans learn through experience. Combining both these
elements, we can exploit the continuously rising amount of digital audio by analysis ap-
proaches from machine learning to automatically describe a particular audio waveform
by higher level attributes and annotations without any prior knowledge. Deep learning
techniques, a special form of machine learning, are particularly suitable for this task
since they are able to create hierarchical models to explain data patterns, similar to the
inherent hierarchical structure of music.

Motivation and Outline
This thesis is concerned with designing a deep learning classifier to identify instruments
in polyphonic classical music data. Such a method can provide information to support
other Music Information Retrieval tasks such as source separation and recommendation
or constitute a fundamental building block of higher level systems for score annotation,
musical retrieval, genre recognition or automatic tagging. Possible use cases include
mobile applications to learn instruments, upmix systems to prepare stereo content to
multichannel speaker systems as well as audio effects or remix methods for music pro-
duction environments.

Acoustic musical instruments differ in a variety of physical principles which influence
their unique sound; the playing interface, the sound generation method and the filtering
effects of material and corpus shape. Altogether, these properties produce specific and
directional time-frequency patterns and hence allow to differentiate between individual
instruments. A polyphonic IR system is able to determine which instruments occur in a
given time frame with a certain possibility.

The goal of this thesis is to develop and investigate such a system based on a convo-
lutional neural network machine learning approach for classical music data. Points of
interest include to which extend this system can achieve correct classifications depend-
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ing on the individual instruments and the given dataset, how the analysis window or
frame length influences the system performance and if it is possible to obtain predic-
tions on small time frames even though the neural network system was trained on larger
time frames. This could improve either the classification scores or time resolution of
predictions from trained models for audio applications.

The dataset which was employed to develop and evaluate the above mentioned in-
strument recognition system comprises multi-track recordings from 116 classical musical
pieces, interpreted at several concerts at the Berlin University of Arts. Those multi-
tracks both include spot microphone recordings from individual instruments in the en-
semble as well as the stereo mixture of the regarding pieces.

The overall IR systems includes a variety of processing steps. First, the spot mi-
crophone recordings are treated with a custom built algorithm to reduce crosstalk in
order to prepare for the labelling process. This algorithm was developed and evaluated
separately on an individual dataset of anechoic classical music recordings (see Section
3). After applying this reduction method, the processed multi-track audio was trans-
formed into labelling information by frame-wise thresholding of their root mean square
values. Features were extracted from the stereo mix of each recording in form of mel-
spectrogram representations. Subsequently a convolutional neural net is trained on these
features and labels which were generated on different time frames. After training the
model, the classifier is able to determine the instrument composition for different time
frames in a given classical music piece. Finally, the influence of frame width on classi-
fication results is further evaluated and discussed. The system also includes two other
prediction approaches, sliding classification windows and a form of multiple instance
learning, to evaluate if models which were trained on larger time frames can be utilized
to predict the instrument activities on smaller time frames.

Chapter 2 introduces the basic concepts and mathematical foundations of deep learn-
ing in a compact form, followed by the presentation of the research field and applications
of Music Information Retrieval, especially in combination with Deep Neural Networks.
Chapter 3 presents an newly developed algorithm which is able to adaptively reduce
crosstalk from multi-track recordings by spectral subtraction. This method can also
be applied to other kinds of multi-channel input like microphone array systems or as
post production effect for music recordings with crosstalk. In the following, Chapter 4
introduces the instrument recognition system. Finally, Chapter 5 rounds up this thesis
by summarizing and discussing the present research and further gives an outlook about
future work.

2



2 Fundamentals and Related Work

Techniques summarized as supervised machine learning are able to learn parameterized
models from data. In a training phase, these models are tuned to find an optimal set
of parameters by minimizing an objective function (i.e.ėrror measure). Subsequently,
the goal is to classify and predict unseen test data with the previously trained model.
Such methods are especially valuable for problems that cannot be solved analytically but
can be approximated iteratively. Machine Learning tasks differ from other optimization
problems in a specific and important point: the key is to achieve high classification
accuracies on new observations instead of maximizing performance on already present
data examples to make profound predictions. In that case, the model is able to gener-
alize well. If the model only shows good performance for the given training data, but
generalizes poorly, this results in so-called overfitting. To prevent such overfitting, sev-
eral regularization methods were designed to control the learning procedure (see Section
2.1.4). Besides supervised machine learning, several other techniques like unsupervised
learning, transduction, transfer learning or reinforcement learning have been applied to
different specific task. An in-depth description of machine learning concepts is out of
this thesis’ scope and can be found in Bishop [2007] and Duda et al. [2012].

Deep learning, a specific form of ML, employs mathematical models of neurons to form
artificial neural nets which are particularly suitable to explain non-linear structures in
large datasets. The application of above mentioned learning techniques has recently
been pushed by technological advances such as improved computational capacities and
efficient storage opportunities for big data. Machine and deep learning models have
shown superior performance compared to former data analysis technologies and are state
of the art in a variety of contexts such as computer vision, machine listening, natural
language processing and speech recognition, recommender systems, machine translation,
market analysis, robotics, self-driving vehicles, bioinformatics and many more. A specific
audio-related research field which increasingly relies on machine learning methods is
termed Music Information Retrival (MIR). This research area analyzes music in its raw
(wave-)form or respectively another representation and extracts valuable information to
structure and/or describe musical content.

In order to connect Music Information Retrieval tasks to Machine and Deep Learning,
the following chapter first describes each topic in a compact manner to then fuse both
subjects and then presents important concepts and studies which are related to the
present thesis’ topic of Instrument Identification.





2.1 Deep learning

Common choices for the activation function are sigmoidal functions, for example:

f(x) = (1 + e−x)−1 (2.2)

f(x) = tanh(x) (2.3)

or linear rectifications as well as leaky linear rectifications:

f(x) = max(x, 0) (2.4)

f(x) = max(x, 0.01x). (2.5)

To obtain more complex input-output mappings, multiple neurons can be processed
simultaneously and layered sequentially to form a neural net. Each unit contains its own
parameters θ = (w, b). A parallel computation of neurons can be described as a matrix
product of weights and inputs plus bias terms:

y = f(WTx + b) (2.6)

Stacking multiple layers or units requires to simply insert the previous layer’s output
into the next layer’s input:

y = f2(WT f1(WTx + b1) + b2) (2.7)

The data vector x is conventionally referred to as input layer while the outermost
function is denoted as output layer. Any layers in between are called hidden layers.
For a given task, the size of the output layer as well as the type of its transfer func-
tion f(·) are normally defined by the number of target classes and the problem statement.

Figure 2.2: Neural net with one hidden unit (from Schlüter [2017])

5
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The number of hidden layers, also referred to as the depth of the network, their
respective size and the type of transfer function for each unit can be designed according
to the problem definition. However, one specific activation function is usually chosen
for all hidden layers for convenience. Figure 2.2 displays a simple neural net with one
hidden layer to visualize the computation process.

2.1.2 Convolutional Neural Networks

Convolutional Neural Networks (CNN) or ConvNets are a variant of Neural Networks
with two special types of layers: convolutional layers and pooling layers. These layers
introduce constraint connectivity patterns within the CNN which are especially useful if
local groups of the data are highly correlated like edges and motifs in images or harmonics
of a tone in a spectrum representation of audio data. Additionally, CNNs are capable of
detecting local statistics of data which are invariant to the overall location, for example
similar or equivalent objects that appear in different parts of a picture or an audio signal.

Convolutional layers
ConvNets are designed to process multidimensional array data such as 2D pictures which
contain multiple colour channels. A convolutional layer takes as input a stack of feature
maps, like the pixels of those colour channels, and convolves each feature map with a set
of learnable filters to obtain a new stack of output feature maps.

Starting from the mathematical formulation of an artificial neuron from Section 2.1.1,
this can be implemented by replacing the matrix-vector product WTx with a sum of con-
volutions. The result of this weighted sum is then passed through a non-linear function
f(·) to calculate the output feature map Y(l), l = 1...L:

Y(l) = f
( K∑
k=1

W(k,l) ∗X(k) + b(l)
)
. (2.8)

Herein, X(k) denotes the set of K matrices with k = 1...K which comprise the input
feature maps, while the ∗ operator describes a two-dimensional convolution. Learnable
parameters are represented by the weight or kernel matrices W(k,l) including the filter
coefficients and the bias terms b(l) for the respective output feature map l.

Figure 2.3 on the left shows the computation of a single output feature patch from
a 5 × 5 × 3 input feature map (X0,X1 and X2) by using a 3 × 3 filter. This filter is
then shifted step by step over each possible position to iteratively obtain the output
representation Y (see Figure 2.3 on the right). In comparison to a standard neural
network, the convolutional unit restricts the connections in between layers to one filter
per output map plus biases and thereby immensely reduces the number of parameters
which acts as a strong regularizer that in turn prevents overfitting. Each filter operates
as an individual feature detector for local patterns depending on the filter shape.

6



2.1 Deep learning

Figure 2.3: Visualization of the convolutional process (from Schlüter [2017])

There are a number of hyperparameters which determine the output feature map
shape and hence need to be considered when designing convolutional layers. Increasing
the filter size widens the receptive field which results in an extension of the spatial context
per output patch. The number of filters specifies the depth of the output feature map.
To decrease the spatial size of the resulting feature map, each filter can be shifted over
the input with a larger step size, determined by the stride parameter. Using a stride
of 2 with the example from Figure 2.3 would result in an output map size of 2× 2. To
prevent the network from decreasing in spatial size of the feature representation, the
input can be zero-padded on each edge. Figure 2.4 shows the same 5 × 5 feature map
and 3× 3 filter from Figure 2.3, but this time using a stride of 2 while zero padding the
input.

Figure 2.4: Filtering process with a stride of two and zero padding

Pooling layers
While the advantage of convolutional layers is to detect local data patterns, pooling
layers are able to aggregate semantically similar features together. This allows to model
correlations across a larger part of the input with the downside of decreasing the res-
olution. Reducing the dimensions in this way creates an invariance to translations or
distortions of the input, a beneficial model attribute when classifying image or audio
data. Pooling units typically compute the mean or maximum of a local patch. Figure
2.5 (left) shows a 2× 2 max-pooling computation of a 4× 4 input feature map, resulting
in a 2× 2 output feature map. As opposed to convolutional units, pooling layers do not

7



2 Fundamentals and Related Work

have any trainable parameters.

Figure 2.5: Max-pooling (left) and overall architecture of a simple CNN (right), (from
Schlüter [2017])

Figure 2.5 (right) displays a simple CNN architecture. Usually, several convolutional
units are stacked in the first part of a ConvNet before pooling layers then reduce the
spatial network complexity. A fully connected layer at the end of the CNN maps all
features to the desired output dimension. Feature maps are commonly visualized as
3D volumes. The design choices for ConvNets are highly dependent on the individual
task. For larger classification tasks, CNNs sometimes contain more than 100 layers and
exceed 100 million parameters to train. For most computer vision tasks and many audio
recognition problems ConvNets represent state of the art algorithms.

2.1.3 Optimization

Like other machine learning techniques, the optimization of (Convolutional) Neural Net-
works is based on minimizing an objective function J(θ) with respect to the model pa-
rameters θ = (W,b) which in the case of CNNs consist of weights and bias terms. In
order to adjust the parameter vector for an optimal solution, the learning algorithm
calculates a gradient vector ∆θ that indicates in which direction and to what extent the
loss changes for small derivatives of θ:

∆θ =
∑

(x,t)∈D

∂

∂θ
J
(
f(x|θ), t

)
=

∑
(x,t)∈D

∂

∂y
J(y, t)

∂

∂θ
f(x|θ) (2.9)

Herein, ∂J/∂y describes the gradient with respect to the networks’ outputs and ∂f/∂θ
denotes all partial derivatives with respect to the model parameters. In order to asso-
ciate the loss function (at the network’s output) to the input data with respect to the
individual neuron’s weights, the chain rule can be applied by working backwards through
the network. This method, called backpropagation, can be applied if both objective and
activation functions are differentiable. It constitutes the mathematical foundation of the
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2.1 Deep learning

learning procedure in neural networks. By presenting unseen input data to the learning
algorithm, the weight vector θ is then adjusted in the opposite direction of that gradient
to iteratively minimize the loss function:

θ ← θ − η∆θ (2.10)

This parameter update rule is known as the simplest form of gradient descent (GD).
The negative gradient indicates the direction of steepest descent in the multi-dimensional
parameter space. Updated values of θ then need to be evaluated again regarding the loss
function in a loop wise procedure until J(θ) eventually converges. In the above equation
η denotes the learning rate which in turn controls how much the parameters change for
each iteration step. The learning rate is a crucial but sensitive parameter. For large
values, the convergence may be reached faster, however, if η is too high, J(θ) can start
to oscillate or even diverge completely. A small value of η avoids such behaviour, but
possibly leads too a very slow convergence process or even stop the optimization before
a minimum is found. In most learning tasks, η is a hyperparameter that needs to be
assessed carefully.

For practical reasons, due to computational complexity, the learning algorithm is
only presented a often randomly chosen subset of the input data in each iteration step,
a so-called mini-batch. If the loss and weight updates are calculated based on such
mini batches, the optimization method is referred to as stochastic gradient descent since
subsets of the input data can only produce a noisy estimate of the gradient in comparison
to using all available data. Simple Gradient Descent, stochastic or not, is a relatively
slow and unreliable approach to find global minima for J(θ). The method often fails to
find global minima on the parameter space surface due to vanishing gradients. Several
successors of GD have evolved, employing different techniques to efficiently find minima
for the objective function:

• Momentum [Sutskever et al., 2013] proposes to add a short term memory to
gradient descent, considering the previous steps to accelerate progress in stable
directions:

υθ ← αυθ − η∆θ (2.11)

θ ← θ + υθ (2.12)

υθ basically denotes a moving average over the gradient ∆θ. In a more physical
interpration of the momentum update, υθ can be referred to as a velocity when
moving through the parameter space with ∆θ behaving as excitation force and α
being a friction hyperparameter which dampens this movement.

9
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• Nesterov Accelerated Gradient (NAG) [Nesterov, 2013] is a slight adaptation
of the momentum update rule. Instead of evaluating the gradient at its current
position θ, NAG calculates a modification of this gradient at the parameter space
position θ′ that would be reached with the current velocity υθ:

υθ ← αυθ − η∆(θ + αυθ) (2.13)

θ ← θ + υθ (2.14)

In comparison to the original momentum, the ”look ahead” gradient evaluation
within the NAG method dampens oscillations.

• ADAM, developed by [Kingma and Ba, 2014], computes a long-term exponential
moving average of the gradient and scales the updates according to its reciprocal
value. In this way, updates are scaled down in regions and dimensions where
gradients are large and vice versa:

υθ ← β1 υθ − (1− β1)∆θ (2.15)

mθ ← β2mθ − (1− β2)(∆θ)2 (2.16)

θ ← θ − η υθ√
mθ + ε

√
1− βt2/(1− β

t
1) (2.17)

Similar to the NAG/Momentum, υθ represents a first order moment whereas mθ

describes the second order moment of gradients, both scaled by individual friction
parameters β1 and β2. The addition of ε in the denominator, typically set to
small values in the order of 1e−8, is supposed to avoid extreme scaling values. By
formulating the update rule as a ratio of gradients, ADAM is invariant to rescaling
of objective function or gradients and further ensures steady movement throughout
the parameter space independent of its curvature and shape.

Figure 2.6 displays the typical behaviour of the presented optimization methods for
the same function and feature space. While simple gradient descent oscillates heavily for
higher learning rates (a), the step wise minimization converges too soon when choosing a
low value of η (b). Momentum is able to dampen the oscillations and drives the solution
towards the minimum by accumulating velocity (c). ADAM, by far the most efficient op-
timization technique in this case, both prevents the oscillation of the system and moves
straightforward to the optimum (d). Besides that, ADAM also needs less than half of
the iteration steps compared to each other method. Due to these advantages ADAM is
frequently used in many neural networks as state of the art optimizer at the moment.
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2.1 Deep learning

(a) GD, η = 1.1e−3 (b) GD, η = 5.5e−4

(c) Momentum, η = 1.1e−3, α = 0.95 (d) ADAM, η = 5.5e−2, β1/β2 = 0.9/0.99

Figure 2.6: Comparison of different optimization methods (from Schlüter [2017])

2.1.4 Generalization

Similar to other machine learning techniques, the aim of utilizing neural networks for a
given task is estimating predictions on unseen data with a computed probability or in
a confidence interval. Deep neural networks offer several techniques to improve general-
ization. Two especially valuable of these techniques are presented in the following.

Dropout
For neural networks that are optimized via Gradient Descent, a method called Dropout
has been proposed for generalization purpose [Srivastava et al., 2014]. In every iteration
step of the training procedure, a predefined amount of the neurons’ inputs in each layer
are randomly set to zero. To compensate for those omitted units, the remaining neurons’
inputs are scaled up so that the expected average input for each unit stays the same.

Figure 2.7 shows a three layer network that dropout was applied to. There are several
reasons why generalization improves with this technique. Dropout can be interpreted
as a specific variation of so-called ensemble learning, where a variety of different models
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Figure 2.7: Small network with (right) and without (left) dropout (from Srivastava et al.
[2014])

are trained in order to average predictions at the end. With the intended deactivation of
neurons, the method prevents the network to focus on a small subset of features which
possibly explain a large amount of variance in the training data. Using dropout, the
network needs to learn more robust features that consider more units at the same time.
Instead of concentrating on only a few neurons, the net has to be prepared to compen-
sate for cancelled units. In other words, the network has to adopt multiple solutions to
a problem which strongly supports the idea of generalization. Figure 2.8 displays the ef-
fect of dropout on training and validation loss. Both loss functions behaviours are noisy
due to the stochastic approach within the dropout method. While the network starts to
overfit after about 50 epochs for standard optimization, the validation loss flattens out
with the dropout technique.

Data augmentation
A generalization technique that is particularly interesting for Convolutional Neural Net-
works consists of purposefully augmenting training data [Krizhevsky et al., 2012]. For

Figure 2.8: Training and validation loss without (left) and with (right) dropout as a
function of epoch counts (from Schlüter [2017])
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many learning problems, the amount and variety of available data is limited. One way
to synthesize new training material is transforming the inputs in various manners. For
image classification tasks, pictures can be rotated, translated, scaled, cropped, flipped
or sheared while leaving the associated target label unchanged. Besides increasing the
number of data samples without further acquisition of new material, augmentation also
helps the model to become invariant to such transformations which again improves gen-
eralization. This method is particularly effective with CNNs since ConvNets are able to
adapt to augmentations by exploiting convolutional pooling layers (see Section 2.1.2).
The type of transformations, however, needs to be chosen carefully. Augmentations are
ought to represent possible real world input observations. Extreme transformation can
distort the desired input-output mappings.

This idea has been adapted for a range of audio classification tasks like blind source
separation [Uhlich et al., 2017], acoustic event detection or environmental sound classifi-
cation [Salamon and Bello, 2017] [Takahashi et al., 2016] [Piczak, 2015] [Su et al., 2017]
[Virtanen et al., 2018], speech analysis [Cui et al., 2015] [Kanda et al., 2013] [Ragni
et al., 2014], singing voice detection [Schlüter and Grill, 2015], instrument identification
[Park and Lee, 2015], chord recognition [Humphrey and Bello, 2012] and several oth-
ers. Common choices for transformations in the audio domain are time stretching, pitch
shifting, reverberation or room simulation, dynamic range compression, equalization, in-
serting background noise and, in case of polyphonic source material, mixture creation.
For efficient implementation of audio data augmentation the MUDA software framework
[McFee et al., 2015] and the SCAPER python library [Salamon et al., 2017] were devel-
oped. Throughout all learning problems, data augmented training procedures result in
higher system performance scores.

2.1.5 Validation

Since the actual achievement of machine learning models is to find a mapping from ob-
servations to target labels which can be applied to new data, it is of crucial importance
to divide datasets in a training and test set to evaluate performances. While the former
is essential to learn optimal model parameters θ, the latter is intentionally held out of
the training procedure to obtain an unbiased estimate of the model’s performance on
unseen data. The training set itself is again split two fold, using one part, as above men-
tioned, to build the model and the second one, also known as validation set, to optimize
so-called hyper parameters. In contrast to the model parameters θ, the setting of hyper
parameters (e.g. the learning rate, the form of the loss function or the number of learn-
ing iterations, also called epochs) directly influences the training procedure and hence
cannot be optimized during the learning phase. Given the fact that machine learning
algorithms often have to be developed on relatively small datasets, this data three-fold
sometimes is infeasible and impractical. Instead, a common practice in such situations is
utilizing K-fold crossvalidation, a method to iteratively split training and validation set
K times and perform the evaluation on each split. Figure 2.9 shows such a setting for
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five folds. For this type of evaluation, stratification is advisable. This process denotes
the distribution of data samples or observations over all folds in a supervised manner.
In that way, each fold is representative of the dataset, for example by including the
same amount of samples for each class. Within the crossvalidation technique, calculated
performance metrics are then averaged over the the various folds.

Figure 2.9: 5-fold Train-Validation split (from Virtanen et al. [2018])

Performance metrics
Evaluation is carried out by comparing the model’s predictions to the actual ground
truth or target labels of the test data. All necessary metrics for this evaluation can be
calculated from the following intermediate statistics:

• True positives (TP): A correct prediction. Both model output and target label
indicate that a certain class is present

• True negatives (TN): A correct prediction. Both model output and target label
indicate that a certain class is not present

• False positives (FP): A false prediction. While the model output indicates that a
certain class is present, the target label shows that the class is not present

• False negatives (FN): A false prediction. While the model output indicates that a
certain class is not present, the target label shows that the class is present

Those statistics are exclusive, in other words, only one of each case can happen simul-
taneously in a binary classifier. Their total count sums up to the number of test data
samples. Evaluation metrics are then derived from accumulated values of the interme-
diate statistics.

Accuracy measures how often the classifier makes a correct decision as the ratio of
correct model predictions to the total number of test samples:

ACC =
TP + TN

TP + TN + FP + FN
(2.18)
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Precision represents the ratio of true positives to the total count of the model’s
positive predictions, while Recall stands for the ratio of true positives to the sum of
true positives and false negatives. The F-Score is defined as the harmonic mean of
precision and recall and serves as a valuable overall measure for many classification
tasks:

P =
TP

TP + FP
R =

TP

TP + FN
F =

2PR

P +R
(2.19)

F-Score is a commonly used and popular measure to compare classificators since it
considers both precision and recall score at the same time. However, the F-Score does
not take true negatives (TN) into account at all. For a variety of classification tasks, it is
highly advisable to consider each metric individually to evaluate a model’s performance.

ROC Curves and AUC
The receiver operating characteristic (ROC) and its corresponding area under the curve
(AUC) offer the possibility to examine the performance of a binary classifier for a range
of discrimination thresholds. A ROC curve displays the true positive rate as a function
of the false positive rate, while the AUC in turn summarizes the ROC in a single value
and thereby permits to compare classifiers across all operating points. Figure 2.10 shows
the ROC for two different models and their corresponding AUC value. Higher AUC val-
ues indicate better performance. A ROC equivalent to the dotted grey line describes a
random guess classifier.

Figure 2.10: ROC and its respective AUC value for two classifiers (from Virtanen et al.
[2018])
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2.2 Music Information Retrieval

While human beings are highly skilled to recognize details from musical pieces like tempo,
instrumentation or genre by mere listening and due to experience, this task is fairly dif-
ficult to formalize and then solve with the help of machines. Music can be represented in
manifold ways. Low level representations include raw waveform or spectrograms while
symbolic representations (MIDI files, score notation etc.) or meta data (e.g. composer,
genre, tempo, key) are referred to as high-level representations, condensing the informa-
tion in subordinate terms. The difference in between such abstraction levels is known
as semantic gap. Music Information Retrieval systems focus on automatically bridg-
ing this gap by using computational methods. Extracting information from lower-level
audio representations can have various reasons. Such applications include automatic
transcription, genre classification, instrument identification, annotation, fingerprinting,
recommendation, audio tagging and many others. A broader overview as well as more
detailed information about the specific topics can be found in Müller [2007], Lerch [2012]
and Schedl et al. [2014]

2.2.1 Audio signal representations

Most digital audio signals are representing continuous air pressure signals, captured
by transducers such as microphones. The analog to digital conversion both includes a
quantization in time and amplitude. This transformation, called pulse code modulation,
stores a signal with a defined sampling frequency and bit depth in uncompressed for-
mats like WAVE. These one-dimensional representations contain only few information
compared to their storage size. Most MIR tasks, especially for deep learning, involve
the transformation of raw wave forms to two-dimensional time-frequency representations.

Short time Fourier transform
The most common spectrogram representation is the short time Fourier transform (STFT)
which indicates the time-varying energy across different frequency bands. STFTs are
typically calculated for short periods of time, so called frames or windows of length N ,
to obtain the magnitude and phase information per frequency bin k for a certain time
frame [Muller et al., 2011]:

X(k) =
N−1∑
n=0

w(n)x(n)e−j2πkn/N (2.20)

Herein x denotes a discrete time signal at sample point n and sampling rate fs, w(n)
describes an N -point temporal window function. The corresponding frequency value for
band k is determined by both fs and window length N :

f(k) =
k

N
· fs (2.21)
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According to Equation 2.20, the maximum number of bands, also referred to as fre-
quency bins, is always tied to the window length. For some applications, the window
function is shifted step wise over the time signal with a so called hop-size which is com-
monly smaller than the window size. Consecutive frames are then concatenated to a
spectrogram matrix. The STFT describes a linear, complete and invertible transform.
An inverse STFT can obtain the time-domain signal from a spectrum representation of
magnitude and phase.

Mel scale
In order to adapt this representation to the human perception of pitch, the linear STFT
bands can be post-precessed to obtain other scales such as the mel scale. Using a
bandpass filterbank of M bands, the frequency f can be mapped to the corresponding
mel band m [O’shaughnessy, 1987]:

m(f) = 2595 log10 (1 +
f

700
) (2.22)

The mel scale represents perceptually equal pitch distances according to human lis-
teners. Figure 2.11 displays the mapping from Hertz to mel scale as well as a triangular
filter bank for a spectrum conversion to 8 mel bands.

Figure 2.11: Hz to mel frequency mapping (top) and mel filter bank (bottom) (from
Schlüter [2017])

Constant-Q transform
Another technique to compute a logarithmically scaled frequency representation that
corresponds to the pitch scaling in western tonal systems is the constant-Q tranform
(CQT) [Brown, 1991]:
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XCQ(k) =
1

N(k)

N(k)−1∑
n=0

w(k, n)x(n)e−j2πQn/N(k) (2.23)

By adapting the analysis window length N(k) according to the bin frequency f(k)
(the relation from window length to frequency Q is constant), the CQT is able to obtain
a higher resolution for low frequencies:

Q =
f

∆f
=

1

21/c − 1
(2.24)

N(k) =
fs ·Q
f(k)

(2.25)

Herein, Q determines the frequency resolution and can be adjusted to match tonal
scales, for example as a parameter that represents the number of bins per octave c. The
CQT decribes a variation of the STFT which computes a spectrum only for specific,
logarithmically spaced frequency bins. CQTs are practical tools to analyze pitch and
chord structures. The variation of window lengths, however, also leads to blurring ef-
fects in the spectrum. While longer analysis windows in lower frequency ranges cause
inaccuracies regarding the time domain (horizontal blurring), short analysis windows for
higher frequencies entail inaccuracies regarding the frequency domain (vertical blurring).
As opposed to the STFT, the constant-Q transform is not invertible. [Lerch, 2012]

Figure 2.12 shows three different spectral representations for two successive 15 second
square wave signals. Both signal’s fundamental frequency rises from 20Hz to 2000Hz;
the first one linearly, the second one logarithmically. Employing a M = 128 band
filter bank according to Equation 2.23 yields the mel scale representation (middle).
The bottom plot displays the result of a constant-Q-transform with c = 12 to obtain
a representation which corresponds to equal tempered half tone spacing. Horizontal
smearing effects for lower frequencies are due to longer analysis windows, whereas vertical
smearing in higher frequency regions is caused by narrow analysis windows.

2.2.2 Engineered features

Previous to the possibility of feature learning by networks, high level representations
of signals needed careful engineering and domain expertise. Most audio descriptors are
derivations from time-frequency representations. Considering the magnitude spectrum
at a single time frame as a probability distribution over the individual bins allows to de-
scribe the spectral shape with statistical properties. Such descriptors include the spectral
centroid, spread, skewness and kurtoises which are defined as the first to fourth order
central moment of this distribution. Spectral rolloff denotes the 85- or 95-percentile of
the accumulated STFT magnitudes, while spectral slope is the first coefficient a for a
linear regression fit to the magnitude spectrum: S(k) = ak + b. [Lerch, 2012]
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Mel-Frequency Cepstral Coefficients (MFCCs) have been extensively used in the do-
main of speech recognition during the last 30 years. By applying a Discrete Cosine
Transform to the logarithmically scaled mel spectrum, they provide a compact repre-
sentation which contains most principal timbre information. The number of utilized
filter components varies depending on the application purpose. Common choices range
in between 20 to 40 coefficients. [Davis and Mermelstein, 1990] [Logan and others, 2000]

Chroma vectors are 12-dimensional magnitude vectors that represent the accumu-
lated magnitude in each pitch class of the western equal-tempered scale. They display
the distribution of those individual classes in a histogram form. Originally introduced
by [Wakefield, 1999] and [Fujishima, 1999], the chroma vector computation has been
adapted and optimized in several ways. [Lerch, 2012] gives a detailed overview of the
manifold variants.

Delta and acceleration features can be computed from any above shown audio repre-
sentation. They denote the difference of a certain feature in consecutive frames (delta)
or, in turn, the difference of the respective deltas in consecutive frames (acceleration).
Both measures assess temporal short-term fluctuations which are often evaluated in
parallel to the basic features in focus.

Figure 2.12: Comparison of different spectrogram computations
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2.2.3 Deep learning for MIR

Music audio as well as deep learning share a common property: They both incorporate
hierarchical structures [Dieleman, 2015]. Learning approaches can exploit such hier-
archical models by stacking non-linear network layers to learn abstractions of feature
representations. The learning procedure is then able to identify those contextual depen-
dencies and map the respective model to the data structure at hand for a given task.
In the MIR domain, CNNs have proven successful to model such connections due to
robustness regarding variations in the data.
Before the advent of deep learning techniques, audio data needed to be first analysed
to manually engineer representations as described in Section 2.1.2. Feature engineering
demands for high expertise in the respective research field. While hand-designed fea-
tures have been employed successfully for a range of problems, they have also reached a
performance limit [Humphrey et al., 2012] [Humphrey et al., 2013]. However, the ability
to learn feature representations comes with a certain trade-off. Learning approaches,
especially convolutional neural networks, demand for large datasets, high computational
resources and expertise regarding machine learning to effectively train models. Never-
theless, recent developments both for image as well as audio related tasks have shown
superior results for deep learning techniques. Choi et al. [2017b] provides a comprehen-
sive tutorial on the topic, including a current literature overview.1 The research work of
Dieleman [2015], Schlüter [2017] and Humphrey [2015] all contain valuable insights into
deep learning for MIR with different individual focus areas.
The optimal employment of such techniques includes various interdependent aspects.
Many advances in the field of computer vision have been adapted for music information
retrieval tasks while other design principles still need to be assessed individually for the
classification of audio data. Most deep learning approaches rely on either raw audio
waveforms (end-to-end) or spectrograms features (mid-level representation) as input.

2.2.3.1 End-to-end learning

When working towards image classification, processing raw data in form of pixels has
been established as state of the art. Full end-to-end learning includes all methods that
operate directly on unprocessed data inputs. In the audio domain, such approaches
then apply models on individual samples of the discretized waveform. By removing the
spectrum calculation step, the feature learning process can also gain insights about what
kind of information are salient for a given task and to further understand inherent data
structures. Dieleman and Schrauwen [2014] have first explored this approach to music
audio by comparing end-to-end to spectrum representation learning with ConvNets.
Although the latter showed inferior results for this particular task and dataset, the
network was able to discover frequency decompositions on its own. Figure 2.13 displays
a subset of trained frequency-selective filters on raw audio for the lowest network layer.

Since learning on raw audio retains all entailed information in the data, including the

1An extensive and updated list of the latest Deep Learning research in the field of MIR is provided at
https://github.com/ybayle/awesome-deep-learning-music.
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Figure 2.13: Subset of learned representations from raw audio (low-pass filtered)

phase, this approach is also highly appealing with regard to generative models in order
to synthesize audio signals. Subsequent studies on learning on sample level have shown
promising results for synthesis systems concerning text-to-speech (TTS) systems [van den
Oord et al., 2016] [van den Oord et al., 2017] [Mehri et al., 2016] or musical instrument
notes [Engel et al., 2017] [Mor et al., 2018]. Despite comparably good audio quality
and flexibility, training such models demands for very high computational capacities
that only few researchers have access to. Other approaches which exploit raw audio
for classification instead of (re)synthesis have been catching up with spectrogram based
learning for a variety of MIR tasks, yet still remain inferior [Tüske et al., 2014] [Golik
et al., 2015] [Ghahremani et al., 2016] [Sainath et al., 2015] [Dai et al., 2017] [Lee et al.,
2017]. Only for larger datasets, end-to-end approaches can achieve similar performance
results [Pons et al., 2017].

2.2.3.2 Mid-level representation learning

For most MIR tasks, feature learning and classification still relies on mid-level repre-
sentations in form of spectrograms. From a biological point of view, the transformation
to spectrograms is more than reasonable: In advance to reaching the human brain, the
cochlea processes audio signals by applying a filter bank in a similar manner. Con-
verting audio to image-like features in form of spectrograms furthermore simplifies the
adaptation of computer vision learning methods. The most commonly used input fea-
tures are STFTs and mel spectrograms (see Section 2.2.1). While STFT representations
also contain phase information which can be employed for a sonification of layers via re-
transformation to the audio domain [Choi et al., 2016], mel spectrograms only preserve
magnitude values. However, most studies report best performance results for the latter
or other logarithmically scaled representations [Choi et al., 2017b]. Such compressed and
compact frequency scales allow for capturing overtone structures in convolutional layers
with smaller receptive fields since filter weights can be shared within a larger range of
frequencies and pitches. CQT spectra are especially helpful for tasks like chord recog-
nition. Herein, harmonic relations in equally tempered tuning show similar spectral
profiles independent from the frequency region. STFTs often contain a lot of redun-
dant information for classifying music audio. Learning problems which involve noise-like
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material, for example environmental audio, can benefit from linear spectrum representa-
tions since such sound profiles are less related to harmonic structures and often involve
a broader frequency range [Virtanen et al., 2018].

Preprocessing the magnitude values of spectrograms can further improve the classi-
fication results. Such steps include spectral whitening [Lee et al., 2009] or logarithmic
mapping [Choi et al., 2017a] and the subsequent standardization to zero mean and unit
variance [LeCun et al., 1998]. Besides the fact that logarithmic magnitude values cor-
respond to the human loudness perception, Schlüter [2017] notes that a transformation
to the logarithmic scale also results in a rather gaussian-like distribution of magnitude
values which could possibly improve the learning procedure. For a more extensive ex-
planation of feature representations and their pre-processing steps, also containing a list
of related MIR studies, see Schlüter [2017, pp. 69] and Choi et al. [2017b].

The size of time-frequency input representations depends on the prediction time scale.
For systems which have to classify data in real time, the input audio length cannot ex-
ceed the maximum allowed system latency, most often a single frame. In this case, the
model architecture is restricted to 1-D convolutions along the frequency axis, ignoring
temporal relationships if not incorporating any long or short term memory to the model
in form of recurrent units.2 Without depending on real-time predictions, several frames
can be concatenated to time-frequency matrices, henceforth called blocks. The choice of
frame and block length depends on the task at hand. While smaller analysis frames can
capture finer temporal structures at the cost of loosing frequency resolution, a broader
analysis scope can identify correlations on a larger timescale and include more context
for the system. Multiscale representations present a possible solution to integrate sev-
eral spectograms with different resolutions at the same time. Hamel et al. [2012] has
introduced this approach which was further adapted by Dieleman and Schrauwen [2013],
incorporating Gaussian and Laplacian pyramids. The representations at different time
scales can also serve as an input for different CNN architectures, for example to aggregate
features of different scales and layers to build more powerful classifiers [Lee and Nam,
2017]. Independent from the computation parameters, matrix representations allow for
2-D convolutions by sliding various filter kernels over the time and frequency domain
simultaneously.

2.2.3.3 Network design

Although spectral images are often compared to their visual counterparts, they com-
prise different structures. Real world pictures show high local correlations regarding
colour and intensity in both dimensions, representing objects or parts. In comparison,
spectrograms are mostly correlated along a single axis, either due to harmonic content
or transient behaviour. While the advantage of scaling and rotation invariance due to
convolutional network layers does not apply to spectral audio representations in the
same way, translation invariance in both directions is of crucial importance to detect

2Recurrent Neural Networks are out of this thesis’ scope. Further reading is provided by Goodfellow
et al. [2016]

22



time shifted or pitched structures of its own kind [Choi et al., 2017b]. Even though rel-
atively small rectangular filter shapes have proven to work reasonably well in practice,
Pons et al. [2016] recommend employing musically motivated filters with adapted and
different receptive fields in the same convolutive layer to improve performance results
for automatic music tagging and timbre analysis [Pons et al., 2016] or genre recognition
[Pons and Serra, 2017]. By using shallow architectures and a relatively small amount
of trainable parameters, those approaches are less prone to overfitting, reduce computa-
tional complexity and especially scale well to small datasets.

As long as learning approaches are based on mid-level representations, design princi-
ples for convolutional layers still highly depend on the task at hand. Some networks are
adapted or even fully designed towards a particular task which again requires domain
expertise within the related field. Other hyperparameters to tune the network are the
number of filters and the employment of strided convolutions [Choi et al., 2017b].
Besides choosing appropriate filter kernels, deep learning models can further vary in
terms of layer types or network depth. The possibilities to design ConvNets for MIR are
manifold. Iteratively determining hyperparameters would require an enormous amount
of computational power, depending on the dataset size. Recent machine learning research
also focuses on building network structures that optimize their design hyperparameters
automatically for further improvement [Gu et al., 2017].

2.2.3.4 Transfer learning

The main prerequisite to solve machine learning problems is the availability of large
datasets. Unfortunately, data is more than sparse for a lot of MIR tasks. In com-
puter vision, this challenge has been tackled by transfer learning. Models like AlexNet
[Krizhevsky et al., 2012] which were trained on huge datasets can be re-utilized for simi-
lar image recognition tasks where less training material is available in order to bypass the
shortage of data. In general, the concept of transfer learning describes the employment of
learned features from a source task and applies those features for a different but related
target task [Pan and Yang, 2010]. In particular, an already trained network is utilized
to first extract features from a new but smaller dataset and afterwards employs those
features for the target classification. The adaptation of the original network is often re-
ferred to as fine tuning. Transfer learning for MIR has not yet gained a lot of attention
since large datasets are barely available. The Million Song Database [Bertin-Mahieux
et al., 2011] which has been employed by Van Den Oord et al. [2014] and Choi et al.
[2017c] for transfer learning towards a variety of audio-related target tasks constitutes
the only big enough and publicly available dataset to apply this concept in the MIR do-
main. Hamel et al. [2013] has explored an alternative technique by embedding features
and labels from several datasets into a shared latent space with linear transformations.
However, in comparison to computer vision where the employment of large and powerful
models for different tasks is already state of the art, transfer learning for MIR still fails
to be properly adapted due to the shortage of large datasets and the diversity of audio
classification tasks.
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3 Multi-track crosstalk reduction using
spectral subtraction

While many music-related blind source separation methods focus on mono or stereo
material, the detection and reduction of crosstalk in multi-track recordings is less re-
searched. Crosstalk or ’bleed’ of one recorded channel in another is a very common
phenomenon in specific genres such as jazz and classical, where all instrumentalists are
recorded simultaneously. We present an efficient algorithm that estimates the crosstalk
amount in the spectral domain and applies spectral subtraction to remove it. Randomly
generated artificial mixtures from various anechoic orchestral source material were em-
ployed to develop and evaluate the algorithm, which scores an average SIR-Gain result
of 15.14 dB on various datasets with different amounts of simulated crosstalk.

3.1 Introduction

In many real-world music performance recordings, bands and ensembles are recorded
without perfect acoustic separation. As a result, microphones which were intended to
capture a particular instrument also record nearby signals; these additional signals are
referred to as crosstalk, spill, or bleed. Although mixing practices allow to integrate
crosstalk into the final mix, there are many instances where a better separation of these
tracks is desirable for mixing. Other applications such as correctly annotating audio
data with activation values, crosstalk suppression in speech audio, or collecting audio
data for classification, could benefit from this approach as well.

Established blind source separation methods for music are typically focused on mono
or stereo content while employing techniques based on factorization algorithms like NMF
[Lerch, 2012] [Müller, 2007], ICA or PCA [Comon and Jutten, 2010], Hidden-Markov-
Models [Mysore et al., 2010], or spatial correlation [Ozerov et al., 2012]. More recent
approaches also apply deep neural networks to train separation models [Chandna et al.,
2017] [Uhlich et al., 2015]. However, if there is single source material from recording
scenes in form of multitrack data available, none of the methods mentioned above take
advantage of this additional information since they are tailored for mono/stereo content.

The method presented in this paper focuses on cases where multi-track recordings
of, e.g., classical ensembles are available. Clifford and Reiss [2011] have investigated
a method for crosstalk cancellation for multiple sources by using delay estimation and
centered adaptive filters. Both Kokkinis et al. [2012] and Prätzlich et al. [2015] estimate
the spectral power density of each voice and then apply a Wiener filter for crosstalk
reduction.



3 Multi-track crosstalk reduction using spectral subtraction

In the proposed system, the crosstalk on a particular track is modeled as a weighted
sum of the remaining tracks of this recording. The amount of crosstalk between each pair
of tracks is estimated by minimizing a cost function based on spectral energy content
through gradient descent with momentum [Sutskever et al., 2013]. As an alternative to
Wiener filtering, the crosstalk is then removed through spectral subtraction [Boll, 1979].

For evaluation purposes, various datasets of anechoic orchestral multi-track recordings
[Pätynen et al., 2008] are used to create artificial mixtures with different amounts of
crosstalk (-18 dB, -12 dB and -6 dB). These artificial mixtures will be referred to as
mixture tracks. Results are evaluated in two ways: by comparing the mixing matrix to
the estimated spectral subtraction weights via correlation and by computing the standard
blind source separation performance metrics SDR, SIR, and SAR [Vincent et al., 2006].
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Figure 3.1: Processing steps of the crosstalk reduction algorithm
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3.2 Method

The main processing steps of the presented method are displayed in the flowchart in
Fig. 4.1. First, a frequency domain representation of the multi-track data is computed by
STFT. The crosstalk estimation algorithm models the crosstalk on a particular mixture
track as a weighted sum of the other tracks. This estimation process employs an opti-
mization technique based on gradient descent to minimize a spectral energy cost function.
After the spectral subtraction, the crosstalk-reduced magnitude spectrogram is recom-
bined with its original phase information to obtain the crosstalk-reduced audio data by
inverse STFT. Let X(j, n, k) denote the matrix containing the magnitude spectrogram
of the j-th mixture track, calculated with a Hamming window (framesize 4096 samples,
hopsize 2048 samples) with k representing the frequency bin index and n the time frame.
The analysis window length is approx. 85 ms (at 48 kHz). The rationale behind using
comparably long analysis frames is that short time delays have less effect on the crosstalk
reduction method and can therefore be neglected. Xmix,l(n, k) = X(j= l, n, k) represents
the spectrum of the l-th track with crosstalk.

3.2.1 Crosstalk estimation

This section outlines the process of estimating the amount of crosstalk from the multi-
track data. For each target instrument l, the amount of crosstalk from all other tracks
is estimated to derive the weighting factor λl,j via gradient descent on a cost function
Θ(λ) that aims to minimize the spectral crosstalk energy in the target mixture spectrum
Xred,l(n, k), summed over all time frames N as well as all frequency bins K:

Θ(λ) =
1

N
·
N∑
n=1

K∑
k=1

[
Xmix,l(n, k)−

J∑
j=1, j 6=l

λl,j ·X(j, n, k)
]2

(3.1)

A correction factor 1/N accounts for different track lengths. The gradient for λl,j=i(m)
in iteration step m is then given by:

∂Θ(λl,i(m))

∂λl,i(m)
= − 2

N
·
N∑
n=1

K∑
k=1

[
Xmix,l(n, k)−

J∑
j=1, j 6=l

λl,j(m) ·X(j, n, k)
]
·X(i, n, k).

(3.2)

The update rule with momentum [Sutskever et al., 2013] is defined by:

λl,i(m+ 1) = λl,i(m)− γ(m) · v(m+ 1). (3.3)
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3 Multi-track crosstalk reduction using spectral subtraction

The adaptation v is computed as:

v(m+ 1) = β · v(m) +
∂Θ(λl,i(m))

∂λl,i(m)
(3.4)

with β as the momentum parameter, sometimes called friction, set to 0.8. The learning
rate γ slightly decreases in each iteration step m:

γ(m+ 1) = 0.99 · γ(m) (3.5)

with an initial value of γ(0) = 0.001. Convergence is reached if the stepwise optimiza-
tion of cost function Θ(λ(m)) falls below a certain threshold δ:

Θ(λ(m+ 1))−Θ(λ(m)) < δ. (3.6)

The gradient descent algorithm aims to find the λl,j that guarantee the lowest overall
power within the spectrum Xred,l according to the cost function Θ(λ). By utilizing this
approach, λl,j adapts to the relative crosstalk amount of the different mixture tracks
during the crosstalk estimation. All weighting factors λl,j smaller than zero are auto-
matically set to zero during the gradient descent process.

Table 3.1 shows an entire set of λl,j values for a dataset with nine tracks. The first
row displays all estimated weighting factors λbassoon,j that have to be subtracted from
the bassoon track to minimize crosstalk.

λl,j bassoon clarinet bass flute f horn sopran viola violin cello

bassoon 0 0.208 0 0.141 0.314 0.046 0.086 0.147 0.058
clarinet 0.182 0 0.07 0.119 0.18 0.065 0 0.105 0.072
bass 0 0.073 0 0 0.298 0.114 0.03 0.18 0.287
flute 0.065 0.062 0 0 0.204 0.017 0 0.112 0
f horn 0.095 0.066 0.086 0.14 0 0.031 0.141 0 0.059
sopran 0.053 0.085 0.118 0.054 0.118 0 0.102 0.084 0.017
viola 0.059 0 0.022 0 0.4 0.078 0 0.2 0.157
violin 0.102 0.089 0.122 0.179 0 0.054 0.166 0 0.065
cello 0.047 0.062 0.185 0 0.135 0.011 0.128 0.063 0

Table 3.1: Example matrix for estimated λl,j values, computed by the gradient descent
algorithm
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3.2.2 Crosstalk reduction

After estimating the weight factors for all the bleeding instruments for each track as
outlined in Sect. 3.2.1, a sum of their weighted magnitude spectra can be subtracted
from Xmix,l(n, k) by simple spectral subtraction Boll [1979]. The result with reduced
crosstalk Xred,l(n, k) is therefore calculated as

Xred,l(n, k) = Xmix,l(n, k)−
J∑

j=1, j 6=l
λl,j ·X(j, n, k), (3.7)

where J represents the total number of tracks. The weighting factor λl,j is estimated
from the spectrograms as explained below. If the subtraction results in negative spectrum
values in Xred,l(n, k), they will be set to zero. Finally, the reduced magnitude spectrum
is combined with the original phase information from the STFT analysis to obtain the
crosstalk-reduced audio file by inverse Fourier transform.

Figure 3.2 displays example results of the process described for one excerpt from the
dataset. The left graphic shows the magnitude spectrogram of a single clean bassoon
signal Xdry,bassoon, the plot in the middle represents the magnitude spectrogram of the
same signal with crosstalk Xmix,bassoon, and the result with reduced crosstalk Xred,bassoon

is shown on the right. All spectrograms are in logarithmic dB scale.
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Figure 3.2: Three different magnitude spectra excerpts from the unmixed original bas-
soon track (left), the artificially generated bassoon mixture with 6 dB
crosstalk (middle) and the crosstalk reduced track (right)

29



3 Multi-track crosstalk reduction using spectral subtraction

3.3 Evaluation

There exist no standardized datasets or evaluation methods for the tasks of crosstalk
estimation and reduction for multi-track data. A dataset for these tasks should allow for
full control over parameters in the mixing process such as the amount and combination
of crosstalk. The multi-track recordings used to create the dataset used in this study
are from anechoic symphonic recordings.

Two different metrics are used to evaluate the two main processing blocks of the
presented algorithm, respectively. First, the correlation coefficient is computed between
the estimated lambda values and a transformed mixing matrix to evaluate the crosstalk
estimation. Second, established blind source separation measures (SDR, SIR, and SAR,
see below) are used on the audio results to evaluate the overall system.

3.3.1 Dataset

The dataset is created from excerpts from four orchestral anechoic multi-track recordings
[Pätynen et al., 2008]:

• Beethoven: Symphony no. 7, I mov. (3:11 min):
11 Parts: Flutes, Oboes, Clarinets, Bassoon, French horns, Trumpets, Timpani,
Violin, Viola, Cello, Contrabass

• Bruckner: Symphony no. 8, II mov. (1:27 min):
13 Parts: Flutes, Oboes, Clarinets, Bassoon, French horns, Trumpets, Trombones,
Tuba, Timpani, Violin, Viola, Cello, Contrabass

• Mahler: Symphony no. 1, IV mov. (2:12 min):
14 Parts: Flutes, Oboes, Clarinets, Bassoon, French horns, Trumpets, Trombones,
Tuba, Timpani, Percussions, Violin, Viola, Cello, Contrabass

• Mozart: An aria of Donna Elvira from the opera Don Giovanni (3:47 min):
9 Parts: Flute, Clarinet, Bassoon, French horns, Violin, Viola, Cello, Contrabass,
Soprano

For each of these four pieces, three different mixture sets are constructed with a ran-
domly generated mixing matrix. This mixing matrix has ones on the diagonal and
positive values elsewhere that are limited to a defined maximum crosstalk value for the
remaining elements. The three mixture sets have a different maximum crosstalk amount:
-6 dB, -12 dB, and -18 dB, which relates to maximum mix factors of 0.5, 0.25, and 0.126,
respectively. Table 3.2 shows an example mixing matrix (-18 dB dataset of the Mozart
piece). Every row shows the contributions of each input track to one mixture track.
The first row, for example, contains all fractions of the solo anechoic instrument tracks
that are combined to the artificial bassoon mixture. A symmetric mixing matrix ensures
that, for example, the scaling factor of the bassoon instrument on the clarinet mixture
track equals the factor of the clarinet instrument on the bassoon mixture track. It is
important to note that these mixing values are scaling factors that are independent of
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3.3 Evaluation

the individual track’s acticity and loudness; thus, the actual amount of crosstalk is not
necessarily reflected through the mixing matrix value.

Time delays are then calculated according to the reciprocal quadratic relation of dis-
tance and amplitude in the free field and accounted for in the mixing process. The
reference amplitudes A = 1 (diagonal elements in the mixing matrix) correspond to a a
distance of 1 m. Finally, all mixture tracks are normalized to the maximum amplitude
of the loudest mixture to preserve the mixing matrix relations.

bassoon clarinet bass flute f horn sopran viola violin cello

bassoon mix 1 0.097 0.051 0.085 0.088 0.066 0.074 0.097 0.026
clarinet mix 0.097 1 0.094 0.062 0.073 0.06 0.031 0.073 0.07
bass mix 0.051 0.094 1 0.024 0.103 0.101 0.084 0.117 0.079
flute mix 0.085 0.062 0.024 1 0.111 0.029 0.011 0.073 0.004
f horn mix 0.088 0.073 0.103 0.111 1 0.063 0.079 0.002 0.077
sopran mix 0.066 0.06 0.101 0.029 0.063 1 0.083 0.015 0.046
viola mix 0.074 0.031 0.084 0.011 0.079 0.083 1 0.109 0.006
violin mix 0.097 0.073 0.117 0.073 0.002 0.015 0.109 1 0.062
cello mix 0.026 0.07 0.079 0.004 0.077 0.046 0.006 0.062 1

Table 3.2: Randomly generated mixing matrix for the -18 dB Mozart dataset, maximal
values of 0.126

3.3.2 Correlation results

The mixing procedure may be represented as a system of linear equations Ax = b in
which A is the mixing matrix, x represents the vector of unmixed instrument tracks
and b describes the mixture vector. Solving this equation for x leads to the de-mixing
matrix A−1. The spectral subtraction Eq. (3.7) can be seen as related to this system of
linear equations, where the λl,j matrix (see Table 3.1) represents an estimation of this
inverted matrix with flipped signs and empty diagonal. For the sake of concise notation,
we will refer to λl,j as L from now on. Similar to the mixing operation, we thus get a
similar system of linear equations x ≈ (−L + I)b and it follows that A−1 ≈ −L + I.

The matrices cannot be expected to be identical even in the best case as time delays
were introduced when creating the dataset, however, the correlation between A−1 and
(−L + I) should be high if the estimation works. Table 3.3 shows the correlation results
for each of the three mixture sets, averaged over all four orchestral pieces. While the
-12 dB and -18 dB sets both show very high correlation values of at least 0.9 over all four
pieces with barely any variation, the -6 dB sets perform comparably bad for all pieces
except the Mozart one. While the Mahler -6 dB set still shows a correlation of about
0.75, the two other sets show only correlation values between 0.6 and 0.437.
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3 Multi-track crosstalk reduction using spectral subtraction

-6dB -12dB -18dB

Beethoven 0.437 0.964 0.933
Bruckner 0.595 0.961 0.941
Mahler 0.752 0.931 0.900
Mozart 0.932 0.973 0.976

Average 0.678 0.957 0.937

Table 3.3: Correlation of A−1 and (−L + I)

3.3.3 BSS Eval results

In order to evaluate the crosstalk suppression, the blind source separation (BSS) eval-
uation measures signal-to-distortion-ratio (SDR), signal-to-interference-ratio (SIR), and
signal-to-artifacts-ratio (SAR) [Vincent et al., 2006] were computed and investigated.
These measures have become standard metrics for the evaluation of blind source sep-
aration systems, for example, in the SiSEC campaign1. Since the present approach
processes multi-track data as opposed to most BSS methods which work with mono or
stereo content, the following results cannot be compared directly to other studies. BSS
evaluation metrics are highly dependent on the datasets used for separation (or crosstalk
reduction). For this reason, a comparison of BSS Eval measures of the mixtures and
the actual crosstalk reduced audio files seems more suitable to get a better insight of
the algorithm performance. Table 3.4 shows the BSS Eval measures of mixtures and
crosstalk reduced tracks as well as their difference.

Mixture Crosstalk-reduced Difference

-6 dB -12 dB -18 dB -6 dB -12 dB -18 dB -6 dB -12 dB -18 dB

SDR 0.04 5.79 11.83 7.88 12.95 15.15 7.84 7.16 3.32
SIR 0.04 5.8 11.93 13.3 22.16 27.75 13.26 16.36 15.81
SAR 48.05 39.56 31.53 10.48 13.75 15.49 -37.57 -25.81 -16.05

Table 3.4: BSS evaluation measures for mixtures, crosstalk reduced tracks and their
difference, sorted by dataset and averaged over all four orchestral pieces

SDR and SIR measures for the mixture tracks show very similar values, ranging from
0 dB to about 12 dB according to the intervals given by the datasets. The SAR values
for those vary from 48 dB down to about 31.5 dB in equal distance. For both the -6 dB
and -12 dB mixture sets the crosstalk reduced audio tracks show SDR improvements of
about 7–8 dB while the -18 dB sets only gain about 3 dB. The difference in terms of SIR
measures is very similar, all sets show improvements in the range of 13–16 dB. Changes

1http://sisec.inria.fr, last accessed March 6, 2018
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regarding the SAR values depend more on the mixture set. While the SAR measure
drops heavily for the -6 dB set, the -12 dB set shows a negative gain of about 26 dB and
the -18 dB SAR value only decreases by 16 dB.

To investigate the variation of the BSS Eval measures for different music pieces, Ta-
ble 3.5 displays the SDR/SIR difference of mixtures and crosstalk-reduced tracks as well
as the absolute SAR scores for the crosstalk reduced results. SDR values increase nearly
uniformly over all four orchestral pieces. While the increase for the -6 dB and -12 dB
mixture sets ranges from 6 dB to 9 dB, the difference regarding the -18 dB mixture set
only results in about 2–4 dB. SIR values are even more evenly distributed: most results
lie in the interval of about 14–16 dB except the Bruckner/Beethoven values for the -6 dB
dataset (10–11 dB) and all Mozart scores which are about 4 dB higher.

SAR values, in turn, quantify the musical noise in the crosstalk-reduced audio tracks.
Similar to the SDR/SIR gain results, the metrics especially vary for the -6 dB mixture
set, where the values range from 9 dB to about 12.5 dB. Results constantly increase for
the mixture sets with lower crosstalk, although the improvement from the -6 dB to -12 dB
sets is more distinct than from -12 dB to -18 dB. Again, the Mozart pieces have the best
results being about 3 dB higher than the other pieces.

SDR gain SIR gain SAR absolute (results)

-6 dB -12 dB -18 dB -6 dB -12 dB -18 dB -6 dB -12 dB -18 dB

Beeth. 7.53 7.33 3.5 11.21 15.83 15.52 10.78 14.09 15.54
Bruck. 6.67 6.66 2.41 10.12 14.62 14.29 8.99 12.69 14.12
Mahler 8.04 7.33 3.46 14.66 15.39 14.99 9.71 12.24 14.54
Mozart 9.14 7.31 3.92 17.03 19.59 18.46 12.43 15.97 17.74

Table 3.5: SDR/SIR gain for each mixture set as well as absolute SAR values of the
crosstalk reduced results

3.4 Discussion

The results of evaluation metrics show generally consistent trends. Very high correlation
values of te de-mixing matrix A−1 and (−L + I) for both the -12 dB and -18 dB dataset
for all pieces validate the success of the presented approach and prove that the gradient
descent algorithm finds suitable λl,j values minimizing the cost function. Multiple runs
with random initialization further indicate that the detected cost minima are actually
global minima.

There exist multiple reasons explaining the variation of the results between the dif-
ferent pieces. First, the total amount of crosstalk is not equal between the pieces. This
is shown by the SIR measure of the mixtures given in Table 3.6 as these values repre-
sent the actual amount of crosstalk. While the increase over mixtures is consistently
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6 dB as expected, the variation between pieces amounts to up to 4 dB. There are two
reasons for that. First, the way the mixing matrix is generated means that the resulting
amount of crosstalk depends on the number of instrument tracks. Second, the mixing
matrix only signifies the factor but the resulting amount of crosstalk also depends on the
track content and distribution; for example, percussion or timpani mixture tracks often
show very low SIR and SAR since events only occur rarely during the track. Therefore,
the optimal solution for the minimization of the cost function using the spectral energy
criterion produces relatively high λl,j values which in turn result in a harsh spectral
subtraction and more musical artifacts. Those artifacts are quantified in the SAR score
(see Table 3.4).

Crosstalk reduction for instruments that have overlapping frequency ranges with a
similar tonal character is harder than for instruments with a unique spectral signature.
Sections where the whole ensemble plays simultaneously are more difficult to manage for
the algorithm than solo parts of individual instruments. In all cases, the Mozart piece
achieves the best performance scores. The SAR values of the three remaining pieces
range about 3 dB in comparison the the Mozart piece, each one following the above
mentioned relation so that the absolute SIR values increase in 6 dB steps towards the
-18 dB datasets (see Table 3.6).

-6dB -12dB -18dB

Beethoven 0.03 5.92 11.73
Bruckner -1.35 5.1 11.46
Mahler -0.91 3.81 10.81
Mozart 2.39 8.39 13.73

Table 3.6: Absolute SIR values of the mixtures

In general, the crosstalk reduction method generates promising results. Whether the
algorithm is suitable for a specific use case highly depends on the application. For tasks
such as annotating audio data with instrument activations, the amount of separation
(compare SIR) is crucial while the actual audio quality is irrelevant. The amount of
subtraction can be controlled by scaling the λl,j values, which can be an advantage in this
scenario. In other cases, such as mixing software or more consumer-oriented products,
the amount of musical artifacts can be decreased by utilizing an improved separation
approach. Possible such improvements could include filtering approaches [Ephraim and
Malah, 1984, Lukin and Todd, 2007] or other musical noise suppression techniques [Goh
et al., 1998, Esch and Vary, 2009] to reduce artifacts. Thresholding in the spectral or
temporal domain could constitute another post-processing feasibility.

The generated dataset contains numerous different instruments which makes the task
more challenging. To explore the applicability for a broader field of possible applica-
tions, the algorithm needs to be tested on different musical genres, for example with the
MedleyDB [Bittner et al., 2014] or Mixing Secrets [Gururani and Lerch, 2017] dataset.



3.5 Summary

3.5 Summary

The present study has introduced a new method for crosstalk reduction applied to multi-
track data such as multi-microphone ensemble recordings. In a first step, this approach
estimates the amount of crosstalk from a particular mixture track with a weighted sum
of the remaining tracks by iteratively minimizing a spectral cost function with gradi-
ent descent. Second, this weighted sum of remaining instruments is subtracted from
the mixture track to perform the reduction. Combining the resulting magnitude spec-
trum with its original phase information allows to obtain the crosstalk-reduced audio
data via inverse STFT. In order to evaluate the algorithm, various mixtures with dif-
ferent amounts of crosstalk were artificially generated from multiple anechoic orchestral
recordings. Results were evaluated in two ways: first, by correlating the mixing ma-
trices and the resulting lambda matrices containing the estimated crosstalk factors to
investigate the crosstalk estimation itself, and second by employing the standard blind
source separation evaluation metrics SDR, SIR, and SAR to evaluate the suppression.
Both evaluation metrics showed promising results. Post-processing techniques such as
filtering or noise suppression could further improve the algorithm by reducing artifacts.
For possible applications in a wider musical scope, tests with more genres are recom-
mended.
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4 Investigating the influence of frame sizes
in instrument identification systems
based on convolutional neural networks

Identifying instruments in a given musical piece can help to improve recommender sys-
tems, implement new functions for music libraries or inform related tasks like source
separation or score notation. The herein presented instrument identification systems
are based upon a convolutional neural network system and trained on classical music
multi-track data from the Berlin University of Arts. Labels and input features in form of
mel-spectrograms are extracted in different time frames sizes to investigate the influence
of frame size to classification performance. Besides a standard learning method, two
different approaches to classify small time frames while learning on larger frames are
investigated; sliding predictions and multiple instance learning. Results show a certain
performance peak for frame sizes of about 2.7 seconds regarding this dataset and the
applied learning settings. Using larger frame sizes to iteratively classify smaller frames
only improves upon standard techniques in a limited frame size region. The employed
multiple instance learning techniques cannot enhance classification performance.

4.1 Introduction

One of the characteristics of a musical piece is it’s instrumentation. Very often, the
choice of instruments itself provides insights into the music era, genre or even particular
artist of a given song. Therefore, information about a song’s instrumentation could im-
prove Music Information Retrieval (MIR) tasks such as automatic tagging, user search
requests in online music libraries or music recommendation in streaming services. Fur-
thermore, knowledge about instruments and their properties can potentially improve
other tasks such as source separation or automatic transcription by allowing these sys-
tems to adapt their parameters. Especially instrument recognition (IR) algorithms for
polyphonic mixtures could be beneficial for such tasks since most popular or classical
music recordings consist of those mixtures.

While humans, particularly musically trained experts, are able to analytically de-
construct music pieces into harmonic or rhythmic structures as well as their instrumen-
tation, data-driven systems still struggle to solve this task sufficiently well. There exist
multiple reasons for that. First, the instruments have to be identified in a complex
polyphonic mixture of non-trivial sounds. Second, the number of different instruments
throughout genres is large. Third, each musical instrument might offer a wide variability
in terms of timbre, pitch, tuning, and playing techniques.



4 Investigating the influence of frame sizes in instrument identification systems based
on convolutional neural networks

The present study is concerned with identifying instruments in polyphonic mixtures
of classical music, both chamber and orchestra pieces within a corpus of 13 pre-defined
classical instruments. One of the main challenges in such MIR and machine learning con-
texts is collecting a sufficiently large and diverse dataset to work with. Unfortunately,
for classical polyphonic music, there do not exist any labeled datasets. Therefore, our
dataset comprises a collection of multi-track recordings from concerts at Berlin Univer-
sity of Arts. Features and labels are extracted from these multi-tracks in order to train
a classifier based on a convolutional neural network architecture. The extraction and
learning process is carried out with various lengths of audio input snippets to investigate
in which way this input length influences the classifier performance. Furthermore, two
methods are presented and evaluated which allow for model predictions on short time
scales, even though the labelling information and hence the learning process was carried
out on a larger time scale. In this way, relatively inaccurate labels can still be utilized
to give precise predictions.

4.2 Related work

Existing approaches to instrument identification differ in terms of methodology and
source material. Generally, the identification task becomes harder the more instruments
play simultaneously and the more those instruments are similar in their time-frequency
patterns. Most studies either use single instrument notes or phrases that were recorded
individually or polyphonic mixtures of all instruments playing together in an ensemble
as in this work.

4.2.1 Monophonic instrument recognition

The analysis of individually recorded notes has been tackled with a variety of approaches
on different datasets and instruments. As one of the first studies in this field, Eronen and
Klapuri [2000] used Gaussian- and kNN-classifiers on a set of 43 engineered temporal and
spectral features from 30 different orchestral instruments. This work is often referred
to as baseline system and marks a first milestone in the research field of instrument
recognition. Diment et al. [2013] investigated modified group delay features including
phase information plus mel-frequency cepstral coefficients (MFCCs) on different sets up
to 22 instruments from the RWC database [Goto et al., 2002]. Yu et al. [2014] employed
sparse coding on cepstrum with temporal sum-pooling for classifying 10 instruments
from the ParisTech dataset [Joder et al., 2009]. Park and Lee [2015] extract spectrogram
images in combination with multi-resolution recurrence plots including phase information
from different notes of 20 different instrument, taken from the UIOWA MIS database.
Those are fed into a convolutional neural network to build a classifier. Han et al. [2016]
propose a sparse coding approach to learn features from mel-spectrograms, extracted
from single notes of 24 instruments from the RWC dataset [Goto et al., 2002], to train
a support vector machine (SVM).

While formerly mentioned approaches focus on isolated notes, various studies have
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also applied instrument recognition on monophonic solo phrases. Krishna and Sreenivas
[2004] utilized line spectral features combined with gaussian mixture models (GMM) to
classify 14 individual instruments. Essid et al. [2004] also employed GMM on the task of
classifying solo performances of five different instruments, but paired the approach with
MFCCs and principal component analysis (PCA).

4.2.2 Polyphonic instrument recognition

High performance results for instrument recognition regarding monophonic source ma-
terial have shifted the research focus more towards polyphonic mixtures. Heittola et al.
[2009] focussed on synthesized mixtures containing randomly generated notes from 14
instruments, classifying those with a non-negative matrix factorization based source fil-
ter model with MFCCs and GMM. Kitahara et al. [2007] employed several spectral,
temporal and modulation features combined with PCA and linear discriminant analysis
(LDA) as classification methods. Duan et al. [2014] investigated mel-scale uniform dis-
crete cepstrums as novel spectral representation with a radial basis function SVM. The
approach was evaluated on randomly mixed chords from note samples of 13 different
instruments, taken from the RWC database [Goto et al., 2002].

For many applications, a sufficient outcome from IR algorithms is determining a pre-
dominant instrument. Fuhrmann et al. [2009] and Bosch et al. [2012] use a large set of
feature, paired with source separation methods as pre-processing step to identify such
predominant instruments with individual SVM models for each instrument class.

In the domain of IR, machine learning efforts, especially convolutional neural networks
(CNN) which include feature learning, have become more and more popular due to their
success in the whole MIR domain [Choi et al., 2017b]. Regarding the task at hand
several studies have already exploited this learning techniques for instrument recogni-
tion. Park and Lee [2015] introduce a feature approach with spectrogram plus so-called
multi-resolution recurrence plots which incorporate the audio signal’s phase trajectory
distances in matrix form to feed a multi-column CNN. Han et al. [2017] apply multi-
convolutional-layer CNNs with single-label data to determine predominant instruments,
hereby including a detailed evaluation of network architecture, analysis time windows
and prediction configuration.

4.3 Methods

Similar to the above mentioned techniques, the herein proposed approach is also based
on polyphonic source material. However the classification is not determining a predom-
inant instrument but all instruments simultaneously in a multi-class and multi-label
learning setting, which means multiple instruments can be classified at the same time.
To summarize the methodology of this work, figure 4.1 shows a flowchart of the process.
Each individual step is described in the following.
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Figure 4.1: Flowchart of processing steps

4.3.1 Pre-processing

All multi-track audio data was sampled with 44.1 kHz, converted to mono and normalized
by its maximum value per track. Each track is divided into frames of nS = 1024 samples
(22.23 ms). A number of nF frames are combined to blocks, hereafter called instances.
In turn, nI Instances are concatenated to a bag. This follows the Multiple Instance
Learning terminology used by Herrera et al. [2016].

4.3.2 Labels

The multi-track files are split into two groups. While the stereo mixtures are used
for extracting features, the remaining tracks, which are recordings from the individual
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instruments such as spot microphone recordings, are processed to obtain the labelling
information.

In the case of our dataset, those spot microphones contain a certain amount of crosstalk
depending on the spatial layout of the ensemble as well as the concert hall. In most cases,
the amount of crosstalk does not allow to determine the instrument activity from the
original recordings. Therefore, a crosstalk reduction method for multi-track data was
applied to the data [Seipel and Lerch, 2018]. After reducing the amount of crosstalk, a
frame-wise calculation of the root mean square value yields an instrument activity (IA)
value per frame. The instance IA in turn is the maximum of all frame-wise IA in that
particular instance, a form of max-aggregation. The instance IA is then thresholded to
produce a binary label per instance. The label was carried out on different instance sizes
of a multiple of nF = 16 ranging from 16 to 320 frames.

4.3.3 Input representation

Every multi-track stereo mixture is transformed to a spectral representation using the
STFT and further processed by a mel filterbank [O’shaughnessy, 1987] to obtain a
nM = 128 band mel-spectrogram in the frequency range of 0–10000 Hz. The mel-scale
representation has been proven superior to other spectral representations in many Music
Information Retrieval tasks [Choi et al., 2017b]. The mel-spectrograms for each stereo
mixture track are divided into instance-length pieces and serve as input audio features
to the convolutional neural net. Similar to the label creation, the feature extraction was
also carried out on different instance sizes of a multiple of nF = 16 ranging from 16 to
320 frames.

4.3.4 Network architecture

The advantage of Convolutional Neural Nets (CNN) for audio classification is based on
their ability to map feature inputs to a more compact representation by using layer-
wise non-linear transformations. Convolutional layers introduce constraint connectivity
patterns which are especially useful to detect locally correlated features, for example
edges and lines in a spectrogram which represent single tones. Pooling layers ensure that
a certain patterns like motifs or chords can be detected independent from its location in
the spectrogram.

The employed architecture is adopted from [Han et al., 2017] which in turn was inspired
by AlexNet [Krizhevsky et al., 2012] and VGGNet [Simonyan and Zisserman, 2014].
Table 4.1 displays an overview of the network architecture for a mel-spectrogram input
with 16 frames. Compared to the approach of Han et al. [2017], every input to the
individual convolutional layers is zero padded with a size of 2 × 2 instead of 1 × 1.
Otherwise the network structure is identical. It consists of four convolution blocks with
an increasing number of filters (32, 64, 128, 256). Each block contains two convolutional
layers with ReLu activation function plus above mentioned zero-padding beforehand, 3x3
max-pooling and 25% Dropout. At the end of the last convolution block, global max-
pooling is applied before using a fully connected ReLu layer combined with 50% Dropout.
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Finally, another fully-connected layer with sigmoid activation maps the network output
to the labeling information.

Layer Output size Parameters

Mel-spectrogram 128 x 16 x 1 0

2x2 Zero padding 132 x 20 x 1 0
3x3 Conv, 32 filters 130 x 18 x 32 320
2x2 Zero padding 134 x 22 x 32 0
3x3 Conv, 32 filters 132 x 20 x 32 9248
3x3 Max pooling 44 x 6 x 32 0
Dropout(0.25) 44 x 6 x 32 0

2x2 Zero padding 48 x 10 x 32 0
3x3 Conv, 64 filters 46 x 8 x 64 18496
2x2 Zero padding 50 x 12 x 64 0
3x3 Conv, 64 filters 48 x 10 x 64 36928
3x3 Max pooling 16 x 3 x 64 0
Dropout(0.25) 16 x 6 x 64 0

2x2 Zero padding 20 x 7 x 64 0
3x3 Conv, 128 filters 18 x 5 x 128 73856
2x2 Zero padding 22 x 9 x 128 0
3x3 Conv, 128 filters 20 x 7 x 128 147584
3x3 Max pooling 6 x 2 x 128 0
Dropout(0.25) 6 x 2 x 128 0

2x2 Zero padding 10 x 6 x 128 0
3x3 Conv, 256 filters 8 x 4 x 256 295168
2x2 Zero padding 12 x 8 x 256 0
3x3 Conv, 256 filters 10 x 6 x 256 590080
Global max pooling 256 0

Fully connected 1024 263168
Dropout(0.5) 1024 0
Sigmoid 13 13325

Total 1.448.173

Table 4.1: Summary of network architecture for 128x16 input mel-spectrogram (1 in-
stance)
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4.3.5 Experimental design

This work is split into three experiments which include different training and test set-
tings. In all cases the learning procedure was carried out on a NVIDIA GTX1060 (6GB
memory) by optimizing the binary cross-entropy loss with the ADAM [Kingma and Ba,
2014] technique (learning rate = 0.001, no learning rate decay) and using a minibatch
size of 64 samples over 10 epochs. As mentioned in Sect. 4.3.4, dropout [Srivastava et al.,
2014] was applied to each convolutional block as well as previous to the final sigmoid
layer to regularize the learning procedure and prevent overfitting.

Figure 4.2: Overview of MIL learning procedure of experiment 2

4.3.5.1 Experiment 1 - Standard learning

In the first experiment, training was performed in a common training setting with nI = 1,
so each bag only contains only one instance with a number of k · 16 · nF spectrogram
frames ranging from 16 to 320. The CNN architecture shown in Sect. 4.3.4 was employed.
For testing, the model which was trained on a specific number of nF frames was then
also utilized to predict sections of the same number of nF frames.
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4.3.5.2 Experiment 2 - Sliding predictions

For the second experiment, the training phase equals the proceeding of experiment 1.
However, at test time, models which were trained on larger number of spectrogram
frames nF,T are utilized to predict spectrogram excerpts with a smaller number of frames
nF,P by sliding the trained model over the test audio iteratively. For example, a model
that was trained on nF,T = 48 training frames is given the spectrogram patch of the
first nF,T = 48 frames of an audio signal, the prediction however is only valid for the
nF,P = 16 prediction frames in the center of the patch. Thereafter, the model is shifted
nF,P = 16 frames further to predict the following nF,P = 16 prediction frames. With
this method, models which were trained on larger spectrum inputs can still be used to
predict on a finer time scale. For correct prediction, the audio signal need to be zero
padded in the beginning and at the end with (nF,T − nF,P )/2 frames.

4.3.5.3 Experiment 3 - Multiple Instance Learning

Similar to the previous approach, this experiment also targets the case that training
labels are only available for larger time periods, but predictions need to be given on
a finer time scale. For this reason, training was carried out using a multiple instance
learning (MIL) setup with a wrapper approach [Herrera et al., 2016, pp. 68]. Figure
4.2 shows such a setup for an instance size of nF = 16 frames and a bag size of nI = 3
instances. Each of the three instances which consist of a nF = 16 frames spectrogram
is fed into an individual CNN presented in Sect. 4.3.4. The sigmoid outputs for each
CNN are then combined with an averaging aggregation function H to 13 class activation
that are connected to the bag label. The backpropagation runs through the aggregation
function to the individual CNNs in order to optimize the weights regarding the bag
labels when, in this case, three instance spectrograms are presented to the networks.
With such a MIL setup, it is possible to learn on a bag level with its corresponding bag
labels but predict at the instance-level. This procedure can be carried out with a larger
number of frames per instance nF as well as a larger number of instances per bag nI . If
nI = 1, this setup corresponds to a standard learning procedure.

At test time, the last model layer, containing the aggregation function, is removed, so
the model shows the individual CNN sigmoid activations for each instance. In the case
above, when presenting the model with an input spectrogram of nF · nI = 48 frames, it
is able to obtain predictions for all nI = 3 instances with nF = 16 frames individually.

4.4 Evaluation

4.4.1 Dataset

The multi-track dataset comprises a variety of concerts recordings from the Berlin Uni-
versity of Arts. In total, the dataset contains 116 classical music pieces, either symphony
or chamber music and includes various concert venues, composers, artists, and different
instrumentations. As Table 4.2 displays, the total length of all pieces is 19.16 hours with

44



4.4 Evaluation

a corpus of 13 instruments. However, the dataset is unbalanced in terms of instrument
occurrence throughout the pieces. While string instruments are nearly always present,
both in chamber music and symphony pieces, other instruments such as the brass section
can only be found in approximately a fifth of all pieces. For each piece, there exist a
spot microphone track for every instrument as well as a stereo downmix. As usual in
acoustically recorded music, the individual spot microphone tracks contain crosstalk. In
order to avoid too optimistic results, the test/train split was carried out piece-wise to
ensure that no parts of the same pieces are in both training and test set. The resulting
training set includes 92 pieces, while the testing set comprises 23 tracks. Figure 4.3
shows the distribution of track lengths for all pieces.

Figure 4.3: Overview of track lengths in seconds in both test and training set together

4.4.2 Performance metrics

In the context of polyphonic instrument identification, different classes may occur in the
same sample, or this case in the same instance, defining this task as a multi-class as well
as multi-label problem. All metrics are calculated per track and averaged afterwards
(macro). This macro approach normalizes the effect on different piece lengths, but at
the same time, weights instances in shorter tracks.

4.4.2.1 Threshold dependent metrics

Since the dataset is imbalanced in terms of class/instrument distribution, the evaluation
demands for metrics which are not influenced by such different class sizes. For this
reason, the established evaluation metrics precision, recall and f1-score are calculated
for each instrument class separately and then averaged over the individual classes. The
sigmoid activation of each CNN produces a probability per class. A fixed threshold
σ = 0.5, which has been found iteratively on maximizing the scores on the training
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Instrument Size[MB] Hours Tracks

Bassoon 2033.061 6.40 51
Clarinet 1997.021 6.28 48
Double Bass 2135.858 6.73 54
Flute 1342.118 4.23 39
French Horn 2033.061 6.40 51
Oboe 1523.016 4.80 39
Piano 3851.172 12.13 72
Trombone 834.472 2.63 28
Trumpet 834.472 2.63 28
Tuba 783.636 2.47 24
Viola 3611.268 11.37 75
Violin 4937.731 15.55 87
Violoncello 5399.067 17.00 104

Total/Mix 6082.926 19.16 116

Table 4.2: Overview of the dataset, separated by instrument

set, then defines how those activations are binarized and hence influences the prediction
scores on the above mentioned metrics.

4.4.2.2 Threshold independent metrics

Another metric, which is independent from the given binarizing threshold, is the so
called AUC. The AUC represents the Area Under The Receiver Operating Characteristic
Curve which in turn evaluates the true positive against the false positive rate for various
thresholds [Virtanen et al., 2018].
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5 Conclusion

This master thesis has presented and investigated several convolutional neural network
approaches to instrument recognition on polyphonic audio material and further intro-
duced a crosstalk reduction method for multi-track audio.

The crosstalk reduction method was developed to clear multi-tracks from spill, a com-
mon phenomenon when recording acoustic ensembles in concert halls or studios. Besides
its original purpose, the preparation of audio files to correctly extract labelling informa-
tion, the algorithm can also serve as a de-noising method for multi-channel microphone
input or as post production effect to clean multi-track audio recordings. The algorithm
shows solid evaluation scores, in particular the improvement of the signal-to-interference
ratio within the given dataset of artificially created mixtures from anechoic recordings.
However, the algorithm also introduces musical artefacts as a result of the spectral sub-
traction. By scaling the reduction parameters, the algorithm can be adapted to its
application purpose and in this way either improve the reduction at the cost of more
musical artefacts or vice versa. A further investigation of the approach could involve
different datasets with more musical genres and convolutive mixtures. Advanced post-
processing like filtering in the spectral domain or thresholding in the time domain to
reduce musical artefacts could further improve the algorithm.

In order to investigate instrument identification with convolutional neural networks
three different experiments were designed. For all approaches, a multi-track classical
music dataset incorporating 13 different instruments was employed. After applying
the herein developed crosstalk reduction method on the spot microphone tracks, the
individual instrument activities were first determined to then binarize those to labelling
information. Features were extracted in form of mel-spectrograms from the according
stereo mixtures. To examine the effects of frame size to classification performance, labels
as well as features were generated with different frame sizes. After the training phase,
the learned model is able to predict the instrument composition for the given frame
size. For the present dataset and the employed learning settings, the best classifications
scores were obtained for a frame size of about 2,7 seconds. Two different models based
on sliding predictions and multiple instance learning were further investigated. While
the former can improve classification for small frame sizes by utilizing classifiers which
were trained on larger frames but only classify center frames, the latter does not show
any enhancements. Future work includes the application of the above presented methods
on different datasets and an investigation of the MIL approach, for example by using
other aggregation functions. To understand the behaviour of the convolutional neural
net for Instrument Identification a visualization of activations and weights might help
to draw further conclusions.
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List of Acronyms

AUC Area Under Curve
BSS Blind Source Separation
CNN Convolutional Neural Network
CQT Constant-Q Transform
FN False Negatives
FP False Positives
GD Gradient Descent
GMM Gaussian Mixture Model
ICA Independent Component Analysis
IA Instrument Activity
IR Instrument Recognition
kNN k-Nearest Neighbour
LDA Linear Discriminant Analysis
MFCC Mel Frequency Cepstral Coefficient
MIC Multi Instance Classification
MIDI Musical Instrument Digital Interface
MIL Multiple Instance Learning
MIR Music Information Retrieval
ML Machine Learning
MSE Mean Squared Error
NAG Nesterov Accelerated Gradient
NMF Non-negative Matrix Facorization
PCA Principal Component Analysis
ROC Receiver Operating Characteristics
SAR Signal-to-Artefacts-Ratio
SDR Signal-to-Distortion-Ratio
SIR Signal-to-Interference-Ratio
STFT Short Time Fourier Transform
SVM Support Vector Machine
TN True Negatives
TP True Positives
TTS Text to Speech
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