

Eidesstattliche Erklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und eigen-
händig sowie ohne unerlaubte fremde Hilfe und ausschließlich unter Verwen-
dung der aufgeführten Quellen und Hilfsmittel angefertigt habe.
Berlin, den 2017-07-28

. .
David Runge

Abstract Different types of software have been designed in the field of spatial
audio reproduction to cope with the needs of several rendering algorithms,
conceived over the last century. Their feasibility and reproducability in a
real environment have been evaluated and tested and their implementations
extended, or improved accordingly.
Today, spatial audio rendering software is often a single-purpose application,
that attends to the needs of a specific setup in place. Unfortunately, to some
of these solutions, no further work is applied, leaving them unsupported at
some point in time. The affected hardware setups range from those for large
scale Wave Field Synthesis to smaller ones, found in scientific research, in-
volving Dynamic Binaural Synthesis. All of them are in need of extensively
supported and reliable software, that can even be used, once the operating
system is changing. This can happen, if the hardware has to be upgraded
due to old age or if new software is required, that can not be built on older
operating systems.
In the following work, a set of current free and open-source realtime spatial
audio renderers, actively used in scientific and artistic contexts, is evaluated
for usability, applicability and realtime context: sWONDER, HoaLibrary
(for PureData), 3Dj (for SuperCollider), WFSCollider and the SoundScape
Renderer. The latter — in contrast to the other candidates, a multi-purpose
renderer — is chosen for a rewrite of its network based messaging system, as
the application implements many different rendering algorithms, while still
being actively maintained.
Its new functionality allows it to be used in other environments: While ren-
dering the same virtual audio scene, large scale multi-loudspeaker setups, in
which several instances work collectively, are possible as well as networked
individual setups.
The SoundScape Renderer’s new networking extension, along with a client-
server architecture, its messaging system with tests and workflow examples
is elaborated. New setup possibilities are contrasted with the automation
available through the network interface currently in use.
Closing, an outlook on future work with the help of the new networking ex-
tension and general improvement suggestions for the SoundScape Renderer
are discussed.

Zusammenfassung Unterschiedlichste Software wurde im Feld der Raum-
klangsteuerung geschrieben, um die vielzähligen Algorithmen des letzten
Jahrhunderts abbilden zu können. Die Praktikabilität und Reproduzierbar-
keit dieser Algorithmen in einer realen Umgebung wurde evaluiert und gete-
test und ihre Implementationen entsprechend erweitert, oder verbessert.
Heutige Raumklangsteuerungssoftware ist häufig eine Einzweck-Software, wel-
che einem spezifischen Aufbau dient. Unglücklicherweise werden einige dieser
Lösungen nicht weiter entwickelt, was zukünftig zwangsläufig zu ihrer Un-
brauchbarkeit führt. Die betroffenen Hardwareaufbauten reichen von großen
Anlagen, wie jene für die Umsetzung einer Wellenfeldsynthese zu kleineren,
in der wisschenaftlichen Forschung auffindbare, die Dynamische Binaural-
synthese anwenden. All diese Hardwareumgebungen benötigen Software, die
weitläufig unterstützt ist und verlässlich arbeitet, auch wenn die Betriebssys-
teme, auf denen sie genutzt werden, sich verändern. Diese Umstände können
eintreten, wenn veraltete Hardware ausgewechselt werden muss, oder neuere
Software benötigt wird, die nicht auf älteren Betriebssystemen einsetzbar ist.
In der nachfolgenden Arbeit wird die folgende Sammlung aus freien und quel-
loffenen Anwendungen zur Echtzeit-Raumklangsteuerung, die derzeit aktiv
in künstlerischen und wisschenschaftlichen Umgebungen Anwendung finden,
anhand ihrer Nutzungsmöglichkeiten, ihrer Anwendbarkeitkeit und ihrer Um-
gebung evaluiert: sWONDER, HoaLibrary (für PureData), 3Dj (für Super-
Collider), WFSCollider und der SoundScape Renderer. Der letztere — im
Gegensatz zu den anderen Kandidaten ein Mehrzweck-Werkzeug — wurde
für eine Neuausarbeitung seiner Netzwerkfähigkeit gewählt, aufgrund seiner
vielzähligen Implementationen von Raumklang-Algorithmen und seiner noch
betriebenen Weiterentwicklung.
Seine neue Funktionalität erlaubt es ihm in anderen Umgebungen eingesetzt
zu werden: Während die gleiche virtuelle Audio-Szene verräumlicht wird, ist
die Anwendung nun gleichermaßen einsetzbar in einer Großanlage, in der vie-
le Instanzen zusammen arbeiten und vernetzte, individuellen Aufbauten, die
getrennt voneinander arbeiten.
Die neuen Netzwerkmöglichkeiten der Anwendung, zusammen mit einer Client-
Server Architektur, sowie seines Nachrichtensystem, anhand von Arbeitsab-
läufen und Tests, werden ausgearbeitet. Neue Möglichkeiten der Vernetzung
werden der derzeitig verwendeten Netzwerkschnittstelle gegenüber gestellt.
Abschließend werden ein Ausblick auf weitere Arbeit anhand der neuen Netz-
werkschnittstelle und generelle Verbesserungsvorschläge für den SoundScape
Renderer diskutiert.

Acknowlegdements

I would like to thank my supervisors Prof. Dr. Stefan Weinzierl and Henrik
von Coler for their tremendous efforts in making this work happen.
Special thanks to Henrik for pushing in the right moments.

I would also like to thank Marc Voigt for bouncing off ideas every once
in a while and helping in realizing a test setup. Hopefully this work will be
useful for the setups you have to maintain in the future.

Thanks to Matthias Geier for being relentless and yet supportive.

Special thanks to my family for their loving support over all of this time
spent.
Thank you Nanni, for taking my mind off.

Thanks to Sabine and Peter for reading through all of this nonsense.

To all, whom I forgot: You know, who you are. I could not have done it
without you.

Contents
1 Introduction 1

2 Free and Open-source Spatial Audio Renderers 3
2.1 Spatial Audio Rendering Algorithms 3

2.1.1 Dynamic Binaural Synthesis and Dynamic Binaural
Room Synthesis . 4

2.1.2 (Higher Order) Ambisonics Amplitude Panning and
Near-Field-Compensated Higher Order Ambisonics . . 4

2.1.3 Vector Based Amplitude Panning 5
2.1.4 Wave Field Synthesis 5

2.2 sWONDER . 6
2.3 HoaLibrary (PureData extension) 6
2.4 3Dj (SuperCollider Quark) . 7
2.5 WFSCollider . 7
2.6 SoundScape Renderer . 7
2.7 Why Free Software Matters and What Its Pitfalls Are 8

3 Implementation 10
3.1 Outline . 10

3.1.1 Prelimenaries . 10
3.1.2 Remote Controlling a Server 11
3.1.3 Remote Controlling Clients 11
3.1.4 Rendering on Dedicated Speakers 12

3.2 Publisher/Subscriber Interface 12
3.3 IP Interface . 13

3.3.1 OSC through PureData 14
3.3.2 Sending and Receiving 14

3.4 Open Sound Control Interface 15
3.4.1 Open Sound Control 16
3.4.2 Liblo . 17
3.4.3 Starting the SSR . 19

3.4.3.1 Client Instance 19
3.4.3.2 Server Instance 19
3.4.3.3 Verbosity . 20

3.4.4 Setups . 20
3.4.4.1 Client-Server, Shared Rendering 21
3.4.4.2 Client-Server, Separate Rendering 23
3.4.4.3 Clients Only 25

3.4.5 Message Levels . 27

3.4.6 Message Interface . 28
3.4.7 Workflow Examples . 33

3.4.7.1 Controlling a Server 33
3.4.7.2 Server Mimicry 34

4 Discussion 35
4.1 Implemented Features . 35
4.2 Automated Tests . 36

4.2.1 Robustness . 36
4.2.2 Functionality and Operability 39

4.3 Future Work . 39
4.3.1 Non-Renderer . 40
4.3.2 Alien Loudspeaker . 43
4.3.3 Status Messages . 44
4.3.4 Scene Transfer . 44
4.3.5 Assigning In- and Outputs on the Fly 45
4.3.6 Interpolation of Moving Sources 46
4.3.7 Dynamic Scene . 46
4.3.8 Network Enabled Head Tracking 47

5 References 49

Appendices 53

A PDF Version 53

B LaTeX Sources 53

C Thesis Bibliography 53

D OSC Interface Source Code 53

E SuperCollider Scripts 55

F Reproduction Setup Changes 55

Glossary I

Acronyms I

List of Figures IV

List of Listings VI

List of Tables VII

Digital Ressource VIII

1 Introduction 1

1 Introduction

From the early days of stereo audio reproduction onwards, different kinds of
spatial audio reproduction techniques have been developed and established,
ranging from plain stereophony to three-dimensional, multi-channel setups.
Their applications range from research to artistic and conventionally com-
mercial fields, such as cinema and home entertainment.

With the rise of dynamic two and three-dimensional rendering algorithms
(see 2.1), the need for specialized software, implementing them, grew. Op-
posed to encoding of spatial information of sources in only two channels
(static in the case of commercially produced audio for radio and film) encod-
ing for massive multi loudspeaker systems would not be feasible, when done
statically, or not applicable in the case of dynamic setups, reacting to user
input in realtime.

Early dedicated hardware implementations, such as the Halaphon, de-
signed by Hans Peter Haller and Peter Lawo (Haller, 1995, p.78f), started
out as basic spatial dispersion systems for quadrophonic loudspeaker setups,
based on amplitude pannings using envelopes. Due to huge interest from
artists in this new technique, these systems were soon expanded to cope with
eight and more channels.
A notable piece, making use of a later revision of the Halaphon, is Luigi
Nono’s Prometeo. For it, the componist developed the coro lantissimo: A
choir singing at a great distance. To achieve the effect — in a usually very
dampened orchestra house — the spatialization system was used to add be-
tween eight to 15 seconds of reverberation time in the prolog and up to 20
seconds in the second part of the piece. This enabled a sung fivefold pianis-
simo and a triple pianissimo (respectively) to be perceived as coming from
a larger distance than the room’s dimension (Haller, 1995, p. 91f).
This early example of a spatial audio renderer already illustrates the close
vicinity of applied scientific research in experimental electronic music studios
and that of artistic work, facilitating live electronics.

With the fast technological development of computer systems, the ded-
icated solutions shifted more into the digital domain and finally towards
software solutions. This effectively allowed a stronger focus on specializing
and refining the algorithms in use.

Spatial audio rendering software exists for different Operating Systems
(OSs), in several stages of completeness and feature richness, while covered

1 Introduction 2

by free (see 2.7) and non-free licenses. The following work focusses on free
software, used in scientific research and artistic contexts. Several spatial
audio renderers, currently in use, were evaluated and compared (see 2), of
which one was chosen for extension.
Some spatial audio renderers are single-purpose applications, conceived for a
specific (and often quite rare) loudspeaker setup, such as those used for Wave
Field Synthesis (WFS) or Higher Order Ambisonics (HOA). An example of
this is the large scale system at Technische Universität Berlin (TU Berlin)
(Audiokommunikation, 2017) or HAW Hamburg.

The SoundScape Renderer (SSR) is a multi-purpose spatial audio ren-
derer, developed at the TU Berlin. To improve its usability and networking
capabilities, a new networking extension was developed, facilitating an Open
Sound Control (OSC) based messaging system, that incorporates features for
distributed processing in massive multi-loudspeaker setups.

2 Free and Open-source Spatial Audio Renderers 3

2 Free and Open-source Spatial Audio Renderers

JACK Audio Connection Kit (JACK) (Davis, 2016) is a low-latency audio
server, that allows for software using its environment to connect their in- and
outputs with any other application using it. It is licensed under the GNU
General Public License (GPL) and can be built for various OSs (e.g. Linux,
macOS, Windows). As of today, a plethora of applications exist, that extend
JACK’s functionality graphically, or make use of it musically and produc-
tively. Due to the large set of audio drivers it can use (i.e. Advanced Linux
Sound Architecture (ALSA), coreaudio, freebob, oss sun and portaudio) and
its general availability, the audio server has become the de-facto standard for
free and open-source, production ready applications on all major OSs.
To date there exist five (known of) free and open-source spatial audio ren-
derers, which are all JACK clients:

• sWONDER (Baalman, 2007), developed at the TU Berlin, Germany

• WFSCollider (Snoei et al., 2016), developed by the Game Of Life Foun-
dation (Foundation, 2016), The Hague, Netherlands

• HoaLibrary for PureData (Pd) (Guillot et al., 2017b) developed at the
Centre de recherche Informatique et Création Musicale (CICM), Paris,
France

• 3Dj for SuperCollider (Pérez-López, 2014), developed at the Universitat
Pompeu Fabra, Barcelona

• SSR (Quality & Usability Lab, Telekom Innovation Laboratories et al.,
2016), developed at the Quality & Usability Lab, Telekom Innovation
Laboratories, TU Berlin and Institut für Nachrichtentechnik, Univer-
sität Rostock and Division of Applied Acoustics, Chalmers University
of Technology

Different concepts and contexts apply to all of the renderers, which are
briefly explained in the following sections, prefixed by a section about spatial
audio rendering algorithms and followed by one about free software and its
pitfalls.

2.1 Spatial Audio Rendering Algorithms

In the following subsections several spatial audio rendering algorithms are
introduced briefly. As they serve as a mere introduction, they were merged
where applicable.

2 Free and Open-source Spatial Audio Renderers 4

2.1.1 Dynamic Binaural Synthesis and Dynamic Binaural Room
Synthesis

Binaural Synthesis (BS) describes a stereophonic audio reproduction, in
which — usually using headphones — acoustic signals are recreated at the
ears of the listener.
For humans, sound source localization and distance estimation takes place
according to auditory cues from each ear. The signals perceived by inner and
outer ear are correlated by the brain, to account for locations in all three di-
mensions and their distances from the listener.
The differences between the cues perceived by each ear can be measured as a
Head Related Impulse Response (HRIR) for every human individually (as it
is dependant on physiology). Its Fourier transform, the Head Related Trans-
fer Function (HRTF), can then be used to modify audio signals to become a
directional audio source, perceived as in free field conditions.
Binaural Room Synthesis (BRS) is a special form of BS, in which Binaural
Room Impulse Responses (BRIRs), encode all of the virtual source’s charac-
teristics, such as position, alongside the room’s acoustic characteristics. This
way, recordings from real rooms can be reproduced authentically.
HRIRs and BRIRs are by default applied seperately for each ear. Therefore,
if a resolution of 1° is desired, it can be achieved by a set of 720 impulse
responses, that are applied to the source with the help of a head tracker,
measuring the azimuth of the listener towards it.

2.1.2 (Higher Order) Ambisonics Amplitude Panning and
Near-Field-Compensated Higher Order Ambisonics

Ambisonics Amplitude Panning (AAP) and HOA are spatial rendering al-
gorithms, that reproduce audio on multi-speaker setups. Those are usually
circular or spherical.
Depending on a loudspeaker’s position in the setup, relative to the spheres’s
center (the listening area or sweet spot (Wierstorf, 2014, Fig. 1.4)), a linear
combination of all loudspeakers is used to achieve a localized representation
of a virtual sound source.
The relatively small listening area can be extended by using additional sets
of loudspeakers, which in turn lead to more spatial aliasing.
Due to the perceptibility of localization cues, mentioned in 2.1.1, it is re-
quired to apply spatial equalization for the rendered sources, to account for
differences in low- and high-frequency localization capabilities of the human
ear.
For ambisonics, plane-wave sources are assumed, which means their distance

2 Free and Open-source Spatial Audio Renderers 5

is infinite. Due to the proximity effect, this leads to a bass boost in the lis-
tening area. Near-Field-Compensated Higher Order Ambisonics (NFC-HOA)
accounts for this by a set of driving functions, applying a per speaker near-
field compensation.

2.1.3 Vector Based Amplitude Panning

Vector Based Amplitude Panning (VBAP) is another rendering method for
multiple loudspeakers. Up to three loudspeakers are used to reproduce a
virtual sound source in a three-dimensional setup, while only two are needed
in a horizontal one.
It enables for “virtual source positioning in a three-dimensional sound field
formed by loudspeakers in an arbitrary three-dimensional placement“, while
being ”computationally efficient and accurate“ (Pulkki, 1997, p. 464).
However, according to Geier and Spors (2012) ”VBAP has a very small sweet
spot, out of which localization of sources is distorted towards the nearest
active loudspeaker“ and ”works best for circular setups“.

2.1.4 Wave Field Synthesis

WFS is a spatial audio rendering technique, which is based on the Huygens-
Fresnel principle. It states that any wave front can be synthesized by the
superposition of elementary spherical waves.
Setups mainly focus on horizontal, preferably spatially discrete, speaker ar-
rays of rectangular or circular shape as the human hearing is most capable
of localizing acoustic sources in this plane.
According to Wierstorf et al. (2012), localization is accurately and evenly
distributed in the listening area with loudspeaker spacings of up to 40cm.
Although WFS does not suffer from a pronounced sweet spot, and spatial
aliasing is distributed over a relatively large listening area, compared to e.g.
NFC-HOA, the spatial sampling artifacts may still be perceived as coloration
of the sound field, which can be improved by prefiltering especially high-
frequency content (Wittek, 2007).
Due to the relatively high amount of loudspeakers (and thereby computing
power to calculate as many audio channels) needed for a medium to large-
scale setup, WFS is not yet very widely distributed.

2 Free and Open-source Spatial Audio Renderers 6

2.2 sWONDER

sWONDER (Baalman, 2007) consists of a set of C++ applications that pro-
vide BS and WFS rendering. In 2007 it was specifically redesigned (Baalman
et al., 2007) to cope with large scale WFS setups in which several (computer)
nodes, providing several speakers each, drive a system together.
In these setups each node receives all available audio streams (which represent
one virtual audio source respectively) redundantly and a master application
signals which node is responsible for rendering what source on which speaker.
It uses OSC for messaging between its components and for setting its con-
trols. Additionally, it can be controlled through a Graphical User Interface
(GUI), that was specifically designed for it.
Sound sources can be moved dynamically, or according to an Extensible
Markup Language (XML) based score.
For example sWONDER has been in use for the medium and large scale WFS
systems in the Electronic Music Studio (von Coler and Pysiewicz, 2017) and
lecture hall H0103 (Audiokommunikation, 2017) at TU Berlin and a medium
scale system at the Wave Field Synthesis Lab at HAW in Hamburg (Fohl,
2013).
The included convolution engine fWonder is applied in “Assessing the Au-
thenticity of Individual Dynamic Binaural Synthesis” (Lindau, 2014, pp. 223-
246).
Unfortunately, the spatial audio renderer has not been actively maintained
for several years. Hence it is limited to its two rendering algorithms and has
many bugs, that are not likely to get fixed in the future.

2.3 HoaLibrary (PureData extension)

The HoaLibrary is “a collection of C++ and FAUST classes and objects for
Max, PureData and VST destined to high order ambisonics sound reproduc-
tion” (Guillot et al., 2017a). By the extension for Pd (Puckette, 1997), it
enables for HOA reproduction, while harnessing the rich feature set of the
audio programming language still enables for implementing other forms of
spatial rendering alongside the HoaLibrary.
Pd is OSC capable with the help of extensions, such as mrpeach1 or IEMnet2.

1 https://puredata.info/downloads/mrpeach
2 https://puredata.info/downloads/iemnet

2 Free and Open-source Spatial Audio Renderers 7

2.4 3Dj (SuperCollider Quark)

3Dj is a SuperCollider Quark conceived in the course of a Master’s Thesis
at Universitat Pompeu Fabra, Barcelona (Pérez-López, 2014) for interactive
performance live spatialization purposes. It implements HOA and VBAP
rendering (Pérez-López, 2014, p 45) and uses a specific scene format (Pérez-
López, 2014, pp. 45–46) to allow sound sources to have static, linear, random,
brownian, simple harmonic and orbital motion.
Due to being a language extension to sclang, 3Dj can be used in conjunction
with other spatial rendering algorithms provided by SuperCollider or any of
its Quarks.
SuperCollider is OSC enabled by default, which renders 3Dj a dynamically
accessible solution.

2.5 WFSCollider

WFSCollider was built on top of SuperCollider 3.5 (McCartney, 2017) and
as its name suggests, it is an application for WFS reproduction. It “allows
soundfiles, live input and synthesis processes to be placed in a score editor
where start times, and durations can be set and trajectories or positions
assigned to each event. It also allows realtime changement of parameters
and on the fly starting and stopping of events via GUI or OSC control. Each
event can be composed of varous objects (“units”) in a processing chain“
(Snoei et al., 2016). According to its current manual, it is also capable of
using a VBAP renderer for other multi-speaker setups (Sauer and Snoei,
2017, p. 8).
”WFSCollider is the driving software of the Wave Field Synthesis system
of the Game Of Life Foundation“ (Foundation, 2016). In multi-computer
setups, it can synchronize the involved processes and a dynamic latency can
be introduced to account for high network throughput (Sauer and Snoei,
2017, p. 22). By nature WFSCollider is OSC capable and extendable by
what sclang has to offer. Its scores are saved as SuperCollider code, as well.
It is currently only tested on macOS and is based upon a several year old
version of SuperCollider.

2.6 SoundScape Renderer

The SSR, written in C++, is a multi-purpose spatial audio renderer, that
runs on Linux and macOS. Based on its underlying Audio Processing Frame-
work (APF) (Geier et al., 2012), it is able to use BS, BRS, AAP, WFS,
NFC-HOA and VBAP. However, all rendering algorithms with potentially

2 Free and Open-source Spatial Audio Renderers 8

orthogonal sound fields, are currently only available in 2D (Geier et al., 2008).
It can be used with a Qt4 based GUI or headless (without one), depicting
the virtual sources, their volumes and positions. If a loudspeaker based ren-
derer is chosen, the GUI also illustrates which speakers are currently used
for rendering a selected source.
The SSR, since its conception, had a history of conducting psychoacoustic
experiments with it (Geier and Spors, 2010).
Current scientific research with the BS and BRS renderers were done by
Ackermann and Ilse (2015), Böhm (2015) or Grigoriev (2017). The WFS
renderer has been improved by the work of several research papers, dealing
with enhancements of spatial aliasing, active listening room and loudspeaker
compensation and active noise control (Spors et al., 2008) and analyzing and
pre-equalizing in 2.5-dimensional WFS (Spors and Ahrens, 2010). The loud-
speaker based renderer was also used for psychoacoustic experiments, such
as the one found in Koslowski (2013)
The SSR uses XML based configuration files for reproduction (i.e. how some-
thing is played back) and scene (i.e. what is played back). The Audio Scene
Description Format (ASDF) however is not (yet) able to represent dynamic
setups.
The application can be controlled through a Transmission Control Proto-
col (TCP)/Internet Protocol (IP) socket. OSC functionality can only be
achieved using the capabilities of other applications such as Pd (Puckette,
2016) in combination with it.
Unlike sWONDER or WFSCollider, the SSR is not able to run medium or
large-scale WFS setups, as it lacks the features to communicate between in-
stances of itself on several computers, while these instances serve a subset of
the available loudspeakers.

2.7 Why Free Software Matters and What Its Pitfalls
Are

Free software is the terminology for software published under a free license.
Licenses, such as the GPL are considered free, because they allow for anyone
to copy, modify and redistribute the source code (under the same license).
Research is a field of work, in which reproducability is very important, as
findings need to be independently verifiable. Scientific work is published
and shared (sometimes also under free licenses, such as Creative Commons
(CC)) amongst research groups of institutions all around the world. In an
ideal world, all scientific research would be published under a free documen-
tation license, such as the GNU Free Documentation License (FDL), allowing

2 Free and Open-source Spatial Audio Renderers 9

access to anyone, free of charge.
The software used in scientific institutions is unfortunately rarely free (e.g.
word processing, statistics, mathematical calculations, realtime audio syn-
thesis and audio production) and additionally mostly bound to proprietary
OSs, such as Microsoft Windows or Apple’s macOS, preventing interoper-
ability, development and an open society.
However, free software enables students and researchers to learn from the
source code directly (if they can and want to), to modify (and improve) it
and to share their findings. More than with proprietary software, it is pos-
sible to have a community develop around it, that takes care of the project
for a long time.
Free software nonetheless can not be considered superior. It is after all only
a way of developing software and not a way to grade its efficiency or code
quality. Additionally it has to be noted, that especially in a scientific context
it can happen, that software is conceived by an institution, put to use, but
later lacks the developers to drive the project onwards (e.g. sWONDER).
Therefore, a high responsibility lies with these institutions, as they need to
ensure further development on systems, not easily accessible to the public,
or not feasible for home use (e.g. WFS). This situation however also holds a
great opportunity for cooperation.
As the development of free and open-source software is driven by its users
and its contributors, its main goal should be to build a large and dedicated
community at some point. Only this way new features can be developed,
while taking care of bugs in the already existing source code.
Extending a software’s functionality and improving its usability, such as that
of the SSR, can therefore be seen as an important step towards a more diverse
user base and in effect ensuring its further development.

3 Implementation 10

3 Implementation

This section covers the implementation of a networking interface for the SSR
and the considerations leading to it. The application was chosen to be ex-
tended by an OSC based networking interface, because it runs on multiple
OSs, offers a wide set of rendering algorithms (in various stages of comple-
tion) by using the APF (Geier et al., 2012), is used extensively in scientific
research, has the future possibility to run medium and large scale WFS se-
tups and was still actively maintained by its creators at the time of writing.
Software, such as the HoaLibrary (see 2.3) or 3Dj, (see 2.4) were not consid-
ered, as they were too reliant on their environment (i.e. Pd or SuperCollider)
and only implemented a small set of spatial audio renderers, while sWON-
DER was additionally unmaintained for a long period of time (see 2.2) and
WFSCollider bound to a non-free operating system (see 2.5).

3.1 Outline

Initially, the aim was to extend the SSR’s features in the scope of creating
a replacement for the aging sWONDER software, enabling it to run net-
worked instances to drive a medium or large scale WFS setup. However,
the approach appeared too narrow, as the application offers many different
rendering algorithms. A networking extension therefore would have to be
available to all of them with an equal feature set. Additionally, extending a
rendering framework by a networking feature, with the help of only one of its
engines proved to be linked to a massive, but avoidable overhead (see 3.1.1).
The SSR, being a multi-purpose spatial audio renderer, can be used in diverse
setup scenarios (see 3.4.4). Therefore not only classic server-client relation-
ships (see 3.1.2), but also client-only and local (see 3.1.3) setups have to be
taken account of. In addition, the case of medium and large scale loudspeaker
based rendering setups and their specifics have to be considered (see 3.1.4).

3.1.1 Prelimenaries

In preparation to this work, an implemention of a side-by-side installation to
the OS currently driving the WFS system setup of the Electronic Studio at
TU Berlin (von Coler and Pysiewicz, 2017) was attempted for testing pur-
poses.
Arch Linux (Vinet and Griffin, 2017) was installed and configured to run the
medium scale setup. Unfortunately, the proprietary Dante (Ellison, 2017)
driver for Linux, offered by Four Audio (Thaden, 2017), creates non-trivial
circumstances for using it on an up-to-date Linux kernel, due to ALSA Ap-

3 Implementation 11

plication Programming Interface (API) changes not accounted for.
While the current OS — an Ubuntu (Shuttleworth, 2017) Studio 2012 Long
Term Support (LTS) — still runs well in its own parameters, its support has
run out and it is therefore becoming harder, if not impossible, to build newer
software on it, using newer versions of free software compilers.
For research purposes however, it is desirable to be able to try new kernel
and software features on a regular basis. It is essential to find the most sta-
ble and secure setup possible involving realtime enabled kernels and building
new versions of (spatialisation) software.
The hardware of the large scale setup at TU Berlin in lecture hall H0104 was
being updated and unusable at the time of writing. However, in the future it
will become a valuable candidate for testing of the sought after SSR features,
as its setup involves no Dante network, but is instead run by several render-
ing computers connected to Multichannel Audio Digital Interface (MADI)
and Alesis Digital Audio Tape (ADAT) lightpipe enabled speaker systems.
Although a WFS setup for testing purposes was eligible, it is generally not
required for implementing the features described in the following sections
and subsections, as they can be tested using two machines running Linux,
JACK and a development version of the SSR.

3.1.2 Remote Controlling a Server

An SSR server instance in the notion of a medium to large scale reproduction
setup is supposed to have a set of n (pre-)assigned clients. Generally, con-
trolling it should be possible through either User Datagram Protocol (UDP)
or TCP. Every message sent to it should be distributed to all of its clients
(if applicable), preferably using the same protocol used to communicate with
the server. The messaging system should be flexible and scriptable.
All audio inputs available to the server should be available to its clients as
well. A server instance should be able to render audio just as a client would.
It should be able to receive messages from its clients and act upon them (e.g.
updating GUI elements).

3.1.3 Remote Controlling Clients

An SSR client can either be local (on the same machine) or somewhere on
the same network, as the server or application controlling it. It should not
make a difference, if the client instance is controlled by a server instance or
any other application, implementing the messaging system it uses. A client
should send an update to its server or the application controlling it, upon

3 Implementation 12

receiving a valid message.

3.1.4 Rendering on Dedicated Speakers

In a medium or large scale setup, n clients collectively render audio on l
loudspeakers, while all should be using the same i inputs and each have c
hardware outputs. l is preferably a multiple of c, but definitely larger than
c.
As the described setups usually have too many loudspeakers for only one
machine (i.e. a client), a system has to be conceived, by which each client will
only render on its specifically assigned subset of size c of the n loudspeakers.

3.2 Publisher/Subscriber Interface

The SSR internally uses a Publish-Subscribe message pattern (PubSub),
which is a design pattern to implement control through and over several
parts of its components.
In Object-Oriented Programming (OOP), PubSub — also called observer,
listener messaging — is usually comprised of a publisher class, handling the
messages, without explicitly implementing how they will be used and a sub-
scriber class, that allows for its implementations to subscribe to the messages
provided. Filtering takes place to enable subscribers to only receive a certain
subset of the messages.
The SSR implements a content-based filtering system, in which each sub-
scriber evaluates the messages received and acts depending on its own con-
straints to implement further actions upon it.

The abstract class Publisher defines the messages possible to send and
provides means to subscribe to them. The global Controller class is its only
implementation within the SSR.
The abstract class Subscriber in turn defines the messages understood,
while its implementations in RenderSubscriber, Scene, OscSender and
NetworkSubscriber take care of how they are used.
This system enables a versatile messaging layout, in which components can
call the Publisher functionality in Controller, which in turn will send out
messages to all of its subscribers.
Depending on the design of an application, PubSub is not necessarily a one-
way-road. As shown in Figure 1, subscribers can also be able to call functions
of the Publisher, if the implementation permits it.
In the SSR this is possible, because each Subscriber holds a reference to
the Controller instance and is therefore able to call its public functions.

3 Implementation 14

(see 3.2). However, it has no notion of a networked setup and could therefore
be described as a two-directional message system between two destinations.
With it, only setups with up to n clients are possible.

3.3.1 OSC through PureData

To allow OSC communication, the SSR incorporates a Lua based Pd external.
It uses two externals (IEMnet3 and pdlua4) alongside a Lua library for parsing
and creating XML (SLAXML5).

3.3.2 Sending and Receiving

As mentioned in section 3.2, the NetworkSubscriber class (part of the IP
interface) implements the Subscriber interface. This implies that the net-
work interface subscribes to the messages the Publisher (the Controller
instance) has to offer. Every time a function of the SSR’s Controller in-
stance, that was inherited from Publisher, is called, it will issue the call
on all of its subscribers, too. Every message, available to the SSR’s 3.3 is
therefore directly bound to its PubSub interface’s set of functions.

3 https://puredata.info/downloads/iemnet
4 https://puredata.info/downloads/pdlua
5 https://github.com/Phrogz/SLAXML

3 Implementation 15

3.4 Open Sound Control Interface

The networking interface conceived in the course of this work was developed
in several branches, using the git version control system (written by Linus
Torvalds, now maintained by Junio Hamano6), publicly on Github7. Inter-
nally the liblo library (further explained in 3.4.2) was harnessed to implement
OSC functionality (see 3.4.1) for the SSR.
After initial conversations with the current maintainer Matthias Geier through
the project’s Github issue tracker8, different ideas were worked out to achieve
a broad solution to the server-client and client-only setups and to get a better
understanding of the underlying design. Initial attempts, such as the map-
ping of a networking setup in the scene description9, proved too restrictive
though, as it would allow the networking functionality only to renderers, that
use loudspeakers and mix scene description with networking description.
A nearly configuration-less approach, based on subscribing clients on sending
poll messages to them proved more open (in the sense that it can be interfaced
with by any OSC-capable application or programming language) and have
less configuration overhead. With it, a diverse set of setups can be achieved
(further described in 3.4.4), which at the same time remain dynamically con-
figurable (using a plethora of OSC implementations) and debuggable using
tests (further explored in 4.2).

The main implementations of the interface, further described in the fol-
lowing subsections, can be found in the classes OscHandler (handling the
OSC server), OscReceiver (handling incoming OSC messages and acting
upon them in the context of the SSR instance) and OscSender (responsible
for reacting to calls from the PubSub, as defined in 3.2 and sending of OSC
messages to clients and server).
The class OscClient implements the representation of a client (or server) to
the message interface. It holds information about the client’s address and
port, along with its MessageLevel (a concept elaborated in 3.4.5) and its
alive counter (used to check, whether a given client is still available on the
network).
As shown in Figure 2, the OscSender is another implementation of the
Subscriber interface. This way, every call made through the Publisher (i.e.
the Controller), will be made on the corresponding function in OscSender
as well. With OscReceiver the OSC interface has direct access to the
Controller and can make calls to it, on receiving a message.

6 https://git-scm.com
7 https://github.com/dvzrv/ssr
8 https://github.com/soundscaperenderer/ssr
9 https://github.com/dvzrv/ssr/tree/distributed_reproduction

3 Implementation 17

plementations (as libraries) in several programming languages. Many free
and closed audio and video related applications (e.g. Ardour (Davis, 2017),
Max/MSP (Cycling’74, 2017), SuperCollider (McCartney, 2017)) make use
of it.
OSC’s syntax is defined by several parts, which are discussed briefly in this
section.

• Atomic data types, which are also reflected in type tags (see Table 1
for details)

• Address patterns (an OSC-string starting with a “/”)

• Type tag string (a string, beginning with a “,”, holding a set of type
tags, describing a collection of atomic data types)

• Arguments, a set of binary representations of each argument

• Messages, consisting (in sequence) of an address pattern, a type tag
string and n OSC arguments.

• Bundles, consisting of a set of Messages.

• Packets, the unit of transmission (sent over UDP or TCP), consisting
of a message or a bundle.

According to the specification, applications sending OSC packets are con-
sidered a client and the ones receiving packets a server. Therefore, applica-
tions can both be client and server at the same time.

As shown in Table 1, only int32, float32, OSC-string and OSC-blob
are considered standardized. However, most of the remaining non-standard
types are implemented and used by many different clients. For implementing
the SSR OSC interface, described in subsection 3.4.2 – 3.4.7, it was necessary
to use the non-standard types True and False alongside the standard-types.

3.4.2 Liblo

Liblo (Sinclair, 2017) is an implementation of the OSC protocol for Portable
Operating System Interface (POSIX) systems. It was initially developed by
Steve Harris and is now actively maintained by Stephen Sinclair.
The library, written in C, offers a C++ abstraction layer and is released under
the GNU Lesser General Public License (LGPL) v2.1 or greater. Addition-
ally, there are wrappers for the Perl and Python programming languages.

3 Implementation 18

OSC type tag Type
i int32
f float32
s OSC-string
b OSC-blob

h 64 bit big-endian two’s complement integer
t OSC-timetag
d 64 bit (“double”) IEEE 754 floating point number
S Alternate type represented as an OSC-string (for example, for

systems that differentiate “symbols” from “strings”)
c An ASCII character, sent as 32 bits
r 32 bit RGBA color
m 4 byte Musical Instrument Digital Interface (MIDI) message.

Bytes from MSB to LSB are: port id, status byte, data1, data2
T True. No bytes are allocated in the argument data.
F False. No bytes are allocated in the argument data.
N Nil. No bytes are allocated in the argument data.
I Infinitum. No bytes are allocated in the argument data.
[Indicates the beginning of an array. The tags following are for

data in the Array until a close brace tag is reached.
] Indicates the end of an array.

Tab. 1: Acronyms (type tags) for atomic data types, used in OSC messages and bundles (Wright, 2002).
The first four types define the standard OSC type tags, which should be understood by all

implementations. The remaining are non-standard types, that are implemented by most (e.g. liblo
implements all but array and RGBA color type).

Due to its long standing availability and usage in many small and large-scale
software projects, alongside its fairly straight forward implementability, it
was chosen as the candidate for establishing an OSC interface for the SSR.
At the time of writing liblo’s lastet stable release (0.28) was issued on 27th
January 2014. Many changes and improvements have been applied to the
codebase since then. One of them is the implementation of a ServerThread
for the C++ abstraction layer, which runs a Server instance on a separate
thread automatically.
In programming, threads are a way to implement simultaneous and/ or asyn-
chroneous execution of code. The liblo Server class, at the core of the C++
side of the library, is responsible for assigning a network port to listen to for
incoming messages, listening for messages, executing code on their arrival
(i.e. callback handling) and sending messages to clients. Many applications
facilitating liblo use OSC only as a messaging system. This usually means,
that such an application itself is not single-purpose and is busy computing
something else most of the time. Therefore it makes sense to run a Server
instance on a separate background thread, to not interfere with the execu-
tional flow of the rest of the program.
The ServerThread class is able to free its ressources upon going out of scope
(i.e. their ressources are not used by any object or function anymore), known

3 Implementation 19

as Ressource Acquisition Is Initialization (RAII). For this reason, the latest
development version, instead of the current stable version of liblo, was chosen
for the implementation.

3.4.3 Starting the SSR

The SSR can be started with a rendering engine preselected (an executable
postfixed by the supported rendering algorithm is provided by the software
bundle — e.g. ssr-wfs) or by selecting one through the configuration file,
when using the standard executable named ssr. This way, the following
renderers become available: AAP, BS, BRS, generic, NFC-HOA, VBAP and
WFS.
Additional features can be activated with the help of several flags to the
executables. The customized ones, belonging to the OSC interface will be
discussed in the following subsections. More information on the interplay
between OSC messaging and the PubSub (see 3.2) can be found in 3.4.6.

3.4.3.1 Client Instance By default the SSR is started as an OSC client
on network port 50001 and only allows using ephemeral ports (in the range
49152–65535), suggested by the Internet Assigned Numbers Authority (IANA)
according to Cotton et al. (2011). As shown in Listing 1, it is possible to use
a different port, by defining it with the help of the -p flag.

ssr-binaural -p “50002”

Listing 1: Starting the SSR using the BS renderer as an OSC client (default) on the non-standard port
50002.

Once started, the client instance waits to receive a poll message from
a server instance (or an application, mimicking one), upon which it will
subscribe to it. Only then is it possible for the server application to control
the client instance to the full extent via OSC.

3.4.3.2 Server Instance With the help of the -N flag, it is possible to
start the SSR as an OSC server. Additionally, the flag can be used in a future
extension of the networking interface (see 4.3.1). Additionally, in Listing 2
flag -C is used to specify an initial client IP and its port (the flag actually
accepts a comma-separated list of IP-port pairs).
The -p flag, for setting a specific port is also available, when starting a server
instance.

3 Implementation 20

ssr-aap -N “server” -C “127.0.0.1:50002”

Listing 2: Starting the SSR using the AAP renderer as an OSC server, with an initial client on localhost,
port 50002 provided.

When the server instance starts, it instantly sends out periodic poll mes-
sages to all of its active clients. Clients provided by the -C flag are considered
instantly active.
Additionally, it is possible for clients (SSR client instances, or OSC capable
applications) to subscribe to the server instance, or be subscribed to it by
another client, using a message level system further explained in 3.4.5. Every
valid OSC message sent to the server instance will be delegated to all of its
clients upon evaluation, again according to the aforementioned message level
system.
If a client instance has not answered the sent out poll message of a server 10
times, it is considered to be unavailable and will be deactivated. No messages
will be sent to it anymore, until the client subscribes/ is subscribed again.

3.4.3.3 Verbosity The SSR can be started with several levels of ver-
bosity. These are accessed by using the flag -v, up to three times (i.e. -vvv).
The higher the level of verbosity, the more messages will be printed by the
application. This especially applies to the OSC interface part of the SSR, as
most incoming and outgoing messages will be printed to stdout at a level of
-vv. At a level of -vvv, additionally all incoming and outgoing messages,
that are issued in very short intervals per default (see 3.4.5 for details) will
be printed.

3.4.4 Setups

The SSR offers the possibility for many different OSC enabled client-server
and client-only setups. They will be explained in the following subsections.
All examples provide audio input via a JACK client, which can be local
(on each client’s or server’s host computer) or provided through external
audio inputs from another host computer (e.g. through ADAT or MADI).
However, this is not mandatory, as the SSR is capable of playing back audio
files directly.
The differences between server and client messaging is further elaborated
in 3.4.6.
A special networked setup, in which the server instance is not rendering any
audio, is discussed in 4.3.1.

3 Implementation 27

3.4.5 Message Levels

To be able to distinguish between types of clients and servers, several mes-
sage levels were implemented for the OSC interface conceived in the course
of this work.
The enumeration class MessageLevel (see Listing 3) defines the four types
CLIENT, GUI_CLIENT, SERVER, GUI_SERVER, which are represented as non-
negative integers (in ascending order), starting from 0.

54 enum class MessageLevel : id_t
55 {
56 CLIENT = 0,
57 GUI_CLIENT,
58 SERVER,
59 GUI_SERVER,
60 MAX_VALUE = GUI_SERVER
61 };

Listing 3: src/ssr_global.h: enum class MessageLevel

SSR client instances subscribe to SSR server instances with the MessageLevel
CLIENT by default. Server instances get the MessageLevel SERVER assigned
to by each client on subscribing to it.
In the OSC interface it is implemented as follows: A (recycable and recon-
figurable) list of clients is held by a server instance, which enables for the
MessageLevel to change for each client. Every client instance holds a (re-
configurable) server representation, that enables for the MessageLevel to
change for each client towards its server.
Several messages, such as information related to Central Processing Unit
(CPU) load or master signal level are not useful for a rendering client (addi-
tionally they are issued in very short intervals, which can lead to performance
issues), which is why they are only sent to clients with a MessageLevel
GUI_CLIENT or servers with a MessageLevel GUI_SERVER.
Lightweight OSC capable applications used to control an SSR server instance
are clients to said server instance. An elevated MessageLevel of SERVER (in-
stead of CLIENT) enables them to send messages to the server and have them
evaluated.
Analogous to a server instance holding a MessageLevel of GUI_SERVER to-
wards its clients, a client instance can hold the same MessageLevel towards a
server instance to receive the above mentioned performance heavy OSC mes-
sages. How the setting up of message levels is achieved, is further elaborated

3 Implementation 28

in the following section.

3.4.6 Message Interface

OSC offers the possibility of a hierarchical path tree that can be used to
group messages by type (i.e. context). In conjunction with messages only
understood by client or server (or a context dependant meaning), most of
the messages understood by the IP interface (see 3.3) are implemented. Ad-
ditional features, related to server-client and client-only functionality, were
integrated as well.
In general, it can be distinguished between direct messages — sent from a
server (or an application mimicking one) to a client or a server to trigger
processing (see Table 4), reference (see Table 5), scene (see Table 6), source
(see Table 7), tracker (see Table 4) or transport (see Table 4) related opera-
tions in the SSR and update messages (see Table 8) — sent from a client to
a server upon successful processing an operation related to a direct message.

Path Types Description Example
/alive Alive notification from

client (in response to a
/poll)

[/alive]

/message_level i Set message level of sender [/message_level, 1]
/message_level ssi Set message level of a spe-

cific client
[/message_level,
“127.0.0.1”,
“50002”, 1]

/subscribe F Unsubscribe sender [/subscribe, false]
/subscribe Fss Unsubscribe specific client [/subscribe,

false, “127.0.0.1”,
“50002”]

/subscribe T Subscribe sender [/subscribe, true]
/subscribe Ti Subscribe sender with spe-

cific message level
[/subscribe, true,
1]

/subscribe Tssi Subscribe specific client
with specific message level

[/subscribe,
true, “127.0.0.1”,
“50002”, 1]

Tab. 2: OSC messages relevant for subscribing and setting of message levels for clients.

Understood by server.
Data types and their acronyms are listed in Table 1.

A special set of direct message are the subscribe and message level (see
Table 2) and poll and message level (see Table 3) messages. The former
— understood only by SSR server instances — enable clients to subscribe
(with a certain message level) or subscribe other clients (with a predefined
message level) and set their own message level or that of another client. The
latter set — only understood by clients — enables servers (or applications

3 Implementation 29

Path Types Description Example
/message_level i Set message level of sender

(the server)
[/message_level, 1]

/poll Poll client (continously
sent), triggering subscribe
(see Table 2)

[/poll]

Tab. 3: OSC messages relevant for polling and setting of message levels for servers subscribed to.

Understood by client.
Data types and their acronyms are listed in Table 1.

mimicking one) to poll yet unsubscribed clients to have them subscribe and
subscribed clients to reply with an alive message. Similar to the message
level message understood by server instances, the one understood by clients
sets the message level (of the server representation in the client).

Path Types Description Example
/processing/state F Unset processing state [/processing/state,

false]
/processing/state T Set processing state [/processing/state,

true]
/tracker/reset Reset tracker [/tracker/reset]
/transport/rewind Rewind the JACK trans-

port
[/transport/rewind]

/transport/seek s Seek to time code in JACK
transport

[/transport/seek,
“42:00:00”]

/transport/state F Unset JACK transport
state

[/transport/state,
false]

/transport/state T Set JACK transport state [/transport/state,
true]

Tab. 4: OSC messages relevant for processing, tracker and (JACK) transport related settings.

Understood by server and client.
Data types and their acronyms are listed in Table 1.

Path Types Description Example
/reference/orientation f Set azimuth of ref-

erence point
[/reference/orientation,
-90.0]

/reference/position ff Set position of ref-
erence

[/reference/position, 1.5,
2.0]

/reference_offset/orientation f Set azimuth of ref-
erence offset posi-
tion

[/reference_offset/orientation,
-90.0]

/reference_offset/position ff Set position of ref-
erence offset

[/reference_offset/position,
1.5, 2.0]

Tab. 5: OSC messages relevant for reference management.

Understood by server and client.
Data types and their acronyms are listed in Table 1.

3 Implementation 30

Path Types Description Example
/scene/amplitude_reference
_distance

f Set amplitude ref-
erence distance.

[/scene/amplitude_reference
_distance, 6.0]

/scene/auto_rotate_sources F Disable automatic
rotation of sources.

[/scene/auto_rotate_sources,
false]

/scene/auto_rotate_sources T Enable automatic
rotation of sources.

[/scene/auto_rotate_sources,
true]

/scene/clear Delete all sources [/scene/clear]
/scene/decay_exponent f Set amplitude

decay exponent
in virtual space
(1/rexp).

[/scene/decay_exponent, 2.0]

/scene/load s Load scene from
ASDF file.

[/scene/load, “example.asd”]

/scene/master_signal_level f Set the renderers
signal level.

[/scene/master_signal_level,
-20]

/scene/save s Save scene to
ASDF file.

[/scene/save, “example.asd”]

/scene/volume f Set scene master
volume.

[/scene/volume, 0.23]

Tab. 6: OSC messages relevant for scene management.

Understood by server and client.
Data types and their acronyms are listed in Table 1.

When starting an SSR server instance (see 3.4.3.2), it responds to the
messages shown in Table 2 , 6 , 7 , 4 , 5 and 8.
A client instance (see 3.4.3.1) will only respond to the direct messages listed
in Table 3 , 6 , 7 , 4 and 5, but is able to send update messages.

There is one significant difference between the direct messages understood
by the OSC interface and the functionality of the IP interface. The latter
expects source gain to be transmitted on a logarithmic scale, ranging from
-inf to inf. However, the SSR is internally calculating on a linear scale and a
linear gain level of 0 is therefore hard to be reached10. For a more intuitive
use, a linear scale was chosen for the OSC interface, ranging from 0.0 to inf
(see gain related messages in Table 7), where 1.0 signifies 100% source level.

10 https://github.com/SoundScapeRenderer/ssr/issues/28

3 Implementation 31

Path Types Description Example
/source/delete i Delete source with

given id
[/source/delete, 1]

/source/file_channel ii Set a source’s file
channel

[/source/file_channel, 1, 2]

/source/file_name_
or_port_number

is Set a source’s file
name or port num-
ber

[/source/file_name_
or_port_number, 1, “1”]

/source/port_name is Set a source’s
JACK input port
name

[/source/port_name, 1,
“system:capture_2”]

/source/gain if Set a source’s gain
on a linear scale
(0.0 - inf)

[/source/gain, 1, 0.2]

/source/model is Set a source’s
model

[/source/model, 1, “point”]

/source/mute iF Unmute a source [/source/mute, 1, false]
/source/mute iT Mute a source [/source/mute, 1, true]
/source/name is Set a source’s name [/source/name, 1, “Daisy”]
/source/new i Create a new

source stub using
id

[/source/new, 1]

/source/new sssffffTFF Create a new
source (auto-
generated id) with
name, model,
port number,
X-coordinate,
Y-coordinate, ori-
entation, gain,
movability, orien-
tation movability
and mute status

[/source/new, “Daisy”,
“point”, “1”, 1.0, 2.5,
90.0, 0.2, true, false,
false]

/source/new sssffffisTFF Create a new
source (auto-
generated id) with
name, model,
port number,
X-coordinate,
Y-coordinate, ori-
entation, gain, file
channel, properties
file, movability,
orientation mov-
ability and mute
status

[/source/new, “Daisy”,
“point”, “1”, 1.0,
2.5, 90.0, 0.2, 2,
“properties.xml”, true,
false, false]

/source/orientation if Set a source’s ori-
entation

[/source/orientation, 1,
-90.0]

/source/position iff Set a source’s posi-
tion

[/source/position, 1, 1.5,
2.0]

/source/position_fixed iF Set a source mov-
able

[/source/position_fixed, 1,
false]

/source/position_fixed iT Set a source im-
movable

[/source/position_fixed, 1,
true]

/source/properties_file is Set a source’s prop-
erties file

[/source/properties_file, 1,
“source-properties.xml”]

Tab. 7: OSC messages relevant for source management.

Understood by server and client.
Data types and their acronyms are listed in Table 1.

3 Implementation 32

Path Types Description
/update/cpu_load f CPU load changes.
/update/processing/state T Processing state is set.
/update/processing/state F Processing state is unset.
/update/reference/orientation f Reference orientation changes.
/update/reference/position ff Reference position changes.
/update/reference_offset/orientation f Reference offset orientation

changes.
/update/reference_offset/position ff Reference offset position changes.
/update/scene/amplitude_reference_distance f Amplitude reference distance

changes.
/update/scene/auto_rotate_sources T Auto rotation of sources is set.
/update/scene/auto_rotate_sources F Auto rotation of sources is unset.
/update/scene/decay_exponent f The scene’s decay exponent has

changed.
/update/scene/master_signal_level f Master signal level has changed.
/update/scene/sample_rate i Sample rate of the scene changed.
/update/scene/volume f Volume of the scene has changed.
/update/source/delete i A source with given id was

deleted.
/update/source/file_channel ii A source’s file channel was set.
/update/source/file_name_or_port_number is A source’s file name or port num-

ber was set.
/update/source/gain if A source’s gain was set.
/update/source/length ii A source’s length was set.
/update/source/level if A source’s output level has

changed.
/update/source/model is A source’s model was set.
/update/source/mute iF A source was unmuted.
/update/source/mute iT A source was muted.
/update/source/name is A source’s name was set.
/update/source/orientation if A source’s orientation was set.
/update/source/new i A new source with given id was

created.
/update/source/port_name is A source’s JACK port_name was

set.
/update/source/position iff A source’s position was set.
/update/source/position_fixed iF A source was set to be movable.
/update/source/position_fixed iT A source was set to be immov-

able.
/update/source/properties_file is A source’s properties_file was

set.
/update/transport/seek s JACK transport seeked to a time-

code position.
/update/transport/state F JACK transport was stopped.
/update/transport/state T JACK transport was started.

Tab. 8: OSC messages for updating information on CPU load, processing, reference, scene, source, and
transport of clients on a server.
No examples are given, as they are mostly analogous to the ones in Table 4 , 6 and 7.

Understood by server.
Data types and their acronyms are listed in Table 1.

3 Implementation 33

3.4.7 Workflow Examples

Using any OSC capable programming language or application enables for
communication with the SSR. The following examples illustrate simple work-
flows using sclang and should therefore be OS agnostic.

3 // sclang is a client, controlling a SSR server instance
4 (
5 // set address of the client instance
6 ~address = NetAddr("localhost", 50001);
7 // print all OSC messages sent to sclang
8 OSCFunc.trace(true, true);
9 // subscribe to server with MessageLevel::SERVER

10 ~address.sendMsg("/subscribe", $T, 2);
11 // add new source with standard input at -1.0/1.0
12 ~address.sendMsg("/source/new", "in_1", "point", "1",
13 -1.0, 1.0, 0.1, 0.1, 0, "1", $F, $F, $T);
14 // add new source with standard input at 1.0/1.0
15 ~address.sendMsg("/source/new", "in_2", "point", "2",
16 1.0, 1.0, 0.1, 0.1, 0, "1", $F, $F, $T);
17 // unmute source 1
18 ~address.sendMsg("/source/mute", 1, $F);
19 // unmute source 2
20 ~address.sendMsg("/source/mute", 2, $F);
21 // move source 1 to -2.0/2.0
22 ~address.sendMsg("/source/position", 1, -2.0, 2.0);
23 // move source 2 to 2.0/2.0
24 ~address.sendMsg("/source/position", 2, 2.0, 2.0);
25 // remove all sources
26 ~address.sendMsg("/scene/clear");
27 // unsubscribe from server
28 ~address.sendMsg("/subscribe", $F);
29)

Listing 4: supercollider/workflows.scd: sclang as client controlling an SSR server instance

3.4.7.1 Controlling a Server As shown in Listing 4, it is necessary to
subscribe to the server instance with a MessageLevel of SERVER or higher.
After doing so, also all direct OSC messages (i.e. Table 7, 6 , 5, 2) are
evaluated when sent to the SSR.
The server instance will relay valid messages to all of its active clients.

3 Implementation 34

31 // sclang is a server, controlling a SSR client instance
32 (
33 // set address of the client instance
34 ~address = NetAddr("localhost", 50001);
35 // print all OSC messages sent to sclang
36 OSCFunc.trace(true, true);
37 // poll client instance to make it subscribe
38 ~address.sendMsg("/poll");
39 // subsequent poll makes client emit /alive message
40 ~address.sendMsg("/poll");
41 // add new source with standard input at -1.0/1.0
42 ~address.sendMsg("/source/new", "in_1", "point", "1",
43 -1.0, 1.0, 0.1, 0.1, 0, "1", $F, $F, $T);
44 // add new source with standard input at 1.0/1.0
45 ~address.sendMsg("/source/new", "in_2", "point", "2",
46 1.0, 1.0, 0.1, 0.1, 0, "1", $F, $F, $T);
47 // unmute source 1
48 ~address.sendMsg("/source/mute", 1, $F);
49 // unmute source 2
50 ~address.sendMsg("/source/mute", 2, $F);
51 // set message level to GUI_SERVER (a lot of messages!)
52 ~address.sendMsg("/message_level", 3);
53 // move source 1 to -2.0/2.0
54 ~address.sendMsg("/source/position", 1, -2.0, 2.0);
55 // move source 2 to 2.0/2.0
56 ~address.sendMsg("/source/position", 2, 2.0, 2.0);
57 // set message level back to SERVER
58 ~address.sendMsg("/message_level", 1);
59 // remove all sources
60 ~address.sendMsg("/scene/clear");
61)

Listing 5: supercollider/workflows.scd: sclang mimics server, controlling an SSR client instance

3.4.7.2 Server Mimicry When mimicking an SSR server instance in a
client-only setup (e.g. Figure 7 or Figure 8), it is necessary to send a poll
message to the client instance to make it subscribe (which sets the server’s
address and port up internally).
Afterwards — similar to the example in the subsection 3.4.4.3 — all direct
OSC messages are accepted by the client instance, when coming from the
server address and port.
An interesting concept here is to (temporarily) set a different MessageLevel
for the application acting as a server (e.g. to GUI_SERVER), to receive GUI
relevant messages, as explained in 3.4.6.

4 Discussion 35

4 Discussion

The OSC based networking extension created for the SSR can be consid-
ered a valuable usability improvement. Its implemented features are further
discussed in the following section, followed by an outlook on related future
work. The extension is additionally extensively documented in the source
code, to ensure the ease of further development.
Due to the versatility of how the SSR can be used in a networking context,
it is likely, that some of its possibilities are not even accounted for.

4.1 Implemented Features

The OSC interface described in 3.4 can be seen as a full replacement (with
one minor exception, detailed in 4.3.4) for the IP interface, already in place.
Its additional features are what set it trully apart though, when not only
regarding non-reliance on external software to enable OSC capabilities.

The implementation follows the internal PubSub interface, as described
in 3.2 and extends it, where appropriate. Additionally, an open client-server
architecture has been created, according to a message level system, further
elaborated in 3.4.5. An attempt at giving extensive examples on the various
setup possibilities, that are now available, is made in 3.4.4, some of which
are still dependant on various missing features (see 4.3).
The OSC messaging system is adhering to the aforementioned client-server
architecture by distinguishing between client-only, server-only and messages
available to clients and servers alike (see 3.4.6). Examples for different work-
flows are given in 3.4.7 to illustrate simple use cases.
This puts the OSC interface in the unique position of providing a native mes-
saging interface and a flexible architecture. It can be used from single local
instances up to large scale networked setups (with the limitations discussed
in 4.3.2 and 4.3.5).
While with the IP interface, multiple instances are only controllable by us-
ing an OSC capable application or one, that is able to send XML-formatted
strings over TCP/IP, the OSC interface can deal with n clients natively,
while only one instance has to be controlled using OSC. The behavior im-
plies, that setups are possible, in which a large collection of different types
of renderers can share the same scene, which is particularly useful for e.g.
auditioning different rendering algorithms over the same system, or rather in
the same room.
Message sending takes place over UDP, instead of TCP, which lowers the
complexity of the network topology (UDP does not perform handshakes for

4 Discussion 36

every packet sent, unlike TCP) and thus the size of each message sent.
The OSC interface therefore implements messaging, while using lower band-
width and offering a greater feature set. In 4.2 a test environment is intro-
duced, that further elaborates the overall functionality and feasibility of the
message interface.

4.2 Automated Tests

The SSR was developed without the help of a test framework, which is re-
sponsible for testing its components, after they have been changed. This
means, that internal (e.g. the PubSub interface) or external (e.g. the IP or
OSC interface) functionality might or might not work as expected. To test
the OSC interface’s logical coherency and robustness automatically, a set of
tests was written in sclang.
The tests are divided into those probing robustness of the OSC interface
and others probing its functionality. The robustness tests further divide into
server and client specific tests, where authorized and unauthorized access is
tried. The functionality tests are grouped by tests for general operability,
i.e. testing certain features or workflows once and long-running tests, where
features are tried repeatedly.

4.2.1 Robustness

Listing 6 and 7 describe server-side tests for robustness. While the first test
will not lead to any processed action by the server, the latter will. This
is explained by sclang not being a subscribed client with a MessageLevel
of SERVER or higher in the first case. However, in the second test sclang
subscribes to the SSR server instance, which is why the OSC messages are
evaluated in this case.

The tests described in Listing 8 and 9 are client-side tests for robustness,
that work in a similar fashion to the aforementioned server-side tests. While
the sent OSC messages are not evaluated in the first case, because sclang,
mimicking a server instance (see 3.4.7.2), did not poll the SSR client instance
up front, in the second case the messages are evaluated, because it did poll
the client first.

In all tests for robustness the attempt is made to force errors in the im-
plementation of the message interface (as defined in 3.4.6). This is achieved
by purposely using ranges of data types for messages, that are not allowed
or not defined in the SSR’s internal implementation.

4 Discussion 37

145 // sclang tries to control/send to server (not subscribed)
146 (
147 // print all OSC messages sent to sclang
148 OSCFunc.trace(true, true);
149 ~messageLevelTestServerRandomAll.value;
150 ~sourceTestRandomAll.value;
151 ~updateTestRandomAll.value;
152 ~subscribeTestOtherClient.value;
153 ~processingTestRandomAll.value;
154 ~transportTestRandomAll.value;
155 ~trackerTestRandomAll.value;
156 ~referenceTestRandomAll.value;
157 ~sceneTestRandomAll.value;
158)

Listing 6: supercollider/tests.scd: sclang (unsubscribed) tries to control an SSR server

160 // sclang controls server (subscribed)
161 (
162 // print all OSC messages sent to sclang
163 OSCFunc.trace(true, true);
164 // set address of the server instance
165 ~address = NetAddr("127.0.0.1", 50001);
166 // subscribe to server with MessageLevel::SERVER
167 ~address.sendMsg("/subscribe", $T, 2);
168 // send alive message on subsequent poll
169 ~responder_poll = OSCFunc(
170 { |msg, time, addr, recvPort|
171 ~address.sendMsg("/alive");
172 }, '/poll'
173 , ~address
174);
175 ~messageLevelTestServerRandomAll.value;
176 ~sourceTestRandomAll.value;
177 ~updateTestRandomAll.value;
178 ~processingTestRandomAll.value;
179 ~transportTestRandomAll.value;
180 ~trackerTestRandomAll.value;
181 ~referenceTestRandomAll.value;
182 ~sceneTestRandomAll.value;
183)

Listing 7: supercollider/tests.scd: sclang (subscribed) tries to control an SSR server

Two examples for weak spot exploitations were the use of negative integers
for IDs in source related messages (only non-zero, non-negative IDs are al-

4 Discussion 38

185 // sclang tries to control client (not polled)
186 (
187 // print all OSC messages sent to sclang
188 OSCFunc.trace(true, true);
189 ~messageLevelTestClientRandomAll.value;
190 ~cpuLoadTestClient.value;
191 ~sourceTestRandomAll.value;
192 ~processingTestRandomAll.value;
193 ~transportTestRandomAll.value;
194 ~trackerTestRandomAll.value;
195 ~referenceTestRandomAll.value;
196 ~sceneTestRandomAll.value;
197)

Listing 8: supercollider/tests.scd: sclang tries to control an SSR client (without polling it)

199 // sclang tries to control client (polled)
200 (
201 // print all OSC messages sent to sclang
202 OSCFunc.trace(true, true);
203 // set address of the server instance
204 ~address = NetAddr("127.0.0.1", 50001);
205 ~pollTestClientRandomAll.value;
206 ~messageLevelTestClientRandomAll.value;
207 ~cpuLoadTestClient.value;
208 ~sourceTestRandomAll.value;
209 ~processingTestRandomAll.value;
210 ~transportTestRandomAll.value;
211 ~trackerTestRandomAll.value;
212 ~referenceTestRandomAll.value;
213 ~sceneTestRandomAll.value;
214)

Listing 9: supercollider/tests.scd: sclang tries to control an SSR client (with previously polling it)

lowed internally) or supplying an empty string as hostname or port number
for subscription messages.
The first example will lead to undefined behavior, if the range is not checked
in the implementation, because a static_cast is used internally to cast the
value of the message data type (unsigned int) to the one expected by the
SSR’s Controller implementation (signed int) and the outcome of said oper-
ation is implementation dependant (depending on the OS in use).
The second example, if not checked for empty string, will lead to the OSC
interface trying to create a possibly defective address and send poll messages

4 Discussion 39

out to it.
While only some of the above mentioned scenarios could lead to a crash of
the program under certain circumstances, left unhandled, all of them waste
ressources, which is undesired. To circumvent possibly harmful input using
the OSC interface, a set of sanity checks were implemented, that only al-
low for a received message to be processed, if all of its components fit the
requirements.

4.2.2 Functionality and Operability

216 // sclang controls a client (polled), adds sources and moves them
217 (
218 // print all OSC messages sent to sclang
219 OSCFunc.trace(true, true);
220 // set address of the server instance
221 ~address = NetAddr("127.0.0.1", 50001);
222 // poll client instance to make it subscribe
223 ~address.sendMsg("/poll");
224 ~sourceTestMoving.value(amountOfSources: 20);
225)

Listing 10: supercollider/tests.scd: sclang controls an SSR client (with previously polling it), creating
several sources and moving them

The test described in Listing 10 is a test for functionality, which also
serves as a long-running stress test for the SSR. It creates 20 sources, that
are then moved around randomly, every 100ms, for 100s, which on a Lenovo
W540, with an Intel i7-4700MQ and 16Gb RAM created less than 50% of
CPU load.
Based on the above mentioned tests, the basic functionality of the OSC
interface can be guaranteed and depending on the host’s hardware also a
maximum degree of capacity utilization can be estimated, when observing
the SSR’s workload towards the system, while using the long-running tests.
It has to be mentioned, that a higher load can be observed, when using
higher levels of verbosity (especially above -vv). This is explained by the
fact, that the SSR will print out every OSC message received and sent above
the aforementioned verbosity level.

4.3 Future Work

Several features, interesting for different use cases, were out of scope for this
work. They are however complementary to the OSC networking extension,

4 Discussion 40

or can be implemented on top of it and will be discussed in the following
subsections.
However, before any more changes can take place, the OSC interface first
has to be merged into the main source code repository for the SSR. This will
also entail an update to the user manual11, to ensure extensive documentation
of the various OSC messages now understood by the software and updated
build instructions, that come with the usage of liblo (see 3.4.2). Especially
the latter might prove as the defining time factor, as for seamless integration
in the OSs a stable version of the OSC specification implementation will
always be preferred over a development version. A request for a new stable
release has already been directed towards the liblo maintainer12.

4.3.1 Non-Renderer

The SSR features a GUI, that was in the process of being upgraded for Qt5
at the time of writing. Future versions of the software could be used to also
display setups of networking instances, instead of only displaying the ones,
that are locally running.
The implementation could be desirable for massive multi-channel setups and
simply switching between several (local or network-attached) SSR instances
alike. An additional identifier for the -N flag (see 3.4.3.2) could be used to
start an instance in this mode.

The functionalities of the SSR’s GUI, its several spatial audio renderers
and OSC interface (amongst other parts) are determined by its PubSub. For
the GUI part of the software to display information about a networked setup,
or even switch between several of them, it is therefore not needed or even
desirable for that instance to render audio at all. An instance with such
features could be imagined as a GUI only frontend.
Figure 9 illustrates a scenario, in which a server instance is used to control a
set of n clients, that collectively renders audio (e.g. on a large scale WFS or
NFC-HOA system). In contrast to the client instances, the server does not
render any audio (i.e. has no outputs) and might not even need any audio
input.
The server in this example could also be a client, subscribed to a server
instance in a cluster similar to the one in Figure 4 (i.e. as the OSC capa-
ble application controlling the server instance by using a MessageLevel of
SERVER or higher).

11 https://ssr.readthedocs.io/en/latest/
12 https://sourceforge.net/p/liblo/bugs/42/

4 Discussion 43

4.3.2 Alien Loudspeaker

For the examples given in Figure 3 , 9 , 7 and 4, which facilitate a set of
n clients (server instances are counted as clients for the point made, where
applicable), used for rendering in a medium or large scale loudspeaker based
setup, an additional type of loudspeaker should be conceived and imple-
mented in the different renderers.

44 enum model_t
45 {
46 unknown = 0, ///< unknown loudspeaker type
47 // TODO: find better names and better descriptions
48 alien, //< not belonging to this instance of ssr
49 normal, ///< normal loudspeaker
50 subwoofer ///< always on, regardless of source positions
51 };

Listing 11: src/loudspeaker.h: enum model_t

In the setups, where rendering takes place collectively, each client instance
currently is reproducing the complete reproduction setup. This means, that
for a reproduction setup with several hundred loudspeakers, each client cre-
ates exactly that amount of JACK outputs each, although it would only be
responsible for discretely rendering audio on a subset of them.
To cope with this edge case, the current loudspeaker renderers would have
to be extended to be able to distinguish between the loudspeakers of the
current and that of other instances. This would enable them to create JACK
outputs in the amount of the loudspeakers they are rendering audio for and
reduce the overall processing usage.
In Listing 11 the enum model_t, defining the loudspeaker types available to
the SSR, is extended to facilitate the new model type alien, which could
be used internally by the renderers to identify loudspeakers, not to render on.

Already when defining a reproduction setup for the SSR, host-specific
loudspeakers have to be taken into account. Listing 17 shows an attempt at
providing a unique attribute for each part of the setup, that is referencing a
loudspeaker — the hostname or IP address of the host — by extending the
ASDF.
However, more work has to be put into implementing this feature, or rather
improvement, as it also requires tests in medium and large scale setups, to
ensure a discrete rendering, as if only using one host.

4 Discussion 44

4.3.3 Status Messages

When reflecting about different use cases for networking setups involving the
SSR, it became apparent, that in certain situations it would be desirable to
be able to poll instances for information, involving sources, scenes and the
like.
One example is the implementation of a light-weight, single-purpose GUI
(e.g. non-interactive display of source positions) in another programming
language, such as Python, Pd, or SuperCollider, while only relying on OSC
for communication between the parts. Another example is the implementa-
tion of monitoring of certain aspects of a client or server instance (e.g. CPU
usage). Both examples should allow a GUI (or any other monitoring) process
to be subscribed, after the active SSR instances started rendering.
To be able to retrieve information from an SSR instance, its PubSub interface
has to be extended and get functions implemented — where applicable —
to return the desired information. A special case of this feature is described
in 4.3.4.

4.3.4 Scene Transfer

The IP interface of the SSR implements a functionality to transfer all infor-
mation related to a scene as an XML formatted string. This is useful, if the
scene information should be stored on the machine requesting the informa-
tion, instead of on the rendering machine.
Due to shortage of time to implement it and the original functionality heavily
relying on the XML associated code, the OSC interface still lacks this fea-
ture, which in its context could also be used to transfer all scene information
to another client, subscribed to a server.
It would prove particularly useful, if clients could for example request the
scene currently held by their server instance, in the case where they are
started after the server has been started, but its scene already being setup.
The server would then send a set of instructions as OSC messages, needed
for setting up the scene in question.
For this feature to work reliably, some edge cases have to be considered, such
as gaps in the list of source IDs: Every source gets a unique non-zero, non-
negative ID assigned on creation. When a source is deleted, its ID is not
assigned to a source anymore and will not be reused, unless the whole scene
is deleted and a new cycle of source creation reaches a number that high.
This means, if a scene with source ID gaps has to be transferred, the OSC
messages have to be designed in such a way, that they can account for them,
as every source message (apart from /source/new) requires a valid source

4 Discussion 45

ID and subsequent calls to the server would otherwise trigger incorrectly
mapped operations on its clients sources.
Additionally, it would be useful to be able to transfer a scene to another
client, by request, if the caller’s MessageLevel is SERVER or higher.
The scene is a piece of redundant information, in a networked setup (whereas
the reproduction setup is individual). Being able to transfer scenes, using
OSC, would further improve usability, as the description files only have to
be in one place.

4.3.5 Assigning In- and Outputs on the Fly

The SSR, being a JACK client, is able to add inputs for its sources and out-
puts for its renderers according to the configuration variables INPUT_PREFIX
and OUTPUT_PREFIX, as shown in Listing 12.

44 ########################## JACK settings
#######################################↪→

45
46 # alsa input port prefix
47 #INPUT_PREFIX = "alsa_pcm:capture_"
48
49 # alsa output port prefix
50 #OUTPUT_PREFIX = "alsa_pcm:playback_"

Listing 12: data/ssr.conf.example: JACK settings in the SSR configuration file

The approach however is somewhat static, as it only allows setting up
one predefined client during startup. This can be the system’s hardware in-
and outputs or other JACK clients. The selected input name is added to the
prefix to connect an SSR source to a JACK client output with that name.
Following the configuration file example, given a source input name of 1, the
SSR would connect to the JACK client port named alsa_pcm:capture_1.
Dynamically reassigning source input or renderer output connections is only
possible by using external tools, able to handle connections of a JACK ses-
sion, such as QjackCtl (Capela, 2017), Patchage (Robillard, 2017) or aj-
snapshot (Moors and Suominen, 2017).
Every JACK client is allowed to make connections to other clients on the
same server on its own. This general feature should be harnessed in the case
of the SSR to allow assigning and reassigning of source inputs and renderer
outputs on the fly and exposing this functionality to the OSC interface (i.e.
by modifying and extending the PubSub interface).

4 Discussion 46

This would make the application more dynamic and allow easier scripting of
scenes and reproduction setups alike. This becomes especially useful in the
case of listening experiments, as the experiments will not have to rely on a
mixture of different scripting languages anymore (e.g. see experimental setup
in attachment of Grigoriev (2017)).

4.3.6 Interpolation of Moving Sources

Using the IP or OSC interface, it is possible to move sources in a scene to a
new location. Unlike sWONDER (see 2.2), the SSR is not able to interpolate
movement. When a new location for a source is requested, the movement
is carried out instantly, whereas sWONDER is able to move a source (on a
straight line) from one position to the next in a given time frame.
A series of movements can be requested in any desired time frame, which
means, that spatial aliasing is very likely to occur, during sets of requests
with a short time span between them.
To work around this, the SSR should implement a comparable feature to the
one sWONDER facilitates and apply rate limiting on the source positioning
request, depending on a dynamically settable threshold value in milliseconds.
Applications, such as WFSCollider (see 2.5) or 3Dj (see 2.4) rely on their GUI
or rather sclang to implement dynamic movements (e.g. circular or random-
ized) (Sauer and Snoei, 2017, pp. 56-62). While the creative process of source
paths generation is clearly best placed in a visually interactive process, its
communication with the rendering engine has to be high-performance and if
scalable to large setups, ideally with low network throughput.
Therefore it has to be evaluated, if implementing a set of understood geo-
metrical shapes, instead of sending a high frequency of source positioning
messages could be a more feasible solution in the case of the SSR. In 4.3.7 a
wider approach to this problem is discussed.

4.3.7 Dynamic Scene

When using the SSR in a more artistic context, such as musical scores, or
in scientific experimental environments dealing with moving sources, this re-
quires a dynamic scene. sWONDER (see 2.2) has a scoreplayer application,
that can be synced with MIDI, which is used to record and play back scores
(i.e. recorded source properties) from unvalidated XML files. WFSCollider
has a fully integrated timeline, that can be used to place multiple (even con-
current) events, save and play them (Sauer and Snoei, 2017, p. 10).

Unfortunately the ASDF was never properly extended for these purposes

4 Discussion 47

84 <xs:element name="score">
85 <xs:annotation><xs:documentation xml:lang="en">
86 This holds the dynamic content of the scene, i.e. movement

of↪→

87 sources/reference, start/end/length/loop information of
88 soundfiles, ...
89 Right now, it's not really defined and just to get an idea

that↪→

90 such functionalities will be implemented sometime
(hopefully).↪→

91 </xs:documentation></xs:annotation>
92 <xs:complexType>
93 <xs:choice maxOccurs="unbounded">
94 <xs:element ref="event"/>
95 <!-- There may be other elements here? -->
96 </xs:choice>
97 </xs:complexType>
98 </xs:element>

Listing 13: data/asdf.xsd: Draft of the score element within the ASDF schema file

(see Listing 13), which is why the SSR is not able to deal with dynamic
scenes in a comparable fashion yet.
Unlike sWONDER, the SSR uses schema validated XML only, whereas 3Dj
and WFSCollider use a unique format or even SuperCollider code as score
files.
Schema validated input is less error-prone and should generally be preferred
over single-purpose or self-conceived formats. Therefore, it would be a good
step to consolidate the ASDF schema part responsible for dynamic elements,
while keeping in mind the overall message throughput as discussed in 4.3.6
and thus enable the SSR to deal with dynamic scenes efficiently.
Additionally, the GUI efforts made for WFSCollider could be combined with
an SSR backend, as it lacks a tool for creation and controlling of dynamic
content.

4.3.8 Network Enabled Head Tracking

Due to the higher availability of sensors, microcontrollers and embedded sys-
tems in recent years, it has become very affordable to build network enabled
head tracking devices in small series. Many of the conceived devices, such as
the GPL licensed Hedrot (Baskind, 2017), allow for OSC communication.
Using the OSC interface, such a head tracker can be added as a client to
an SSR instance. This will probably require rate-limiting the sensor output,

4 Discussion 48

but would enable a networked setup, that could prove to be cheaper, more
reliable and flexible, than the compile-time opt-ins (i.e. VRPN, Polhemus
Fastrak/ Patriot, InterSense InertiaCube3).
In the specific case of setting up a large array of independent BRS or BS
renderers, connected to one server instance or application, it might be re-
quired to extend the messaging system to allow passing on of messages from
one client to a server only towards one specific other client (a type of proxy
messaging). This would ensure, that every renderer can be supplied with a
specific stream of OSC messages from its assigned head tracker. Additionally,
single (and local) renderers can be started as a server instance and clients
can be assigned to them flexibly.

5 References 49

5 References

Ackermann, David and Maximilian Ilse (2015): The Simulation of Monaural
and Binaural Transfer Functions for a Ground Truth for Room Acoustical
Analysis and Perception (GRAP). Master’s thesis, Technische Universität
Berlin.

Audiokommunikation, Fachgebiet (2017): “Wellenfeldsynthese an der
TU Berlin.” URL https://www.ak.tu-berlin.de/menue/forschung/
wellenfeldsynthese/.

Baalman, Marije A.J. (2007): On wave field synthesis and electro-acoustic
music, with a particular focus on the reproduction of arbitrarily shaped
sound sources. Ph.D. thesis, Technische Universität Berlin.

Baalman, Marije A.J.; Torben Hohn; Simon Schampijer; and Thilo Koch
(2007): “Renewed architecture of the sWONDER software for Wave Field
Synthesis on large scale systems.” In: Linux Audio Conference 2007. Linux
Audio Conference. URL http://lac.linuxaudio.org/2007/papers/
lac07_baalman_hohn_schampijer_koch.pdf.

Baskind, Alexis (2017): “Hedrot.” URL https://abaskind.github.io/
hedrot/.

Böhm, Christoph (2015): Entwicklung einer Versuchsumgebung zur Aurali-
sation von virtuellen Konzerträumen für Musiker. Master’s thesis, Tech-
nische Universität Berlin.

Capela, Rui Nuno (2017): “QjackCtl.” URL https://qjackctl.
sourceforge.io/.

Cotton, M.; et al. (2011): “Internet Assigned Numbers Authority (IANA)
Procedures for the Management of the Service Name and Transport Pro-
tocol Port Number Registry.” URL https://tools.ietf.org/html/
rfc6335.

Cycling’74 (2017): “Max/MSP.” URL https://cycling74.com/.

Davis, Paul (2016): “JACK Audio Connection Kit.” URL http://
jackaudio.org/.

Davis, Paul (2017): “Ardour.” URL https://ardour.org.

Ellison, Lee (2017): “Audinate.” URL https://audinate.com.

5 References 50

Fohl, Wolfgang (2013): Sound - Perception - Performance, chap. The Wave
Field Synthesis Lab at the HAW Hamburg. Heidelberg: Springer Interna-
tional Publishing, pp. 243–255. doi:10.1007/978-3-319-00107-4_10. URL
http://dx.doi.org/10.1007/978-3-319-00107-4_10.

Foundation, Game Of Life (2016): “Game Of Life Foundation.” URL http:
//gameoflife.nl/en.

Geier, Matthias; Jens Ahrens; and Sascha Spors (2008): “The SoundScape
Renderer: A Unified Spatial Audio Reproduction Framework for Arbitrary
Rendering Methods.” In: Audio Engineering Society Convention 124. Au-
dio Engineering Society Inc. URL http://www.aes.org/e-lib/browse.
cfm?elib=14460.

Geier, Matthias; Torben Hohn; and Sascha Spors (2012): “An Open-Source
C++ Framework for Multithreaded Realtime Multichannel Audio Appli-
cations.” In: Linux Audio Conference. URL http://lac.linuxaudio.
org/2012/papers/19.pdf.

Geier, Matthias and Sascha Spors (2010): “Conducting Psychoacoustic
Experiments with the SoundScape Renderer.” In: Sprachkommunikation
2010 - 9. ITG-Fachtagung 10/06/2010 - 10/08/2010 at Bochum, Deutsch-
land. VDE Verlag. URL http://www.int.uni-rostock.de/fileadmin/
user_upload/publications/spors/2010/Geier_ITGspeech2010_SSR_
experiments.pdf.

Geier, Matthias and Sascha Spors (2012): “Spatial Audio with the Sound-
Scape Renderer.” In: 27th Tonmeistertagung - VDT International Conven-
tion. URL http://www.int.uni-rostock.de/fileadmin/user_upload/
publications/spors/2012/Geier_TMT2012_SSR.pdf.

Grigoriev, Dmitry (2017): Synthesis of binaural stimuli for a listening test on
room acoustic perception. Master’s thesis, Technische Universität Berlin.

Guillot, Pierre; Eliott Paris; and Thomas Le Meur (2017a): “HoaLibrary.”
URL http://www.mshparisnord.fr/hoalibrary/en.

Guillot, Pierre; Eliott Paris; and Thomas Le Meur (2017b): “HoaLibrary for
PureData.” URL https://github.com/cicm/hoalibrary-pd.

Haller, Hans Peter (1995): Das Experimentalstudio der Heinrich-Strobel-
Stiftung des Südwestfunks Freiburg 1971-1989: Die Erforschung der Elek-
tronischen Klangumformung und ihre Geschichte, vol. 1 of Südwestfunk-
Schriftenreihe: Rundfunkgeschichte. 1. Baden-Baden: Nomos Verlagsge-
sellschaft.

5 References 51

Koslowski, Konstantin (2013): Presentation of Virtual Sources with an In-
creased Auditory Source Width in Wave Field Synthesis. Bachelor’s thesis,
Technische Universität Berlin.

Lindau, Alexander (2014): Binaural Resynthesis of Acoustic Environments.
Technology and Perceptual Evaluation. Ph.D. thesis, Technische Univer-
sität Berlin.

McCartney, James (2017): “SuperCollider.” URL https://supercollider.
github.io/.

Moors, Lieven and Jari Suominen (2017): “aj-snapshot.” URL http:
//aj-snapshot.sourceforge.net/.

Pérez-López, Andrés (2014): Real-Time 3D Audio Spatialization Tools for
Interactive Performance. Master’s thesis, Universitat Pompeu Fabra,
Barcelona.

Puckette, Miller (1997): “Pure Data: another integrated computer music en-
vironment.” In: Second Intercollege Computer Music Concerts, Tachikawa.
Kunitachi College of Music, pp. 37–41. URL https://puredata.info/
docs/articles/puredata1997.

Puckette, Miller (2016): “PureData.” URL http://puredata.info.

Pulkki, Ville (1997): “Virtual Sound Source Positioning Using Vector Base
Amplitude Panning.” In: JAES, vol. 45. Audio Engineering Society Inc.,
pp. 456–466. URL http://www.aes.org/e-lib/browse.cfm?elib=7853.

Quality & Usability Lab, TU Berlin, Telekom Innovation Laboratories; Uni-
versität Rostock Institut für Nachrichtentechnik; and Chalmers University
of Technology Division of Applied Acoustics (2016): “SoundScape Ren-
derer.” URL http://spatialaudio.net/ssr/.

Robillard, David (2017): “Patchage.” URL https://drobilla.net/
software/patchage.

Sauer, Arthur and Wouter Snoei (2017): Working with WFSCol-
lider v2.2.4b. The Game Of Life Foundation. URL https:
//sourceforge.net/projects/wfscollider/files/WFSCollider%
20Manual/Working%20with%20WFSCollider%20v2.2.4.pdf/download.

Shuttleworth, Marc (2017): “Ubuntu Linux.” URL https://ubuntu.com.

Sinclair, Stephen (2017): “liblo.” URL http://liblo.sourceforge.net/.

5 References 52

Snoei, Wouter; Miguel Negrao; R. Ganchrow; and J. Truetzler (2016):
“WFSCollider on Github.” URL https://github.com/GameOfLife/
WFSCollider.

Spors, Sascha and Jens Ahrens (2010): “Analysis and Improvement of Pre-
equalization in 2.5-Dimensional Wave Field Synthesis.” In: Audio En-
gineering Society Convention 128. Audio Engineering Society Inc. URL
http://www.aes.org/e-lib/browse.cfm?elib=15418.

Spors, Sascha; Rudolf Rabenstein; and Jens Ahrens (2008): “The Theory
of Wave Field Synthesis Revisited.” In: Audio Engineering Society Con-
vention 124. Audio Engineering Society Inc. URL http://www.aes.org/
e-lib/browse.cfm?elib=14488.

Thaden, Dr.-Ing. Rainer (2017): “Four Audio.” URL http://fouraudio.
com.

Vinet, Judd and Aaron Griffin (2017): “Arch Linux.” URL https://
archlinux.org.

von Coler, Henrik and Andreas Pysiewicz (2017): “Electronic Studio.” URL
https://www.ak.tu-berlin.de/studio.

Wierstorf, Hagen (2014): Perceptual Assessment of Sound Field Synthesis.
Ph.D. thesis, Technische Universität Berlin.

Wierstorf, Hagen; Alexander Raake; and Sascha Spors (2012): “Localization
of a virtual point source within the listening area for Wave Field Synthesis.”
In: Audio Engineering Society Convention 133. Audio Engineering Society
Inc. URL http://www.aes.org/e-lib/browse.cfm?elib=16485.

Wittek, Helmut (2007): Perceptual differences between wavefield synthesis
and stereophony. Ph.D. thesis, University of Surrey.

Wright, Matthew (2002): “Open Sound Control 1.0 Specification.” URL
http://opensoundcontrol.org/spec-1_0.

53

Appendices
A PDF Version

The PDF version of this work can be found on the Digital Ressource as the
file master-thesis/thesis/thesis.pdf.

B LaTeX Sources

The LATEX sources for this work can be found on the Digital Ressource in the
file master-thesis/thesis/thesis.tex. The accompanying BibTeX file is
located in master-thesis/bib.
All graphics used in this work can be found in master-thesis/images.

C Thesis Bibliography

The references used in this work, if not in the form of a website, can be found
on the Digital Ressource in the folder master-thesis/src.

D OSC Interface Source Code

All C++ source code written for the OSC interface can be found on the Dig-
ital Ressource in the folder ssr/src/networking. However, there are more
parts of the original SSR source code, that have been extended and modified,
such as ssr/src/controller.h or ssr/src/configuration.cpp.
It is possible to get a better overview of the various changes, by using git’s
log features, as shown in Listing 14.

cd ssr
git log

Listing 14: The git log feature used in the ssr folder of the Digital Ressource.

To evaluate the differences between the original code base and the mod-
ified version, it is recommended to use Github’s diff functionality for the
dedicated branches:

D OSC Interface Source Code 54

• configuration-client-server13

• networking-with-osc14

• osc-tests15

• reproduction-with-hostnames16

• sclang-workflows17

• alien-loudspeaker18

The source code developed in the aforementioned branches was merged into
a new, local branch called testing for the Digital Ressource. However, all of
them are available separately in this local source code repository.
Therefore, git can also be used locally to checkout a specific branch of the
source code, as shown in Listing 15.

cd ssr
git checkout networking-with-osc

Listing 15: The git checkout feature used in the ssr folder of the Digital Ressource to checkout the
networking-with-osc branch.

Comparison between branches can also be done locally, as described in List-
ing 16.

The examples in Listing 15 and 16 can be applied analogous to the other
branches.

13 https://github.com/SoundScapeRenderer/ssr/compare/master...dvzrv:configuration-
client-server

14 https://github.com/SoundScapeRenderer/ssr/compare/master...dvzrv:networking-
with-osc

15 https://github.com/SoundScapeRenderer/ssr/compare/master...dvzrv:osc-tests
16 https://github.com/SoundScapeRenderer/ssr/compare/master...dvzrv:reproduction-

with-hostnames
17 https://github.com/SoundScapeRenderer/ssr/compare/master...dvzrv:sclang-

workflows
18 https://github.com/SoundScapeRenderer/ssr/compare/master...dvzrv:alien-

loudspeaker

E SuperCollider Scripts 55

cd ssr
git diff master...networking-with-osc

Listing 16: The git diff feature used in the ssr folder of the Digital Ressource to display the difference
between the networking-with-osc and the master branch.

E SuperCollider Scripts

The SuperCollider code written for the tests (see 4.2) and workflows (see 3.4.7)
are located on the Digital Ressource in the folder ssr/supercollider.
For using the scripts, SuperCollider version 3.7, or above is recommended.

F Reproduction Setup Changes

F Reproduction Setup Changes 56

44 <xs:element name="reproduction_setup">
45 <xs:annotation><xs:documentation xml:lang="en">
46 This section is for the setup of the reproduction system.

This can↪→

47 be a loudspeaker setup or headphones or ...
48 </xs:documentation></xs:annotation>
49 <xs:complexType>
50 <xs:choice minOccurs="0" maxOccurs="unbounded">
51 <xs:element ref="loudspeaker"/>
52 <xs:element ref="circular_array"/>
53 <xs:element ref="linear_array"/>
54 <xs:element name="skip">
55 <xs:complexType>
56 <xs:attribute name="number" type="xs:positiveInteger"

default="1"/>↪→

57 <xs:attribute ref="hostname" use="optional"/>
58 </xs:complexType>
59 </xs:element>
60 </xs:choice>
61 </xs:complexType>
62 </xs:element>

250 <xs:element name="loudspeaker">
251 <xs:complexType>
252 <xs:all>
253 <xs:element ref="position"/> <!-- required -->
254 <xs:element ref="orientation"/> <!-- required -->
255 </xs:all>
256 <xs:attribute ref="name"/>
257 <xs:attribute ref="hostname"/>
258 <xs:attribute ref="delay"/>
259 <xs:attribute ref="weight"/>
260 <xs:attribute name="model" type="loudspeaker_model_t"/>
261 <!-- extensible by any attribute -->
262 <xs:anyAttribute processContents="skip"/>
263 </xs:complexType>
264 </xs:element>

314 <!-- an ID doesn't really make sense for a loudspeaker array,
does it? -->↪→

315 <!-- <xs:attribute ref="id" use="optional"/> -->
316 <xs:attribute name="number" type="more_than_one"

use="required"/>↪→

317 <xs:attribute ref="name" use="optional"/>
318 <xs:attribute ref="hostname"/>

361 <xs:attribute name="number" type="more_than_one"
use="required"/>↪→

362 <xs:attribute ref="name"/>
363 <xs:attribute ref="hostname"/>
364 <!-- extensible by any attribute -->

186 <xs:attribute name="hostname" type="xs:token"/>

Listing 17: data/asdf.xsd: Reproduction setup, loudspeaker, circular array and linear array definition in
ASDF, extended by a hostname attribute

Glossary

ASCII American Standard Code for Information Interchange — a character
encoding standard.

FAUST Functional Audio Stream is a functional programming language specif-
ically designed for realtime signal processing and synthesis.

ID A name or number, that identifies an object.

Python A multi-purpose, object-oriented programming language.

Qt4 Version 4 (legacy) of the cross-platform application framework for cre-
ating desktop applications.

Qt5 Version 5 of the cross-platform application framework for creating desk-
top applications.

Quark Name for Classes extending the SuperCollider programming language,
usually developed in a separate version controlled code repository.

sclang Name of the SuperCollider programming language and the interpreter
executable of the SuperCollider programming language.

stdout The standard output is a stream where a program writes its output
data to. This can be a log file or a terminal.

SuperCollider A programming language, Integrated Development Environ-
ment (IDE) and synthesis server for realtime audio processing and syn-
thesis.

Acronyms

AAP Ambisonics Amplitude Panning.

ADAT Alesis Digital Audio Tape.

ALSA Advanced Linux Sound Architecture.

APF Audio Processing Framework.

API Application Programming Interface.

I

ASDF Audio Scene Description Format.

BRIR Binaural Room Impulse Response.

BRS Binaural Room Synthesis.

BS Binaural Synthesis.

CC Creative Commons.

CICM Centre de recherche Informatique et Création Musicale.

CNMAT Center for New Music and Audio Technologies.

CPU Central Processing Unit.

FDL GNU Free Documentation License.

GPL GNU General Public License.

GUI Graphical User Interface.

HOA Higher Order Ambisonics.

HRIR Head Related Impulse Response.

HRTF Head Related Transfer Function.

IANA Internet Assigned Numbers Authority.

IP Internet Protocol.

JACK JACK Audio Connection Kit.

LGPL GNU Lesser General Public License.

LTS Long Term Support.

MADI Multichannel Audio Digital Interface.

MIDI Musical Instrument Digital Interface.

NFC-HOA Near-Field-Compensated Higher Order Ambisonics.

II

OOP Object-Oriented Programming.

OS Operating System.

OSC Open Sound Control.

Pd PureData.

POSIX Portable Operating System Interface.

PubSub Publish-Subscribe message pattern.

RAII Ressource Acquisition Is Initialization.

SSR SoundScape Renderer.

TCP Transmission Control Protocol.

TU Berlin Technische Universität Berlin.

UDP User Datagram Protocol.

VBAP Vector Based Amplitude Panning.

WFS Wave Field Synthesis.

XML Extensible Markup Language.

III

List of Figures
1 A diagram depicting a simplified version of the PubSub used

within the SSR with all original subscribers. 13
2 A diagram depicting a simplified version of the PubSub used

within the SSR with all subscribers. 16
3 A diagram displaying an SSR client/server setup, in which the

server and the clients render audio collectively (e.g. WFS).
The server instance is not controlled via OSC, but controls its
clients through it. 21

4 A diagram displaying an SSR client/server setup, in which the
server and the clients render audio collectively (e.g. WFS).
The server instance is controlled by an OSC capable applica-
tion (acting as another client) and controls its clients through
OSC as well. 22

5 A diagram displaying an SSR client/server setup, in which the
server and the clients render audio to separate outputs (e.g.
multiple BS renderers). The server instance is not controlled
via OSC, but controls its clients through it. 23

6 A diagram displaying an SSR client/server setup, in which the
server and the clients render audio separately (e.g. multiple
BS renderers). The server instance is controlled by an OSC
capable application (acting as another client) and controls its
clients through OSC as well. 24

7 A diagram displaying an SSR client cluster setup, in which a
set of clients render audio collectively (e.g. medium or large-
scale WFS setup). An OSC capable application acts as an
SSR server instance and controls the clients. 25

8 A diagram displaying an SSR client cluster setup, in which
a set of clients render audio separately (e.g. multiple BS ren-
derers). An OSC capable application acts as a SSR server
instance and controls the clients. 26

9 A diagram displaying an SSR client/server setup, in which
only the clients render audio collectively (e.g. medium or large-
scale WFS). The server instance is not controlled via OSC,
but controls its clients through it. Additionally, its rendering
engine does not have any outputs. 41

IV

10 A diagram displaying an SSR client/server setup, in which
only the clients render audio to separate outputs (e.g. multiple
BSs renderers). The server instance is not controlled via OSC,
but controls its clients through it. Additionally, its rendering
engine does not have any outputs. 42

V

List of Listings
1 Starting the SSR using the BS renderer as an OSC client (de-

fault) on the non-standard port 50002. 19
2 Starting the SSR using the AAP renderer as an OSC server,

with an initial client on localhost, port 50002 provided. . . . 20
3 src/ssr_global.h: enum class MessageLevel 27
4 supercollider/workflows.scd: sclang as client controlling an

SSR server instance . 33
5 supercollider/workflows.scd: sclang mimics server, controlling

an SSR client instance . 34
6 supercollider/tests.scd: sclang (unsubscribed) tries to control

an SSR server . 37
7 supercollider/tests.scd: sclang (subscribed) tries to control an

SSR server . 37
8 supercollider/tests.scd: sclang tries to control an SSR client

(without polling it) . 38
9 supercollider/tests.scd: sclang tries to control an SSR client

(with previously polling it) . 38
10 supercollider/tests.scd: sclang controls an SSR client (with

previously polling it), creating several sources and moving them 39
11 src/loudspeaker.h: enum model_t 43
12 data/ssr.conf.example: JACK settings in the SSR configura-

tion file . 45
13 data/asdf.xsd: Draft of the score element within the ASDF

schema file . 47
14 The git log feature used in the ssr folder of the Digital Ressource. 53
15 The git checkout feature used in the ssr folder of the Digital

Ressource to checkout the networking-with-osc branch. 54
16 The git diff feature used in the ssr folder of the Digital Ressource

to display the difference between the networking-with-osc and
the master branch. 55

17 data/asdf.xsd: Reproduction setup, loudspeaker, circular ar-
ray and linear array definition in ASDF, extended by a host-
name attribute . 56

VI

List of Tables
1 Acronyms (type tags) for atomic data types, used in OSC

messages and bundles (Wright, 2002). 18
2 OSC messages relevant for subscribing and setting of message

levels for clients. 28
3 OSC messages relevant for polling and setting of message levels

for servers subscribed to. 29
4 OSC messages relevant for processing, tracker and (JACK)

transport related settings. 29
5 OSC messages relevant for reference management. 29
6 OSC messages relevant for scene management. 30
7 OSC messages relevant for source management. 31
8 OSC messages for updating information on CPU load, pro-

cessing, reference, scene, source, and transport of clients on a
server. No examples are given, as they are mostly analogous
to the ones in Table 4 , 6 and 7. 32

VII

Digital Ressource

This page holds a data disk.

VIII

