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Zusammenfassung

Akustische Fingerprint Systeme werden zur automatischen Erkennung von Au-
diosignalen anhand einer perzeptuellen Zusammenfassung verwendet. Dies perzeptu-
elle Zusammenfassung wird Fingerprint genannt. In dieser Masterarbeit wird ein be-
reits vorhandenes Fingerprint System auf seine Robustheit gegenüber Pitch Shifting,
Time Scaling and anderen häufig auftretenden Signalverzerrungen überprüft. Das be-
trachtete System basiert auf sogenannten “Interest Points” die aus einer Zeit-Frequenz-
Darstellung des Audiosignals extrahiert werden. Für die Auswertung werden sowohl
verschiedene Zeit-Frequenz-Darstelliungen als auch Detektoren für Interest Points
verwendet um zu testen ob man dadurch die Wiederauffindungsrate von Audiosigna-
len in der Datenbank erhöhen kann.

Abstract

Acoustical fingerprinting systems are used to automatically identify audio using
a perceptual digest of the audio signal called a fingerprint. In this thesis the robust-
ness of a particular fingerprinting system against time scaling, pitch shifting and some
common other signal degradations is tested. The system is based on extracting inter-
est points from a time-frequency representation of the audio signal. Both the time-
frequency representation and the method to detect the interest points are modified to
test if these can be improved upon to gain better retrieval results when searching for
query audio in a database.
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Introduction 1

1.1 What is acoustic fingerprinting?
Acoustic fingerprinting is a technology used to identify audio objects. An acoustic finger-
print is a perceptual digest of an audio object by which that object can be searched and
identified in a database efficiently. In their landmark paper Cano et al. (2002a) describe the
process like this:

“Audio fingerprinting or Content-based audio identification (CBID) sys-
tems extract a perceptual digest of a piece of audio content, i.e. the fingerprint
and store it in a database. When presented with unlabeled audio, its fingerprint
is calculated and matched against those stored in the database.”

Haitsma and Kalker (2002) define the main objective of multimedia fingerprinting as fol-
lows:

“The prime objective of multimedia fingerprinting is an efficient mecha-
nism to establish the perceptual equality of two multimedia objects: not by
comparing the (typically large) objects themselves, but by comparing the asso-
ciated fingerprints (small by design).”

This already hints at the advantages of using a fingerprint system to identify audio objects.
The same paper also gives three actual and compelling reasons to use fingerprint systems for
content identification:

1. “Reduced memory/storage requirements as fingerprints are relatively small;
2. Efficient comparison as perceptual irrelevancies have already been removed

from fingerprints;
3. Efficient searching as the dataset to be searched is smaller.”

As mentioned in the quote above, a fingerprint function should convert large audio objects
into small fingerprints. In this a fingerprint function is similar to a hash function. A hash
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function converts data of arbitrary length (usually large) to a hash value of constant length
(usually small). Because of this, hash functions allow for efficient checking for strict equality
of two large objects by comparing their hash values which are far smaller. In the case of
acoustic fingerprinting however we are not interested in strict equality but in perceptual
equality. Two audio objects that are perceptually equal can be very different in a signal
representation. It is smarter to use a hash function that yields similar hashes for similar
audio content and very different hashes for dissimilar content.

The perceptual digests can be computed in many ways and are mostly based on features
extracted from the audio such as maxima in the short-time Fourier transform (STFT), the
chroma vector, signal statistics, Mel Frequency Cepstral Coefficients (MFCCs), etc.

Because of the aforementioned similarity to cryptographic hash functions some early
publications on audio fingerprinting used the terms perceptual hashing and robust hashing.

1.1.1 Applications of audio fingerprinting
Broadcast monitoring An obvious application for acoustic fingerprinting is broadcast mon-

itoring which is vital to royalty collection, advertisement verification and program
verification. Automatic playlist recognition would improve the accuracy of the data
that institutions like GEMA in Germany use to distribute royalty payments to its
members. In 2014 such a new system for broadcast monitoring for night clubs and
bars was tested in a night club in Berlin. 1

Digital rights management (DRM) monitoring for file sharing platforms With fingerprint-
ing enabled on file sharing platforms it would be possible to prevent users from dis-
tributing copyrighted material by filtering it out.

Automatic music library organization Automatic retrieval of meta data is already a built-
in feature in applications like Apple’s iTunes. When inserting an audio compact disc
(CD) into the computer, users can fetch the meta data from a server, so they don’t
need to input the information themselves.

1.2 General architecture of an acoustic fingerprint system
All acoustic fingerprint systems must have, at the highest level of abstraction, two methods:

1. A method to extract a fingerprint from an audio object.

2. A method to efficiently search for a given fingerprint (extracted from a query audio
object) in a database of fingerprints.

Both methods are highly dependent on each other. The second method can be further
divided into two seperate sub-methods:

1. A method to save a fingerprint in a way that minimizes the required storage space,
while maintaining a fast searchability. Two common formats are bit-strings and vec-
tors in which the individual entries are weights of basic audio features.

1http://www.residentadvisor.net/news.aspx?id=25053
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2. An efficient search strategy. Depending on which format is used to save the finger-
prints this can encompass technologies such as lookup tables (LUT), inverse indexes,
bit error rates, locality sensitive hashing (LSH) etc.

1.2.1 Parameters of a fingerprinting system
In their paper Haitsma and Kalker (2002) propose the following parameters to asses finger-
printing systems by:

Robustness Can an audio clip still be identified after severe signal degradation? This pa-
rameter depends heavily on the preprocessing and the audio features that are used to
compute the fingerprint.

Reliability How often is a song correctly/incorrectly identified?

Fingerprint size How much storage is needed for a fingerprint?

Granularity How many seconds of audio is needed to identify an audio clip? How many
fingerprints are extracted per second of audio? The importance of this parameter
depends on the use case but for most applications only a few seconds should be enough
to identify a song.

Search speed and scalability How long does it take to find a fingerprint in a fingerprint
database? How much computational power is needed to compute a fingerprint? Com-
mercial fingerprinting services only need a few milliseconds to retrieve a song from a
database of several million songs.

These parameters are mostly interdependent and a trade-off has to be made between them.
For example: a smaller granularity results in more storage needed for the fingerprint database
and this in turn can negatively influence the speed with which the database can be searched.

1.3 Literature review
The next pages are dedicated to giving the reader an overview of the history of audio finger-
printing from the beginnings to the state of the art of today.

1.3.1 Early attempts at identifying audio
Early attempts at identifying audio were mostly not based on music information retrieval
(MIR) techniques and didn’t analyze the perceptual content of the audio itself.

1.3.1.1 The Compact Disc Database (CDDB)

The Compact Disc Database (CDDB) was developed in 1993 by Ti Kan as an online
database to accompany his music player application xmcd. The system identifies whole CDs
by creating a hash value from the starting times and durations of all tracks extracted from
the table of contents (TOC) of the CD. Thanks to this system a user could insert a music
CD into his computer and if the CD already had an entry in the database the music player
would display the correct meta data such as artist name, album name, title names etc. For
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this to work it relied on users to enter the correct meta data if the inserted CD couldn’t be
found in the database.

Since the hash depends on the length of the tracks and their order - and not on the
content - this approach does work only for officially released CDs and not for custom com-
pilations of tracks from different CDs.

Also the risk of duplicate items due to multiple CDs having the same order and length
of tracks is confirmed to be a problem. (Ingebrigtsen, 2007; Hansen, 2013)

Over time and with the help of the users the CDDB grew considerably and more music
applications were using the database to offer their users an automatic CD identification.

The CDDB was later acquired by a company that is now known as Gracenote which
commercialized the access to the database. This led to the creation of free projects such
as the freedb 2 and the MusicBrainz project 3. The latter also has its own (open source)
fingerprinting algorithm called AcoustID.4

1.3.1.2 CD-Text

Introduced by Sony, CD-Text is an extension of the Red Book CD standard that allows
embedding meta data into the CD. This way a capable CD-Player can display information
about the CD while playing it. (EN 60908; IEC 61866:1997)

1.3.1.3 Watermarking

Analogous to watermarking on paper, digital watermarking is a technique for embedding
hidden or unperceivable information into a file that can be extracted with a predefined pro-
cedure to identify a file.

The obvious disadvantage with this approach is that the file in question has to be marked
in advance to be able to identify it later. Also the watermark could be damaged by signal
degradations to the extent of being unidentifiable. This makes it unsuitable for perceptual
audio identification.

The advantage of the approach is the possibility to trace the paths that a watermarked
file has taken. This could be used to monitor copyright infringements.

An overview on watermarking techniques for audio identification can be found in the
paper by Chauhan and Rizvi (2013).

1.3.2 First Commercial Fingerprinting Systems
The first commercial fingerprinting systems emerged around the year 2001. In this subsec-
tion I concentrate on three of the first fingerprinting systems that are still in use today.

1.3.2.1 Philips

Developed by Haitsma and Kalker in 2002 (Haitsma and Kalker, 2002) this fingerprint-
ing system is based on energy differences in neighboring STFT bins. The authors claim
that a sequence of 256 fingerprints (which they call a fingerprint block) corresponding to
approximately 3 seconds of audio can be uniquely identified.

2http://www.freedb.org/
3https://musicbrainz.org/
4https://acoustid.org/
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1.3.2.1.1 Algorithm

A Scheme for the fingerprint extraction is depicted in figure 1.1.
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Figure 1. Overview hash extraction scheme

3 Robust Hash Extraction
An overview of the hash extraction algorithm is shown in Figure 1. In accordance with the definition

of a robust hash in Section 2, a robust hash value is computed for basic windowed time intervals (i.e.
frames). The frames have a length of approximately 0.4 seconds and are weighted by a Hanning
window with an overlap factor of 31/32. The overlap is chosen in such a way to assure a large
similarity of the hash values between subsequent frames (i.e. hash values are slowly varying in time).
This similarity is necessary, because the frame boundaries used for storing the original hash values in
the database are unknown.

Many important audio features (i.e. tones) live in the frequency domain. Therefore a spectral
representation is computed by performing a Fourier transform on every frame. Due to the sensitivity of
the phase of the Fourier transform to different frame boundaries and the fact that the HAS is relatively
insensitive to phase, only the absolute value of the spectrum is retained.

In order to extract a 32-bit hash value for every frame, 33 non-overlapping frequency bands are
selected. These bands lie in the range from 300Hz to 3000Hz (the most relevant frequency range) and
have a logarithmic spacing. The logarithmic spacing is chosen, because it is known that the HAS also
operates on approximately logarithmic bands (the so-called Bark scale). In the proposed hash
extraction scheme the first band starts at 300Hz and every band has a bandwidth of one musical tone
(i.e. the bandwidth increases by a factor of 2(1/12)≈1.06 per band). Experimentally it was verified that
the sign of energy differences (simultaneously along the time and frequency axes) is a property that is
very robust to many kinds of processing. If we denote the energy of band m of frame n by EB(n,m) and
the m-th bit of the hash H of frame n by H(n,m), the bits of the hash string are formally defined as (see
also the gray block in Figure 1, where T is a delay element):
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Figure 2 shows the 32 bit hash values, extracted with the above scheme, from 256 subsequent
frames (approximately 3 seconds) of audio (a so called hash block).  A ‘1’ bit corresponds to a white
pixel and a ‘0’ bit to a black pixel. Figure 2a and Figure 2b show the hash values extracted from the
original and the MP3 compressed (32Kbps) version of an audio signal, respectively. Ideally these two
figures should be identical, but due to the compression some bits are retrieved incorrectly. These bit
errors are shown in black in Figure 2c. The corresponding Bit Error Rate (BER) equals 0.115. For the
remainder of this paper will always be using hash blocks as the relevant hash unit.

Figure 1.1: Overview of the fingerprint extraction scheme of the Philips system. (Haitsma
and Kalker, 2002)

The algorithm for the fingerprint extraction is as follows:

1. An STFT is computed with a frame length of 0.37 s and an overlapping factor of 31
32 ,

resulting in a hop size of 11.6 ms. Only the absolute value of the STFT is used.

2. The frequency bins of the STFT are summed into 33 logarithmically spaced bands
from 300 Hz to 2000 Hz.

3. from the resulting energy spectrogramE the fingerprint F is computed by comparing
the energies of neighboring bins using the function

F (n,m) =

{
1 if E(n,m)− E(n,m+ 1)− (E(n− 1,m)− E(n− 1,m+ 1)) > 0

0 if E(n,m)− E(n,m+ 1)− (E(n− 1,m)− E(n− 1,m+ 1)) ≤ 0

(1.1)

where n is the frame index, m the index of the frequency band and F (n,m) is the
resulting fingerprint value. This results in subfingerprints that are bit-strings of length
32 which are then stored sequentially in a database. These energy differences are
experimentally found to be robust against a variety of signal degradations.

The retrieval stage is realized by using a lookup table that contains for every possible
hash value (232 possible values) the songs and positions it occurs in. Figure 1.2 shows the
scheme used for the retrieval. Using the underlying assumption that at least one of the 256
fingerprints in a fingerprint block has no bit errors the following steps describe the retrieval
process:

1. For every subfingerprint: use the lookup table to find the songs and positions this
particular hash value occurs in.
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database, its position will be among the selected candidate 
positions for the “MP3@128Kbps fingerprint” of Figure 2b. 
The positions in the database where a specific 32-bit sub-
fingerprint is located are retrieved using the database architecture 
of Figure 6. The fingerprint database contains a lookup table 
(LUT) with all possible 32 bit sub-fingerprints as an entry. Every 
entry points to a list with pointers to the positions in the real 
fingerprint lists where the respective 32-bit sub-fingerprint are 
located.  In practical systems with limited memory3 a lookup table 
containing 232 entries is often not feasible, or not practical, or 
both. Furthermore the lookup table will be sparsely filled, because 
only a limited number of songs can reside in the memory. 
Therefore, in practice, a hash table [19] is used instead of a lookup 
table. 
Let us again do the calculation of the average number of 
fingerprint block comparisons per identification for a 10,000-song 
database. Since the database contains approximately 250 million 
sub-fingerprints, the average number of positions in a list will be 
0.058(=250·106 / 232). If we assume that all possible sub-
fingerprints are equally likely, the average number of fingerprint 
comparisons per identification is only 15 (=0.058 × 256). 
However we observe in practice that, due to the non-uniform 
distribution of sub-fingerprints, the number of fingerprint 
comparisons increases roughly by a factor of 20. On average 300 
comparisons are needed, yielding an average search time of 1.5 
milliseconds on a modern PC. The lookup-table can be 
implemented in such a way that it has no impact on the search 
time. At the cost of a lookup-table, the proposed search algorithm 
is approximately a factor 800,000 times faster than the brute force 
approach. 
The observing reader might ask: “But, what if your assumption 
that one of the sub-fingerprints is error-free does not hold?” The 
answer is that the assumption almost always holds for audio 

                                                                 
3 For example a PC with a 32-bit Intel processor has a memory 

limit of 4 GB. 

signals with “mild” audio signal degradations (See also Section 
5.2). However, for heavily degraded signals the assumption is 
indeed not always valid. An example of a plot of the bit errors per 
sub-fingerprint for a fingerprint block that does not contain any 
error-free sub-fingerprints, is shown in Figure 5. There are 
however sub-fingerprints that contain only one error. So instead of 
only checking positions in the database where one of the 256 sub-
fingerprints occurs, we can also check all the positions where sub-
fingerprints occur which have a Hamming distance of one (i.e. one 
toggled bit) with respect to all the 256 sub-fingerprints. This will 
result in 33 times more fingerprint comparisons, which is still 
acceptable. However, if we want to cope with situations that for 
example the minimum number of bit errors per sub-fingerprint is 
three (this can occur  in the mobile phone application), the number 
of fingerprint comparisons will increase with a factor of 5489, 
which leads to unacceptable search times. Note that the observed 
non-uniformity factor of 20 is decreasing with increasing number 
of bits being toggled. If for instance all 32 bits of the sub-
fingerprints are used for toggling, we end up with the brute force 
approach again, yielding a multiplication factor of 1. 
Since randomly toggling bits to generate more candidate positions 
results very quickly in unacceptable search times, we propose to 
use a different approach that uses soft decoding information. That 
is, we propose to estimate and use the probability that a fingerprint 
bit is received correctly. 
The sub-fingerprints are obtained by comparing and thresholding 
energy differences (see bit derivation block in Figure 1). If the 
energy difference is very close to the threshold, it is reasonably 
likely that the bit was received incorrectly (an unreliable bit). On 
the other hand, if the energy difference is much larger than the 
threshold the probability of an incorrect bit is low (a reliable bit). 
By deriving reliability information for every bit of a sub-
fingerprint, it is possible to expand a given fingerprint into a list of 
probable sub-fingerprints. By assuming that one of the most 
probable sub-fingerprints has an exact match at the optimal 
position in the database, the fingerprint block can be identified as 
before. The bits are assigned a reliability ranking from 1 to 32, 
where a 1 denotes the least reliable and a 32 the most reliable bit. 
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Figure 6. Fingerprint database layout. 

Figure 1.2: Overview of the fingerprint retrieval of the Philips System. (Haitsma and
Kalker, 2002)

2. For every song and position: compute the bit error rate (BER) between the properly
(time-)shifted query fingerprint block and the subfingerprints of the database.

3. If the BER is below a threshold (e.g. of 0.35) the query is accepted as a match and
the song and the position are then returned as the result.
If the BER is larger than the threshold for all possible positions and songs the song
is considered to have no entry in the database.

However this works only for mild degradations so that there is at least one subfingerprint in
the query that has a perfect match. For the case of heavier degradations the authors propose
a method in which “unreliable” bits are flipped and also searched for in the database as
described above. Reliability in this case is defined by the distance of the energy differences
(used in the computation of the fingerprint values in equation 1.1) to the threshold. The
higher the distance to the threshold, the higher the reliability since an energy difference
close to the threshold has a high chance of being accidentally flipped. The authors call this
feature of the algorithm soft decoding.

1.3.2.1.2 Advantages & Limitations

Advantages:

Robustness Robust against degradations such as strong mp3-encoding, equalization, com-
pression, noise, band pass filtering.

Reliability A false positive rate of 3.6 · 10−20 is achieved and controllable by the threshold
for the BER

Fingerprint size Small fingerprint size of 2,7 kbit/s.
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Granularity A 3 s query is enough to identify an audio object.

Search Speed and Scalability Search speeds are fast. “dozens of queries per second on a
modern personal computer (PC)” (Haitsma and Kalker, 2002).

Limitations:

Robustness Not very robust against GSM encoding and linear tempo changes above±2.5%.

1.3.2.2 Shazam

Possibly one of the best known fingerprinting systems is the Shazam system. To an end
user it is available as an application for smartphones and since recently for Mac OS X.
The Shazam system was developed with a mobile use case in mind. The company itself
summarizes the intended usage scenario in Wang et al. (2003) like this:

“A user hears music playing in the environment. She calls up our service
using her mobile phone and samples up to 15 seconds of audio. An identifica-
tion is performed on the sample at our server, then the track title and artist are
sent back to the user via SMS text messaging.”5

This implies that the fingerprint has to be robust against several things such as ambient
noise, reverb, mediocre microphone quality as well as GSM encoding and network dropouts.

1.3.2.2.1 Algorithm

The Shazam algorithm is described by Wang et al. (2003) and Wang and Smith (2002). To
generate a fingerprint it relies on local maxima in the STFT magnitude spectrogram. A
local maximum in this case is a peak in the energy spectrogram that has a higher amplitude
than a region centered around the peak. The positions in the time-frequency domain of
the local maxima are used to create hash values which form the fingerprint. The process of
computing a fingerprint is depicted in figure 1.3.

1. Compute the STFT.

2. Find the local maxima.

3. For each local maximum: consider the maximum an anchor point and assign it a
target area.
For each local maximum inside the target area a hash is formed from the frequencies of
the anchor point and the local maximum inside the target area and the time difference
between them.

Each hash is then saved as a 32 bit unsigned integer together with the time offset from
the beginning of the file of the anchor point t1 which is not part of the hash. A database
entry consists of the 32 bit hash, the associated time offset and a track ID resulting in a
64 bit struct. The structs are then sorted by hash token value.

5Since smartphones are omnipresent these days (compared to the year of publication of this paper 2003)
the scenario changed a little bit and it can be assumed that the analysis is done by the smartphone app and the
results are then send to the server for lookup.
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Figure 1.3: Overview of the fingerprint extraction scheme of the Shazam system. (Wang
et al., 2003)

The paper and the patent are short on detailed information such as which parameters
are chosen for the STFT (i.e. window length and type, hop size, sampling frequency) and
how the local maxima are actually located in the spectrogram. For the latter the patent gives
some examples of how this can be achieved.

The retrieval stage is realized as follows:

1. The fingerprint for the query audio is computed.

2. For every query hash a match is searched in the database.

3. The associated time offset pairs of a query hash and its match in the database are saved
into bins according to the track ID associated with the matching database hash.

4. Inside each track ID bin all time offset pairs are used to compute time offset differ-
ences using the equation:

δtk = t′k − tk, (1.2)

where t′k is the time coordinate of the feature in the matching (clean) database sound
file and tk is the time coordinate of the corresponding feature in the query.
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5. The δtk values are combined into a histogram plot. If the track ID is a match there
will be a pronounced peak otherwise the histogram will be more or less flat. The
height of the peak (the number of matching hashes with the same difference of time
offsets) is the score of the track ID. The false positive rate can be controlled by setting
a minimum threshold for the score of a hit.

1.3.2.2.2 Advantages & Limitations

The advantages of the Shazam system are:

Robustness Only 1–2 % of the hashes have to survive a signal degradation to be able to
identify an audio sequence. Even drop outs / cropping is no problem.

Reliability The false positive rate of this algorithm is controlled by a threshold on the score
that is needed for the algorithm to return a match.

Fingerprint size Nothing is said explicitly about the size of the fingerprint. Since in the
patent a number of 5–10 landmarks per second is said to be a good number of land-
marks and one fingerprint has the size if 64 bits the fingerprint size is roughly 320 bits
to 640 bits per second.

Granularity It is possible to find short snippets (around 10 s) of query audio in a database
of complete songs because the fingerprints consist of many local subfingerprints and
not one global fingerprint for the whole song.

Search speed and scalability According to the authors a query that is part of a database of
about 20.000 items can be processed in 5–500 milliseconds. In 2013 the database
size was 28 million songs (Smith, 2013; SN, 2013; Phillips, 2013) and this number
can be expected to have risen in the meantime. Still look-up times for queries seem
to have kept very low.

Limitations:

Robustness The main disadvantage of the Shazam system is that it is not designed to cope
with shifting and time stretching.

1.3.2.3 AudioID

This system is presented by the authors as more of a framework than an actual fingerprinting
system and is covered in a number of a papers by Cremer et al. (2001); Hellmuth et al.
(2001); Allamanche et al. (2001); Herre et al. (2001); Kastner et al. (2002); Hellmuth et al.
(2003). It relies heavily on the MPEG6-7 standard (Lindsay and Herre, 2001) and aims to
use standardized audio features. In several papers, by mostly the same authors, many audio
features such as loudness, spectral crest factor and spectral flatness measure were tested for
robustness against common signal degradations.

1.3.2.3.1 Algorithm

The underlying framework is summarized in figure 1.4. The algorithm for fingerprint ex-
traction is as follows:

6Moving Pictures Experts Group
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ALLAMANCHE ET AL. AudioID: Towards Content-Based Identification of Audio Material
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Figure 1: Audio identification system overview

pared to the stored base class information to determine
the amount of similarity of the input signal with respect
to any of the stored trained items. The best matching
base class (or the n best matching base classes) are then
returned as a result of the search process.

In order to provide a comprehensive picture of the sys-
tem’s functionality, the di↵erent building blocks are dis-
cussed separately.

2.1 Signal Preprocessor

Since no assumption should be made about the origin
of the audio signals to be classified, the system should
be able to handle any kind of digital audio formats and
properties, such as the number of channels, the sampling
frequency, and the resolution (in bits per sample). To
this end, a signal preprocessor converts the audio input
signal into a fixed target format with predefined settings.
At this time, the signal is converted to a mono signal us-
ing common downmix techniques and then, if necessary,
resampled to a sampling frequency of 44.1 kHz.

The stereo information could to some extent be used as
an additional feature enabling the indexing of audio files
according to their stereo content. This issue could be
considered as future work for refining the audio identifi-
cation system. At a first glance, the sample rate of 44.1

kHz may seem excessive for this kind of application since
a tremendous amount of information is condensed into a
few vectors, but this has some practical benefits. Firstly,
the vast majority of audio data, plain formats (WAV,
CD, etc.) as well as compressed audio files (MP3, etc.),
are stored with this sampling rate and thus do not re-
quire an additional resampling step. Secondly, the higher
frequency content may be useful in applications requir-
ing a high degree of accuracy.

2.2 Feature Extractor

Feature extraction is a central processing step which has
a high influence on the overall system performance. The
chosen feature set should be robust under a wide class of
distortions (see Sect. 3) and the computational burden
should be low to allow for real-time calculation. In the
present configuration the audio time signal is segmented
by a windowing function and each of these windowed
data sequences is mapped to the frequency domain by
means of a DFT (Discrete Fourier Transform). A set of
psychoacoustic features is extracted from the spectrum
of each analysis window to form a feature vector. This
vector is regarded as an elementary feature at a discrete
time instant t and undergoes further processing.

AES 110TH CONVENTION, AMSTERDAM, NETHERLAND, 2001 MAY 12–15 3

Figure 1.4: Overview of the Fraunhofer Framework. (Cremer et al., 2001)

1. The audio signal is first subjected to a preprocessor that outputs a mono signal with a
sampling frequency of 44.1 kHz.

2. The following feature extraction computes the features on a frame-to-frame basis
from a time frequency representation of the signal.

3. The feature processing stage tries to increase recognition performance and decrease
fingerprint size by using transformation techniques and statistical data summariza-
tion. Also the fingerprints are normalized at this point.

4. The last step in the computation of a fingerprint is a clustering stage that generates a
vector quantization code book that is considered the fingerprint of the audio object.
This is done via a Linde-Buzo-Gray (LGB) algorithm.

The retrieval stage is organized as follows:

1. First compute some feature vectors from the query audio.

2. For each feature vector try to approximate it with each codebook in the database

3. Accumulate the approximation error for every codebook and choose the database item
with the lowest approximation error that still falls under a maximum threshold.

In the corresponding patent (Allamanche et al., 2002) the authors are more specific
as to what feature they actually use: the spectral flatness measure (SFM). (Peeters, 2004;
Allamanche et al., 2002) This is consistent with the results of the papers Cremer et al.
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(2001); Hellmuth et al. (2001); Allamanche et al. (2001); Herre et al. (2001); Kastner et al.
(2002); Hellmuth et al. (2003).

This system is the basis for companies like the Mufin GmbH which is a spin-off from
the Fraunhofer IDMT7.

1.3.2.3.2 Advantages & Limitations

Advantages:

Robustness The system is very robust to the most common signal degradations. Also the
system is robust to cropping since the feature vectors are not sorted in time.

Reliability False positives can be avoided by setting a threshold for the maximum allowed
distance to any codebook.

Fingerprint size The fingerprint size is very small, since for every database entry only one
codebook has to be saved.

Granularity Sample sizes as small as 15 s can be correctly identified in 99.6 % of the time.

Search speed and scalability The algorithm was tested with databases up to a size of 15000
items and runs at 80 times realtime speed.

Limitations:

Granularity The resulting fingerprint – the codebook – is global because there is only one
codebook for every audio object. However, it is closely tied to the statistics of feature
vectors that cluster around certain centroids. Given a long enough sample of the audio
and the assumption that the feature vectors of a song are more similar within a song
than between different songs one can retrieve the correct song from the database. In
the corresponding publications samples sizes of 15 s are enough to achieve a correct
identification rate of 99.6 %. This result will depend on the musical content used in
the database. One cannot assume the SFM to be mostly the same throughout a song.

Robustness No results on time scaling and pitch shifting although resampling of ± 5 % is
mentioned in some of the papers.

1.3.3 Subsequent literature
In the subsequent literature new systems are developed that in some cases are based on the
above three systems and try to improve the performance with respect to signal degradations
such as pitch shifting and time scaling.

Also in later publications some systems try to use existing image processing and com-
puter vision technologies for audio search and fingerprinting.

7see http://www.fraunhoferventure.de/de/spin-offs/institute/IDMT.html
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1. Introduction

1.3.3.1 Modification & expansion of the Philips, AudioID & Shazam systems

The three systems discussed above are the foundation of many other papers that try to im-
prove the performance for certain signal degradations or even extend the scope of the whole
algorithm to audio similarity search or audio matching.

Many papers can be categorized as extensions or modifications of the Shazam system
such as (Van Balen, 2011; Chandrasekhar et al., 2011; Grosche and Müller, 2012; Fenet,
2013; Six and Leman, 2014; Sonnleitner and Widmer, 2014; Kim and Kim, 2014).

One can just as easily see that many other papers base their algorithm on the Philips
system (Haitsma and Kalker, 2003; Jang et al., 2009; Coover and Han, 2014; Yang et al.,
2014; Ke et al., 2005).

1.3.3.2 Image processing techniques for acoustic fingerprint systems

1.3.3.2.1 Computer vision for music identification

In 2005 Ke, Hoiem and Sukthankar published a paper titled “Computer vision for music
identification”, which employed techniques that were predominantly used in the field of
image processing to the task of audio identification. The approach of the authors is to
treat each piece of audio as 2-D image (through it’s STFT) and transform the task of music
identification into a corrupted sub-image retrieval problem. This paper layed the foundation
for many other algorithms that followed it.

The algorithm is loosely based on the Philips system developed by Haitsma and Kalker
(2002). This is evident when looking at the parameters of the STFT or the number of filters
chosen for the fingerprints. The biggest difference is that the filters in (Ke et al., 2005) are
chosen by a machine learning approach to maximize classification performance.

To compute a fingerprint the authors perform the following steps:

1. Convert the audio into an image by computing the STFT with a window length of
0.372 s and a hop size of 11.6 ms

2. Divide the power between 300 Hz and 2000 Hz into 33 logarithmically spaced bands.

3. Apply the 32 previously learned Viola-Jones filters / Haar-like features to every time
frame to get a 32 bit string fingerprint.

The 32 Viola-Jones filters were found by using a variant of the Adaboost algorithm on a
set of around 25000 potential filters to extract only the 32 strongest filters for classification.
Viola-Jones filters or Haar-like features were proposed by Viola and Jones (2001) and are
2D filters that are used in object and face detection and work by comparing the energy of
an area of an image to another area of the image. So the energy band comparison used by
Haitsma and Kalker (2002) can also be seen as just computing the output of a Viola-Jones
filter.

The retrieval stage is also somewhat similar to the one used by Haitsma and Kalker
(2002). Every possible hash value is saved in an inverted index / hash table.

1. The fingerprint of a query is extracted as described above

2. Then for each subfingerprint all matches within a hamming distance of 2 are retrieved
from the database together with their positions in the databases
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3. To check for correct time alignment, the authors use random sample consensus (RANSAC)
(Fischler and Bolles, 1981)

1.3.3.2.2 Other algorithms using image processing techniques

Of course many other algorithms can be seen as using image processing techniques since
they mostly operate on a time-frequency representation of the audio. However there are
some papers that explicitly state that they use image processing techniques to achieve audio
identification such as (Rafii et al., 2014) or (Zhu et al., 2010). The former is based on a
constant Q transform (CQT) of the audio which is then converted into a binary image by
a comparison to the median of a sliding two-dimensional window. The retrieval is then
performed by calculating the hamming distance of every query frame to every database
frame saving the results in a matrix of dimensions # of query Frames × # of database frames
and searching for a match by detecting a 45◦ line with maximum hamming similarity with a
hough transform8. The latter is based on an patented algorithm called scale-invariant feature
transform (SIFT) which extracts – as the name implies – scaling invariant features points
from an image that can be matched between two different versions of an image (see figure
1.5). In the computer vision domain SIFT is used among other things to stitch together
a panorama image from several input pictures by finding corresponding feature points. A
detailed description of the SIFT-Algorithm can be found in (Lowe, 1999).

Another notable fingerprinting system is the AcoustID system that was developed for
the MusicBrainz-project by Lukáš Lalinský (Lalinský, 2011). It operates on a chroma rep-
resentation of the audio and is based on the two papers (Jang et al., 2009) and (Ke et al.,
2005) and by that is also similar to (Haitsma and Kalker, 2002). There are 16 filters similar
to the ones in (Ke et al., 2005) which are applied to the chroma image of the audio. These
yield 32 bit integers which are then used to retrieve a query by comparing bit errors like it
is done in (Haitsma and Kalker, 2002).

1.3.3.2.3 Possible gains and pitfalls when using image processing techniques

A compelling reason for using image processing techniques is that there is a wealth of tested
and efficient algorithms to compare images. There are feature point extractors, stable region
extractors and algorithms capable of identifying two pictures of the same object taken from
different angles and distances.

A possible drawback of this approach is that all these algorithms are optimized to work
with similarities and features present in real world pictures which don’t necessarily have to be
the similarities and features one would want to use when dealing with audio. Nevertheless
the authors of the algorithms that use image processing techniques report that they perform
just as well if not better than many “conventional” audio identification algorithms.

1.3.3.3 Other approaches

There are of course entirely different approaches for audio identification than the ones pre-
sented here so far.

8The hough transform is a technique to detect objects and patterns in images such as lines, circles and
basically everything that can be parameterized. A good summary on how to find lines in an image with the
hough transform can be found in Duda and Hart (1972).
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des(d1, d2, , d128)

Figure 2: Local descriptors extracted using the SIFT
method

D has the same time value but different frequency value
with A, so does E. Thus both D and E can be obtained by
moving A along the frequency-axis. In other words, pitch
shifting applied to an audio signal leads to the translation
of the corresponding spectrogram along the frequency-axis.
Since TSM and pitch shifting of an audio signal can be

treated as stretch and translation of the corresponding spec-
trogram, we claim that image features robust to stretch and
translation of the spectrogram are also robust to TSM and
pitch shifting of the original audio signal.

2.2 Image Features as Audio Features
Robust image features are extracted as audio features in

this section. Compared to global descriptors, we argue that
local descriptors are more suitable for the task of audio fin-
gerprinting, especially in the proposed method. Reasons are
stated as follows: (1) since queries are cut randomly from
the reference audio signals with unknown time-offsets, the
features should be local and robust to small shifts in time;
(2) local descriptors are more efficient in resisting TSM since
large overlap of adjacent frames is not needed.
Scale Invariant Feature Transform (SIFT) [7] based de-

scriptors have been observed to perform the best compared
with other local descriptors for affine transformation, scale
changes, rotation, blur, jpeg compression, and illumination
changes [8]. Thus we employ SIFT features of the spectro-
gram as features of original audio signal. The SIFT fea-
tures are calculated as: (1) select candidates for features
by searching for peaks in the scale space of the different-
of-Gaussians (DoG) function, (2) localize each feature using
measures of its stability, and (3) assign orientations based
on local image gradient directions.

2.3 Audio Matching
The output of the SIFT feature extractor is hundreds of

features together with their 128-dimension descriptors (see
Figure 2). To match two audio pieces, we first compare every
feature pair between these two audio signals and then count
the number of matched pairs. The matching of features is
carried out by calculating the Euclidean distance between
their 128-dimension descriptors. Suppose a is a feature in
audio A, b is the closest feature of a in B (the Euclidean
distance between descriptors of a and b is smaller than that
between descriptors of a and any other feature in B) while

A B

a

b

b

Figure 3: The matching of audio features

A

A

B

C

Figure 4: The matching of audio clips

b’ is the second closest (see Figure 3). If

D(a, b) < Th ∗D(a, b′) (1)

where D(x, y) is the Euclidean distance between descriptors
of features x and y, Th is a threshold (Th = 0.6 in our
experiment), then a and b are considered to be matched.
Figure 4 illustrates the matching results of two pairs of

audio signals. A is a 5s audio excerpt, B and C are its
80%-time-stretched version and -30%-pitch-shifted version
respectively. Note that all the black lines connecting matched
features between A and B are almost horizontal. That is
to say, the time-frequency representation of an audio signal
is stable along the frequency-axis when applied with TSM.
Meanwhile, all the black lines in the lower panel of figure
4 are oblique, as pitch shifting leads to the movement of
time-frequency components along the frequency axis.
To ensure discriminability of the proposed features, we

match each query against an audio database. The audio

989

Figure 1.5: Matching Points in time scaled (B) and pitch shifted (C) versions of the original
excerpt (A). (Zhu et al., 2010)

One example is the waveprint system by Baluja and Covell (2006) which is based on the
wavelet transform introduced by Graps (1995). The approach is to compute an STFT with
the parameters from Haitsma and Kalker (2002) and then also summarize the frequency axis
into 32 logarithmically spaced frequency bins. On this time-frequency image the authors
then apply a wavelet transform and keep only the sign of the top t magnitude wavelets.
To enable an efficient nearest neighbor search with LSH in the retrieval stage these sparse
wavelet representations are then converted to MinHash values (Rajaraman et al., 2012). In
the retrieval stage LSH is used to retrieve only a few candidate database entries that can
be then compared by using the more computationally expensive technique of dynamic time
warping (DTW). This system was patented by Google in 2006 (Baluja and Covell, 2013).

In 2011 Ramona and Peeters developed the Audioprint system at the Institut de Recherche
et Coordination Acoustique/Musique (IRCAM) and in 2013 updated it to cope better with
pitch shifts (Ramona and Peeters, 2011, 2013). The system is different from many other
systems in that uses two nested STFTs instead of relying on spectral peaks or energy differ-
ences.

This section could be expanded to cover all possible algorithms but to wrap this section
up: there is a wealth of approaches to the problem of robust audio identification. There are
systems that use …

• …a non-negative matrix factorization (NMF) (Deng et al., 2011)

14



1.3. Literature review

• …onset detection to segment audio and gain time scale invariance (Bardeli and Kurth,
2004).

• …no tonal features at all and instead compute a Cyclic Beat Spectrum (Kurth et al.,
2006).

• …machine learning to find the most robust features for fingerprinting instead of an
heuristic approach (Burges et al., 2003).

• …MFCC in combination with hidden Markov model (HMM) in AudioDNA (Cano
et al., 2002b).

• …global fingerprints that desribe the audio object as a whole (Kim and Narayanan,
2008; Kim et al., 2008; Guzman-Zavaleta et al., 2014).

• and many more.

One can even turn to neighboring disciplines to get some inspiration for a new finger-
print system.

A related research area is that of cover song identification which deals with not only
finding the query song in a database but to also return cover versions of that song. The
definition of a cover version of course is debatable as a cover version of a song could be
transposed, use different instruments, change the structure of the song itself, etc. Due to
the broader scope of this problem it is difficult to solve this task efficiently and therefore one
cannot expect to get computationally efficient solutions from this research area.

A slightly easier task is that of the live version identification which aims to find a live
version of the some recorded piece of music. In this case one can be rather certain that the
live version is rather close to the original record and only differs slightly in timing, instru-
mentation and general structure. In this it is closer related to the task of audio identification.

1.3.4 Problems & limitations of existing fingerprint systems
As can be seen from this chapter there are a lot of fingerprint systems in the literature that
yield good results for the use cases that they were designed for. Yet every system has its
downsides doesn’t and doesn’t fulfill all the requirements that I establish for this thesis in
section 2.1.

The most common problem is the lack of scalability of the retrieval process. Modern
music databases like that of the Shazam system have several million songs in them and
a good fingerprinting system should be able to perform fast searches without sacrificing
accuracy.
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2.1 Requirements
In theory, a well designed audio fingerprinting system should be able to compete with and
outperform a real human being in the task of identifying previously heard audio due to
the processing power available on computers and nearly unlimited storage space, given of
course that the accuracy of retrieval is the same. Computers allow for parallel lookups of
multiple queries in sub-realtime – since they don’t need to listen to the songs and operate
on a signal representation of the audio – and the databases can contain more songs than
any human could possibly listen to in one life. What this implies is that signal degradations
that pose no problem to a human’s ability to identify audio shouldn’t affect the accuracy of
the fingerprinting algorithm.

At the time of writing, no study known to the author exists that tests the human ability
to recognize sequences of audio that are subjected to various signal degradations. Such a
study is necessary to compare the algorithm’s performance against that of a human being
and identify the signal degradations and alterations that don’t affect the ability of a human
to recognize audio. These degradations and their intensity could then be used to build a
standardized evaluation environment for fingerprinting systems. However from personal
experience one can assume that a wide variety of signal degradations don’t influence our
ability to recognize a piece of music. Be it noise and low dynamic range as in the case
of the earliest recordings ever made or elaborate time stretches and pitch shifts as in the
latest popular record releases. The website whosampled.com and the size of its database1 is
a good indicator that the human brain and auditory system is well equipped to recognize
even strongly altered sequences of music.

The requirements for an audio identification algorithm can be manifold but as hinted
in the title of this thesis the system used in this thesis should be above all invariant to
pitch shifts and time scalings that stay the same over time. Time scaling, sometimes called
time stretching, is the process of changing the duration/playback speed of an audio signal

1whosampled.com is a website where users can post sources of sampled music in the fashion ”the section
beginning at 1:15 of song A is sampled by song B at 2:45”. The database contains direct connections among
over 358,000 songs and 124,000 artists according to its website.
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without changing the pitch. Pitch shifting is the process of changing the pitch of an audio
signal without affecting it’s duration/speed. A third signal alteration that is closely related
to the former two is the tempo change which shifts the pitches and changes the time scale
of an audio signal at the same time. It is the effect that one gets when playing back an
audio signal at a different speed than the one it was recorded in. This phenomenon can
be observed in analogue media such as vinyl records and cassette tapes or by resampling a
digital audio file and playing it back with it’s original sampling rate. By speeding up the
playback speed (reducing the duration of the audio file) the pitches move up by the same
percentage of the speed-up compared to the original speed and similarly for slowing down.
Thus a tempo change can be seen as a time scaling and a pitch shift combined. The time
scaling and pitch shift ratios in this alteration are inversely related, meaning that a time scale
ratio of 1

2 = 0.5 = 50 % (equivalent to doubling the playback speed) leads to a pitch shift
ratio of 2, causing all pitches to be shifted by one octave.

This thesis focusses on the former two signal alterations because they are commonly used
in radio broadcasts to shorten or lengthen a song to fit a schedule or by users of services like
youtube.com to circumvent the DRM algorithms when uploading a video / song to the service.
Both are also important for modern DJ applications that enable users to either match the
tempos of two records without affecting the pitch or deliberately changing the pitch of one
piece of music to fit another piece of music better or both at the same time. The possibility
of independently setting the pitch shift and the time scaling was not possible in the past
because the only way to influence the tempo of a song on a turntable was the (unfittingly
named) pitch control which controlled the physical playback speed and with it the pitch shift
at the same time. Time scale modification and pitch shifting are now available in most audio
editors and music production applications resulting in sample based music that uses time
scaled and/or pitch shifted samples of other music. Yet, they are not satisfyingly detected
by many algorithms including the previously discussed Wang et al. (2003); Haitsma and
Kalker (2002); Cremer et al. (2001).

A fingerprinting system that is robust to time scale modifications and pitch shifts is
of great use for broadcast monitoring and DRM as well as finding songs in DJ sets that
are highly time scaled and/or pitch shifted. Of course the typical order of magnitude of
time scaling and pitch shift needs to be defined. For the broadcasting case it depends on
wether the audio is subjected to a tempo change or a time scaling. Since a tempo change of
6 % results in a pitch shift of roughly one half tone it is prohibitive to use tempo changes
much larger than this to prevent a noticeable and unpleasant signal degradation. The most
common turntable used by DJ is the Technics SL-1200/SL-1210 which allows the user
to change the tempo of playback by ±8% by default. However the pitch control can be
adjusted to cover a larger or smaller range with ±12 % being the largest possible range.
Modern turntables are capable of an even larger range of tempo change going up to 50 %
or even higher. The sense of which is debatable.

Of course the system also has to be somewhat robust against basic signal degradations
such as compression, noise, spectral filtering & inharmonic distortion to be of any use in
practice, since these are very common degradations.

In order to be able to find short snippets of query audio in a database and not only
whole files, the fingerprints have to be local. This means that every analysis frame gets an
own fingerprint that is searchable in the database rather than one fingerprint for a whole
file.

Another important requirement is that the algorithm must not violate any patents or
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copyrights since the system was developed to be freely usable for commercial purposes. This
renders many research papers unusable for this thesis. All major fingerprinting algorithms
(Shazam, Philips, Fraunhofer) are patented as well as some underlying algorithms in other
systems such as SIFT and speeded up robust features (SURF).

There are few algorithms that meet all the requirements:

• The dynamic chroma approach by Kim and Narayanan (2008) can be used for finger-
printing time scaled and pitch shifted audio but generates global fingerprints so one
has to find a way to seperate the global fingerprint into local fingerprints.

• Fenet et al. (2013) proposed a fingerprinting system that is also capable of finding
similar pieces of audio. It is based on a chroma representation of the signal on which
a note onset detection is performed to gain robustness against time scale modifica-
tions. The chroma representation gets rid of timbral information and sums all pitch
information into one octave. Pitch shifts that are an integer number of half tones shift
the chroma cyclically by the number of half tones. The onset detection is based on the
paper by Alonso et al. (2005). The fingerprinting system uses a two-level approach to
retrieval meaning that in a first stage a fast but coarse search for the M most probable
candidate songs is performed and in a second stage those M candidates are subjected
to a more detailed and computationally more expensive DTW based search.
The downside to this approach to fingerprinting is that the chroma is a very tonality-
centric feature which doesn’t work that well for mostly percussive music like techno
or music that doesn’t use the western note system. Also the whole system depends on
the performance of the onset detection algorithm and depending on the number M
the DTW can be a bottleneck.

• Malekesmaeili and Ward (2014) is based on extracting local maxima from a modified
chroma representation that resembles a CQT-spectrogram. The local maxima are an-
alyzed for stability to be able to assign a stable region with a distinct time width to the
local maxima. This way the chroma representation is chosen to make the algorithm
invariant to pitch shifts and the stability testing is responsible for the time scale in-
variance that this algorithm is supposed to have. From all the fingerprinting systems
this is tested to work with the largest pitch shifts and time scalings in the literature.

All other fingerprinting systems that are known to the author either use patented algorithms
or don’t account for (large enough) pitch shifts and time scalings.

2.2 Underlying algorithm
The algorithm of choice is the one by Malekesmaeili and Ward (2014) and will be sum-
marized here together with the implemented modifications. It is chosen because it doesn’t
violate any patents and according to the authors is very robust against even large time scal-
ings and pitch shifts. It is not so tonality centric as the approaches by Kim and Narayanan
(2008) and Fenet et al. (2013) by using an extended version of the chroma spectrum that
resembles a CQT and is not reliant on an onset detection.

Figure 2.1 shows an overview for the fingerprint extraction scheme taken from Malekesmaeili
and Ward (2014).
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intermediate fingerprints. For fast retrieval, an LSH-based
[11] algorithm is applied to find the closest matches for the
given query fingerprints. The proposed system is tested in
the presence of different distortions including speed
changes up to 2% and tempo changes up to 10%.

Zhu et al. [12] have proposed an algorithm based on the
scale invariant feature transform (SIFT) [13]. As SIFT
extracts features from images, it was applied on the
logarithmically scaled spectrogram of the audio signal to
extract audio features. Because of the fact that SIFT
extracts local features, it is appropriate for detecting
random short snippets of audio, which is not possible
with global features. Applying SIFT on the logarithmically
scaled spectrogram also provides robustness against pitch
shift attacks, making the algorithm in [12] a better option
compared to Shazam. However, the algorithm in [12] is
vulnerable to tempo changes.

Serra et al. [14] have proposed a global audio feature
extraction algorithm based on a two dimensional repre-
sentation of the audio signal which we call the time-
chroma image. The time-chroma represents the chroma
content [5] of an audio signal over time. Through extensive
experiments Serra et al. have shown that the time-chroma
representation of an audio signal is a promising platform
for designing audio detection algorithms. However, the use
of global features does not extend this method to mash-up
attacks. We will discuss the time-chroma representation
later in this paper.

In [15], we proposed a local feature extraction algo-
rithm that is robust to pitch shift and tempo change. The
proposed local feature points are stable local maxima of
the newly proposed time-chroma image representation of
the audio signal mentioned above. The stability of local
maxima is evaluated based on their nearest neighbours in
the time-chroma image. Each feature point is associated
with a scale that is later used to adaptively extract
fingerprints from the feature points. It is shown in [15]
that in the presence of a tempo change, the proposed
algorithm outperforms the state-of-the-art. In this paper,
we propose another local feature extraction algorithm
superior to what we proposed in [15]. We also propose a
copy detection system based on this superior algorithm. A
thorough review of different audio fingerprinting algo-
rithms can be found in [16].

3. Method

Fig. 1 shows an overall system view of the proposed
local audio feature extraction. The audio signal is first pre-
processed to generate a novel two dimensional represen-
tation called the time-chroma image. The image is then
used to extract the proposed local audio fingerprints. The
fingerprints are extracted form dynamically scaled patches
around the feature points that are selected from the local
maxima of the time-chroma image. The novelty of the
algorithm is in the way that it selects the stable feature
points and assigns a scale to their patches. Before explain-
ing the feature extraction algorithm in more detail, we will
explain the pre-processing phase. This phase involves
transforming the audio signal to a newly proposed two-
dimensional image representation [15]. This image is a

specific time–frequency representation of the audio signal
which we call the time-chroma. We will explain the
proposed time-chroma image in the next section. Local
fingerprint extraction is explained later in Section 3.2. The
proposed fingerprinting algorithm is then evaluated in
Section 3.3.

3.1. Pre-processing

3.1.1. Time-chroma image
A chroma set or a pitch class as defined in [5,14] is the

set of all pitches (frequencies) that are apart by a whole
number of octaves. An octave is the interval between two
pitches whose frequencies have a ratio of 2 or 1/2.

Before explaining the concept of chroma in more detail,
we clarify what is pitch and what is its relation to
frequency. Pitch is a perceptual concept representing a
frequency. More accurately, “pitch is defined as the fre-
quency of a sine wave that is matched to the target sound
by human listeners” [17]. Although there are infinite
number of frequencies per octave, when analysing audio
signals only a limited number of pitches are considered
per octave. Each pitch can be considered as the perceptual
value of a musical note. When a pitch is shifted up by one
octave its corresponding frequency doubles thus pitch has
a logarithmic relation with frequency.

To encapsulate all of these properties and to be able to
mathematically represent the pitches, we assume p0 as the
lowest pitch considered in the system and associate it with
the frequency f0 (which is consistent with the fact that

Fig. 1. Overview of the proposed local audio feature extraction algorithm.

M. Malekesmaeili, R.K. Ward / Signal Processing 98 (2014) 308–321310

Figure 2.1: Overview of the fingerprint extraction scheme taken from (Malekesmaeili and
Ward, 2014).
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In short, the algorithm transforms the audio to an expanded time-chroma image from
which it extracts local maxima and tests them for stability. The stable points then have a
stable region / a time scale associated with them. The final fingerprints are the low-frequency
coefficients of the two-dimensional discrete cosine transform (DCT) of the stable regions.

The next subsections contain a more detailed description of the algorithm.

2.2.1 Preprocessing
First the input audio is pre-processed by averaging all channels to one mono channel and
resampling this channel to a sampling frequency of fs = 8820 Hz (which is one fifth of the
CD standard of fs = 44.1 kHz).

2.2.2 Conversion to time-frequency domain
The next step is to perform a STFT on the audio. In their paper the authors found that
using a Hanning window of length l = 0.1 s and an overlap of lo = 0.75× l = 0.075 s (a
hop size of lhop = 0.025 s respectively) yields the best results regarding the robustness of
local maxima.

This was tested by taking one long audio file comprised of short snippets (10 − 20 s)
from different songs and generating altered versions with:

• 2 pitch-shifted version with ± 1 whole tone

• 2 time-scaled versions with a factor of 1.1±3

• 1 noisy version with a signal-to-noise ratio (SNR) of 40 dB

Then for each local maximum2 in the original version it was checked if there is a local
maximum in the corresponding position in the altered version (of course the pitch shift
and time scaling had to be accounted for). If this was true, the pair of local maxima was
saved as a matched pair. Also to see how similar the vicinities of matching pairs are, rect-
angular patches of constant height and time scale corrected width were extracted and since
the patches can have different widths their low frequency DCT coefficients are compared
via correlation. Doing this for several combinations of l and lo the authors then took the
combination which yielded the highest number of matched pairs and the highest average
correlation scores.

From this time-frequency representation the authors generate a new kind of time-chroma
representation which they call chroman. This is basically a standard time-chroma-representation
that is spread out over more than one octave in the frequency axis. The reason for this ap-
proach is that the conventional time-chroma is not specific enough for a fingerprinting
system due to the fact that all pitches/frequencies are compressed into one octave. The way
that chroman works is that one sets the lowest frequency f0 to be analyzed and associates a
pitch p0 with it. Any other pitch above p0 is then associated with a frequency

pi ∼ fi = 2
i
m · f0, with m ∈ N, (2.1)

wherem is the number of bins per octave. Then in chroman stands for the number of octaves
that the chroma representation will be expanded to. For given m and n, the frequencies

2The local maxima were extracted as described in section 2.2.3
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belonging to a pitch pi are: {fi, 2nfi, 22nfi, . . .}. So, for m = 12 and n = 1, chroman is
equivalent to the conventional chroma representation. The chroman set is then computed by
applying logarithmically spaced filters to the STFT coefficients that capture the energy for
each pitch. To find values parameters for n, m and f0 the authors used a similar approach
as for finding good values for l and l0 but with the two latter set to the previously found
values. This yields the values n = 4, m = 72 and f0 = 80 Hz for which over 66 % of the
original maxima are also detected in the altered versions.

2.2.3 Extraction of interest points
Once the chroman is computed the next step is extracting local maxima from the image.
These are called interest points. The extraction is performed by comparing the values of
every pixel to its neighboring pixels in a window of size 5×5 centered around the considered
pixel and if the pixel in the center has the largest value it is considered an interest point.

2.2.4 Stability analysis
As a next step the extracted interest points are analyzed for stability. This is done for two
reasons: to discard points that aren’t robust enough and secondly to assign time scales to the
points in which the area around the points is not changing much. The analysis is performed
by extracting 60 patches of constant height (72 Bins ≡ 1 octave) and varying width in
time (40 − 160 Bins ≡ 1 − 4 seconds) from the chroman-image around each interest
point. An interest point is considered stable if most of the patches around that point are
similar. To compare the similarity between two patches the authors use a dictionary of
10 representative patches; every extracted patch is compared to each dictionary patch by
computing the correlation of the lowest 12 × 12 two-dimensional DCT coefficients. If
more than half of the 30 patches are most similar to one and the same dictionary patch the
interest point is selected as a stable feature point and assigned the most similar dictionary
pattern as the type and the time scale with the highest correlation score as the scale.

2.2.4.1 Computation of the dictionary

The dictionary is generated by extracting patches of one octave (≡ 72 bins) in heigth and 2 s
(≡ 80 bins) in width from a subset of songs from the audio database. These patches are then
analyzed using a 2D DCT and only the 12×12 lowest frequency coefficients (minus the DC
component) are flattened into 1 × 143 vectors and saved into a matrix in which every row
corresponds to one window. This matrix is then fed into a k-means clustering algorithm (see
section 2.2.4.1.1) to extract the 10 representative DCT vectors. When converted back to
the time-frequency domain by reshaping the resulting 10 row vectors into 12×12 matrices3
and using an inverse 2D DCT one gets the 10 representative chroman patches that form
the dictionary. The 10 resulting patches from Malekesmaeili and Ward (2014) can be found
in figure 2.2. In general the dictionary will be influenced by the algorithm used to extract
interest points and the used time-frequency representation when used on the same audio
data set.

3setting the DC component to 0.
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chroma axis. We have experimentally found that wt¼2 s
and wp ¼m (one octave) give good results. A standard k-
means algorithm is then applied to classify the extracted
patches into c classes. Fig. 4 shows the representative
patterns when c¼10 (used in this paper). We generated
patterns from different subsets of songs (subsets as small
as 50 out of 250 songs), and we found that for a specific
value of c, the generated representative patterns remain
almost identical regardless of the number of songs in the
database. This finding shows that to get accurate detec-
tions, one does not have to update the patterns as new
songs are added to the database.

To examine a patch of a certain scale against a repre-
sentative pattern, the correlation of the patch and the
pattern is calculated. The patterns in the dictionary have a
fixed height and width, but patches extracted around the
candidate points can vary in their width along the tem-
poral axis (depending on the scale). Therefore, to compare
a patch and a pattern, we use the correlation of their low-
frequency DCT coefficients as the similarity metric. The
pattern that results in the highest correlation with the
patch is selected (at each time scale). If for a candidate
point, a certain pattern is selected in more than 50% of the
scales, the point is considered stable and is selected as a
feature point. The pattern is assigned as the type of the
feature point and the scale that resulted in the highest
correlation is assigned as its scale. In our set-up, on an
average, about 20 candidate points are extracted for each
second of a song, and about 40% of them are selected as
feature points.

3.2.2. Fingerprints
Now, a discriminative fingerprint should be assigned to

each feature point. The fingerprint should be itself robust
to tempo and pitch changes. We proceed with a rectan-
gular patch of size s"m centred around the feature point
where s is the scale assigned to the feature point. Finger-
prints are generated by extracting q" r low frequency DCT

coefficients of the patches (excluding the DC value). We
used q¼12 and r¼12 in our set-up. Each fingerprint is
scaled and translated to result in a vector with zero mean
and unit variance (of size 143, discarding the DC value).

If the tempo of an audio signal is changed, the time-
chroma image is stretched or squeezed along the time axis.
This affects the scales assigned to the feature points
accordingly and thus has no effect on the contents of the
patches, providing tempo invariance. Also, if a song is
pitch-shifted, the time-chroma image circularly shifts
along the chroma axis. This moves the feature points
vertically and has no effect on the content of the patches,
providing pitch invariance. In practice, because of the cut-
off frequency f0, pitches of low frequencies (around f0) may
be added or lost as a result of a pitch shift attack. This
reduces the robustness to pitch shifts.

3.3. Performance evaluation

3.3.1. Robustness of the proposed fingerprints
In this section we evaluate the proposed local audio

feature extraction/fingerprinting method. We compare it
to (1) our previously proposed local audio fingerprinting
algorithm [15] called the Old-proposed, (2) the widely
adopted audio copy detection algorithm Shazam, and (3)
the algorithm proposed in [12], which we call AudioSIFT.
AudioSIFT applies SIFT [13] on a logarithmically scaled
spectrogram. Our experiments showed that using our
time-chroma image instead of the logarithmically scaled
spectrogram resulted in better detection performance for
AudioSIFT and thus we used SIFT on the time-chroma
image.

To carry out the comparisons, we selected a total of 260
songs from different genres. For each song we generated
multiple attacked versions by modifying it in terms
of pitch, tempo, speed and noise level (a total of about
50 attacked versions for each song). In this subsection
we only evaluate the robustness of the proposed feature

Fig. 4. The patterns used to classify the feature points in the proposed algorithm.

M. Malekesmaeili, R.K. Ward / Signal Processing 98 (2014) 308–321 313

Figure 2.2: Dictionary of representative time-chroma patches from Malekesmaeili and
Ward (2014).

2.2.4.1.1 Clustering with k-Means

The k-Means algorithm is a relatively simple algorithm to partition input data into k clusters
with the goal to minimize the within-cluster sum of squares (WCSS) which are the squared
distances from the data points (in the form of vectors) to one another. It is based on the
paper by Steinhaus (1956) and was given it’s name by MacQueen (1967). However the
standard algorithm was described by Lloyd (1982).

The algorithm consists of three basic steps:

1. Initialize k means in the data set. This can be done in many different ways but for the
sake of simplicity we just assume that for every mean a random data point is picked
from the data set.

2. Assign every data point to its closest mean. The distance measure used here is the
euclidian distance but this can be changed to any other distance measure.

3. Update the means by calculating the new means from the updated sets of which point
belongs to which mean.

Steps 2 and 3 are executed either until convergence is reached (meaning the change in total
sum of WCSS from one iteration of steps 2 and 3 to the next is below a certain threshold)
or until a predefined number of iterations is reached. Figure 2.3 shows a simplified example
of how the algorithm works.

The implementation used in this thesis is the k-Means++ extension of the algorithm
that uses a more elaborate initialization procedure. Optimally chosen initial means allow
for a faster convergence and maximize the chances of the total sum of WCSS reaching a
global minimum instead of a local one. Other than the initiliaziation stage everything else is
equivalent to the standard algorithm by Lloyd (1982). The maximum number of iterations
is set to 500 to allow for convergence.
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Figure 2.3: Visualization of the k-Means algorithm.

2.2.5 Convert stable points to fingerprints
From every stable point one fingerprint is computed. Every stable point has a patch asso-
ciated with it of size m × scale with m being one octave (≡ 72 bins) and scale being the
scale that was found in the stability analysis. A two-dimensional DCT is computed from
this patch and the lowest 12× 12 DCT coefficients are transformed into a vector with zero
mean and unit length4 discarding the DC value (yielding a vector of length 143). These
vectors are the local fingerprints. Together with their scale, type and time and frequency
coordinates they are saved in the database with an unique song ID.

2.3 Lookup in the database
The lookup of a query in the database of fingerprints is performed by using an exhaustive
search meaning that every fingerprint from the query is compared to every fingerprint in
the database. Since the fingerprints can be considered vectors of unit length, the distance
from one fingerprint to the other can be quantified by calculating the angle between the two
as described in Malekesmaeili and Ward (2014):

4In the paper the authors write “zero mean unit variance” which clearly is a mistake since equation (1) in
(Malekesmaeili and Ward, 2014, p. 314) would then be lacking a normalization with the vectors lengths. Also,
database items with a large length would always score higher than items with a small length in the retrieval.
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“Let X be the set of fingerprints extracted from the original song and Y
be the set of fingerprints extracted from an attacked version5. A fingerprint
x ∈ X is matched to y ∈ Y if it is closer to y than any other fingerprint in X
by a factor of α. To measure the distance between two fingerprints we consider
them as two vectors and measure the angle between them. For example, for
the proposed algorithm, x is matched to y if

arccos
(
yTx

)
≤ α arccos

(
yTx′

)
∀x′ ∈ X − {x}” (2.2)

The factor α was set to α = 0.6 as in Zhu et al. (2010).
For the evaluation of the their system Malekesmaeili and Ward (2014) use one long

query comprised of short snippets (10 − 20 s) from different songs in a database of 250
items. The goal then is to identify all of the 100 snippets and their position in the query
and in the database. A secondary goal is to correctly estimate the time scaling ratio and/or
pitch shift if one was applied to the query. The output from the system is of the form “…the
section t′0 to t′1 in the query is copied from t0 to t1 of song s in the database …” This is a
somewhat different scenario from that of a conventional fingerprint system in which a user
has one query that is mostly comprised of only one song and wants to know the ID of that
song.

Nevertheless the authors propose a method to assign the most likely database item to a
time interval which can be used to develop a threshold for a match depending on how much
of the query has been assigned to the correct database item.

This system consists of two stages: a coarse estimation of which database item is most
likely in which time interval of the query and a refinement stage that aims at improving
the estimates from the pre-processing step and estimates the time scaling and pitch shifting
ratios as well.

The pre-processing stage works as follows: Every query fingerprint that has been suc-
cessfully matched to a database item in the exhaustive search has a song ID assigned to
them. Then a sliding window of length 10 s is moved in a step size of 1 s over the song
IDs to find dominant IDs among them. If over 70 % of the song IDs are one and the same
the window gets assigned this song ID. This way continuous passages of one song can be
detected in the query. The output of the pre-processing stage is a list of songs with the time
intervals (ti, di)6 they occur in the query associated with them.

The refinement stage takes as inputs:

• The detected songs si and time intervals (ti, di) from the pre-processing stage.

• The query’s fingerprints f ∈ F alongside with their following attributes:

ID(f) : The song ID from the database item the fingerprint was matched with
â(f) : the ratio between the scale assigned to the query fingerprint and the scale

assigned to the match in the database
∆̂p(f) : the difference between the chroma coordinate of the query fingerprint and

that of its match
tq(f) : the time coordinate of the query fingerprint in the fingerprint itself

5“Attacked version” meaning an altered or degraded signal
6ti being the start time of an interval and di being its duration.
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tdb(f) : the time coordinate of the matching fingerprint in the database song

The algorithm then performs these steps for every detected song si:

1. Keep only fingerprints that are associated with song si and lie inside the time interval
(ti, di)

2. Use the â(f) to exclude outliers from the further computations. This is achieved by
computing a histogram from the â(f) values, smoothing them with a gaussian kernel
of size 21 and a standard deviation of σ = 2 and discarding all fingerprints that
contribute â(f) that are outside a radius of δa = 0.1 around the maximum. if less
than 60 % of all scale ratio lie in a region of ±0.1 around the most frequent ratio the
function exits with no parameters estimated.

3. Subtract the mean value of tq(f) from the remaining fingerprints f and do the same
for tdb(f). Compute the offsets between the tq(f) and tdb(f) values b̂ = tq(f) −
tdb(f) and further remove outliers by the same method as for â but with a radius of
deltab = max(0.1 ·max(b̂), 0.01).

4. Having eliminated fingerprints that are most likely outliers w.r.t. a and b, the most
likely combination of scale ratio (= time scaling ratio) a and offset b is found by ap-
plying a linear regression minimizing the sum of squared errors:

(a, b) = argmina,b

∑
f∈Fpruned

(tq(f)− (a · tdb + b))2 (2.3)

5. The pitch shift is estimated by searching for the most frequent pitch shift of the re-
maining ∆̂p(f).

6. To further refine the detected boundaries, the first and the last fingerprints in the
time interval (ti, di) that are compatible with the estimated values of a and b. These
two points along with their scales define the boundaries of the detected snippet.

The measure to evaluate the lookup is the ratio of correctly identified time intervals to
the total length of the query file. This way it is possible to derive a sensible threshold for a
“hit” afterwards which is not given by the underlying paper.

2.4 Modifications
The underlying algorithm is modified in two main ways to test and evaluate the influence
of

1. the “input image”, i.e. the time frequency representation

2. and the algorithm used to extract interest points from the time-frequency representa-
tion.

The former is motivated by the fact that the chroman representation is similar to a CQT in
that it sums fast Fourier transform (FFT) bins into logarithmically spaced frequency bins.
Since this summing of bins is just an approximation of a CQT it will be evaluated if using
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the actual CQT yields better performance at the price of being insignificantly more com-
putationally expensive. Trying to reduce the complexity of the CQT-spectrum, a harmonic
sum spectrum (HSS) is used to reduce most harmonic to their fundamental.

The latter is done because the original interest point method used in the paper is fairly
simple which raises the question if it could be improved by using a different approach that
extracts more robust and stable interest points. Interest point detectors are commonly used
in the field of computer vision and many are available in the Computer Vision System Toolbox
for Matlab from which two are used in this thesis (Harris corner detector and SURF).

Since this is the main contribution in this thesis the employed input images and interest
point detectors are described in more detail in the following subsections.

2.4.1 Input images
2.4.1.1 Constant Q transform

The chroman approach can be seen as an approximation of a CQT with the same parameters
(hop size, number of bins per octave, number of octaves, etc.). The CQT was introduced by
Brown (1991) to propose a more musical transform than the widely used discrete Fourier
transform (DFT). A DFT yields linearly spaced frequency bins that have constant resolu-
tion for all center frequencies. However the tones that make up western music are spaced
logarithmically in the frequency domain which means that a DFT will not map the tones
efficiently to frequency bins. A CQT on the other hand has frequency bins with a constant
Q factor meaning a constant ratio of center frequency to resolution. This results in narrow
frequency bins (high resolution) for low frequencies and wider bins (low resolution) for high
frequencies on a linear frequency scale.

The CQT has the advantage that for a tone with harmonics a frequency shift is a linear
displacement on the frequency axis.

One downside to the CQT is that is it computationally more expensive than a DFT.
This issue is discussed and solved by Brown and Puckette (1992). However another impor-
tant limitation of the CQT is that the time resolution is frequency dependent and thus the
time resolution for low frequencies is worse than for high frequencies.

The parameters used to compute the CQT are chosen to be as close to the parameters
in Malekesmaeili and Ward (2014) as possible:

• The hop size is also chosen to be lhopsize = 0.025 s

• The minimum frequency is f0 = 80 Hz

• The number of octaves isn = 4 resulting in a maximum frequency of fmax = 80 Hz×
24 = 1280 Hz

• The number of bins per octave is m = 72

The computation of the CQT is performed using the company-owned CQT/harmonic
sum spectrum of the constant Q transform (HSS-CQT) Matlab toolbox provided by Holger
Kirchhoff which is an implementation of the fast CQT algorithm exploiting the efficiency
of the FFT from Brown and Puckette (1992).

27



2. Employed algorithm

2.4.1.2 Harmonic sum spectrum for the CQT

The HSS was introduced by Noll (1969) to determine the pitch in human speech and later
was used by Klapuri (2006) to implement a multiple fundamental frequency estimator.

The idea behind the HSS is to reduce harmonic tones to their fundamental so as a
result one gets a spectrum with less or no harmonics present and pronounced fundamental
frequencies. This can be advantageous for the task of interest point detection because the
spectrum gets simplified and the fundamentals more clear in comparison to the rest of the
spectrum making them salient local maxima.

The basis for the HSS-CQT is the CQT from above. The algorithm takes as parameters:

• Number of partials to consider numPartials

• The ratio by which the fundamental and partials should be reduced partialReduc-
tion

• Minimum frequency to consider f0
• Maximum frequency to consider fmax

Then the HSS is computed from that CQT by following these steps:

1. Initialize an array the size of the frequency axis HSSspectrum in which the HSS spec-
trum will be saved.

2. Repeat the next steps until either the sum of the spectrum has decreased below a
threshold or a specified number of iterations is reached:

a) Consider every CQT frequency bin within the range of [f0, fmax] a funda-
mental frequency and compute the sum of the fundamental frequency bin and
numPartials of harmonics.

b) Choose the fundamental with the highest sum from the previous steps and re-
duce all of its harmonics by the factor partialReduction.

c) Save the sum of the subtracted amplitudes in the HSSspectrum at the index of
the fundamental

By using the energy of the higher frequency partials of a fundamental tone one gains a
better time resolution for lower frequencies that was lost by using the CQT.

The computation of the HSS-CQT is performed using the same toolbox as for the
CQT.

Figure 2.4 shows an example of the three input images for an excerpt of a song. As can
be seen the CQT is blurry for low frequencies and the HSS-CQT is a very much reduced
version of the CQT.

2.4.2 Interest point methods
2.4.2.1 Original method by Malekesmaeli & Ward

The method used by Malekesmaeili and Ward (2014) works by checking for every entry in
the matrix if it is the largest value in a given neighborhood and if that is true it is saved as
an interest point. By default a window of size 5 × 5 centered around the considered point
is used as the neighborhood.
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Input Image: Chroman

Input Image: CQT

Input Image: HSS-CQT

Figure 2.4: Comparison of the three input images for an excerpt of a song.
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2.4.2.2 Method from the Shazam implementation of Ellis

Based on the paper by Wang et al. (2003) Dan Ellis implemented his own version of the
Shazam fingerprinting system in Matlab which he made available online7 (Ellis, 2009).

Since neither the paper by Wang et al. (2003) nor the patent by Wang and Smith (2002)
elaborate on how to extract the local maxima from the spectrum, Ellis had to implement
his own method, which is based on a decaying masking threshold for every frequency bin.

1. Initialize the masking threshold:

a) Extract for every frequency bin the maximum value in the first 10 frames.
b) Every maximum gets convolved it with a Gaussian kernel in order to generate

a masking threshold around the maximum along the frequency axis.

2. For every time frame from left to right:

a) Apply a decay constant in time to the masking threshold.
b) Check if any points in the frame are above the masking threshold and if so

mark the point as a potential local maximum and apply the Gaussian kernel to
the point to spread it out along the frequency axis. Then continue with the next
frame using the actualized masking threshold.

The resulting maxima and masking thresholds for every frame are depicted in figure
2.5.

3. As we can see from figure 2.5 the masking thresholds are only decaying in one direc-
tion. To correct that repeat the last step for a reverse order of the time frames so that
the masking is performed symmetrically.

4. The remaining local maxima are the interest points.

One could get similar results by convolving the spectrum with a gaussian kernel of the right
dimensions and then picking the remaining local maxima with a method like the one in
section 2.4.2.1. The convolution smoothes the image to get rid of local maxima that are not
salient enough.

2.4.2.3 MinMax filter method

This method uses two nonlinear 2D filters to find local maxima in predefined area: a max
filter and a min filter. A max filter substitutes a pixel’s value by the maximum value in a
predefined area around this pixel and thus dilates the area of local maxima values. A min
filter does the same with the minimum values. In general the area around the considered
pixel can be of arbitrary shape. The algorithm is as follows:

1. First the image is normalized so that all vales of the image are in the range [0, 1]
resulting in an image Inorm.

2. Next two images are derived form the normalized image:
7http://labrosa.ee.columbia.edu/matlab/fingerprint/
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Figure 2.5: Example of some local maxima and their masking thresholds found by the
algorithm by Ellis (2009) before the time frames are analyzed in reverse order to guarantee
a symmetrical masking.

a) A max filtered version of the normalized image, ImaxFilt.
b) A min filtered version of the normalized image, IminFilt.

3. Local maxima can already be extracted by picking the values in Inorm that are equal
to the values of ImaxFilt at the same pixel. However that would result in too many
local maxima that are not salient enough to be robust against signal degradations.
Therefore one last step is performed.

4. The min filtered version is subtracted from the max filtered version to check for promi-
nent peaks. A salient peak has a large distance to the local minimum around it and
so a threshold is introduced to filter out shallow local maxima.

By varying the threshold and the area around the pixel that is used to collect the statistical
data one can influence to some extent the density of the local maxima. Setting the threshold
too high results in only few local maxima which are very pronounced. Setting it too low will
yield many local maxima, some of which are not very robust. Also increasing the area results
in less local maxima and vice versa. In this work a threshold value of 0.01 and a rectangular
area of size 18× 3 pixels is used.
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2.4.2.4 Harris corner detection method

In computer vision corners play a special role in several applications such as panorama stitch-
ing, video tracking and everywhere else one wants to match the contents of two similar im-
ages. Corners have the convenient property of being invariant to rotation and translation.
A corner can be formally defined as the intersection of two edges. By this definition there
has to be a large intensity change around a corner in all directions. In the computer vision
literature the term “corner” is often used interchangeably with “interest point”.

In an audio spectrum corners can be points in which notes either start or begin as well
as very short notes or fast note changes and at percussive sounds.

One method to extract corners from an image is the Harris corner detection algorithm as
proposed by Harris and Stephens (1988). The theory behind the algorithm is the following:
Use a sliding window to search for corners. If there is a corner inside the window there willHarris Detector: Basic Idea

“flat” region:
no change in 
all directions

“edge”:
no change along 
the edge direction

“corner”:
significant change 
in all directions

Figure 2.6: Basic idea of the Harris corner detector. (Frolova and Simakov, 2004)

be a large change in intensity values for small displacements in multiple directions. This is
visualized in figure 2.6. Putting this in the form of an equation this yields:

E(u, v) =
∑
x,y

w(x, y) (I(x+ u, y + v)− I(x, y))2 (2.4)

with the intensity I , the intensity difference E, the window function w(x, y) and a small
displacement (u, v). For the detector to be isotropic the window function should be circu-
larly weighted, e.g. using a Gaussian kernel. If there is a corner in the window E will be
large. Given the displacement is small we can apply a Taylor expansion, keep only the first
order approximation and rewrite the equation as:

E(u, v) ≈ [u v]M

[
u
v

]
(2.5)

with

M =
∑
x,y

w(x, y)

[
IxIx IxIy
IxIy IyIy

]
(2.6)

Ix and Iy are partial derivatives in the x- and y-direction. By analyzing the eigenvalues of
M we see that:
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• for a window with a corner in it M has two large eigenvalues,

• or an edge it would have one large and one small eigenvalue,

• for a flat surface both eigenvalues are small.

This is also summarized in figure 2.7
Harris Detector: Mathematics

λ2

“Corner”

λ1 and λ2 are large,

λ1 ~ λ2;

“Edge” 
λ2 >> λ1

Classification of 
image points using 
eigenvalues of M:

λ1

λ1 ~ λ2;

E increases in all 

directions

λ1 and λ2 are small;

E is almost constant 

in all directions

“Edge” 
λ1 >> λ2

“Flat” 
region

Figure 2.7: Classification of corners, edges and flat surfaces based on the eigenvalues of M
in the Harris corner detector. (Frolova and Simakov, 2004)

Since the computation of the eigenvalue decomposition of a matrix is computationally
expensive, Harris and Stephens (1988) suggest using the following scoring function

R = λ1λ2 − k(λ1 + λ2)
2 = det(M)− k(trace(M))2 (2.7)

with eigenvalues λ1 and λ2 to determine if a corner is present in the current window or not.
This measure exploits the fact that the determinant of a square matrix is equal to the product
of the eigenvalues and the trace of a square matrix is equal to the sum of the eigenvalues.
k is a tunable sensitivity parameter that has to be determined experimentally and usually
lies in the range of [0.04, 0.06] (Frolova and Simakov, 2004). R will be large for corners,
negative for edges and if |R| is small the area in the window is flat. The only thing left to
do is to define thresholds that capture these three cases, which can be done experimentally.
Figure 2.8 shows an example of the corner measure R for a chess board.

2.4.2.5 SURF method

The SURF algorithm is an image interest point detector and descriptor that is very similar to
the SIFT algorithm. It was developed by Bay et al. (2006) and is patented (Funayama et al.,
2009). For this thesis only the interest point detector is used. The detector is based on an
approximation of a Hessian matrix that is applied to a Gaussian scale space representation
of the analyzed image. These concepts will be presented in the following paragraphs and
subsections.
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Figure 2.8: Intensity I (left) and Harris corner measure R (right) for a chess board pattern.

The Hessian matrix that the detector is based on is defined as:

H(x, y, σ) =

[
Lxx(x, y, σ) Lxy(x, y, σ)
Lxy(x, y, σ) Lyy(x, y, σ)

]
(2.8)

Lxx(x, y, σ) being the result of the convolution of the image I(x, y) with the Gaussian
second partial derivative in the x-direction:

Lxx = I(x, y) ∗Gxx(x, y) (2.9)

with the two dimensional Gaussian kernel:

G(x, y, σ) =
1

2πσ2
e−

x2+y2

2σ2 (2.10)

and it’s second order derivative:

Gxx(x, y) =
∂2

∂x2
G(x, y, σ) =

(
x2 − σ2

2πσ6

)
e−

x2+y2

2σ2 (2.11)

and similarly for Lxy(x, y, σ) and Lyy(x, y, σ). Figure 2.9 depicts an example of a two-
dimensional gaussian kernel G(x, y), its second derivative in the x-direction Gxx(x, y) and
the mixed second derivative Gxy(x, y).

The Hessian matrix is based on second derivatives of an image which can be used to
detect edges and corners. The principle behind this is explained in section 2.4.2.5.1. The
convolution with a gaussian kernel is performed for two reasons: to filter out noise and to
extract local maxima on different scales of an image (see section 2.4.2.5.3).

Following the example of Lindeberg (1998) the authors use the determinant of the
Hessian matrix

det(H(x, y, σ)) = Lxx(x, y, σ), Lyy(x, y, σ)− Lxx(x, y, σ)
2 (2.12)

as a measure of local change around a point (x, y) in the image. Interest points are points
around which the local change is maximal. Figure 2.10 shows an example of an image
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Gaussian kernel
G(x,y)

Second derivative in
the x-direction Gxx(x,y)

Mixed second derivative
Gxy(x,y)

Figure 2.9: A two dimensional Gaussian kernel and its second derivative in the x-direction
and the mixed second derivative.
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Figure 2.10: Image I(x, y), its Lxx, Lxy, Lyy and its DoH response map.
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I alongside its Lxx, Lxy, Lyy and its determinant of Hessian (DoH) response map which
basically is just the determinant of the Hessian matrix evaluated for every point of the image.
As can be seen in this in the DoH response map the determinant is very large for corners
and has very large negative values for edges.

Since convolutions are computationally expensive the Gaussian second partial deriva-
tives are approximated with box filters that allow the use of integral images to speed up
the computation (see section 2.4.2.5.2). This approximated matrix is used in combination
with a Gaussian scale space representation of the image to extract interest point on different
scales.

2.4.2.5.1 Using second order derivatives to find edges and corners

Second (and first) order derivatives are widely used in the field of image processing to detect
edges.

The principle behind using first and second derivatives to detect edges is shown in figure
2.11 for the one dimensional case: In the top plot we see a signal with two edges. Applying
the first derivative to this signal yields the signal that is depicted in the middle and applying
the second derivative to the signal on the left yields the signal in the bottom plot. The
edge can be found by either searching for a positive maxima or negative minima in the first
derivative of the signal or looking for zero crossings in the second derivative. In the SURF
interest point detector the latter is used to find edges and corners. The downside of using
the derivatives to detect edges is the sensitivity to noise. This is why in image processing it is
more common to use the derivative in conjunction with a Gaussian smoothing filter to get
rid of the noise. The two operations can be combined into one by applying the second order
derivative to the Gaussian kernel as done in equation 2.11 above. Using different standard
deviations σ for the Gaussian kernel allows for analyzing an image on different levels of
detail (see paragraph 2.4.2.5.3).

To use the smoothed second derivates in digital image processing they have to be dis-
cretized and approximated. In the SURF algorithm the authors use box filters as shown in
figure 2.12.

Utilizing these box like filters allows for the use of integral images to speed up the
computation of the convolution significantly.

2.4.2.5.2 Integral images

In their paper Viola and Jones (2001) showed that it is possible to speed up the computation
of the result of applying rectangular filters to an image.8 This is achieved by first computing
an intermediate representation of the input image I(x, y)which the authors call the integral
image. The integral image IΣ(x, y) has the same dimensions as the input image and at
position x, y contains the sum of all pixels with indices smaller or equal than x, y:

IΣ =
∑
x′≤x
y′≤y

I(x′, y′) (2.13)

This way computing the sum of all intensity values in a rectangular area such as in figure
2.13 only takes 4 additions/subtractions regardless of the size of the area:

8The concept of summed-area tables was first introduced in another context by Crow (1984) though.
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Figure 2.11: Signal with two edges and its first and second derivative.

∑
x0<x≤x1
y0<y≤y1

I(x, y) = IΣ(x1, y1)− IΣ(x0, y1)− IΣ(x1, y0) + IΣ(x0, y0) (2.14)

The advantage of using integral images is that the integral image has to be computed only
once and then allows for a constant computational cost independent of the size of the rect-
angular area to analyze, whereas in the convolution with the unapproximated kernel the
computational cost is dependent on the size of the kernel.

2.4.2.5.3 Gaussian scale space representation of an image

As mentioned in paragraph 2.4.2.5.1 using different standard deviations σ for the Gaussian
kernel allows for the detection of local maxima on different scales in the image. The scale
space representation of an image is a set of Gaussian filtered versions of that image with
different σ. In the literature σ is often called the scale parameter t. The intuition is that
structures in the image that are smaller than

√
t are removed from the image.

In their paper Bay et al. (2006) use 9 × 9 filters which approximate a scale of σ = 1.2
as their lowest scale. Other scale levels are generated by up-scaling the filter sizes such that
their structure of weights is preserved as shown in figure 2.14. This is results in filter sizes
of 9×9, 15×15, 21×21 etc. Another concept of scale space is that the filters are separated
in scale levels as described above and in scale octaves. Higher scale octaves use larger filters
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Gyy(x,y,σ = 1.2) G’yy(x,y,σ = 1.2)

Gxy(x,y,σ = 1.2) G’xy(x,y,σ = 1.2)

Figure 2.12: Two 9 × 9 smoothed second derivative filters (Gyy and Gxy) and their ap-
proximations (G′

yy and G′
xy) as used in the SURF algorithm corresponding to a standard

deviation of σ = 1.2.

(x0, y0)

(x0, y1) (x1, y1)

(x1, y0)

y

x

Figure 2.13: Looking up the sum of a rectangular area with an integral image. The sum of
the intensity values inside the gray area can be computed using equation 2.14.
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l

0

(e.g. the width of the central band for the vertical filter
in figure 5), rescaling the mask introduces rounding-o↵ er-
rors. However, since these errors are typically much smaller
than l

0

, this is an acceptable approximation.

Fig. 5. Filters D

yy

(top) and D

xy

(bottom) for two successive scale
levels (9 ⇥ 9 and 15 ⇥ 15). The length of the dark lobe can only
be increased by an even number of pixels in order to guarantee the
presence of a central pixel (top).

The construction of the scale space starts with the 9⇥ 9
filter, which calculates the blob response of the image for
the smallest scale. Then, filters with sizes 15⇥ 15, 21⇥ 21,
and 27 ⇥ 27 are applied, by which even more than a scale
change of 2 has been achieved. But this is needed, as a 3D
non-maximum suppression is applied both spatially and
over the neighbouring scales. Hence, the first and last Hes-
sian response maps in the stack cannot contain such max-
ima themselves, as they are used for reasons of compari-
son only. Therefore, after interpolation, see section 3.4, the
smallest possible scale is � = 1.6 = 1.212

9

corresponding to
a filter size of 12⇥ 12, and the highest to � = 3.2 = 1.224

9

.
For more details, we refer to [2].

Similar considerations hold for the other octaves. For
each new octave, the filter size increase is doubled (going
from 6 to 12 to 24 to 48). At the same time, the sampling
intervals for the extraction of the interest points can be
doubled as well for every new octave. This reduces the com-
putation time and the loss in accuracy is comparable to the
image sub-sampling of the traditional approaches. The fil-
ter sizes for the second octave are 15, 27, 39, 51. A third
octave is computed with the filter sizes 27, 51, 75, 99 and,
if the original image size is still larger than the correspond-
ing filter sizes, the scale space analysis is performed for a
fourth octave, using the filter sizes 51, 99, 147, and 195. Fig-
ure 6 gives an overview of the filter sizes for the first three
octaves. Note that more octaves may be analysed, but the
number of detected interest points per octave decays very
quickly, cf. figure 7.

The large scale changes, especially between the first fil-
ters within these octaves (from 9 to 15 is a change of 1.7),

Fig. 6. Graphical representation of the filter side lengths for three dif-
ferent octaves. The logarithmic horizontal axis represents the scales.
Note that the octaves are overlapping in order to cover all possible
scales seamlessly.

renders the sampling of scales quite crude. Therefore, we
have also implemented a scale space with a finer sampling
of the scales. This first doubles the size of the image, using
linear interpolation, and then starts the first octave by fil-
tering with a filter of size 15. Additional filter sizes are 21,
27, 33, and 39. Then a second octave starts, again using fil-
ters which now increase their sizes by 12 pixels, after which
a third and fourth octave follow. Now the scale change be-
tween the first two filters is only 1.4 (21/15). The lowest
scale for the accurate version that can be detected through
quadratic interpolation is s = (1.2 18

9

)/2 = 1.2.
As the Frobenius norm remains constant for our filters at

any size, they are already scale normalised, and no further
weighting of the filter response is required, see [22].

3.4. Interest Point Localisation

In order to localise interest points in the image and over
scales, a non-maximum suppression in a 3 ⇥ 3 ⇥ 3 neigh-
bourhood is applied. Specifically, we use a fast variant in-
troduced by Neubeck and Van Gool [33]. The maxima of
the determinant of the Hessian matrix are then interpo-
lated in scale and image space with the method proposed
by Brown et al. [5].

Scale space interpolation is especially important in our
case, as the di↵erence in scale between the first layers of
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Fig. 7. Histogram of the detected scales. The number of detected
interest points per octave decays quickly.
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Figure 2.14: Filters Gyy (top) and Gxy (bottom) for two successive scale levels (9× 9 and
15× 15). (Bay et al., 2008)

with a larger spacing in between. The second octave for example uses double the spacing
between the filters resulting in filter sizes of 15× 15, 27× 27, 39× 39 etc. In general the
filter sizes correspond to the standard deviation of a Gaussian kernel by the equation:

σ =
filter size

9
× 1.2 (2.15)

The results of applying the approximated and discrete kernels to the image are referred
to as Dxx(x, y, σ), Dxy(x, y, σ) and Dyy(x, y, σ).

The Matlab implementation that is used in this thesis uses 3 scale octaves and 4 scale
levels per octave as default.

2.4.2.5.4 Summary of the SURF interest point extractor

The SURF interest point extractor follows these steps to extract interest points:

1. For every scale level on every scale octave:

a) Compute the integral image.
b) Apply the approximated box filters to the whole image using the integral image.
c) Generate the DoH response map by computing the determinant of the approx-

imated Hessian matrix at every point in the image:

det(Happrox(x, y, σ)) = Dxx(x, y, σ)Dyy(x, y, σ)− (0.9Dxy(x, y, σ))
2.

(2.16)
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2. Find interest points by thresholding the DoH response maps.

3. Use non-maximal suppression9 in a 3 × 3 × 3 area centered around every interest
point in the middle 2 scale levels in every octave to keep only the main local maxima.

4. Since the scale levels are quite coarse an interpolation is performed in scale and image
space by using the approach from Brown and Lowe (2002, p. 255).

2.4.2.6 Frame-wise most salient peaks

The frame-wise most salient peaks (FWMSP) algorithm extracts up to 3 local maxima above
a threshold per time frame. The steps to this algorithm are:

1. First the image is normalized so that all values of the image are in the range [0, 1]
resulting in an image Inorm.

2. Then local maxima are found by checking for each pixel if it is larger than the pixel
above and below it.

3. Local maxima below a threshold are discarded and for every time frame only the 3
strongest maxima and their locations in the image are saved.

A good value for the threshold was found to be −10 dBFS10.

9Non-maximal suppression as the name suggests suppresses all values that are not local maxima. An effi-
cient way of doing this which is also applied in the SURF algorithm can be found in Neubeck and Van Gool
(2006).

10dB Full Scale, meaning a value of 1 is set as the 0 dB reference.
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Evaluation 3

This chapter describes the evaluation that is carried out on the fingerprinting system from
the last chapter using the modifications described in section 2.4. To evaluate a fingerprinting
system an audio data set is needed. In this thesis the fingerprint system is evaluated using a
duplicate-free subset of the GTZAN Genre Collection1 audio data set.

The evaluation carried out in this thesis is an attempt at answering these three principal
questions:

1. Which combination of input image and interest point method yields the best perfor-
mance regarding the robustness of interest / stable points?

2. How robust is the fingerprinting system against common signal degradations like
dynamic compression, noise, etc.?

3. How robust is the fingerprint system against time scalings and pitch shifts?

These three question give rise to several subsidiary questions such as:

• Which interest point method produces the most robust interest points?

• Is it possible to predict the displacement of interest points due to time scalings and
pitch shifts?

Since the system mainly depends on robust interest points, first an analysis of the influ-
ence of the different input images and interest point methods on the number of interest and
stable points is performed. This is followed by an analysis of how reliably one can predict
the displacements of interest points due to time scalings and pitch shifts.

For every combination of input image and interest point method a separate dictionary
is computed and used accordingly without further mentioning it in the following. The
dictionaries were generated using always the same 250 audio files from the audio data set
(see next section). These 250 files are later excluded from the possible queries to separate
the training set from the test set. The resulting dictionaries can be found in the appendix
A.

1Available at http://marsyasweb.appspot.com/download/data_sets/
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3. Evaluation

All the time stretching and pitch shifting in this thesis is done by using the élastiquePro
SDK2 developed by zplane. It takes as input the ratio of time scalesTSR =

length of target audio
length of original audio

and the the ratio of pitch shift PSR that would result from a tempo change of the same
ratio without a change in time scale. A pitch shift of one octave therefore is equivalent to a
pitch shift ratio of 2 and a pitch shift ratio of 2 1

12 would result in shift by one semitone.

3.1 The audio data set
The audio data set used in this thesis is the GTZAN Genre Collection introduced and used
by Tzanetakis and Cook (2002). This data set consist of 1000 audio tracks, each 30 seconds
long and saved in an uncompressed, mono .au format with a sampling rate of fs = 22050Hz
and a bit depth of 16 bit. It was and still is originally used as a data set for automatic musical
genre classification and to this end is divided equally into into 10 folders corresponding to
10 different genres: blues, country, hiphop, metal, reggae, classical, disco, jazz, pop & rock.
This data set is chosen for several reasons:

• It covers a broad range of different musical genres, so one can minimize the possibility
of training a fingerprint system to one style of music.

• All the songs are of equal length, so that it is easy to compare the numbers of extracted
interest points.

• It’s of manageable size.

• It’s freely available and contains the raw audio material.

Apart from these positive points the data set also has its issues. Thanks to the popularity of
this dataset there are two papers that investigate the shortcomings of this particular data set
Sturm (2012, 2013). The only problem relevant to the task of fingerprinting are duplicates
in the database which would falsely lower the recognition rate. In Sturm (2013, p. 9) one
can find a table of all the duplicates in the GTZAN data set. Prior to any evaluations all
the duplicates were taken care of by removing all but the first occurrence (in alphanumerical
order) of a song from the data set which yields a clean data set of 933 items.

From this dataset 50 queries are chosen at random as a test set while taking care that
none of the queries were previously used to generate the dictionaries. The choice of queries
was kept constant throughout all evaluations.

3.2 Distribution of scales and types
In this section an overview over the statistical distribution of scales and types (see 2.2.4)
as assigned by the employed algorithm is given. The expected result for the distribution of
scales is for it to be a normal distribution so that the most common time scales are within
the range of the chosen lower and upper bounds of 1− 4 s.

The distribution of assigned dictionary types should be somewhat uniform since any-
thing else would indicate that some of the representative patches of the dictionaries are
barely present in the signals in practice. If the latter is the case it could be because the
number of clusters is too high or because of a bad training set for the k-Means algorithm.

2http://licensing.zplane.de/index.php?page=description-elastique
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3.2. Distribution of scales and types

3.2.1 Distribution of scales and types in the fingerprint databases
3.2.1.1 Overall distribution of scales and types

Figures 3.1 and 3.1 show the overall distribution of scales and types averaged over all possible
input image types and interest point methods. From this it is evident that in the overall
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Figure 3.1: Distribution of scales averaged over all database items, input images and inter-
est point methods.

distribution the types are uniformly distributed which cannot be said about the distribution
of the scales; small and large scale values are much more common than the medium ones
which can be a sign for a bias in the stability analysis of the algorithm. Since the time scales
tend to be either very small or very large it would be interesting to increase the possible
range of scale values and see where the maximum values for the distribution really are.

3.2.1.2 Distribution for all combinations of input image and interest point method

To refine the evaluation of scale and type distribution the histograms are recomputed for
all the different combinations of input images and interest point methods individually av-
eraging the data over all the database items. Figures B.1, B.2 and B.3 show the results for
the scales for all possible combinations of input images and interest point methods; Figures
B.4, B.5 and B.6 show the results for the assigned dictionary types.
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Figure 3.2: Distribution of types averaged over all input images and interest point methods.

The first thing that catches one attention when looking at the distributions (figures B.1-
B.3) is that for the chroman input image the scale sizes are more biased towards larger scales
in contrast to the other two input images which indicates that the chroman representation
of an audio file tends to favor interest points that are stable over a longer time period.

The type distributions vary wildly depending on the input images and interest point
methods, which is also evident in the dictionaries. For example: The original combination
of input image and interest point method (chroman & original method), the types 1, 3, 5,
8 and 10 are much more likely than the other half of the types, which can be a symptom of
too many clusters or a bad choice for the training set. If some dictionary types are barely
used at all there is no point in having them. The type distributions that most resemble a
uniform distribution are that of the Ellis interest point method.

Lowering the number of clusters can be a way to achieve more uniformly distributed
dictionary types. It is also a far-reaching step to take since it would directly influence the
stability analysis of the algorithm and the retrieval phase in which a sliding window voting
scheme is used based on the dictionary types.
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3.3 Number of Interest and stable points
In this section a statistical analysis will be given of how many interest and stable points are
generated per second of audio by the six different interest point methods applied to the three
different input images. This will enable us to partly answer the question which combination
of input image and interest point method is best suited for the task of audio identification.
The number of extracted interest points is important because extracting too many points is
computationally expensive but extracting too few points will negatively influence the granu-
larity and robustness of the system. Another important property of the extraction algorithm
is the uniformity of the distribution over time and frequency. The latter is not tested here
since it would require a very controlled dataset with labeled sections of mostly noise-like
and mostly tonal audio signals to produce meaningful results.

The parameters of all extraction algorithms are set to produce enough interest points to
yield at least 1 stable point in the further processing. This can only be done experimentally
since there is no simple “interest point density” parameter for all the algorithms.

3.3.1 Number of interest points in the test set
Interest points are the points that are extracted by the 6 different algorithms applied to the 3
different input images. Every interest point detector chooses slightly different points from
the images. These are then analyzed further by the stability analysis to keep only the points
that are most likely to survive a signal alteration. An ideal interest point detector will detect
only stable points. The worst case scenario is a detector that finds too few points or very
many points that are not stable.

For this evaluation the interest points of the 50 test set items were extracted.

3.3.1.1 Results

• As can be seen in figures 3.3-3.4 the input image has a great effect on the number of
interest points extracted from it for most of the interest point detectors.

• The FWMSP detector is the only one that produces roughly the same number of
interest points for all 3 input images with an average interquartile range from 109 to
117 interest points per second.

• Using the HSS-CQT image produces the least number of detected interest points for
most of the detectors (except the Ellis detector) which makes sense because the whole
spectrogram is condensed to its fundamental frequencies and so less local maxima are
spread out in the spectrogram.

• For the chroman the original method detects the most interest points with an in-
terquartile range from 172 to 203 interest points per second.

3.3.2 Number of stable points in the test set
Stable points are the result of applying the stability analysis from section 2.2.4 to the interest
points. The ratio of stable points to interest points is thus a measure for the quality of the
interest point extraction with respect to the stability condition of Malekesmaeili and Ward
(2014) (see section 2.2.4). A perfect interest point extraction algorithm will only extract
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Input image: Chroman

Figure 3.3: Number of interest points per second for the input image chroman and all
interest point methods for no signal alteration.

stable interest points. Since the stability testing is rather elaborate and expensive to compute
the goal is to extract as few interest points as possible which are stable while maintaining
the desired minimum granularity.

3.3.2.1 Results

The results can be seen in figures 3.6-3.8 and in the tables 3.1-3.3. The tables show the
quartiles of the distributions of the number of interest and stable points for the combinations
of input images and interest point detectors. They also feature a ratio of stable points to
interest points to give a measure of how many interest points are actually chosen as stable
points. To calculate this measure the medians of the distributions are used. Additionally
the ratio of interquartile ranges (IQRs) is given to see if the variance around the median
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Chroman

Interest points
Original MinMax Ellis SURF Harris FWMSP

1. Quartile 172 81 88 115 134 115
Median 188 98 90 129 155 118
3. Quartile 203 105 94 142 164 119

Stable points
Original MinMax Ellis SURF Harris FWMSP

1. Quartile 32 14 18 19 24 25
Median 47 21 23 28 35 32
3. Quartile 63 31 30 36 51 45
Conversion rate (Median) 0.25 0.21 0.26 0.22 0.23 0.27
Conversion rate (Interquar-
tile range)

1.01 0.72 2.06 0.62 0.89 5.47

Table 3.1: Quartiles for the distribution of number of points per second using the chroman
input image.

CQT
Interest points

Original MinMax Ellis SURF Harris FWMSP
1. Quartile 126 52 92 156 128 114
Median 136 58 95 178 148 116
3. Quartile 144 65 98 193 155 118

Stable points
Original MinMax Ellis SURF Harris FWMSP

1. Quartile 17 6 10 19 11 14
Median 24 10 16 28 22 18
3. Quartile 31 13 21 40 29 27
Conversion rate (Median) 0.18 0.17 0.17 0.16 0.15 0.15
Conversion rate (Interquar-
tile range)

0.81 0.60 1.72 0.60 0.70 3.46

Table 3.2: Quartiles for the distribution of number of points per second using the CQT
input image.
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Input image: CQT

Figure 3.4: Number of interest points per second for the input image chroman and all
interest point methods for no signal alteration.

values is changed by the stability analysis. The equation used is the following:

Interquartile ratio =
Q3,stable −Q3,stable

Q3,interest −Q3,interest
(3.1)

with Qn being the n-th quartile.
The results are:

• Compared to the number of interest points the number of stable points is lower. This
is an expected behavior because the interest point detectors are not ideal.

• For the chroman input image the number of stable points are in a similar range (medi-
ans are ranging from 21− 35 stable points per second) for all interest point detectors
except for the original method which has a higher median of stable points of 47.

• The ratios of the medians of stable points to the medians of interest points are roughly
the same for all interest point detectors in a given input image. The original method
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Figure 3.5: Number of interest points per second for the input image chroman and all
interest point methods for no signal alteration.

has the highest conversion rates except for the chroman image where it lies in the
middle field.

• The conversion rates for the median are the highest for the HSS-CQT input im-
age and the lowest for the CQT input image. This can be due to the fact, that the
HSS-CQT produces the least interest points to begin with. However the difference
between the CQT and the chroman is not that large and so it can be said that using
the CQT input image leads to the detection of less stable interest points.

• In most cases the IQR is decreased in the stable points compared to their interest
point equivalent.

3.3.3 Results
The results from this section can be summarized as:
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Figure 3.6: Number of stable points per second for the input image chroman and all interest
point methods for no signal alteration.

• The chroman input image generates the most interest points for most of the interest
point detectors and has an average median conversion rate of 24 % meaning that
around this percentage of interest points are classified as stable points.

• The HSS-CQT input image generates the least interest points for most of the interest
point detectors and has an average median conversion rate of 31.5 %.

• The CQT input image generates a slightly smaller amount of interest points for most
of the interest point detectors as the chroman input image and has an average median
conversion rate of 16.3 %.

• The original method of interest points detection has the highest median conversion
rate for the CQT and HSS-CQT input images and a medium conversion rate for
the chroman input image the only other detector that rivals its performance is the
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Input image: CQT

Figure 3.7: Number of stable points per second for the input image chroman and all interest
point methods for no signal alteration.

Ellis detector that produces less interest points on average and has almost as good
conversion rates.

3.4 Predictability of point displacements due to pitch shifting and
time scaling

In the last section it was shown how many interest points are considered stable depending
on the used interest point method. In this section a more thorough analysis is conducted to
answer the question: Do the interest points and stable points get displaced to where they
should be in theory after applying time scaling and pitch shifting to the audio?

With the time scaling ratio TSR and pitch shift ratio PSR respectively it is possible
compute the theoretical displacement in the time-chroma image. Let p = (t, f) be a point
in the original position with time position t and frequency position f . For a time scaling
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Figure 3.8: Number of stable points per second for the input image chroman and all interest
point methods for no signal alteration.

with ratio TSR p will be displaced to the point p′ = (t · TSR, f). For a pitch shift with
ratio PSR the shifted point will be at the position p′ = (t, f +⌊m · log2(PSR)+0.5⌋). In
the case of the pitch shift all points that are displaced beyond the frequency limits have to
be withdrawn from the evaluation. This way one gets a list of interest / stable points in the
unaltered audio originalPoints, a list of predicted points for the pitch shift / time scaling
ratio predictedPoints and a list of points that are the actual points in the altered version
actualPoints.

From predictedPoints and actualPoints it is possible to extract the four basic mea-
sures of a binary classifier:

True positive (TP) Points that are common to predictedPoints and actualPoints.

False positive (FP) Points that are present in actualPoints but aren’t in predictedPoints.

False negative (FN) Points that are present in predictedPoints but aren’t in actualPoints.
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HSS-CQT
Interest points

Original MinMax Ellis SURF Harris FWMSP
1. Quartile 41 32 121 56 37 101
Median 52 39 134 70 46 107
3. Quartile 61 50 145 77 51 114

Stable points
Original MinMax Ellis SURF Harris FWMSP

1. Quartile 10 8 32 15 10 26
Median 18 12 44 21 14 32
3. Quartile 22 14 48 24 18 42
Conversion rate (Median) 0.35 0.30 0.33 0.30 0.31 0.30
Conversion rate (Interquar-
tile range)

0.62 0.36 0.66 0.45 0.57 1.24

Table 3.3: Quartiles for the distribution of number of points per second using the HSS-
CQT input image.

True negative (TN) Points that are neither in predictedPoints nor in actualPoints.

Since these are absolute measures it will be difficult to compare them between queries,
different input images and interest point detectors which is why the following relative mea-
sures are used to evaluate the predictability of displacements:

True positive rate (TPR) TPR = TP
P = TP

TP+FN

False positive rate (FPR) FPR = FP
N = FP

TN+FP Is expected to be close to 0 most of the
time because of the sparsity of points in the spectrum.

False negative rate (FNR) FNR = FN
P = FN

FN+TP

True negative rate (TNR) TNR = TN
N = TN

TN+FP Is expected to be close to 1 most of
the time because of the sparsity of points in the spectrum.

F1 Score F1 = 2
precision·recall
precision+recall =

2·TP
2·TP+FN+FP Is a measure for the accuracy of the retrieval

is the harmonic mean of the precision and recall. The precision is the ratio of true
positives to all the points that are retrieved as positives. The recall is the ratio of true
positives to all positives.

To save space in the appendix only the plots for the TPR and F1 score are shown because
as expected the FPR plots are practically 0 as well as the TNR plots are always 1 and the
FNR is 1− TPR and doesn’t provide an information.

3.4.1 Results
The resulting plots can be found in the appendix in chapter C. The results can be summarized
as:
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3. Evaluation

• The highest TPR occurs for the chroman input image and the FWMSP detector.

• The HSS-CQT input image has the lowest TPRs and the chroman input image has
the highest TPRs.

• The TPR for the FWMSP detector is better for larger time scalings than for larger
pitch shifts.

• The FPR is always in the order of magnitude of 10−2 and thus doesn’t provide much
information just as the TNR is always above 0.97.

• The FNR is just 1− TPR which also represents redundant information.

However these results have to be taken with a grain of salt, since a interest point detector
that finds a lot of interest points is almost bound be have better results in it’s TPR because
the probability for a any random point being an interest point is higher. In other words the
point that is found in the predicted position is not the displaced point but another that is
in this position by pure chance. Since the chroman input image leads to the most interest
to be extracted it is also more likely to perform better in this evaluation.

The FWMSP detector has been experimentally found to follow the trajectory of a sus-
tained note resulting in many points for the same frequency bin right after each other in
time. This explains the fact that it performs better for time scalings than for pitch shifts.

3.5 Evaluation of the Robustness against Pitch-Shifting &
Time-Scaling

For this evaluation the whole test set of 50 queries is used. Every query audio file is first time
scaled or pitch shifted by applying one of the ratios described in the following section 3.5.1
and then searched for in the database as described in section 2.3. The results are displayed
with box plots that show the distribution of the found length of the queries in percent in
the database. Because of the high number of plots all the resulting plots can be found in
the appendix in chapter D.

3.5.1 Used Pitch Shifts and Time Scalings
The pitch shifts and time scalings used to evaluate the fingerprint system are:

• ±1 %

• ±12 %

• ±50 %

These values are used to test …

• …very small deviations from the original query and since the pitch resolution of the
input images is 2 1

72 ≈ 0.97 % a value of 1 % is used.

• …the largest speed changes that common turntables are capable of, hence the 12 %.
This value also corresponds to a pitch shift of 1 whole tone.
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3.5. Evaluation of the Robustness against Pitch-Shifting & Time-Scaling

• …the limits of the algorithm by using some very large alteration.

Pitch shifts and time scalings are never applied simultaneously which results in 12 different
degradations.

3.5.2 Results

The results of the retrieval are summarized in the form of boxplots which show the distribu-
tion of percentages of the queries total time found in the fingerprint database. An example
is shown in figure 3.9 for the input image / interest point detector combination of the orig-
inal paper by Malekesmaeili and Ward (2014). The rest of the results can be found in the
appendix in chapter D. The evaluation is done separately for the coarse time estimation and
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Figure 3.9: Averaged retrieval ratios for the coarse time slot estimation, input image:
chroman and interest point method: Original method

the fine time estimation from section 2.3.

57



3. Evaluation

3.5.2.1 Coarse time slot estimation vs. fine time slot estimation

The results for the fine time estimation are consistently worse than for the coarse time esti-
mation. This is rather unsurprising since the fine time estimation takes as input the coarse
time estimations and in the last step reduces the found coarse time intervals to the time in-
tervals in which the stable points are compatible with the estimated time scaling and offset.
This also explains the at first sight rather confusing result that even for an unaltered query
not the whole length of the query was found in the database. This is just a symptom of a
sub-optimal estimation of the time scale and offset by the fine time interval estimation. The
whole point of the fine estimation is to make an estimate of the time scaling and time offset
between query and database item from the coarse time intervals and scale information of
the stable points and then eliminating those stable points that don’t fit these estimates of
time scaling and time offset. This is why the time intervals that are returned by the fine esti-
mation can only be equal or smaller than the coarse estimates. If the estimation algorithm is
perfect this leads to more trustworthy estimates of the found time intervals compared to the
coarse estimations. In practice however we see that the estimates are not perfect; otherwise
the unaltered queries would have been found in their entire length, all of the time. Given
this insight, applying the fine time estimation for audio identification seems to be of limited
use – as long as you don’t rely on the estimates for pitch shift, time scaling. The results from
the fine time estimation are ignored for the rest of the evaluation because of the sub-optimal
estimation of parameters and lack of comparability due to the unaltered queries not being
found entirely.

3.5.2.2 Time scalings vs. pitch shifts

The results for the most extreme pitch shifts of ±50 % are by far the worst for all input
images and interest point methods. The equivalent time scalings are no problem for the
algorithm and for the input images CQT and chroman have an almost perfect retrieval rate.
The rest of the pitch shifts have retrieval ratios close to 100 % except for the input image
HSS-CQT.

3.5.2.3 Chroman vs. CQT vs. HSS-CQT

From the three input images the HSS-CQT is easily identified as the worst choice for audio
identification. The identification ratios are very much the same for all three input images for
the time scaling ratios 0.88, 0.99, 1.01, 1.12 and for the pitch shift ratios 0.99 and 1.01. For
the remaining two time scale ratios and pitch shift ratios the HSS-CQT has worse retrieval
ratios.

From the remaining two input images the chroman is the slightly better one for almost
all pitch shifts and time scalings.

3.5.2.4 Interest point detectors

The best interest point detectors in terms of highest medians and interquartile area overall is
the original method used by Malekesmaeili and Ward (2014) followed by the detector used
by Ellis (2009).
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3.6 Robustness against standard degradations
A good fingerprinting system should be somewhat robust to common real life signal degra-
dations. Even if the system is only used to identify audio files on a hard drive it has to be
robust against the signal degradations introduced by compression such as mp3 encoding.
To evaluate the robustness the audio degradation toolbox3 by Mauch and Ewert (2013) for
Matlab is used.

For this evaluation the 10 first queries form the test set are used. Every query audio
file is first degraded by applying one of the degradations described in the following section
3.6.1 and then searched for in the database as described in section 2.3. The results are again
displayed with box plots that show the distribution of the found length of the queries in
percent in the database.

3.6.1 Used degradations
The audio degradation toolbox comes with six degradations that cover a wide variety of real
world scenarios:

• Live recording

1. Apply the impulse response (IR) of a large room (Great Hall).
2. Add light pink noise.

• Radio broadcast

1. Add dynamic range compression at a medium level to emulate the high loudness
characteristic of many radio stations.

2. Speed-up, by 2 %, which is commonly applied to music in commercial radio
stations to shorten the music to create more advertisement time.

• Smartphone playback

1. Apply the IR of a smartphone speaker (Google Nexus One), which has a high-
pass characteristic and a cutoff at f = 500 Hz.

2. Add light pink noise.

• Smartphone recording

1. Apply the IR of a smartphone microphone (Google Nexus One).
2. Add dynamic range compression, to simulate the phone’s auto-gain.
3. Add clipping to the extent that 3 % of samples are affected.
4. Add medium pink noise.

• Strong mp3 compression

1. Encode the audio to an mp3 file with a bitrate of 64 kbps

• Vinyl
3https://code.soundsoftware.ac.uk/projects/audio-degradation-toolbox
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3. Evaluation

1. Apply a typical IR of a turntable.
2. Add some record player crackle noise.
3. Add wow-and-flutter (pitch variations of different modulation frequencies).
4. Add light pink noise.

3.6.2 Results
The results can be found in the appendix in chapter E. The evaluation for the fine time
estimation technique is omitted because of it’s poor performance in the evaluation of the
last section.

For every combination of input image and interest point detector the degradation “strong
mp3 compression” has a perfect retrieval of 100 %.

3.6.2.1 Chroman vs. CQT vs. HSS-CQT

The chroman image has the highest medians and interquartile range for the most combina-
tions with interest point detectors and for most degradations. The worst of the input images
is the HSS-CQT.

The chroman image has very good (first quartile > 95 %) to perfect retrieval for the
degradations Radio Broadcast, Strong mp3 compression and Vinyl.

3.6.2.2 Problematic degradations

The two degradations that have by far the lowest retrieval rates are the Live Recording and
the Smartphone playback. These two degradations are very harsh on the spectrogram since
the Smartphone playback degradation practically deletes the lower half of the used spectrum
(which spans 80− 1280 Hz) and the Live Recording degradation simulates a large hall with
lots of reverberation that “smudges’ spectral maxima in time.

3.6.2.3 Interest point detectors

The interest point detectors have different strengths and weaknesses for the different degra-
dations but if a general purpose interest point detector is needed the original method by
Malekesmaeili and Ward (2014) is a good choice for the CQT input image and the Harris
corner detector and original method are both good choices for the chroman input image.

3.7 Summary of results
Before summarizing the results gained in this chapter it has to be noted that an ideal eval-
uation would of course have been done using more queries. However this was not possible
in the time constraints of a master thesis because the computation of the fingerprints as
well as the exhaustive search in the retrieval is computationally very expensive. Computing
a fingerprint of a 30 s clip of audio and subsequent retrieval from the database takes takes
3.85 minutes on average on a modern PC with a quadcore featuring a 3.30 GHz quad core
processor, 24 GB of random access memory (RAM) and a solid-state-drive (SSD) hard
drive. This means that to test all combinations of the 3 input images, 6 interest point de-
tectors and 13 signal alterations for the pitch shift and time scaling evaluation for just one
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3.7. Summary of results

query takes 3.85 minutes × 3 × 6 × 13 ≈ 900 minutes = 15 hours to complete. The
two most inefficient steps in the algorithm are the stability analysis of interest points and
the retrieval which is basically one large matrix multiplication both take about half the .
The stability analysis is a bottle neck for the performance because for every interest point it
extracts 60 patches around it with different time widths and then computes a two dimen-
sional DCT for every patch. Considering that the average median of number of interest
points is 109 interest points

s and all the audio in the audio data set is 30 s long this amounts
to 30 s × 109

interest points
s × 60 time widths = 196, 200 patches to which a 2D DCT is

applied per query. The retrieval is prohibitively expensive, especially for larger databases.
It involves multiplying the whole database of fingerprints with the query fingerprints and
sorting the whole result to find the most similar items. Taking the example of this thesis
the audio data set is 933 items large, each 30 s long and the average median of number of
fingerprints per second of audio is 25 fingerprints

s each fingerprint being a vector of length 143.
Every fingerprint is stored as an array of 64 bit floating point numbers which amounts to a
file size of 64 bits×143 = 9, 125 bits for one fingerprint. This allows for an estimate of the
approximate database size: 9, 125 bits×25

fingerprints
s ×30 s×933 = 798 MB. Multiplying

these amounts of data requires a lot of RAM in the system and can prove nearly impossible
to achieve if the size of the fingerprint database is so large that it cannot be saved in its
entirety in the RAM because then the computer is forced to use the much slower hard drive
to swap files in and out of the RAM.

That being said the following points summarize the overall results of the evaluations:

1. The distribution of scales shows a bias towards shorter and longer time scales. This
means that probably some of the stable points are assigned a wrong scale and would be
assigned a short or longer scale if possible. This has consequences for the performance
of the estimation of the time scale ratio (TSR) performed by the fine time estimation
in the retrieval.

2. The distribution of assigned dictionary types shows that some dictionary items are
rarely assigned to stable points which is a sign for a too high number of clusters in
the k-Means clustering algorithm or a bad initialization of centroids that results in a
sub-optimal partition of the vector space. The latter is not very probable because the
k-Means++ initialization is applied which minimizes the chances of this happening.
Fewer clusters or a whole different clustering algorithm will directly influence the
stability analysis because it is based on computing the the correlation of every one
of the 60 patches of different time widths to every dictionary item and assigning
every patch the dictionary item with the highest correlation. If most of the extracted
patches have the same dictionary type assigned to them, the point is considered stable.

3. The HSS-CQT has the lowest number of detected interest points for most of the de-
tectors and has the highest conversion ratio of stable points to interest points (around
31.5 %). This a a desirable property because it reduces the number of points that
are used for expensive the stability analysis and the found interest points have higher
probability of being a stable point.

4. The behavior of the interest point detectors is influenced heavily by the input images.
For example the original method detector produces a median of 188 interest points

s for
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3. Evaluation

the chroman input image and a median of 136 interest points
s for the CQT but drops

down to 52
interest points

s for the HSS-CQT.

5. The predictability of the displacements due to pitch shifting and time scaling is the
highest for the FWMSP interest point detector for all input images but especially
high for the chroman input image. Although it has to be noted that this evaluation
is error-prone and tends to favor interest point detectors that produce a lot of points.
The MinMax filter detector and the original method detector are two detectors with
a high TPR.

6. The fine time estimation is far from perfect and in some cases has problems finding
unaltered queries in the database which is why it is not suited for audio identification.

7. The combination of the chroman input image and the original method of interest
point detection is the most robust against time scalings and pitch shifts and works
very well for time scalings with an average median found time ratio of 0.988 and
almost perfectly for pitch shifts except in the cases of the most extreme pitch shifts
±50 %.

8. The strong mp3 compression degradation is retrieved correctly all the time with all input
images and interest point detectors.

9. The radio broadcast degradation is almost always retrieved correctly with similar medi-
ans of around 0.986 for all combinations of input images and interest point methods.

10. For most combinations of input image and interest point detector the live recording
and smartphone playback degradations have the worst retrieval rates.

11. The retrieval rates for all other standard degradations vary depending on the input
images and interest point detectors and it is difficult to name one single best combi-
nation for all degradations. This being said, there are three combinations using the
chroman input image that give reasonable results for most of the degradations. These
are using the interest point detectors: Harris corner detector and the MinMax filter.
Both have perfect or near perfect retrieval for the degradations radio broadcast degra-
dation, smartphone recording, strong mp3 compression and vinyl and only differ for the
degradations live recording and smartphone playback. The first having the best score for
the live recording degradation but mediocre results for the smartphone playback. The
MinMax filter detector has the opposite qualities.
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Conclusion 4

In this thesis the robustness of the fingerprinting system by Malekesmaeili and Ward (2014)
against time scaling, pitch shifting and the standard degradations from the audio degrada-
tion toolbox by Mauch and Ewert (2013) was tested. It was also tested if using a different
type of spectral representation (called input image in this thesis) and using different interest
point extractors influence the performance of the retrieval (see section 2.4 for a summary
of all input images and interest point detectors). To this end all different combinations of
input images and interest point detectors were evaluated with respect to the number of pro-
duced interest and stable points and the predictability of displacement of these points due
to pitch shifts and time scalings were evaluated.

The results of the evaluation show that the HSS-CQT is the input image that produces
the least interest points has the highest rate of interest point that are stable to total found
interest points. This sounds like a good combination for a good basis for the further pro-
cessing that is done to compute a fingerprint. Yet the retrieval results for pitch shifts and
time scalings as well as for the standard degradations are the worst for the HSS-CQT input
image. Looking at the predictability of displacements, the HSS-CQT is also the worst of
all three input images.

The chroman input image which is originally used by the employed algorithm leads to
the highest number of detected interest points and the highest predictability of point dis-
placements. It also ranks highest for the retrieval of pitch shifted and time scaled queries. In
the end the original combination of input image and interest point detector by Malekesmaeili
and Ward (2014) is the best with respect to time scalings and pitch shifts and very decent for
the standard degradations. For the standard degradations only the combinations of chroman
& Harris corner detector and chroman & MinMaxFilter are better than the original method
detector.

The CQT lies somewhere between the two in all evaluations and is thus not further
discusses here.

One reason for the confusingly bad performance of the HSS-CQT seems to be that is
produces too few points. The reason for using the HSS-CQT was to simplify the spectrum
and create more salient peaks by summing up the harmonics of all fundamentals. This only
makes sense if the interest point detectors are tuned for exactly these kinds of features that
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4. Conclusion

the HSS-CQT amplifies. Apparently the HSS-CQT deletes more of the relevant interest
points from the spectrum than it gains by summing up the harmonics to the fundamentals.

4.0.1 Strengths
The algorithm used by Malekesmaeili and Ward (2014) is indeed very robust against large
time scale ratios and pitch shifts (see figure D.2) and also against most of the standard
degradations from Mauch and Ewert (2013) (see figure E.14).

4.0.2 Limitations
The biggest drawback of the employed algorithm by Malekesmaeili and Ward (2014) is that
it is computationally very expensive and takes almost 4 minutes to compute a fingerprint
and retrieve it from a database of 933 items on a modern PC. About half of the time is spent
on computing the fingerprint (checking the stability of interest points in particular) and the
other half is spent on searching the fingerprint.

The stability analysis in the computation of the fingerprints (see section 2.2.4) is slow
because as I calculate in section 3.7 the algorithm has to compute on average 6,540 2D-
DCTs per second. This number can be lowered by either extracting less interest points
at the expense of the robustness and granularity of the retrieval or by taking less different
time widths for the analysis at the expense of a proper estimate of the time scale. Since
the assigned time scales seem to be distributed inefficiently anyway my suggestion would
be to lower the number of different time widths and at the same time expand the range of
possible time widths. Of course nothing stops us from writing a completely new stability
analysis which main goal is to output a time scale and discard unrobust interest points at a
reasonable computational cost.

The search is performed in a brute force approach by multiplying all the queries fin-
gerprints with all the fingerprints in the database then applying the arccos to the results
to get the angle between the multiplied fingerprint vectors and then take for every query
fingerprint the database fingerprint with the smallest angle as a match. This is very ineffi-
cient and is not practical for larger databases that don’t fit into the RAM of the system used.
Fast search strategies that are based on the angular distance between vectors exist such as
the LSH methods random projection described in Andoni and Indyk (2008) and Charikar
(2002) and the spherical LSH described in Terasawa and Tanaka (2007). LSH is an umbrella
term for techniques that reduce the dimensionality of some input data and at the same time
clustering it by mapping similar items to the same hashes – which are often called“buckets”.
This way to find an item one only has to check the items in the same bucket rather than all
items. The random projections LSH technique approximates the cosine similarity when hash-
ing. It works by generating a number k of random hyperplanes of dimension n − 1 with
n being the dimension of the data to hash. The hash of a data point is then constructed
by initializing a bit string of length k and going through every hyperplane and checking if
the point is on the positive side of the hyperplane or the negative one (by multiplying the
data vector with the normal vector of the hyperplane) and depending on which side it is
setting the bit value to 1 or 0. The spherical LSH is specifically designed for data that is
on a unit sphere such as the fingerprints that are used in this thesis. It partitions the area
on the surface with Voronoi cells and also preserves angular distance. Using one of these
techniques could decrease search times significantly and could also be used to analyze the
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statistical properties of the fingerprints by looking at how many fingerprints are in the in-
dividual buckets. A thorough survey of some of the many different LSH methods can be
found in Wang et al. (2014).

The fine time slot estimation for found songs (see section 2.3) has proven to be rather
unreliable since it is not able find an unaltered query in its entirety in the database which is
unfortunate for an audio identification system.

4.0.3 Outlook & future research
Getting the algorithm to perform more efficiently is paramount to all further research using
it. Using a system that slow is very hard to maintain since mistakes in the process are very
time consuming to debug and it hinders spontaneous experimentation. The most difficult
part in this will be speeding up the stability analysis since the requirement is to reliably
associate a time scale with every stable point. The term stability can be interpreted differently
and leaves room for different definitions of what a stable local maximum in the spectrum
looks like. Implementing a faster search should be a straightforward task since fast search
algorithms for this type of data exist and are well documented in the literature as discussed
in the previous section.

Since the system used in this thesis is based on an expanded chroma spectrum it is
slightly more tonality-centered than the FFT. It is possible that this fingerprinting system
performs worse for mainly percussive and noise-like music like techno which is to be tested
in a further investigation of the quality of the system.

The interest point detectors taken from the field of computer vision (Harris corner de-
tector & SURF) didn’t improve the retrieval rates despite adding a lot more computational
complexity compared to the very simple original method detector by Malekesmaeili and
Ward (2014). That’s no reason to give up on using detectors from this field because there
are a lot of different detectors that can be tested for the task of audio identification. Algo-
rithms like SIFT and SURF have been successfully used to identify matching photographs
and for panorama stitching which begs the question why this shouldn’t work for spectra in
a modified way or another. Some computer vision interest point detectors also associate a
scale with a found interest point or blob1 which could render the inefficient stability analysis
obsolete.

If one was to design a new fingerprint system it is important to ensure the scalability of
the system because a fingerprinting system is only worth as much as the database it operates
with. The Shazam fingerprinting system features a database of over 28 million songs which
grew steadily over the last years. With databases that large one has to take great measures
to keep search times at a minimum while preserving the accuracy of the retrieval. This
requires knowledge of state-of-the-art data mining techniques such as MinHashing and is
an exciting field of study.

1The Wikipedia page for “Blob detection” (https://www.wikiwand.com/en/Blob_detection) offers the
following (informal) definition of a Blob: “Informally, a blob is a region of an image in which some properties
are constant or approximately constant; all the points in a blob can be considered in some sense to be similar to
each other.”
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Dictionaries A
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A. Dictionaries

Figure A.1: Dictionary for the chroma type: CQT and the interest point method: Harris
corner detector

Figure A.2: Dictionary for the chroma type: CQT and the interest point method: Original
Method

Figure A.3: Dictionary for the chroma type: CQT and the interest point method: MinMax
filter
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Figure A.4: Dictionary for the chroma type: CQT and the interest point method: Ellis

Figure A.5: Dictionary for the chroma type: CQT and the interest point method: SURF

Figure A.6: Dictionary for the chroma type: CQT and the interest point method: Frame-
wise most salient peaks
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A. Dictionaries

Figure A.7: Dictionary for the chroma type: HSS-CQT and the interest point method:
Harris corner detector

Figure A.8: Dictionary for the chroma type: HSS-CQT and the interest point method:
Original Method

Figure A.9: Dictionary for the chroma type: HSS-CQT and the interest point method:
MinMax filter
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Figure A.10: Dictionary for the chroma type: HSS-CQT and the interest point method:
Ellis

Figure A.11: Dictionary for the chroma type: HSS-CQT and the interest point method:
SURF

Figure A.12: Dictionary for the chroma type: HSS-CQT and the interest point method:
Frame-wise most salient peaks
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A. Dictionaries

Figure A.13: Dictionary for the chroma type: Original Method and the interest point
method: Harris corner detector

Figure A.14: Dictionary for the chroma type: Original Method and the interest point
method: Original Method

Figure A.15: Dictionary for the chroma type: Original Method and the interest point
method: MinMax filter
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Figure A.16: Dictionary for the chroma type: Original Method and the interest point
method: Ellis

Figure A.17: Dictionary for the chroma type: Original Method and the interest point
method: SURF

Figure A.18: Dictionary for the chroma type: Original Method and the interest point
method: Frame-wise most salient peaks
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Scale and dictionary type distributions in the fingerprint
database B
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B. Scale and dictionary type distributions in the fingerprint database
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B. Scale and dictionary type distributions in the fingerprint database
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B. Scale and dictionary type distributions in the fingerprint database
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Predictability of Point displacements due to Pitch
Shifting and Time Scaling C
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C. Predictability of Point displacements due to Pitch Shifting and Time Scaling
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Figure C.1: True Positive Rate for all time scaling and pitch shift ratios, input image:
Chroman and interest point method: Harris corner detector
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Figure C.2: F1 score for all time scaling and pitch shift ratios, input image: Chroman and
interest point method: Harris corner detector
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Figure C.3: True Positive Rate for all time scaling and pitch shift ratios, input image:
Chroman and interest point method: Original Method
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Figure C.4: F1 score for all time scaling and pitch shift ratios, input image: Chroman and
interest point method: Original Method
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C. Predictability of Point displacements due to Pitch Shifting and Time Scaling
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Figure C.5: True Positive Rate for all time scaling and pitch shift ratios, input image:
Chroman and interest point method: MinMax filter
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Figure C.6: F1 score for all time scaling and pitch shift ratios, input image: Chroman and
interest point method: MinMax filter
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Figure C.7: True Positive Rate for all time scaling and pitch shift ratios, input image:
Chroman and interest point method: Ellis
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Figure C.8: F1 score for all time scaling and pitch shift ratios, input image: Chroman and
interest point method: Ellis
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C. Predictability of Point displacements due to Pitch Shifting and Time Scaling
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Figure C.9: True Positive Rate for all time scaling and pitch shift ratios, input image:
Chroman and interest point method: SURF
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Figure C.10: F1 score for all time scaling and pitch shift ratios, input image: Chroman
and interest point method: SURF
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Figure C.11: True Positive Rate for all time scaling and pitch shift ratios, input image:
Chroman and interest point method: Frame-wise most salient peaks
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Figure C.12: F1 score for all time scaling and pitch shift ratios, input image: Chroman
and interest point method: Frame-wise most salient peaks
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C. Predictability of Point displacements due to Pitch Shifting and Time Scaling
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Figure C.13: True Positive Rate for all time scaling and pitch shift ratios, input image:
CQT and interest point method: Harris corner detector
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Figure C.14: F1 score for all time scaling and pitch shift ratios, input image: CQT and
interest point method: Harris corner detector
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Figure C.15: True Positive Rate for all time scaling and pitch shift ratios, input image:
CQT and interest point method: Original Method
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Figure C.16: F1 score for all time scaling and pitch shift ratios, input image: CQT and
interest point method: Original Method
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C. Predictability of Point displacements due to Pitch Shifting and Time Scaling
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Figure C.17: True Positive Rate for all time scaling and pitch shift ratios, input image:
CQT and interest point method: MinMax filter
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Figure C.18: F1 score for all time scaling and pitch shift ratios, input image: CQT and
interest point method: MinMax filter
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Figure C.19: True Positive Rate for all time scaling and pitch shift ratios, input image:
CQT and interest point method: Ellis
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Figure C.20: F1 score for all time scaling and pitch shift ratios, input image: CQT and
interest point method: Ellis
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C. Predictability of Point displacements due to Pitch Shifting and Time Scaling
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Figure C.21: True Positive Rate for all time scaling and pitch shift ratios, input image:
CQT and interest point method: SURF
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Figure C.22: F1 score for all time scaling and pitch shift ratios, input image: CQT and
interest point method: SURF
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Figure C.23: True Positive Rate for all time scaling and pitch shift ratios, input image:
CQT and interest point method: Frame-wise most salient peaks
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Figure C.24: F1 score for all time scaling and pitch shift ratios, input image: CQT and
interest point method: Frame-wise most salient peaks
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C. Predictability of Point displacements due to Pitch Shifting and Time Scaling
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Figure C.25: True Positive Rate for all time scaling and pitch shift ratios, input image:
HSS-CQT and interest point method: Harris corner detector
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Figure C.26: F1 score for all time scaling and pitch shift ratios, input image: HSS-CQT
and interest point method: Harris corner detector
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Figure C.27: True Positive Rate for all time scaling and pitch shift ratios, input image:
HSS-CQT and interest point method: Original Method
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Figure C.28: F1 score for all time scaling and pitch shift ratios, input image: HSS-CQT
and interest point method: Original Method
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C. Predictability of Point displacements due to Pitch Shifting and Time Scaling
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Figure C.29: True Positive Rate for all time scaling and pitch shift ratios, input image:
HSS-CQT and interest point method: MinMax filter
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Figure C.30: F1 score for all time scaling and pitch shift ratios, input image: HSS-CQT
and interest point method: MinMax filter
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Figure C.31: True Positive Rate for all time scaling and pitch shift ratios, input image:
HSS-CQT and interest point method: Ellis
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Figure C.32: F1 score for all time scaling and pitch shift ratios, input image: HSS-CQT
and interest point method: Ellis
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C. Predictability of Point displacements due to Pitch Shifting and Time Scaling
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Figure C.33: True Positive Rate for all time scaling and pitch shift ratios, input image:
HSS-CQT and interest point method: SURF

TS
R

=
0.

50

TS
R

=
0.

88

TS
R

=
0.

99

TS
R

=
1.

01

TS
R

=
1.

12

TS
R

=
1.

50

U
na

lte
re

d

PS
R

=
0.

50

PS
R

=
0.

88

PS
R

=
0.

99

PS
R

=
1.

01

PS
R

=
1.

12

PS
R

=
1.

50

0

0.2

0.4

0.6

0.8

1

Input image: HSS-CQT
Interest point detector: SURF

Figure C.34: F1 score for all time scaling and pitch shift ratios, input image: HSS-CQT
and interest point method: SURF
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Figure C.35: True Positive Rate for all time scaling and pitch shift ratios, input image:
HSS-CQT and interest point method: Frame-wise most salient peaks
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Figure C.36: F1 score for all time scaling and pitch shift ratios, input image: HSS-CQT
and interest point method: Frame-wise most salient peaks
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Results of the retrieval with pitch shifts and time scalings
D
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D. Results of the retrieval with pitch shifts and time scalings
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Input image: Chroman

Interest point method: Harris corner detector

Figure D.1: Distributions of the retrieval ratios for the coarse time slot estimation, input
image: Chroman and interest point method: Harris corner detector
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Figure D.2: Distributions of the retrieval ratios for the coarse time slot estimation, input
image: Chroman and interest point method: Original method
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Figure D.3: Distributions of the retrieval ratios for the coarse time slot estimation, input
image: Chroman and interest point method: MinMax filter
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Figure D.4: Distributions of the retrieval ratios for the coarse time slot estimation, input
image: Chroman and interest point method: Ellis
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D. Results of the retrieval with pitch shifts and time scalings
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Figure D.5: Distributions of the retrieval ratios for the coarse time slot estimation, input
image: Chroman and interest point method: SURF
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Figure D.6: Distributions of the retrieval ratios for the coarse time slot estimation, input
image: Chroman and interest point method: Frame-wise most salient peaks
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Figure D.7: Distributions of the retrieval ratios for the coarse time slot estimation, input
image: CQT and interest point method: Harris corner detector
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Figure D.8: Distributions of the retrieval ratios for the coarse time slot estimation, input
image: CQT and interest point method: Original method
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D. Results of the retrieval with pitch shifts and time scalings
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Figure D.9: Distributions of the retrieval ratios for the coarse time slot estimation, input
image: CQT and interest point method: MinMax filter
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Figure D.10: Distributions of the retrieval ratios for the coarse time slot estimation, input
image: CQT and interest point method: Ellis

110



TS
R

=
0.

50

TS
R

=
0.

88

TS
R

=
0.

99

TS
R

=
1.

01

TS
R

=
1.

12

TS
R

=
1.

50

U
na

lte
re

d

PS
R

=
0.

50

PS
R

=
0.

88

PS
R

=
0.

99

PS
R

=
1.

01

PS
R

=
1.

12

PS
R

=
1.

50

40

50

60

70

80

90

Pe
rc

en
ta

ge
of

qu
er

yf
ou

nd
co

rre
ctl

y

Input image: CQT
Interest point method: SURF

Figure D.11: Distributions of the retrieval ratios for the coarse time slot estimation, input
image: CQT and interest point method: SURF
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Figure D.12: Distributions of the retrieval ratios for the coarse time slot estimation, input
image: CQT and interest point method: Frame-wise most salient peaks
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D. Results of the retrieval with pitch shifts and time scalings
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Figure D.13: Distributions of the retrieval ratios for the coarse time slot estimation, input
image: HSS-CQT and interest point method: Harris corner detector
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Input image: HSS-CQT
Interest point method: Original method

Figure D.14: Distributions of the retrieval ratios for the coarse time slot estimation, input
image: HSS-CQT and interest point method: Original method
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Input image: HSS-CQT
Interest point method: MinMax filter

Figure D.15: Distributions of the retrieval ratios for the coarse time slot estimation, input
image: HSS-CQT and interest point method: MinMax filter

TS
R

=
0.

50

TS
R

=
0.

88

TS
R

=
0.

99

TS
R

=
1.

01

TS
R

=
1.

12

TS
R

=
1.

50

U
na

lte
re

d

PS
R

=
0.

50

PS
R

=
0.

88

PS
R

=
0.

99

PS
R

=
1.

01

PS
R

=
1.

12

PS
R

=
1.

50

0

10

20

30

40

50

60

70

80

90

Pe
rc

en
ta

ge
of

qu
er

yf
ou

nd
co

rre
ctl

y

Input image: HSS-CQT
Interest point method: Ellis

Figure D.16: Distributions of the retrieval ratios for the coarse time slot estimation, input
image: HSS-CQT and interest point method: Ellis
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D. Results of the retrieval with pitch shifts and time scalings
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Figure D.17: Distributions of the retrieval ratios for the coarse time slot estimation, input
image: HSS-CQT and interest point method: SURF

TS
R

=
0.

50

TS
R

=
0.

88

TS
R

=
0.

99

TS
R

=
1.

01

TS
R

=
1.

12

TS
R

=
1.

50

U
na

lte
r e

d

PS
R

=
0.

50

PS
R

=
0.

88

PS
R

=
0.

99

PS
R

=
1.

01

PS
R

=
1.

12

PS
R

=
1.

50

0

10

20

30

40

50

60

70

80

90

P e
rc

en
ta

ge
of

qu
er

yf
ou

nd
co

rre
ctl

y

Input image: HSS-CQT
Interest point method: Frame-wise most salient peaks

Figure D.18: Distributions of the retrieval ratios for the coarse time slot estimation, input
image: HSS-CQT and interest point method: Frame-wise most salient peaks
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Input image: Chroman

Interest point method: Harris corner detector

Figure D.19: Distributions of the retrieval ratios for the fine time slot estimation, input
image: Chroman and interest point method: Harris corner detector
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Input image: Chroman

Interest point method: Original method

Figure D.20: Distributions of the retrieval ratios for the fine time slot estimation, input
image: Chroman and interest point method: Original method
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D. Results of the retrieval with pitch shifts and time scalings
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Input image: Chroman

Interest point method: MinMax filter

Figure D.21: Distributions of the retrieval ratios for the fine time slot estimation, input
image: Chroman and interest point method: MinMax filter
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Interest point method: Ellis

Figure D.22: Distributions of the retrieval ratios for the fine time slot estimation, input
image: Chroman and interest point method: Ellis
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Input image: Chroman

Interest point method: SURF

Figure D.23: Distributions of the retrieval ratios for the fine time slot estimation, input
image: Chroman and interest point method: SURF
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Input image: Chroman

Interest point method: Frame-wise most salient peaks

Figure D.24: Distributions of the retrieval ratios for the fine time slot estimation, input
image: Chroman and interest point method: Frame-wise most salient peaks
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D. Results of the retrieval with pitch shifts and time scalings
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Input image: CQT
Interest point method: Harris corner detector

Figure D.25: Distributions of the retrieval ratios for the fine time slot estimation, input
image: CQT and interest point method: Harris corner detector

TS
R

=
0.

50

TS
R

=
0.

88

TS
R

=
0.

99

TS
R

=
1.

01

TS
R

=
1.

12

TS
R

=
1.

50

U
na

lte
r e

d

PS
R

=
0.

50

PS
R

=
0.

88

PS
R

=
0.

99

PS
R

=
1.

01

PS
R

=
1.

12

PS
R

=
1.

50

0

10

20

30

40

50

60

70

80

90

P e
rc

en
ta

ge
of

qu
er

yf
ou

nd
co

rre
ctl

y

Input image: CQT
Interest point method: Original method

Figure D.26: Distributions of the retrieval ratios for the fine time slot estimation, input
image: CQT and interest point method: Original method
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Input image: CQT
Interest point method: MinMax filter

Figure D.27: Distributions of the retrieval ratios for the fine time slot estimation, input
image: CQT and interest point method: MinMax filter
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Input image: CQT
Interest point method: Ellis

Figure D.28: Distributions of the retrieval ratios for the fine time slot estimation, input
image: CQT and interest point method: Ellis
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D. Results of the retrieval with pitch shifts and time scalings
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Input image: CQT
Interest point method: SURF

Figure D.29: Distributions of the retrieval ratios for the fine time slot estimation, input
image: CQT and interest point method: SURF
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Input image: CQT
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Figure D.30: Distributions of the retrieval ratios for the fine time slot estimation, input
image: CQT and interest point method: Frame-wise most salient peaks
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Input image: HSS-CQT
Interest point method: Harris corner detector

Figure D.31: Distributions of the retrieval ratios for the fine time slot estimation, input
image: HSS-CQT and interest point method: Harris corner detector
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Input image: HSS-CQT
Interest point method: Original method

Figure D.32: Distributions of the retrieval ratios for the fine time slot estimation, input
image: HSS-CQT and interest point method: Original method
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D. Results of the retrieval with pitch shifts and time scalings
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Input image: HSS-CQT
Interest point method: MinMax filter

Figure D.33: Distributions of the retrieval ratios for the fine time slot estimation, input
image: HSS-CQT and interest point method: MinMax filter

TS
R

=
0.

50

TS
R

=
0.

88

TS
R

=
0.

99

TS
R

=
1.

01

TS
R

=
1.

12

TS
R

=
1.

50

U
na

lte
r e

d

PS
R

=
0.

50

PS
R

=
0.

88

PS
R

=
0.

99

PS
R

=
1.

01

PS
R

=
1.

12

PS
R

=
1.

50

0

10

20

30

40

50

60

70

80

90

P e
rc

en
ta

ge
of

qu
er

yf
ou

nd
co

rre
ctl

y

Input image: HSS-CQT
Interest point method: Ellis

Figure D.34: Distributions of the retrieval ratios for the fine time slot estimation, input
image: HSS-CQT and interest point method: Ellis
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Input image: HSS-CQT
Interest point method: SURF

Figure D.35: Distributions of the retrieval ratios for the fine time slot estimation, input
image: HSS-CQT and interest point method: SURF
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Input image: HSS-CQT
Interest point method: Frame-wise most salient peaks

Figure D.36: Distributions of the retrieval ratios for the fine time slot estimation, input
image: HSS-CQT and interest point method: Frame-wise most salient peaks
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Results of the retrieval with standard degradations E
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E. Results of the retrieval with standard degradations
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Input image: CQT
Interest point method: Harris corner detector

Figure E.1: Distributions of the retrieval ratios for the coarse time slot estimation, input
image: CQT and interest point method: Harris corner detector
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Input image: CQT
Interest point method: Original method

Figure E.2: Distributions of the retrieval ratios for the coarse time slot estimation, input
image: CQT and interest point method: Original method
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Input image: CQT
Interest point method: MinMax filter

Figure E.3: Distributions of the retrieval ratios for the coarse time slot estimation, input
image: CQT and interest point method: MinMax filter
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Input image: CQT
Interest point method: Ellis

Figure E.4: Distributions of the retrieval ratios for the coarse time slot estimation, input
image: CQT and interest point method: Ellis
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E. Results of the retrieval with standard degradations
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Figure E.5: Distributions of the retrieval ratios for the coarse time slot estimation, input
image: CQT and interest point method: SURF
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Figure E.6: Distributions of the retrieval ratios for the coarse time slot estimation, input
image: CQT and interest point method: Frame-wise most salient peaks
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Figure E.7: Distributions of the retrieval ratios for the coarse time slot estimation, input
image: HSS-CQT and interest point method: Harris corner detector
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Figure E.8: Distributions of the retrieval ratios for the coarse time slot estimation, input
image: HSS-CQT and interest point method: Original method
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E. Results of the retrieval with standard degradations
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Figure E.9: Distributions of the retrieval ratios for the coarse time slot estimation, input
image: HSS-CQT and interest point method: MinMax filter
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Figure E.10: Distributions of the retrieval ratios for the coarse time slot estimation, input
image: HSS-CQT and interest point method: Ellis
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Figure E.11: Distributions of the retrieval ratios for the coarse time slot estimation, input
image: HSS-CQT and interest point method: SURF

Li
ve

re
co

rd
in

g

Ra
di

o
br

oa
dc

as
t

Sm
ar

tp
ho

ne
pl

ay
ba

ck

S m
ar

tp
ho

ne
re

co
rd

in
g

St
ro

ng
m

p3
co

m
pr

es
sio

n

Vi
ny

l0

20

40

60

80

Pe
rc

en
ta

ge
of

qu
er

yf
ou

nd
co

rre
ctl

y

Input image: HSS-CQT
Interest point method: Frame-wise most salient peaks

Figure E.12: Distributions of the retrieval ratios for the coarse time slot estimation, input
image: HSS-CQT and interest point method: Frame-wise most salient peaks
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E. Results of the retrieval with standard degradations
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Figure E.13: Distributions of the retrieval ratios for the coarse time slot estimation, input
image: chroman and interest point method: Harris corner detector
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Figure E.14: Distributions of the retrieval ratios for the coarse time slot estimation, input
image: chroman and interest point method: Original method132
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Figure E.15: Distributions of the retrieval ratios for the coarse time slot estimation, input
image: chroman and interest point method: MinMax filter
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Figure E.16: Distributions of the retrieval ratios for the coarse time slot estimation, input
image: chroman and interest point method: Ellis 133



E. Results of the retrieval with standard degradations
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Figure E.17: Distributions of the retrieval ratios for the coarse time slot estimation, input
image: chroman and interest point method: SURF
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Figure E.18: Distributions of the retrieval ratios for the coarse time slot estimation, input
image: chroman and interest point method: Frame-wise most salient peaks134
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