
Style-Specific Beat Tracking with
Deep Neural Networks

Julius Richter

Improving Polyphonic Piano
Transcription using Deep Residual

Learning

Arne Corvin Jaedicke

Audio Communication Group
Technische Univerität Berlin

This thesis is submitted for the degree of
Master of Science

First Supervisor:
Prof. Dr. Stefan Weinzierl

Second Supervisor:
Athanasios Lykartsis

June 2019

Audio Communication Group
Technische Universität Berlin

This thesis is submitted for the degree of
Master of Science

First Supervisor: Prof. Dr. Stefan Weinzierl
Second Supervisor: Prof. Dr. Klaus-Robert Müller

September 10, 2019

Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt gegenüber der Fakultät I sowie der Fakultät IV der
Technischen Universität Berlin, dass die vorliegende, dieser Erklärung angefügte Ar-
beit selbstständig und nur unter Zuhilfenahme der im Literaturverzeichnis genannten
Quellen und Hilfsmittel angefertigt wurde. Alle Stellen der Arbeit, die anderen Werken
dem Wortlaut oder dem Sinn nach entnommen wurden, sind kenntlich gemacht. Ich
reiche die Arbeit erstmals als Prüfungsleistung ein. Ich versichere, dass diese Arbeit
oder wesentliche Teile dieser Arbeit nicht bereits dem Leistungserwerb in einer anderen
Lehrveranstaltung zugrunde lagen.

Titel der schrifltichen Arbeit

Style-Specific Beat Tracking with Deep Neural Networks

Verfasser

Julius Marius Richter

Betreuende Dozenten

Prof. Dr. Stefan Weinzierl
Prof. Dr. Klaus-Robert Müller
Athanasios Lykartsis
Thomas Schnake

Mit meiner Unterschrift bestätige ich, dass ich über fachübliche Zitierregeln unterrich-
tet worden bin und verstanden habe. Die im betroffenen Fachgebiet üblichen Zitier-
vorschriften sind eingehalten worden. Eine Überprüfung der Arbeit auf Plagiate mithilfe
elektronischer Hilfsmittel darf vorgenommen werden.

Berlin, den 10. September 2019

..

2

Acknowledgments

I would like to thank the following people who all helped me, each in their own way, to
finish this thesis.

Athanasios Lykartsis for his constant help and trust in my abilities from the very
beginning on.

Thomas Schnake for the great help and inspiring discussions about all encounter-
ing topics concerning machine learning.

Sebastian Böck for giving me the first guidance on how to improve the current-state-
of-the-art in beat tracking.

Matthew Davies for providing additional information about the current state of re-
search and giving advice.

Lorenz Richter, my brother, for teaching me mathematical insights in statistical learn-
ing theory, and for having nice discussions about recent trends in deep learning.

Bernd Keul, for encouraging me to choose the topic, on which I always dreamed of
working on.

Dida for using their Google cloud service, on which I trained my machine learning
model using 8 GPUs in parallel.

Brandon Oxendine for helping me revising the text as a native speaker.

Michael Flamm for his constant support and being a such great motivator.

And last but not least, my parents for their unconditional love and always being
supportive.

Thank you!

3

Abstract

In this thesis, a computational method for extracting the beat positions from audio
signals is presented. The proposed beat tracking system is based on temporal con-
volutional networks which capture the sequential structure of audio input. A dynamic
Bayesian network is used to model beat periods of various lengths and align the predicted
beat positions to the best global solution. The system is evaluated on four datasets of
various musical genres and styles and achieves state-of-the-art performance. Compared
against a current state-of-the-art beat tracker, the proposed approach maintains compet-
itive performance but with two distinct computational advantages. It works causally and
requires considerably less learnable parameters. In addition, due to the highly paralleliz-
able structure of convolutional neural networks, computational efficiency dramatically
increases when training on GPUs.

Zusammenfassung

In dieser Arbeit wird eine Rechenmethode zum Extrahieren der Beatsstellen aus Au-
diosignalen vorgestellt. Das vorgeschlagene Beat-Tracking-System basiert auf Tempo-
ral Convolutional Networks, welche die sequentielle Struktur der Audiosignale erfassen.
Ein dynamisches Bayes’sches Netz wird verwendet, um Beat-Perioden unterschiedlicher
Länge zu modellieren und die vorhergesagten Beat-Positionen an der besten, globalen
Lösung auszurichten. Das System wird mit Hilfe von vier Datensätzen, die aus un-
terschiedlichen musikalischen Genres und Stilen bestehen, ausgewertet und erreicht eine
Performance vergleichbar mit dem neuesten Stand der Technik. Verglichen mit einem ak-
tuellen State-of-The-Art Beat Tracker, behält die vorgeschlagene Methode ihre Wettbe-
werbsfähigkeit bei, bietet jedoch zwei deutliche Rechenvorteile. Sie funktioniert kausal
und erfordert erheblich weniger lernbare Parameter. Aufgrund der stark parallelisier-
baren Struktur von neuronalen Faltungsnetzen steigt die Recheneffizienz beim Trainieren
auf GPUs enorm an.

4

Contents

1 Introduction 6
1.1 Motivation . 7
1.2 Goals of the Thesis . 9

2 Related Work 10

3 Rhythm 14
3.1 Terminology . 14
3.2 Rhythm Perception . 15

4 Machine Learning 18
4.1 Sequence to Sequence Modeling . 18
4.2 Feature Extraction . 19
4.3 Performance Measure . 19
4.4 Model Selection . 20
4.5 Optimization . 20
4.6 Regularization . 22
4.7 Validation . 23
4.8 Hyperparameters . 24

5 Deep Neural Networks 25
5.1 Feedforward Neural Networks . 25
5.2 Convolutional Neural Networks . 25
5.3 Recurrent Neural Networks . 26
5.4 Temporal Convolutional Networks . 27

6 Method 30
6.1 Dataset . 31
6.2 Data Preprocessing . 32
6.3 Feature Learning . 33
6.4 Temporal Decoding . 35

7 Evaluation 39
7.1 Evaluation Methods . 39
7.2 Results . 41
7.3 Filter Activation Maps . 42
7.4 Network Training . 42
7.5 Labeling . 43

8 Conclusion 44

9 References 46

5

1 Introduction

Rhythm is indispensable for music and builds its central, hierarchical organizing struc-
ture. It represents one of the fundamental dimensions in the perception of music and
orders the movement of musical patterns in time. Therefore, rhythm analysis is an es-
sential part of understanding music, and represents an innate cognitive ability of humans
even without musical education. Especially, the interpretation of meter is a fundamental
aspect of musical intelligence, and thus detecting the beat, defined as the most promi-
nent layer of rhythm, is an important initial step in the computer emulation of human
music understanding.

In music information retrieval (MIR), automatic analysis of the temporal structure in
an audio piece is an ongoing research topic since the 1980s. Despite its apparent intu-
itiveness and simplicity compared to other parts of music perception, beat tracking has
remained a difficult task to implement on a computer. The basic goal of beat tracking
is to construct a computational method capable of extracting a symbolic representa-
tion which corresponds to the phenomenal experience of the perceived pulse of a human
listener. Intuitively speaking, beat tracking consists of recovering a sequence of time in-
stants from a musical input that are consistent with the times when a human might tap
their foot. The primary information required for this task are the onset times of musical
events, i.e., musical notes and percussive sounds. As a consequence, a naive approach
to describe the rhythm of a musical piece is to specify an accurate list of onset times,
together with some other musical features characterizing those events, e.g., durations,
pitches and intensities. From this list, the predominant periodicity can be estimated
and beat times are subsequently determined using a temporal decoding strategy. How-
ever, such a method lacks abstraction. Diverse media which hold information about a
piece of music suffer a trade-off between the level of abstraction and the comprehensive-
ness of the representation. Standard music notation provides an accepted method for
communicating a composition to a performer, but it has little value in representing the
interpretation of a work as played in a concert. On the other hand, an acoustic signal
implicitly contains all rhythmic aspects but provides no abstraction [1].

As mentioned above, beat tracking can be accomplished using handcrafted rules or
heuristics based on the properties of the audio signal. In practice, such an approach
leads to a proliferation of rules and exceptions, and invariably gives poor results. Far
better results can be obtained by adopting a machine learning approach in which a large
training set of various musical pieces is used to tune the parameters of an adaptive
model. The beat instants of the pieces are known in advance, typically by inspecting
them individually and hand-labeling them, i.e., for every track x there is a target vector
y with annotated beat times. The result of the machine learning algorithm can be
expressed as a function ŷ = f(x) which takes a new track x as input and generates an
output vector ŷ, encoded in the same way as the target vectors. The precise form of the
function f(x) is determined during the training phase, on the basis of the training data.
Once the model is trained it can determine the beats of new tracks, which were unseen
to the model during the training process. The ability to correctly detect the beats in

6

new examples that differ from those used for training is known as generalization. In
practice, the variability of the input will be such that the training data can comprise
only a tiny fraction of all possible input tracks, which is the central challenge in pattern
recognition. This is mainly because beat tracking is a nontrivial problem due to the
wide variability of rhythm in music.

The style of music and its associated learned representational scheme underlies the
human faculty of beat tracking. This fact is also applicable to computational beat track-
ing systems that utilize supervised machine learning techniques. With the selection of
training data the learned model can be specialized to certain musical styles. For in-
stance, a beat tracking system which should cope with classical music should be ideally
trained on classical music only. Nevertheless, the aim of building a universal beat track-
ing model, which can provide good accuracy across a large corpus of styles, demands a
certain model complexity and also requires a large training set which is balanced across
different styles.

1.1 Motivation

Musicians are often surprised when mentioning the difficulty of programming a computer
method that is able to follow the beat of the music. To any adult participant in a given
culture, moving in time with music is so natural that one easily forgets that the ability of
beat tracking is not given in early development, but usually becomes established by the
age of four [2]. This observation can be seen as evidence, that the perception of rhythm
is learned inductively, i.e., learned from examples, instead of obeying some well-defined
rules.

Difficulties of Beat Tracking The principal reason that beat tracking is intrinsically
difficult is that it is the problem of inferring an original beat structure that is not
expressed explicitly. The degree of beat tracking difficulty is therefore not determined
simply by the number of musical instruments performing a musical piece, rather it
depends on how explicitly the beat structure is expressed in the piece. Nevertheless, it
is very difficult to measure this explicitness because it is influenced from various aspects
of the musical piece [3].

Usually, audio signals consist of sounds of various kinds of instruments and other sound
sources. There is not necessarily a specific sound that directly indicates the position of
a beat. In fact, a musical beat may not directly correspond to a real sound, there may
even be no signal on a beat. Furthermore, it is difficult to reliably extract rhythmical
high-level features from musical excerpts having properties such as soft onsets, heavy
syncopation or making use of expressive timing, e.g., playing rubato. This is often
aggravated by blurred note transitions, and the absence of a clear rhythmic structure,
e.g., in classical music which is dominated by string instruments. In addition to the
various properties of an musical piece which make beat tracking difficult, there is no
canonical form for representing rhythm. A beat may not directly correspond to a real
sound, it rather is a perceptual concept that human feels in music. Therefore, multiple

7

interpretations of the beat structure are possible at any given time. Lacking this ground
truth, it is difficult, if not impossible, to provide a completely quantitative evaluation of
the beat tracking task. However, various beat tracking evaluation methods are developed
which involve this ambiguity in rhythm perception, e.g., circumventing the problem of
octave errors by accepting double or half time the rate of the annotated beats. Still, to
compare various computational beat tracking systems, a common database of test music
labeled with the ground truth is required on which the system is tested.

Applications of Beat Tracking The automatic analysis of the metrical structure in
audio is a long-standing, ongoing endeavor, since a good underlying beat tracking sys-
tem is fundamental for various tasks and opens new possibilities for a wide range of
applications. In general, beat tracking can be used to automate time-consuming tasks
that must be completed in order to synchronize events with music. For instance in video
editing, the visual track can be automatically synchronized with an audio track; or stage
light control in live performances, where beat tracking is useful in the control of stage
lighting by a computer, e.g., various properties of lighting such as color, brightness,
direction, and effects can be changed in time to the music. Furthermore, beat-driven
real-time computer graphics or content-based audio effects for multimedia or interactive
performances and studio post-production need synchronization with the beat in music.

In audio content analysis, beat tracking is important for the automatic indexing and
content-based retrieval of audio data, such as in multimedia databases and libraries.
Temporal segmentation can be useful for higher level MIR tasks such as chord estima-
tion, harmonic description, automatic transcription and score extraction from perfor-
mance data [4]. In performance analysis, beat tracking could be used to investigate the
interpretation of musical works, e.g., the performer’s choice of tempo and expressive tim-
ing. In addition, rhythm information is required for automatic playlist generation, where
a computer is given the task to choose a series of audio tracks from a track database
in a way similar to what a human DJ would do. The track tempo is a very important
selection criterion in this context, as DJs will tend to string tracks with similar tempos
back to back. Furthermore, DJs also tend to perform beat-synchronous cross-fading
between successive tracks manually, slowing down or speeding up one of the tracks so
that the beat in the two tracks line up exactly during the cross-fade. This can easily be
done automatically once the beats are located in the two tracks.

Beat tracking is also used in musical interaction systems. It can provide computers the
ability to participate intelligently in live performances in real time and join the ensemble.
Commercial devices already exist that attempt to extract a MIDI clock from an audio
signal, indicating both the tempo and the actual location of the beat. Such MIDI clocks
can then be used to synchronize other devices such as drum machines or audio effects,
enabling a new range of beat-synchronized audio processing [5].

8

1.2 Goals of the Thesis

The main goal of the thesis is to develop a computational beat tracking system which
achieves competitive performance compared with the current state-of-the-art. The sys-
tem should work on a wide range of different musical genres and styles. Instead of using
hand-crafted features, such as harmonic changes, or rhythmic patterns, the beat tracking
system should follow the current trend and utilize a machine learning model to directly
learn the relevant features from audio.

In contrast to current state-of-the-art systems, which use recurrent neural networks,
the proposed system should employ a convolutional approach. Influenced by good results
of convolutional architectures in audio synthesis [6], the beat tracking system should be
built upon a similar network structure, designed to perform well on the specific task
of beat tracking. Considering training the model on a large dataset, computational
efficiency should be a main focus, when designing the model’s architecture. Compared
to recurrent architectures, convolutional neural networks have the advantage of being
highly parallelizable, and therefore they can be trained at a considerable faster rate. The
model complexity should be large enough to model different musical styles, however, the
goal is to decrease the number of learnable parameters in comparison to state-of-the-art
systems.

Overview The thesis is structured as follows: Section 2 introduces related work which
influenced the development of beat tracking. In Section 3, basic principles of rhythm
and rhythm perception are explained. Section 4 deals with the foundations of machine
learning, and Section 5 continues with the introduction of deep neural networks. In
Section 6, the proposed beat tracking method is described. In Section 7, the experimental
set-up for the evaluation is explained and the results are finally discussed in Section 8.

9

2 Related Work

This section is an overview of related work that fostered the development of beat tracking
in musical audio. The task of automatic rhythm detection has been well established
over the last thirty-five years and beat tracking algorithms have constantly improved in
performance. A chronology with the most influential work is shown in Fig. 1.

1985 1990 1995 2000 2005 2010 2015 2020

Sc
hl
os
s
[7
]

Al
len

an
d
D
an
ne
nb
er
g
[8
]

Go
to
an
d
M
ur
ao
ka
[9
]

Sc
he
ire
r [
10
]

Ce
m
gi
l e
t a
l.
[1
1]
, D
ixo
n
[1
2]

La
ro
ch
e
[1
3]

Kl
ap
ur
i e
t a
l.
[1
4]

D
av
ies
an
d
Pl
um
bl
ey
[1
5]

Pe
et
er
s
[1
6]

Bö
ck
an
d
Sc
he
dl
[1
7]

Bö
ck
et
al
.
[1
8]

Kr
eb
s
et
al
.
[1
9]

D
av
ies
an
d
Bö
ck
[2
0]

Figure 1: Time-line with the history of beat tracking.

The traditional approach of beat tracking consists of extracting features from an audio
signal to obtain a feature list. These features range from note onsets, like time, duration
and pitch, to frequency-based signal features and they convey predominant information
relevant to rhythmic analysis. The feature extraction is usually followed by a periodicity
detection stage and the estimated periodicities subsequently determine the beat times
using a temporal decoding strategy. Nevertheless, the recent trend in beat tracking is
a shift away from purely signal processing approaches towards data-driven approaches
incorporating machine learning. In the following, the most influential approaches are
represented chronologically.

Schloss [7] proposed one of the earliest works on automatic extraction of rhythmic
content from audio in his percussion transcription system. Onsets are detected as peaks
in the slope of the amplitude envelope, where the envelope is defined to be equal to
the maximum amplitude in each period of the high-pass filtered signal. The period is
defined as the inverse of the lowest frequency expected to be present in the signal. The
main limitation of the system is that it requires parameters to be set interactively.

Allen and Dannenberg [8] extended the musical concept of beat by including two
aspects, namely period and phase. Based on that concept, they built a method that
uses real-time beam search to allow the beat tracker to consider several possible stages
at once. They use a credibility measure so that at any given time there is a set of active
states that represent the most credible interpretations for the performance encountered
so far. However, the system’s reliance on MIDI limited the input source to electronic
instruments, and moreover limited its application.

Goto and Muraoka [9] introduce the first beat tracking system worth mentioning
which could process music played on ensembles of a variety of instruments. However,
they restricted their system to rock and pop music in which drums maintain the beats.

10

The system leverages the fact that for a large class of popular music, a bass drum
and a snare drum usually occur on the strong and weak beats, respectively. In their
algorithm, multiple agents estimate beat times according to different strategies in order
to examine multiple hypotheses in parallel. All hypotheses are gathered and the most
reliable one is selected as the output. This enables the system to follow beats without
losing track of them, even if some hypotheses become wrong. Assumptions were made;
tempo between 65 and 185 BPM, time-signature is 4/4, and tempo stays almost constant.
In following developments, Goto [21] presents a beat tracking system for both music with
and without drum-sounds. It uses frequency-domain analysis to detect chord changes,
which are assumed to occur in metrically strong positions. This is the first system to
demonstrate the use of high level information in directing the lower-level beat tracking
process. The high level information is specific to the musical style, which is a major
limitation of the system.

Scheirer [10] concludes from psychoacoustic studies on beat perception, that amplitude
envelopes from a small number of broad frequency channels are sufficient information to
rhythmically analyze musical content. He infers that a rhythmic processing algorithm
should treat frequency bands separately, combining results at the end rather than at-
tempting to perform beat tracking on the sum of filter-bank outputs. This leads him to
the use of a small number of bandpass filters and banks of parallel comb filters, which
function as tuned resonators, to perform periodicity analysis. In the next processing
step, the phase of the musical signal is extracted by examining the internal state of the
delays of the comb filters. Finally, the phase and the period is used to estimate the beat
times as far into the future as desired. One problem with the system is that in order
to track tempo changes, the system must repeatedly change its choice of filter, which
implies the filters must be closely spaced to be able to smoothly track tempo variations.
However, the system applies no continuity constraint when switching between filters.

Dixon [12] processes a sequence of note onset times either extracted from an audio
signal or from a symbolic representation within a multi-agent system. Likely tempo
hypotheses are derived from clustering inter-onset intervals (IOI), thus encoding aspects
of the metrical hierarchy. The hypotheses are used to form multiple beat agents using
a paradigm, where each agent has a state consisting of the period and the phase of the
beat. The sequence of beat times with the best score to date is selected by the agent. The
observations are only processed if they occur around the predicted beat locations, i.e.,
within a window whose width depends on the pulse period. The algorithm is designed
to track beats in expressively performed music.

Cemgil et al. [11] formulate beat tracking in a probabilistic Bayesian framework
where tempo and beat is modeled as a stochastic dynamical system. The system is
defined with two hidden state variables, the period and the phase of beat. To this
deterministic model, they add a Gaussian random vector whose covariance matrix models
the likely tempo variations. State transitions are defined by a simple set of equations
that describe how state variables evolve with time. Because all noises are assumed to
be Gaussian and all relationships between variables are linear, the covariance matrix
can be efficiently estimated by a Kalman filter. They also develop the tempogram

11

representation which includes a probability distribution over the period and phase given
a list of onset. This probability distribution is proportional to the likelihood of the
observed onsets under given period and phase hypotheses, weighted by prior distribution,
which is equally distributed, as they consider all tempos to be initially equiprobable. For
given periods and phases, the likelihood is computed as the integral over all onsets of
the product of a constant pulse track and a continuous representation of the onsets.
This implements the assuption that a good pulse track is one which matches all onsets
well. The tempogram’s marginal probability distribution provides a 1-D representation
of periodicities resembling those aforementioned.

Laroche [13] initially finds salient features like note onsets, note changes, and percus-
sion hits by calculating the Fourier transform of an audio signal. A nonlinear monotonic
compression function is applied to the amplitude spectrum, so high-frequency compo-
nents are not masked by higher amplitude low-frequency components. To locate fast
variations in the frequency domain content, a first-order difference is calculated. All fre-
quency bins are summed together, and the result is half-wave rectified to obtain a positive
energy flux signal. A least-squares approach is used to determine the best candidates
for the tempo and beat locations. The final step consist of going through the successive
tempo analysis frames and finding in each frame the best candidates. To that effect a
dynamic programming technique is used. This entails continuity and non-syncopation
constraints.

Klapuri et al. [14] expand upon Scheirer’s amplitude envelope and comb filter model.
They adopt a more robust registral accent signal across four parallel analysis bands as
the input to their system and use comb filter-banks within a probabilistic framework to
simultaneously track three metrical levels. These correspond to the tatum, tactus and
measure. Analysis can be performed causally an non-causally, and is not restricted to
any particular genre, tempo or time-signature. The robustness of the analysis model is
due to the probabilistic modeling of the temporal evolution and interaction between each
of the three metrical levels analyzed. In a study of audio tempo induction algorithms
[22], this approach was shown to be most accurate.

Davies and Plumbley [15] adopt a simpler and more efficient, heuristic approach than
the system of Klapuri by embedding context-dependent information directly into the
beat period and alignment estimation processes. They use a two state model; the first
state performs tempo induction and tracks tempo changes, while the second maintains
contextual continuity within a single tempo hypotheses. The first state, also called
general state, operates in a memoryless fashion, extracting the beat period and beat
alignment through a process of repeated induction. In this manner, the two-state model
can explicitly model tempo discontinuities while smoothing out odd beat errors during
each consistent beat period hypothesis.

Peeters [16] approach is based on a probabilistic framework, in which the beat tracking
problem is formulated in a hidden Markov model, that can be efficiently solved with the
Viterbi algorithm [23]. An onset-energy-function, time-variable tempo, and meter serves
as an input to the system. Beat times are decoded over beat-numbers according to ob-
servation and transition probabilities. A beat-template is used to derive the observation

12

probabilities from the signal. For this purpose, a linear discriminant analysis finds the
most discriminative beat-template.

Böck and Schedl [17] present the first beat tracking system which is based on artifi-
cial neural networks. The network transforms the signal directly into a beat activation
function, which represents the probability of a beat at each frame. As network archi-
tecture they use a bidirectional recurrent neural network (RNN) with long short term
memory (LSTM) units. The approach is inspired by the good results for musical onset
detection [24] and extended to suit the needs for audio beat tracking by modifying the
input representation and adding a peak detection stage. As inputs to the network, three
filtered magnitude spectra with different window lengths and their first order differences
are used. In a peak detection stage, first the periodicity within the activation function
is detected with the autocorrelation function to determine the most dominant tempo.
The beats are then aligned according to the previously computed beat interval. In this
way, erroneously detected beats are eliminated or missing beats are complemented.

Böck et al. [18] extend the previous beat tracking system of Böck and Schedl with
a multi-model approach to represent different music styles. For this purpose, they use
multiple recurrent neural networks, which are trained on certain heterogeneous music
styles. The system chooses the model with the most appropriate beat activation function
for the input signal and jointly models tempo and phase of the beats with a dynamic
Bayesian network. Compared to a reference model, which was trained on the whole
training set, the specialized models produce better predictions on input data which
is similar to that used for training, but worse predictions on signals dissimilar to the
training data.

Krebs et al. [19] propose a modified state-space discretization and tempo transition
model for the temporal decoding stage with dynamic Bayesian networks. The modifica-
tion increases beat tracking accuracy and also reduces time and memory complexity. To
be consistent with human tempo sensitivity, they propose to make the number of discrete
bar positions dependent on the tempo and distribute the tempo states logarithmically
across the range of beat intervals.

Davies and Böck [20] suggest to use a convolutional neural network in the form of a
temporal convolutional network (TCN) [25]. In comparison to the recurrent model of
Böck et al. [18], the TCN can be trained more efficiently on very large datasets due
to parallelization. It requires a smaller number of trainable parameters while achieving
state-of-the-art performance.

13

3 Rhythm

Rhythmic organization is an inherent part of all human activity. As the time structure
of music, rhythm is composed of distinct temporal components such as pattern, meter,
and tempo. In this section, basic principles and definitions of those components of music
are explained, and various aspects of human rhythm perception are examined.

3.1 Terminology

Rhythm In music and music theory, there are many different definitions of rhythm.
Generally, rhythm means a movement marked by the regulated succession of strong and
weak elements, or of opposite or different conditions [26]. It is regarded as the way in
which accented and non-accented notes are grouped in a time unit [27]. The definition
of Lester [28] considers the patterns of duration between musical events and has the
advantage that events, pertaining to various musical qualities, give rise to the idea that
more than one rhythm can be defined for a musical piece. Whereas London [29] defines
rhythm as the sequential pattern of durations relatively independent of meter or phrase
structure. In general, the perception of rhythm involves movement, regularity, grouping,
as well as accentuation and differentiation [30].

Onset An onset refers to the beginning of a musical note or other sound. Any rhythmic
event is basically characterized by an onset time and a salience. They represent the
most basic unit of rhythmic information, from which all beat and tempo information
is derived. The concept of onsets is related to the concept of transients, but differs in
the way that all musical notes have an onset, but do not necessarily include an initial
transient. The more salient events are, the more likely to correspond to beat times than
the less salient ones. This tendency for events with greater perceptual salience to occur
in stronger metrical positions has been noted by various authors [31, 32, 33]. Lerdahl
and Jackendoff [31] classify musical accents into three types: phenomenal accents, which
come from physical attributes of the signal such as amplitude and frequency; structural
accents, which arise from perceived points of arrival and departure such as cadences; and
metrical accents, points in time which are perceived as accented due to their metrical
position.

Beat The term beat, or more technically the tactus, refers to the perceived pulses
which are approximately equally spaced and define the rate at which notes in a piece of
music are played [30]. Intuitively, it is often defined as the rhythm listeners would tap
their foot to when listening to a piece of music, or the numbers a musician counts while
performing. Therefore, the beat is most often designated as a crotchet or quarter note
in Western notation. In beat tracking, the period of a beat is the time duration between
two successive beats, i.e. the reciprocal of the tempo. Whereas the phase refers to the
position inside a beat period.

14

Tempo Given a metrical structure, tempo is defined as the rate of beats at a given
metrical level. Thus, it corresponds to the frequency of the primary pulse in a rhythmic
musical signal. The tempo is commonly expressed as a number of beats per minute
(BPM). In order to represent changing tempos, various approaches can be used. If tempo
is considered as an instantaneous value, it can be calculated as the inter-beat interval
(IOI) measured between each pair of successive beats. A more perceptual plausible
approach is to take an average tempo measured over a longer period of time. A measure
of central tendency of tempo over a complete musical excerpt is called the basic tempo,
which is the implied tempo around which the expressive tempo varies [34]. The value
of tempo as a function of time is called a tempo curve, and can be visualized in a
tempogram [11].

Meter The term meter refers to the regularly recurring patterns and accents such as
beats and bars and provides an underlying time frame. Unlike rhythm, meter is a per-
ceptual concept which is inducted from the phenomenally accented points of musical
surface [35]. The metrical structure is hierarchical, i.e., it involves a ratio relationship
between at least two time levels, namely the referent time level, the beat, and a higher
order period based on a fixed number of beat periods, the measure [36]. Meter is regular
and stable, and serves as a kind of enhanced temporal grid, which helps to shape expec-
tations about the future, and thus be able to anticipate and predict events in time [37].
In order to establish a meter, some regularity has to be manifested in the acoustic signal
in the first place. Once meter has established, all other events are perceived with refer-
ence to this regular pattern. In Lerdahl and Jackendoff’s A Generative Theory of Tonal
Music (GTTM) [31], the rhythmic structure in the tonal music of the Western tradition
consists of two independent elements, grouping and meter. Grouping is the manner in
which music is segmented at a whole variety of levels from groups of a few notes up to
large-scale from of a piece of music, while meter is described as the regular alteration
of strong and weak elements in music. The metrical structure deals with durationless
points in time, e.g. the beats, which obey some well-defined rules. In the GTTM, meter
perception is described as the progress of finding periodicities in the phenomenal and
structural accents in a piece of music. It also proposes a set of metrical preference rules,
based on musical intuitions, which are assumed to guide the listener to plausible inter-
pretations of rhythm. Nonetheless, a major weakness of the GTTM is that it does not
deal with the departures from strict metrical timing which are apparent in almost all
styles of music. Thus, it is only suitable for representing the timing structures of musical
scores, or as an abstract representation of a performance, where expressive timing is not
represented.

3.2 Rhythm Perception

The perception of music requires the ability to build a temporally ordered architecture
of sound sequences in rapid succession. The complex processes underlying this abil-
ity have attracted accelerating research in ethology, developmental cognitive sciences,
experimental psychology, musicology, and behavioral neurology.

15

The perception of beat is a prerequisite to rhythm perception, which in turn is a
fundamental part of music perception. More psychologically or cognitively motivated
definitions associate rhythm to the perceived patterns generated by recurring events and
how they interact and are categorized by listeners. Nevertheless, there is no ground
truth for rhythm to be found in simple measurement of an acoustic signal. The only
ground truth is what human listeners agree to be the rhythmic aspects of the musical
content of the signal.

Studies of Povel and Essnes [32] have demonstrated that beat perception may be
explained with a model in which a perceptual clock is aligned with the accent structure
of the input. The model relies heavily on structural qualities of the input, such as a
sophisticated model of temporal accent. They propose a model of perception of temporal
patterns, based on the idea that a listener tries to induce an internal clock which matches
the distribution of accents in the stimulus and allows the pattern to be expressed in the
simplest possible terms. They use patterns of identical tone bursts at precise multiples
of 200 ms apart to test their theory.

Jones et al. [38] propose that perceived rhythm is the result of different attending
modes, future-oriented and analytic attending. Future-oriented attending involves an-
ticipatory behaviors to coherent temporal events and their durational patterns. They list
the following types of phenomenal accent, which they consider incomplete: note onsets,
sforzando, sudden dynamic or timbral changes, long notes, melodic leaps and harmonic
changes. However, they give no indication as to how these factors might be compared
or combined, either quantitatively (absolute values) or qualitatively (relative strengths).
Each pair of events in a rhythmic sequence initially contributes to the salience of a single
pulse sensation, an emphasis occurs, and later that pulse’s sensations can enhance the
salience of other consonant pulse sensations [33]. One may understand the “initially”
above as an indication not to implement influential schemes between metrical levels in the
induction process, but indeed to do it in the tracking process. This is also in agreement
with the Dynamic Attending Theory [38], which proposes that humans spontaneously
focus on a reference level of periodicity, and they can later switch to other levels to
track events occurring at different time spans, e.g., longer span harmony changes, or
a particular shorter-span fast motive. Drake and Bertrand [39] advocate a universal
predisposition toward simple duration ratio, and claim that humans tend to hear a time
interval as twice as long or short as previous intervals.

From psychoacoustic demonstration on beat perception it can be shown that certain
kinds of signal manipulations and simplifications can be performed without affecting the
perceived pulse content of a musical signal. An amplitude-modulated noise constructed
by vocoding a white noise signal with the sub-band envelopes of a musical signal is
sufficient to extract pulse and meter. The simplified signal is created by performing a
frequency analysis of the original signal by processing it through a filter-bank of bandpass
filters, or grouping fast Fourier transform (FFT) bins together. Thus, it seems that
separating the signal into sub-bands and maintaining the sub-band envelopes separately
is necessary to do accurate rhythmic processing. This fact leads to the hypothesis that
some sort of cross-band rhythmic integration, not simply summation across frequency

16

bands, is performed by the auditory system to perceive rhythm [10].
The perception of tempo exhibits a degree of variability. It is not always correct to

assume that the denominator of the time signature corresponds to the “foot-tapping”
rate, nor to the actual “physical tempo” that would be an inherent property of audio
flows [40]. Differences in human perception of tempo depend on age, musical training,
musical preferences and general listening context, e.g., tempo of a previously heard
sequence, listener’s activity, instant of the day [2, 41, 42]. Nevertheless, these differences
are far from random. They most often correspond to a focus on a different metrical
level, e.g., differences of half or twice the inter-beat interval or one-third or three times
the inter-beat interval. Perception research has shown that with up to 40 ms difference
in onset times, two tones are heard as synchronous, and for more than two notes, the
threshold is up to 70 ms [30]. Rhythmic information is provided by IOIs in the range of
approximately 50 ms to 2 s [30]. Experiments on the tempo sensitivity on humans have
shown that the ability to notice tempo changes is proportional to the tempo, with the
just noticeable difference beeing around 2-5% [41].

Rhythmic response is crucially a phased phenomenon, in contrast to human pitch
recognition, which is only sensitive to signal phase under certain unusual conditions.
Tapping on the beat is not at all the same as tapping against the beat or slightly ahead
of or behind the beat, even if the frequency of tapping is accurate [10]. Although in
the brains of performers music is temporally organized according to its hierarchical beat
structure, this structure is not explicitly expressed in music; it is implied in the relations
among various musical elements which are not fixed and which are dependent on musical
genres or pieces. Expressive timing is generated from performers’ understanding of the
musical structure and general knowledge of music theory and musical style [43]. However,
there is no precise mathematical model of expressive timing, and the complexity of
musical structure from which timing is derived, coupled with the individuality of each
performer and performance, makes it impossible to capture musical nuance in the form
of rules [12]. Nevertheless, expressive reductions in tempo are more common and more
extreme than tempo increases [34].

17

4 Machine Learning

Machine learning is a scientific study, often associated with artificial intelligence (AI),
and deals with algorithms and statistical models that computer systems use to perform
a specific task without using explicit instructions, relying on patterns and inference
instead. It is essentially a form of applied statistics with increased emphasis on the use
of computers to estimate complicated functions and a decreased emphasis on providing
confidence intervals around these functions [44]. On the other hand, pattern recognition
is concerned with the automatic discovery of regularities in data, and with taking actions
such as classifying the data into different categories. Both fields, machine learning and
pattern recognition are strongly connected with each other, and together they have
undergone a substantial development over the past twenty-five years [45].

Most machine learning algorithms can be divided into the categories of supervised
learning, unsupervised learning and semi-supervised learning. Supervised learning algo-
rithms build a mathematical model of a set of data that contains both the inputs and
the desired outputs. Supervised learning algorithms include classification and regression.
Unsupervised learning algorithms take a set of data that contains only inputs, and find
structure in the data, like clustering of data points. In semi-supervised learning typically
a large amount of unlabeled data is used for training that is provided only with a small
amount of labeled data.

Machine learning tasks are usually described in terms of how the machine learning
system should process a data point x, where a data point can for instance be a collection
of n features xi that have been quantitatively measured from some object or event.
Many kinds of tasks can be solved with machine learning, e.g. classification, regression,
transcription, machine translation, synthesis, and sampling, just to name a few. In this
thesis, the focus is on supervised sequence modeling and classification. In the following,
basic concepts of machine learning are described.

4.1 Sequence to Sequence Modeling

In machine learning, the term sequence to sequence modeling encompasses all tasks
where sequences of data are transcribed with sequences of discrete labels. Supervised
sequence to sequence modeling refers specifically to those cases where a set of hand-
transcribed sequences is provided for algorithm training. The individual data points
cannot be assumed to be independent. Instead, both the inputs and the labels form
strongly correlated sequences [46].

Given an input sequence x1:T := x1, . . . ,xT with sequence length T , a sequence model
is any function f : X T → YT , such that

y1:T = y1, . . . ,yT = f(x1, . . . ,xT) (1)

where vector xt ∈ X is the input at time step t, and yt ∈ Y should only depend on
x1:t and not on xt+1:T , i.e., no leakage of information from the future. This causality
constraint is essential for autoregressive modeling.

18

The goal of learning in the sequence modeling setting is to find a function f that
minimizes some expected loss between the actual outputs and the predictions,

L = Ep [l(y1:T , f(x1:T))]
!

= min (2)

where l is the per-example loss and the input and outputs sequences are drawn according
some distribution p(x,y).

For most deep learning practitioners, sequence modeling is often associated with re-
current networks. For example, the sequence modeling chapter in a standard reference
on deep learning is titled “Sequence Modeling: Recurrent and Recursive Nets” [44] cap-
turing the common association of sequence modeling and recurrent architectures. Recent
results, however, indicate that convolutional architectures can outperform recurrent net-
works. Concluding from an empirical evaluation of generic convolutional and recurrent
networks for sequence modeling, Bai et al. [25] assert, that the common association
between sequence modeling and recurrent networks should be reconsidered, and convo-
lutional networks should be regarded as a natural starting point for sequence modeling
tasks.

4.2 Feature Extraction

For most practical applications, the original input variables are typically preprocessed to
transform them into a new space of variables, where it is hoped the pattern recognition
problem will be easier to solve. This preprocessing stage is sometimes also called feature
extraction. New test data must be preprocessed using the same steps as the training
data. Preprocessing might also be performed in order to speed up the computation, for
example, if the goal is a real-time application the algorithm should be computationally
feasible. Yet, the aim of feature selection is to find features in the input which pre-
serve useful discriminatory information. Usually, the dimensionality of the features is
smaller than the dimensionality of the input variables, thus a preprocessing is a form of
dimensionality reduction.

4.3 Performance Measure

In the context of an optimization algorithm, the function used to evaluate a candidate
solution is termed the objective function. Typically, with neural networks, the objective
function is referred to as the loss function L and the value calculated by the loss function
is referred to as loss. The loss function reduces all the various good and bad aspects of a
possibly complex model down to a single scalar value, which allows candidate solutions
to be ranked and compared.

Usually, the loss function is specific to the task being carried out by the system. In the
case of a classification problem, cross entropy can be used to measures the performance
of the model. In information theory, cross entropy is defined for two discrete probability
distributions p and q as

H(p, q) = −
∑
x∈X

p(x) log q(x) (3)

19

where the sum goes over all possible elements x of the set elements X . Transfered to the
problem of a binary classification problem, the probability p(x) corresponds to the true
label yi ∈ {0, 1}, i.e, representing a binary indicator 0 or 1, where as the distribution q(x)
refers to the predicted probability ŷi ∈ [0, 1] for the two classes. As a consequence, the
cross entropy loss between true label y = (y0, y1)T and the predicted value ŷ = (ŷ0, ŷ1)T

is defined as

L(y, ŷ) = −w0 y0 log(ŷ0)− w1 y1 log(ŷ1) (4)

where w0 and w1 are optional constants that rescale the loss for the both classes, useful
for the case in which both classes occur unbalanced.

4.4 Model Selection

In practical applications, the values of the model’s parameters are determined by learn-
ing, and the principle objective in doing so is usually to achieve the best predictive
performance on new data. Furthermore, as well as finding the appropriate values for
complexity parameters within the model, one wishes to consider a range of different
types of models in order to find the best one for a particular application.

The performance on the training set is not a good indicator of predictive performance
on unseen data due to the problem of over-fitting. If data is plentiful, then one approach
is simply to use some of the available data to train a range of models, or a given model
with a range of values for its complexity parameters, and then to compare them on
independent data, also called the validation set, and select the one having the best
predictive performance. If the model design is iterated many times using a limited
dataset, then some overfitting to the validation data can occur and so it may be necessary
to keep aside a third test set on which the performance of the selected model is finally
evaluated.

Given a specific task or dataset, the main question of model selection is, which archi-
tecture should one use? For sequence modeling, Bai et al. [25] show that a simple con-
volutional architectures outperform canonical recurrent networks such as LSTMs across
a diverse range of tasks and datasets, while demonstrating longer effective memory. It
remains the question if this is also the case in beat tracking?

4.5 Optimization

Most machine learning algorithms involve optimization which refers to the task of mini-
mizing an objective function L(x,y;θ) by altering the parameters θ ∈ Rm. The goal of
optimization is to find an optimal θ∗, such that

θ∗ = arg min
θ

L(x,y;θ) (5)

In basic algebra, given the function y = f(x), where both x and y are real numbers,
the derivative f ′(x) is useful for minimizing this function because it indicates how to
change x in order to decrease y. Thus, by moving x in small steps with the opposite sign

20

of the derivative, f(x) is reduced. This technique is called gradient decent [47]. When
f ′(x) = 0, the derivative provides no more information about which direction to move
and the function reaches a stationary point. Stationary points are classified into three
kinds. A local minimum is a point where f(x) is lower than at all neighboring points,
and higher for a local maximum respectively. The third kind is known as saddle points
where the derivative of the function has the same sign on both sides of the stationary
point.

Back to the context of machine learning, the objective function has many local minima
that are not optimal and possibly many saddle points surrounded by very flat regions.
All of this makes optimization difficult, especially when the input to the function is
multidimensional. Therefore, it is usually sufficient to find a value of L that is very low
but not necessarily minimal in a global sense. Thus, in gradient decent we decrease L
by moving in the direction of the negative gradient to propose a new set of parameters

θ′ = θ − µ∇θL(θ) (6)

where µ is the learning rate, a positive scalar determining the size of the step, and ∇θ

refers to the gradient with respect to all parameters θ.

Stochastic Gradient Decent Stochastic gradient descent (SGD) is an extension of the
basic gradient descent algorithm. A recurring problem in machine learning is that large
training sets are necessary for good generalization. At the same time, large learning
sets are also more computationally expensive. Instead of using the whole learning set, a
small set called minibatch is used to estimate the gradient

g =
1

M
∇θ

M∑
i=1

L(x(i),y(i);θ) (7)

Back-Propagation When a feedforward neural network takes an input x and produce
an output ŷ, information flows forward through the network, which is called forward
propagation. During training, forward propagation can continue onward until it produces
a scalar loss L(θ). The back-propagation algorithm [48] allows the information from
the loss to then flow backward through the network in order to compute the gradient.
Computing an analytical expression for the gradient is straightforward, but numerically
evaluating such an expression can be computationally expensive. The back-propagation
algorithm does so using a simple and inexpensive procedure. To obtain an expression
for the gradient of a scalar it recursively applies the chain rule with respect to any node
in the computational graph that produced that scalar.

Adam Adam [49] is another adaptive learning rate optimization algorithm. The name
Adam derives from the phrase adaptive moments. It can be seen as a combination of
RMSProp and momentum with a few important distinctions. First, in Adam, momen-
tum is incorporated directly as an estimate of the first-order moment (with exponential
weighting) of the gradient

21

4.6 Regularization

Regularization is an important concept in machine learning used to improve the gen-
eralizability of an adaptive model, i.e, optimizing the model with respect to the given
training set while avoiding to over-fit to the data. Another definition by Goodfellow [44]
states that regularization is any modification to a learning algorithm that is intended
to reduce its generalization error but not its training error. Some methods put extra
constraints to a machine learning model, such as adding restrictions on the parameter
values; others add extra terms to the objective function that can be thought of as cor-
responding to a soft constraint on the parameter values. In general, there is no best
machine learning algorithm, and in particular, no best form of regularization. Instead,
a form of regularization has to be chosen that it is well suited to a particular task [50].

In the following, several basic regularization techniques are reviewed, which are par-
tially used in this work to enhance the ability of the machine learning model to better
generalize to unseen data.

Weight Decay One of the most common form of regularization is termed Tikhonov
regularization [51], also known as ridge regression or weight decay. It is particularly
useful to mitigate the problem of multicollinearity in linear regression, which often occurs
in models with large numbers of parameters. Many regularization approaches try to
limit the capacity of a model, and weight decay is doing so by adding a parameter norm
penalty to the objective function. Then, the regularized objective function with weight
decay is defined as

L̃(x,y;θ) = L(x,y;θ) + α ||θ||2 (8)

where α is a hyperparameter that weights the relative contribution of the norm penalty
term. This has the effect that in every training step the parameter vector multiplicatively
shrinks by a constant factor, before performing the usual gradient update.

Early Stopping During the training of models with sufficient representational capacity
to overfit a given task, the training error usually decreases steadily over time, while the
validation error initially does the same but eventually begins to rise again. That means,
returning to the parameter setting at the point in time with the lowest validation error,
one obtains a model that generalizes better, at least with respect to the validation set.
In machine learning, this strategy is called early stopping and is referred to as a form
of regularization. It also provides guidance as to how many iterations can be run before
the model begins to overfit.

Dropout Another regularization approach is termed dropout [52], which provides a
computationally inexpensive but powerful method applicable to a broad family of mod-
els. Dropout is regarded as an ensemble consisting of all subnetworks that can be
formed by removing any elementary units except output units from an underlying base

22

network. Therefore, dropout can be viewed as an approximation to training and evaluat-
ing a bagged ensemble of exponentially many networks, where bagging involves training
multiple models and evaluating multiple models on each test example. One possible ex-
planation for the regularization effect of dropout is, that with randomly omitting units
from the hidden layers during training, rare dependencies are excluded in model [53].

4.7 Validation

Usually, the interest of a machine learning algorithm is in how well it performs on data
that has not seen before, since this determines how well it will work when deployed in
the real world. The ability to perform well on previously unobserved inputs is called
generalization. The performance measure of the model is thus evaluated using a test
set of data that is separated from the data used for training. What separates machine
learning from optimization is that the generalization error, also called the test error,
should be low as well. Formally, the generalization error is defined as the expected value
of the error on a new input, where the expectation is taken across different possible
inputs, drawn from the distribution of inputs we expect the system to encounter in
practice.

There are two challenges in the training procedure of machine learning models, namely
underfitting and overfitting. Underfitting occurs when the model is not able to obtain a
sufficiently low error value on the training set. Overfitting occurs when the gap between
the training error and test error becomes too large after training. It is related to train
the model to much on the training set.

If the supply of data for training and testing will be limited, and in order to build
good models, we wish to use as much of the available data as possible for training.
However, if the validation set is small, it will give a relatively noisy estimate of predictive
performance. One solution to this dilemma is to use cross-validation.

Cross-validation The k-fold cross-validation allows a proportion (k− 1)/k of the avail-
able data to be used for training while making use of all the data to assess performance.
When data is particularly scarce, it may be appropriate to consider the case k = N ,
where N is the total number of data points, which gives the leave-one-out technique.
One major drawback of cross-validation is that the number of training runs that must
be performed is increased by a factor of k, and this can prove problematic for models in
which the training is itself computationally expensive.

Test set method Given a sufficiently large dataset, a randomly chosen part of the
original dataset can be set aside and used as a test set. This validation method is known
as the test set method also called holdout method, where the whole dataset is split
into two disjunct subsets. Typically, one uses about 80 percent of the training data for
training and 20 percent for validation [44].

23

4.8 Hyperparameters

Most machine learning algorithms have settings called hyperparameters, which control
the behavior but are not adapted by the learning algorithm itself. Thus, hyperparameters
must be determined outside the learning algorithm. One way to tune hyperparameters
is a nested learning procedure in which one learning algorithm learns the best hyperpa-
rameters for another learning algorithm. Sometimes a setting is chosen to be a hyperpa-
rameter that the learning algorithm does not learn because the setting is gradient-free
and thus difficult to optimize.

In this thesis, hyperparameters are optimized with the Python library Nevergrad [54].
This tool can be regarded as some kind of instrumentation, which turns a piece of code
with parameters into a function defined on an n-dimensional continuous data space. A
simple but powerful optimization algorithm called OnePlusOne is used to optimize the
instrumentalized hyperparameters. It is based upon the use the one-fifth adaptation rule
[55] and was independently rediscovered by Devroye [56] and Rechenberg [57].

24

5 Deep Neural Networks

Deep neural networks are called “deep” because they are typically represented by com-
posing together many different functions

f(x) = (f (L) ◦ f (L−1) ◦ · · · ◦ f (2) ◦ f (1))(x) (9)

where f (1) is called the first layer, f (2) is called the second layer, and so on. Typically,
the hidden layers have the form f (i)(x) = σ(Ax + b). The overall length L of the chain
gives the depth of the model. The final layer is called output layer. The dimensionality
of the hidden layers determines the width of the model.

5.1 Feedforward Neural Networks

Feedforward neural networks, or multilayer perceptrons (MLPs), are the quintessential
deep learning models. The MLP was the first and simplest type of artificial neural
network devised [58]. In this network, the information moves in only one direction,
forward, from the input nodes, to the output nodes. Thus, there are no cycles or loops
in the network [59].

The goal of a feedforward network is to approximate some function f∗. A feedforward
network defines a mapping ŷ = f(x;θ) and learns the value of the parameters θ that
result in the best function approximation. The model is associated with a directed acyclic
graph describing how the functions are composed together. Feedforward networks are
of extreme importance to machine learning practitioners, because they form the bases
of many important commercial applications.

5.2 Convolutional Neural Networks

A convolutional neural network (CNN) [60] is a class of deep neural networks specialized
for processing data that has a grid-like topology, such as one-dimensional time series or
two-dimensional data like raster graphics. CNNs are regularized versions of feedforward
neural networks that simply use convolution in place of general matrix multiplication in
at least one of their layers [44]. Usually, the operation used in a convolutional neural
network does not correspond precisely to the mathematical definition of convolution.
Instead, many neural network libraries implement a cross-correlation, which is the same
as convolution but flipping the second argument. In the following, this convention is
obeyed and the convolution is defined as

s(t) = (x ∗ w)(t) =

∞∑
τ=−∞

x(a)w(t+ τ) (10)

where x is referred to as the input, w as the filter or kernel, and the output s is referred
to as the feature map. Discrete convolution can be viewed as multiplication by a matrix,
but the matrix has several entries constrained to be equal to other entries. In addition,

25

convolution usually corresponds to a very sparse matrix. This is because the filter is
usually much smaller than the input.

A typical layer of a convolutional neural network consists of three stages, as shown in
Fig. 2. In the first stage, the layer performs several convolutions in parallel to produce
a set of linear activations. In the second stage which is sometimes called detector stage,
each linear activation is run through a nonlinear activation function. In the third stage,
a pooling function is used to modify the output of the layer further.

Input Feature maps

Convolution Pooling Fully Connected

Output

Figure 2: Typical convolutional neural network.

A pooling function replaces the output of the network at a certain location with a
summary statistic of the nearby outputs. For example, the max pooling [61] operation
reports the maximum output within a rectangular neighborhood. In this way, pooling
helps to make the representation approximately invariant to small translations of the
input. Invariance to translation means that when a input is translated by a small
amount, the values of most of the pooled outputs do not change.

5.3 Recurrent Neural Networks

In deep learning, a recurrent neural network (RNN) [48] is a class of artificial neural
networks where connections between nodes form a directed graph along a temporal
sequence. Unlike feedforward neural networks, RNNs contain cycles and use an internal
state memory h to process sequences of inputs [62]. A basic recurrent neural network is
described by the propagation equations,

ht = σ(Uxt + Wht−1 + b) (11)

ot = Vht + c (12)

where the parameters are the bias vectors b and c along with the weight matrices
U, V and W, respectively, for input-to-hidden, hidden-to-output and hidden-to-hidden
connections. The recurrent network maps an input sequence x1:T of length T to an
output sequence o1:T of the same length. The indices t indicate to the position in the
sequence and σ refers to the activation function. The computational graph and its
unfolded version is shown in Fig. 3.

Computing the gradients involves performing a forward propagation pass through
the unrolled graph followed by a backward propagation pass. The runtime is O(T) and

26

x

h

o

V

U

W

Unfold

xt−1

ht−1

ot−1

V

U

xt

ht

ot

V

U

xt+1

ht+1

ot+1

V

U

ht−2 ht+2

W W W W

Figure 3: The computational graph on an recurrent neural network and its unfolded
version.

cannot be reduced by parallelization because the forward propagation graph is inherently
sequential, i.e., each time step may be computed only after the previous one. Therefore,
back-propagation for recurrent model is called back-propagation through time (BPTT).
Recurrent models construct very deep computational graphs by repeatedly applying
the same operation at each time step of a long temporal sequence. This gives rise
to the vanishing and exploding gradient problem and makes it notoriously difficult to
train RNNs. To prevent these difficulties more elaborate recurrent architectures were
developed, such as the LSTM [63] and the GRU [64]. These families of architectures
have gained tremendous popularity due to prominent applications to language modeling
and machine translation.

LSTM The long short-term memory (LSTM) [63] is an recurrent neural network (RNN)
architecture used in the field of deep learning. It comprises leaky units to allow the
network to accumulate information over a long duration. However, once that information
has been used it might be useful for the network to forget the old state. Instead of
manually deciding when to clear the state, the neural network learns to decide when to
do it. The time scale of integration can be changed dynamically by making the weights
gated, i.e., controllable by another hidden unit.

GRU The gated recurrent unit (GRU) [64] is a gating mechanism in recurrent neural
networks. The GRU is similar to an LSTM with forget gate but has fewer parameters
than an LSTM, as it lacks an output gate. GRUs have been shown to exhibit even better
performance on certain smaller datasets [65]. However, the LSTM is strictly stronger
than the GRU as it can easily perform unbounded counting, while the GRU cannot [66].

5.4 Temporal Convolutional Networks

A temporal convolutional network (TCN) [25] represents a special architecture of con-
volutional neural network and is inspired by recent convolutional architectures for se-
quential data. It is designed from first principles and combines simplicity, autoregressive
prediction, and very long memory. In comparison to WaveNet [6], the TCN does not

27

employ skip connections across layers (no conditioning, context stacking, or gated acti-
vations).

The TCN is based upon two principles: 1) the convolutions are casual, i.e, no in-
formation leakage from future to past; 2) the architecture can take a sequence of any
length and map it to an output sequence of the same length just as with an RNN. To
achieve the first point, the TCN uses a 1D fully-convolutional network architecture [67],
where each hidden layer is the same length as the input layer. To accomplish the second
point, the TCN uses causal convolutions, i.e., convolutions where an output at time t is
convolved only with elements from time t and earlier in the previous layer.

Simple causal convolutions have the disadvantage to only look back at history with
size linear in the depth of the network. To circumvent this fact, the architecture employs
dilated convolutions that enable an exponentially large receptive field. More formally,
for an input sequence x ∈ RT and a filter f : {0, . . . , k−1} → R, the dilated convolution
operation F on element x of the sequence is defined as

F (x) = (x ∗d f)(x) =

k−1∑
i=0

f(i)xs−d·i (13)

where d = 2ν is the dilation factor, with ν the level of the network, and k is the filter
size. The term s − d · i accounts for the direction of the past. Dilation is equivalent to
introducing a fixed step between every two adjacent filter taps, as it can be seen in Fig.
4. Using larger dilation enables an output at the top level to represent a wider range
of inputs, thus effectively expanding the receptive field of a CNN. There are two ways
to increase the receptive field of a TCN: choosing lager filter sizes k and increasing the
dilation factor d, since the effective history of one layer is (k − 1) d.

x1 x2 x3 xT−1xTxT−2

Input

Hidden

Output

d = 4

d = 2

d = 1

Hidden

ŷ1 ŷ2 ŷ3 ŷT−1ŷTŷT−2

Figure 4: A dilated casual convolution with dilation factors d = 1, 2, 4 and filter size
k = 3. The black lines represent the dependencies for the last element ŷT in
the upper right corner of the figure.

Another architectural element of a TCN are residual connections. In place of a con-
volutional layer, TCNs employ a generic residual module. Each residual block contains

28

a branch leading out to a series of transformations F , whose outputs are added to the
input x of the block

o = Activation
(
x + F(x)

)
(14)

This effectively allows layers to learn modifications to the identity mapping rather than
the entire transformation, which has been shown to benefit deep neural networks [68].
Especially for very deep networks stabilization becomes important, for example, in the
case where the prediction depends on a large history size (> 212) with a high-dimensional
input sequence.

A residual block has two layers of dilated causal convolutions and rectified linear units
(ReLU) as non-linearities, shown in Fig. 5. For normalization, weight normalization [69]
is applied to the convolutional filters. In addition, a spatial dropout [52] is added after
each dilated convolution for regularization, i.e., at each training step, a whole channel is
zeroed out. The convolutions are casual, that means there is no information leakage from

Residual block (k; d)

ẑ
(i) = (ẑ

(i)

1 ; : : : ; ẑ
(i)

T
)

ẑ
(i−1) = (ẑ

(i−1)

1 ; : : : ; ẑ
(i−1)

T
)

Dilated Convolution

Weight Norm

Activation

Dropout

Dilated Convolution

Weight Norm

Activation

Dropout
1x1 Conv
(optional)

Figure 5: TCN residual block.

future to past. By using a combination of very deep networks augmented with residual
layers and dilated convolutions, very long effective history sizes can be achieved, i.e.,
the ability for networks to look very far into the past to make a prediction. The TCN
architecture appears not only to be more accurate than canonical recurrent networks
such as LSTMs and GRUs, but also simpler and clearer [25].

29

6 Method

From an overall perspective, the proposed beat tracking system comprises three major
stages, as shown in Fig. 6. In the first stage, the original audio signal is preprocessed.
Generally, data preprocessing refers to all transformations on the raw data before it is fed
to the machine learning algorithm. It includes different methods such as normalization,
transformation and feature extraction. The second stage represents the actual machine
learning model, which is optimized based on the training data. The learned model takes
the preprocessed audio as an input and outputs the beat activation which can be seen
as a high-level feature of the musical piece. Finally, in the temporal decoding stage a
dynamic Bayesian network (DBN) is used to model bars of various lengths and align the
predicted beat positions to the global best solution.

Feature LearningData Preprocessing Temporal DecodingAudio Beats

Figure 6: Overall structure of the proposed beat tracking system.

To better understand the signal flow of the beat tracking system, the input signals
to each stage are visualized in Fig. 7. For this purpose, the first verse of the track
Yesterday by the Beatles is used as an example. The input to the data preprocessing

0 5 10 15 20
Time [s]

−1

0

1

Am
pl

itu
de

0 500 1000 1500 2000
Frames

0

50

Fr
eq

ue
nc

y

0 500 1000 1500 2000
Frames

0.0

0.5

1.0

Ac
tiv

at
io

n

Figure 7: Input signals to the three main processing blocks of the beat tracking system
for the first verse of the track Yesterday by the Beatles. On top the original
audio signal is shown; in the middle the filtered log power spectrum; and
bottom the beat activations. Dashed lines represent the estimated beats.

30

stage is the discrete audio signal sampled at sampling rate fs. In data preprocessing,
the 1-dimensional audio file is transfered to a 2-dimensional filtered log power spectrum,
which represents the amplitude of a particular frequency at a particular time. The output
of the feature learning stage is the 1-dimensional beat activation, and represents the
probability of a beat at each frame. In the last processing step, the temporal decoding
stage takes this high-level feature as an input and subsequently estimates the most
probable beat sequence.

6.1 Dataset

The dataset that is used to train and evaluate the proposed beat tracking system is
comprised of four common available beat tracking datasets. The different datasets are
listed in Table 1 together with the number of files, and their total lengths. In total,

Table 1: Datasets used for training and evaluation.

Dataset Files Length Beats

Ballroom [22, 70] 685 5 h 57 m 44 653
GTZAN [71, 72] 1000 8 h 20 m 59 277
Hainsworth [73] 222 3 h 19 m 22 339
SMC [74] 217 2 h 25 m 10 628

Total 2124 20 h 01 m 136 897

the compound dataset has a length of approximately 20 hours and contains 2124 files
with 136,897 beat annotations. The dataset comprises a wide range of different musical
styles. However, the majority of the tracks represent Western music. In the following,
the properties of different subsets are described in more detail.

Ballroom The Ballroom dataset [22, 70] contains 685 audio files1 of ballroom dancing
music. As musical genres the dataset covers Cha-Cha-Chá, Jive, Quickstep, Rumba,
Samba, Tango, Viennese Waltz, and Slow Waltz. Each file is 30 s long, mono and
sampled at 44.1 kHz with 16-bit resolution.

GTZAN The GTZAN [71] dataset was originally proposed for music genre classification
and later extended with beat annotations [72]. The dataset comprises 1000 excerpts of
10 different genres. The genres are Blues, Classical, Country, Disco, Hip-hop, Jazz,
Metal, Pop, Reggae and Rock. Each file is 30 s long, mono and sampled at 22,050 Hz
with 16-bit resolution. The audio content of the GTZAN dataset is representative of
the real commercial music of various music genre. The dataset has a good balancing
between tracks with swing (Blues and Jazz music) and without swing.

1After removing the 13 duplicates which are pointed out by Bob Sturm [75].

31

Hainsworth The Hainsworth dataset [73] contains 222 musical audio files, with the
following genre breakdown: Rock/Pop (68), Dance (40), Jazz (40); Classical (30), Folk
(22), and Choral (22). Each file is between 30 and 60 s in length, mono and sampled at
44.1 kHz with 16-bit resolution.

SMC The SMC dataset [74] contains 217 musical audio files. Each file is 40 s in length,
mono and sampled at 44.1 kHz with 16-bit resolution.

6.2 Data Preprocessing

The training dataset contains raw pulse code modulated (PCM) audio signals stored as
WAV files. For the sake of consistency and also to reduce computational complexity,
every audio signal is resampled at a sampling rate fs = 44.1 kHz with 16-bit resolution
and converted to a monaural signal by averaging both stereo channels.

In complex polyphonic mixtures of music, simultaneously occurring events of high
intensities lead to masking effects that prevent any observation of an energy increase of
a low intensity onset [76]. To circumvent these masking effects, the signal is analyzed in
a band-wise fashion to extract transients occurring in certain frequency regions of the
signal. Therefore, a filtered frequency spectrum is chosen to serve as the input for the
neural network.

Input The discrete audio signal x(n) is segmented into overlapping frames of N = 2048
samples, which correspond to a length of 46.4 ms. The frames are sampled every 10 ms,
resulting in a frame rate fr = 100 fps. A standard Hamming window w(n) of the same
length is applied to the frames before the short-time Fourier transform (STFT) is used
to compute the complex spectrogram

X(t, ω) =
N∑
n=1

w(n)x(n+ t h) e−2πjω/N (15)

where t refers to as the frame index, ω the frequency bin index, and the hop size h = 441,
i.e., the time shift in samples between adjacent frames. The complex spectrogram X(t, ω)
is converted to the power spectrogram |X(t, ω)|2 by omitting the phase portion of the
spectrogram. The power spectrogram is filtered with a bank of overlapping triangular
filters F (t, ω) with 12 bands per octave covering a frequency range of 30 to 17 000 Hz. To
better match the human perception of loudness, a logarithmic representation is chosen,

S(t, ω) = log
(
|X(t, ω)|2 · F (t, ω)T + 1

)
(16)

At every time instant t the input xt ∈ Rn to the neural network corresponds to the
frequency column of the filtered log power spectrogram S(t, ω)

xt = S(t, ω), ∀ t = 1, . . . , T (17)

and has dimensionality n = 88.

32

Labels The beat tracking task requires annotations in the form of time instants of beats
from a musical excerpt. To this end, the beat tracking problem is considered as a binary
classification problem, where annotated beat instants are first quantized to the temporal
resolution of the input representation, and then represented as training targets y1:T .
Following the strategy of onset detection [77] the temporal activation region around the
annotations is widened by means of including two adjacent temporal frames on either
side of each quantized beat location and weighting them with a value of 0.5 during
training.

6.3 Feature Learning

The neural network architecture consists of two main blocks, as shown in Fig. 8. While
the filtered log power spectrum could be passed directly to the TCN, the network first
seeks to learn some compact intermediate representation, by implementing a preceding
convolutional block. To capture the sequential structure, a TCN finally transforms the
intermediate representation z1:T directly into a sequence of beat activations a1:T .

Convolutional Block TCN
Filtered Log

Beats activations
Power Spectrum

Neural Network

Figure 8: The neural network architecture consists of a convolutional block followed by a
temporal convolutional network (TCN). The input corresponds to the filtered
log power spectrum of the audio file, and the output is referred to as the beat
activation, which represents the probability of a beat at each frame.

The convolutional block is a set of convolution and max pooling layers and it reduces
the dimensionality both in time and frequency. All convolutional layers contain 16 filters,
with kernel sizes of 3× 3 for the first two, and 1× 8 for the last layer, as it is shown in
Fig 9. The filters move with stride 1 and no zero padding is used. The intermediate max
pooling layers apply pooling only in the frequency direction over 3 frequency bins. A
dropout [78] rate of 0.1 used and the activation function corresponds to an exponential
linear unit (ELU) [79], defined as

f(x) =

{
ex − 1 for x ≤ 0

x for x > 0.
(18)

The output of the convolutional block is a 16-dimensional feature vector z and serves
as the input to the TCN. The architecture of the TCN consists of 11 stacked residual
blocks, as shown in Fig. 10. Each residual block contains 16 channels with filters of size
5, and the dilation d = 2i is geometrically spaced ranging from 20 up to 210. Thus, the
resulting receptive field is approximately 81.5 s long. A spatial dropout with rate 0.1 and

33

Input

Convolution Pooling Convolution ConvolutionPooling

1st Layer 2nd Layer 3rd Layer Output2nd Layer

Figure 9: The convolutional block consists of 3 layers, all of which have 16 filters in total.
The first two layers comprise filters of size 3 × 3 followed by pooling with a
kernel of size 1× 3. The last layer is a convolution with filter size 1× 8. The
resulting output is 16-dimensional vector z.

1
s
t
R
e
s
id
u
a
l

B
lo
c
k

2
n
d
R
e
s
id
u
a
l

.

.

.

1
1
t
h
R
e
s
id
u
a
l

z1:T

z
(11)
1:T

z
(2)
1:T

z
(1)
1:T

B
lo
c
k

B
lo
c
k

Figure 10: The architecture of the temporal convolutional network (TCN) consists of 11
stacked residual blocks. Each block comprises two layers of dilated convolu-
tion with filters of size k = 5. The dilation factor d = 2i geometrically widens
with added stack level i. The black solid lines represent the dependencies for

the last element z
(11)
T in the upper right corner of the figure.

34

the ELU activation function is used. The output layer of the TCN is a fully-connected
linear layer with two units, representing the two classes “beat” and “no beat”. In order
to normalize the output and to ensure computational stability, the log softmax function

log softmax(ŷi) = log

(
exp (ŷi)∑
j exp(ŷj)

)
(19)

is used which is added to the last layer of the neural network. Hence, the output ŷt =
(ŷ1t , ŷ2t)

T represents the log-probabilities for the two classes at time t. The network can
thus be trained as a binary classifier with the cross entropy loss function, as defined in (4).
The “beat” class is weighted with the factor w1 = 70 to compensate the unbalancedness
of the two classes. Finally, the beat activation at can be calculated by

at = exp (ŷ1t) , ∀ t = 1, . . . , T (20)

which represent the probability of a beat at frame t.

6.4 Temporal Decoding

Generally, the metrical structure of a musical piece builds upon a hierarchy of approx-
imate regular pulses, as elaborated in Section 3. To exploit this sequential structure, a
probabilistic dynamic model is used to result in a more robust estimation of the beat
instants and to correctly operate under rhythmic fluctuations, such as ritardando and
accelarando or metric modulations.

In the temporal decoding stage, following the feature learning, a dynamic Bayesian
network (DBN) is employed which jointly infers the period and phase of the beat. Dy-
namic Bayesian networks are popular frameworks for meter tracking in music because
they are able to incorporate prior knowledge about the dynamics of rhythmic parameters.
More precisely, the post-processing stage constitutes a hidden Markov model (HMM),
in which a sequence of hidden variables that represent the beat structure of an audio
piece is inferred from the sequence of observed beat activations. The probabilistic state
space consists of two hidden variables, namely the beat period, i.e. the reciprocal of the
tempo, and the position inside the beat period.

The probabilistic model is based upon the bar pointer model of Whiteley et al. [80],
which was originally proposed to jointly infer the tempo and downbeats of a musical
piece. Where a downbeat refers to the first beat of a bar. In this model, mutual de-
pendencies between rhythmic parameters are exploited, which increases the robustness
of automatic rhythm detection systems. The introduced bar pointer is defined as be-
ing a hypothetical hidden object located in state space consisting of the period of a
latent rhythmical pattern. The velocity of the bar pointer is defined to be proportional
to tempo. This approach has the advantage that the bar pointer continues to move
whether or not a note onset is observed. Hence, it explicitly models the concept that
meter is a latent process and provides robustness against rest in the music which might
otherwise be wrongly interpreted as local variations in tempo. In order to make inference
computationally tractable, the state space is divided into discrete cells [19].

35

Given a sequence of beat activations a1:T , the goal of the hidden Markov model is
to identify the most probable hidden state sequence s∗1:T . For every time frame t, the
hidden state is defined as st = (φt, τt)

T where φt ∈ {1, 2, . . . , τt} denotes the position
inside a beat period, and τt ∈ {τmin, . . . , τmax} refers to the length of the current beat
period measured in frames. Due to the principle to use exactly one state per frame to
indicate the position inside the beat period, the number of position states corresponds
exactly to length of the current beat period τt. Usually, the tempo Θ of a musical piece
is measured in beats per minute (BPM), and therefore needs to be converted to the beat
period measured in frames, by

τ(Θ) =

⌊
Θ

60
fr

⌋
(21)

where the frame rate fr is defined as 100 frames per second. The limits of the beat period
can be easily obtained as τmin = τ(Θmax) and τmax = τ(Θmin) respectively. Operating
on a tempo range from 55 to 215 BPM results in a beat period ranging from τmin = 27
to τmax = 107 frames, and thus constructs a state space with 5427 states in total. As an
illustration, a toy example with a significantly smaller state space is shown in Fig. 11.

Position inside the beat period φ

B
ea
t
p
er
io
d
τ

Figure 11: State space toy example with beat period range τ ∈ [7, 14]. Each dot corre-
sponds to a hidden state in the state space. The arrows indicate examples of
possible state transitions starting at state s1 = (φ1 = 1, τ1 = 10)T .

With the aforementioned state space discretization, the most likely hidden state se-
quence s∗1:T =

(
(φ∗t , τ

∗
t)T
)

1:T
, given a sequence of beat activations a1:T , is computed

by

s∗1:T = arg max
s1:T

P (s1:T | a1:T) (22)

with

P (s1:T | a1:T) ∝ P (s1)

T∏
t=2

P (st | st−1)P (at | st) (23)

36

where P (s1) is the initial state distribution, the term P (st | st−1) corresponds to the
transition model, and P (at | st) refers to the observation model. The most likely hidden
state sequence s∗1:T can be solved using the well-known Viterbi algorithm [23]. Finally,
the set of beat instants B can be extracted from the sequence of the position within the
beat period as

B = {t : φ∗t = 1}. (24)

In order to infer the hidden variables from an audio signal, the three entities, the initial
distribution, the transition model, and the observation model, need to be specified. The
transition model describes the transitions between the hidden variables. The observation
model takes the beat activations from the neural network and initial distribution encodes
prior knowledge about the hidden variables.

Initial Distribution With the initial distribution P (s1), any prior knowledge about
tempo distributions can be incorporated into the model. For instance, if the music to
be tracked from one genre, a specific tempo distribution can be used. To make it genre
independent, a uniform distribution is used in this theses.

Transition Model The transition model P (st | st−1) can be further decomposed into a
distribution for each of the two hidden variables φt and τt, this is

P (st | st−1) = P (φt |φt−1, τt−1)P (τt | τt−1) (25)

where the first factor is defined as

P (φt |φt−1, τt−1) = 1A (26)

with the indicator function 1A that equals one if φt = (φt−1 +τt−1−1) mod M+1. The
modulo operator makes the bar position cyclic. If φt = τt, the second factor is defined
by a Laplace distribution

P (τt | τt−1) =
λ

2 τt−1
exp

(
−λ
∣∣∣∣ τtτt−1

− 1

∣∣∣∣) (27)

otherwise it is

P (τt | τt−1) =

{
1, τt = τt−1

0, else.
(28)

The parameter λ ∈ Z≥0 determines the steepness of the distribution and models the
probability for a tempo change. A value of λ = 0 means that transitions to all tempos
are equally probable. In practice, for music with roughly constant tempo, a value of
λ ∈ [1, 300] is reasonable. The probability of tempo change is heuristically set to pω =
0.002. Higher-level or domain specific knowledge could be used to set this parameter.
For example in rock or pop music, the beat is usually quite steady, so a small value for
pω would be appropriate, while for classical music, particularly styles including many
tempo changes, a higher value would be more optimal.

37

Observation Model The beat activation function produced by the neural network is
limited to the range [0, 1] and shows high values at beat positions and low values at
non-beat positions. Thus, the activation function is used directly as state-conditional
observation distributions [81]. The observation likelihood is defined as

P (at |φt) =

{
at, 1 ≤ φt ≤ λ

Λ
1−at
λ−1 , else.

(29)

38

7 Evaluation

Robust evaluation is essential, not only to determine the individual successes and fail-
ures of the algorithm, but also to measure its relative performance among different algo-
rithms. With the development of the Music Information Retrieval Evaluation eXchange
(MIREX) [82], evaluation has become a fundamental aspect of research in music infor-
mation retrieval. MIREX represents a community-based formal evaluation framework
for the evaluation of algorithms and techniques related to music information retrieval.

In this section, existing beat tracking evaluation methods are reviewed, then subse-
quently applied to the proposed beat tracking system. The result is compared against
the current state-of-the-art beat tracking algorithm, which is freely available within the
Python library Madmom [83].

7.1 Evaluation Methods

The choice of evaluation method can have a significant impact on the relative perfor-
mance of different beat tracking algorithms. An evaluation method should adequately
contend with the inherent uncertainty or ambiguity while providing a measurement of
performance which is both meaningful and easy to interpret [84].

Each evaluation method takes a set of annotated beat times A = {a1, . . . , aA} and
a corresponding set of predicted beat times B = {b1, . . . , bB}, where A refers to the
number of annotations, and B to the number of detections, respectively.

F-measure In statistical analysis of binary classification, the F-measure, also called
the F1 score, is a generic measure to test performance. It considers both the precision
p and the recall r of the test data to compute a numerical score. The precision p is the
number of true positives tp divided by the number of all positive results returned by the
classifier, i.e., the number of true positives tp plus the number of false positives fp

p =
tp

tp+ fp
(30)

The recall r is referred to as the number of true positives tp divided by the number of
all relevant samples, i.e., all samples that should have been identified as positive

r =
tp

tp+ fn
(31)

The F-measure is the harmonic mean of precision and recall

F1 =
2 p r

p+ r
=

2 tp

2 tp+ fp+ fn
(32)

where an F-measure reaches its best value at 1 (perfect precision and recall) and worst
at 0. In beat tracking, a detected beat is regarded as true positive if it is in ±70 ms
range of an annotated beat. One can understand, the number of false positives as extra
detections of the system, while the number of false negatives correspond to the missed
detections.

39

Continuity measures In contrast to the F-measure, where the accuracy is determined
from the overall beat tracking success, Hainsworth [85] and Klapuri et al. [86] developed
an evaluation method, which measure the success of regions of continuously correctly
tracked beats. Continuity is enforced by the implementation of tolerance windows of
θ = ±17.5 % of the current inter-annotation-interval around each annotation. The clos-
est detected beat to each annotation is only regarded as correct if it falls within this
tolerance window and the previous detected beat is also within the tolerance window of
the previous annotation. This condition addresses beat phase, but also requires consis-
tency between inter-annotation-intervals.

Comparing each detected beat bi to each annotation aj , there is a number of correct
beats in each continuously correct segment Ym, where there are M continuous segments.
The ratio of the longest continuously correct segment to the length of the annotations
J defines the correct metrical level with continuity required

CMLc =
max(Ym)

J
. (33)

CMLc only reflects information about the longest segment of correctly detected beats.
Therefore, it does not include the contribution of any other beats which may also be
correct. For instance, if a single wrong detected beat occurs in the middle of the excerpt,
this would lead to CMLc = 0.5. To include the effect of beats in other segments Ym, a
less strict measure is defined as the total number of correct beats at the correct metrical
level

CMLt =

∑M
m=1 Ym
J

. (34)

To account for ambiguity in metrical levels, Equations (33) and (34) are recalculated,
such that the annotation sequence can be resampled to permit accurate tapping at double
or half the correct metrical level and to allow for off-beat tapping. These conditions are
referred to as allowed metrical level, which result in the two measures, allowed metrical
levels continuity required (AMLc), and allowed metrical levels continuity not required
(AMLt).

Information Gain Davies et al. [84] developed an evaluation method without reliance
on tolerance windows, by measuring the timing error between beats and annotations.
They propose to use the information gain D, which is a measure of how much information
the beats provide about the annotations. To this end, an error histogram with K bins is
formed from the resulting timing error sequence. The numerical score is then calculated
as the Kullback-Leibler divergence with respect to a uniform distribution. The range
for the information gain is 0 bits to approximately 5.3 bits, where the upper limit is
determined as log2(K). An information gain of 0 bits is obtained, when the beat error
histogram is uniform, i.e. where the beat sequences are totally unrelated.

40

7.2 Results

The performance of the proposed beat tracking system is determined using the afore-
mentioned evaluation methods. Each method is individually applied to the subsets of
the training set. The achieved performance is compared against the state-of-the-art
beat tracker by Böck et al. [18]. The overview of the performances of both beat tracking
algorithms is shown in Tab. 2, where the best result is indicated with bold numbers.

Table 2: Overview of beat tracking performance.

F-Measure CMLc CMLt AMLc AMLt D

Ballroom
TCN 0.848 0.826 0.850 0.906 0.946 4.761
Madmom 0.839 0.797 0.815 0.913 0.933 4.626

SMC
TCN 0.244 0.145 0.183 0.237 0.426 3.476
Madmom 0.324 0.347 0.468 0.463 0.631 3.859

Hainsworth
TCN 0.536 0.615 0.695 0.711 0.845 4.661
Madmom 0.560 0.740 0.830 0.818 0.919 4.796

GTZAN
TCN 0.740 0.700 0.726 0.866 0.914 4.543
Madmom 0.722 0.755 0.775 0.902 0.930 4.610

The inspection of Tab. 2 demonstrates that across all datasets and evaluation meth-
ods, the performance of the proposed beat tracking system is highly comparable to the
existing state-of-the-art. For the Ballroom dataset, the performance is on a very high
level and outperforms the approach in [18] in almost every evaluation method. Con-
versely, the SMC dataset reveals a significant drop in performance due to the large
proportion of highly challenging musical excerpts. As a reminder, the approach in [18]
uses multiple models which are specialized on certain datasets. In this case, exactly one
model was trained only on the SMC dataset. Therefore, the performance is essentially
higher when compared against the proposed beat tracking system. This also confirms the
assumption, that with the selection of training data the learned model can be specialized
to certain musical styles.

For the Hainsworth and GTZAN dataset, which represent a large corpus of various
musical genres and styles, the proposed beat tracking system maintains competitive
performance against the compared approach.

41

7.3 Filter Activation Maps

In general, artificial neural networks are used because of good results. However, it is
often difficult to understand what they actually do, or on which basis they generate
their output. Inspecting the model’s parameters sometimes gives a good intuition about
what exactly the network learned. For this purpose, the two-dimensional filters of the
convolutional block of the final model are visualized in Fig. 12.

−1.0
−0.5
0.0
0.5
1.0

(a) 1st layer

−0.10
−0.05
0.00
0.05
0.10

(b) 2nd layer

−0.30

−0.15

0.00

0.15

0.30

(c) 3rd layer

Figure 12: Visualization of the 16 trained filters of the convolutional block. In (a) filters
of the first layer, in (b) of the second layer, and in (c) of the third layer are
shown.

The inspection of the filter activation maps, indicates the common phenomenon that
the first layer of convolutional neural networks in image classification often perform a
kind of edge detection. For instance, the first filter in the upper left corner of Fig. 12
(a) can be regarded as a first-order differentiation with respect to time. Furthermore
the filters of the third layer in Fig. 12 (c), illustrate the effect of summing together
particular frequency bins, which are assumed to be partials of each other.

7.4 Network Training

The final model has only 30,818 trainable parameters and is trained on eight NVIDIA
Tesla V100 GPUs in parallel. The ADAM optimizer [49] takes default parameters β1 =
0.9, β2 = 0.999 and ε = 10−8. Thorough hyperparameter search found out that rate of
convergence of the validation loss is fastest with a batch size of M = 80 and an initial
learning rate of µ = 5 · 10−3. Once the validation loss saturates, the learning rate is

42

decreased to 10−5 in order to fine-tune the model. The validation loss over the number
of epochs is shown in Fig. 13. It can be seen, that the validation loss starts to saturate
approximately after 1000 epochs, which takes about 10 hours of training.

0 500 1000 1500 2000
Epochs

0.2

0.3

0.4

0.5

0.6
Va

lid
at

io
n

lo
ss

Figure 13: Validation loss over the number of epochs.

7.5 Labeling

In general, the method for obtaining ground truth annotations depends on whether the
aim is to identify descriptive beat locations or to replicate a human tapping response. In
the former case, an initial estimate of the beat locations can be obtained by recording tap
times for a given musical excerpt and iteratively modifying and auditing the obtained
beat positions while in the latter case, the ground truth can be completely defined by the
tapping response [84]. Due to uncertainties in the annotation process, for many types
of input signals, especially multi-instrument excerpts, it may not possible to determine
onset locations with greater precision than 50 ms [87]. However, the ideal outcome of
the annotation is an unambiguous representation of the start points of musical events

Inspection of the given training data unfortunately revealed several inaccuracies of the
annotated labels. Sometimes the beats were even tracked on the off-beat. To enhance
the training of the machine learning model, and thus enhancing the performance of the
beat tracking system, the beat annotations of over 25 tracks are corrected. To this end,
the beat positions are visualized with the Sonic Visualiser [88], and edited while listening
to the audio and watching its waveform. The positions can be finely adjusted by playing
back the audio with click tones at beat times.

43

8 Conclusion

In this thesis, a computational beat tracking system for musical audio was proposed,
that uses convolutional neural networks to learn the beat activation as a high-level
feature directly from the preprocessed audio. In a subsequent temporal decoding stage,
a dynamic Bayesian network is used to model beat periods of various lengths and align
the predicted beat positions to the global best solution. An objective evaluation on four
datasets covering a large corpus of different musical styles showed that the proposed
beat tracking system achieves equivalent performance compared with the current state-
of-the-art.

The beat tracking system was compared against the approach in [18] which is based
upon multiple recurrent LSTM networks. In contrast to the recurrent approach, which
takes the whole sequence as an input, the convolutional approach operates causally,
which means there is no leakage of information from the future, and thus the algorithm
could also run in a real-time implementation. Although the proposed system is pro-
vided with less information due to the causality constraint, it maintains competitive
performance against the recurrent approach. Another noteworthy difference is that the
convolutional model uses considerably less learnable parameters (30,818 vs. 67,301),
which implies that the proposed approach can encode knowledge about the beat struc-
ture in music in a more compact representation than the recurrent approach. Due to the
highly parallelizable structure of the feed-forward convolutional network, computational
efficiency dramatically increases when training on GPUs. That means, the proposed
model learns information at a considerably faster rate, which is an important property
when training on large datasets.

In general, the goal of supervised learning is to predict a not yet observed input.
This quality of generalizability is not only controlled with the complexity of the model,
e.g., through finding the model with the right architecture, and with the right number
of parameters, it also depends on how the model has been regularized and on which
data it has been trained on. The no free lunch theorem for machine learning [50] states
that, averaged over all possible data-generating distributions, every classification algo-
rithm has the same error rate when classifying previously unobserved data points. This
implies that the machine learning algorithms should be designed to perform well on a
specific task. However, the domain of music is extremely complicated, and a machine
learning model that perfectly understands music essentially involves simulating the en-
tire universe. In practice, this can not be achieved and an overly complex model does
not necessarily include the target function or the true data generating process.

To solve the problem of universality, Hainsworth and Macleod [73] claim that beat
tracking systems will have to be style-specific in the future in order to improve the
state-of-the-art. Furthermore, Collins [89] adds that it is probable that no universal
beat tracking model exists which does not utilize a switching model to recognize style
and context prior to application. A realization of this proposal can also be found in
the approach of Böck et al. [18] where multiple neural networks are trained on certain
heterogeneous music styles in order to improve the overall performance. However, the

44

method for splitting the data into sets of different styles is rather simple and the selection
of suitable data for the creation of specialized models remains inadequate.

In comparison with the multi-model approach, the proposed beat tracking system in
this thesis solely utilizes a single neural network. Theoretically, a single network com-
plex enough should be able to model all different music styles simultaneously. The main
difficulty is to create an highly balanced training set with an evenly distributed set of
beats over all the different dimensions relevant for detecting beats. Admittedly, this is
hardly achievable, however, the best way to make the machine learning model generalize
better is to train it on more data. A rough rule of thumb is that a supervised deep learn-
ing algorithm will generally achieve acceptable performance with around 5000 labeled
examples per category and will match or exceed human performance when trained with
a dataset containing at least 10 million labeled examples [44]. As a reminder, the used
training set has approximately 136,000 beat annotations in total, and an inspection of
the annotations revealed inaccuracies and even beat tracking on the off-beat. Therefore,
a remaining task for the future is to reduce the limitations both in the amount of training
data and the actual correctness of the beat annotations. One simple way to do so is to
perform data augmentation in order to become robust against transformation and noisy
signals.

Generally, learned representations often result in much better performance than can
be obtained with hand-designed representations. Therefore, another investigation for
future research could be to leave the high-level rhythmical analysis solely to the neural
network. Instead of preprocessing the audio signal with the STFT, the network takes
raw audio as input and automatically learns a representation that possibly acts similar
to the Fourier transform. Additionally, the basic tempo can be annotated for the task of
beat tracking to utilize a multi-task learning strategy [90]. Furthermore, new approaches
for modeling sequential data could be tested, for instance deep equilibrium models [91].
To give an outlook on future activities, the proposed algorithm will participate at the
MIREX beat tracking contest 2019 and a real-time implementation is already in the
making2.

2For the code please check https://github.com/julius-richter/beat_tracker.

45

https://github.com/julius-richter/beat_tracker

9 References

[1] F. Gouyon and S. Dixon, “A review of automatic rhythm description systems,”
Computer music journal, vol. 29, no. 1, pp. 34–54, 2005.

[2] C. Drake, M. R. Jones, and C. Baruch, “The development of rhythmic attending
in auditory sequences: attunement, referent period, focal attending,” Cognition,
vol. 77, no. 3, pp. 251–288, 2000.

[3] E. Quinton, M. Sandler, and S. Dixon, “Estimation of the reliability of multiple
rhythm features extraction from a single descriptor,” in 2016 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 256–260,
IEEE, 2016.

[4] J. P. Bello and J. Pickens, “A robust mid-level representation for harmonic content
in music signals,” in ISMIR, vol. 5, pp. 304–311, Citeseer, 2005.

[5] A. Robertson and M. D. Plumbley, “B-keeper: A beat-tracker for live performance,”
in NIME, 2007.

[6] A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalch-
brenner, A. Senior, and K. Kavukcuoglu, “Wavenet: A generative model for raw
audio,” arXiv preprint arXiv:1609.03499, 2016.

[7] W. A. Schloss, On the Automatic Transcription of Percussive Music - From Acoustic
Signal to High-Level Analysis. PhD thesis, Stanford University, May 1985.

[8] P. E. Allen and R. B. Dannenberg, “Tracking musical beats in real time.,” in ICMC,
1990.

[9] M. Goto and Y. Muraoka, “A beat tracking system for acoustic signals of music,”
in Proceedings of the second ACM international conference on Multimedia, pp. 365–
372, ACM, 1994.

[10] E. D. Scheirer, “Tempo and beat analysis of acoustic musical signals,” Journal of
the Acoustical Society of America, vol. 103, no. 1, pp. 588–601, 1998.

[11] A. T. Cemgil, H. J. Kappen, P. Desain, and H. Honing, “On tempo tracking:
Tempogram representation and kalman filtering,” Journal of New Music Research,
vol. 28:4, pp. 259–273, 2001.

[12] S. E. Dixon, “Automatic extraction of tempo and beat from expressive perfor-
mances,” Journal of New Music Research, vol. 30, pp. 39–58, 08 2001.

[13] J. Laroche, “Efficient tempo and beat tracking in audio recordings,” Journal of the
Audio Engineering Society, vol. 51, no. 4, pp. 226–233, 2003.

46

[14] A. P. Klapuri, A. J. Eronen, and J. T. Astola, “Analysis of the meter of acoustic
musical signals,” IEEE Transactions on Audio, Speech, and Language Processing,
vol. 14, no. 1, pp. 342–355, 2005.

[15] M. E. P. Davies and M. D. Plumbley, “Context-dependent beat tracking of musi-
cal audio,” IEEE/ACM Transactions on Audio, Speech, and Language Processing,
vol. 15, pp. 1009–1020, March 2007.

[16] G. Peeters, “Beat-tracking unsing a probabilistic framework and linear discriminant
analysis,” 12th International Conference on Digital Audio Effects (DAFx-09), 2009.

[17] S. Böck and M. Schedl, “Enhanced beat tracking with context-aware neural net-
works,” in Proceedings of the 14th International Conference on Digital Audio Effects
(DAFx-11, 2011.

[18] S. Böck, F. Krebs, and G. Widmer, “A multi-model approach to beat tracking
considering heterogeneous music styles,” in ISMIR, 2014.

[19] F. Krebs, S. Böck, and G. Widmer, “An efficient state-space model for joint tempo
and meter tracking.,” in ISMIR, pp. 72–78, 2015.

[20] M. E. P. Davies and S. Böck, “Temporal convolutional networks for musical audio
beat tracking,” European Association for Signal Processing, 2019.

[21] M. Goto, “An audio-based real-time beat tracking system for music with or without
drum-sounds,” Journal of New Music Research, vol. 30, no. 2, pp. 159–171, 2001.

[22] F. Gouyon, A. Klapuri, S. Dixon, M. Alonso, G. Tzanetakis, C. Uhle, and P. Cano,
“An experimental comparison of audio tempo induction algorithms,” IEEE Trans-
actions on Audio, Speech, and Language Processing, vol. 14, no. 5, pp. 1832–1844,
2006.

[23] A. J. Viterbi, “Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm.,” IEEE Trans. Information Theory, vol. 13, no. 2, pp. 260–269,
1967.

[24] F. Eyben, S. Böck, B. Schuller, and A. Graves, “Universal onset detection with
bidirectional long-short term memory neural networks,” 11th International Society
for Music Information Retrieval Conference (ISMIR 2010), 2010.

[25] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling,” arXiv preprint
arXiv:1803.01271, 2018.

[26] Oxford English Dictionary, “New York: Oxford University Press,” Compact Edition,
1971.

[27] G. Cooper and L. Meyer, The Rhythmic Structure of Music. Phoenix books, Uni-
versity of Chicago Press, 1966.

47

[28] J. Lester, The rhythms of tonal music. Pendragon Press, 1986.

[29] J. London, “Rhythm,” The new Grove dictionary of music and musicians, vol. 21,
pp. 277–309, 2001.

[30] S. Handel, “Listening,” An introduction to the perception of auditory events, Cam-
bridge, MA, 1989.

[31] F. Lerdahl and R. S. Jackendoff, A generative theory of tonal music. MIT press,
1985.

[32] D.-J. Povel and P. Essens, “Perception of temporal patterns,” Music Perception:
An Interdisciplinary Journal, vol. 2, no. 4, pp. 411–440, 1985.

[33] R. Parncutt, “A perceptual model of pulse salience and metrical accent in musical
rhythms,” Music Perception: An Interdisciplinary Journal, vol. 11, no. 4, pp. 409–
464, 1994.

[34] B. H. Repp, “On determining the basic tempo of an expressive music performance,”
Psychology of Music, vol. 22, no. 2, pp. 157–167, 1994.

[35] J. London, “Hearing in time: Psychological aspects of musical meter. New York,
NY, US: Oxford University Press,” 2004.

[36] M. Yeston, “The stratification of musical rhythm,” 1976.

[37] D. B. Huron, Sweet anticipation: Music and the psychology of expectation. MIT
press, 2006.

[38] M. R. Jones and M. Boltz, “Dynamic attending and responses to time.,” Psycho-
logical review, vol. 96, no. 3, p. 459, 1989.

[39] C. Drake and D. Bertrand, “The quest for universals in temporal processing in
music,” PsychoL Sci, vol. 13, pp. 71–4, 2001.

[40] C. Drake, L. Gros, and A. Penel, “How fast is that music? The relation between
physical and perceived tempo,” Music, mind, and science, pp. 190–203, 1999.

[41] C. Drake and M.-C. Botte, “Tempo sensitivity in auditory sequences: Evidence for
a multiple-look model,” Perception & Psychophysics, vol. 54, no. 3, pp. 277–286,
1993.

[42] C. Drake, A. Penel, and E. Bigand, “Why musicians tap slower than nonmusicians,”
Rhythm perception and production, pp. 245–248, 2000.

[43] E. F. Clarke, “Rhythm and timing in music,” in The psychology of music, pp. 473–
500, Elsevier, 1999.

[44] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.

48

[45] C. M. Bishop, Pattern recognition and machine learning. Springer, 2006.

[46] A. Graves, “Supervised sequence labelling,” in Supervised sequence labelling with
recurrent neural networks, pp. 5–13, Springer, 2012.

[47] A. Cauchy, “Méthode générale pour la résolution des systemes d’équations simul-
tanées,” Comp. Rend. Sci. Paris, vol. 25, no. 1847, pp. 536–538, 1847.

[48] D. E. Rumelhart, G. E. Hinton, R. J. Williams, et al., “Learning representations
by back-propagating errors,” Cognitive modeling, vol. 5, no. 3, p. 1, 1988.

[49] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[50] D. H. Wolpert, “The lack of a priori distinctions between learning algorithms,”
Neural computation, vol. 8, no. 7, pp. 1341–1390, 1996.

[51] A. N. Tikhonov, “On the stability of inverse problems,” in Dokl. Akad. Nauk SSSR,
vol. 39, pp. 195–198, 1943.

[52] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: a simple way to prevent neural networks from overfitting,” The Journal
of Machine Learning Research, vol. 15, no. 1, pp. 1929–1958, 2014.

[53] G. E. Dahl, T. N. Sainath, and G. E. Hinton, “Improving deep neural networks
for LVCSR using rectified linear units and dropout,” in 2013 IEEE international
conference on acoustics, speech and signal processing, pp. 8609–8613, IEEE, 2013.

[54] J. Rapin and O. Teytaud, “Nevergrad - A gradient-free optimization platform.”
https://GitHub.com/FacebookResearch/Nevergrad, 2018.

[55] M. Schumer and K. Steiglitz, “Adaptive step size random search,” IEEE Transac-
tions on Automatic Control, vol. 13, no. 3, pp. 270–276, 1968.

[56] L. Devroye, “The compound random search,” in International Symposium on Sys-
tems Engineering and Analysis, pp. 195–110, 1972.

[57] I. Rechenberg, “Evolutionsstrategie—optimierung technischer systeme nach
prinzipien der biologischen information,” Stuttgart-Bad Cannstatt: Friedrich From-
mann Verlag, 1973.

[58] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural networks,
vol. 61, pp. 85–117, 2015.

[59] A. Zell, Simulation neuronaler Netze, vol. 1. Addison-Wesley Bonn, 1994.

[60] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,
and L. D. Jackel, “Backpropagation applied to handwritten zip code recognition,”
Neural computation, vol. 1, no. 4, pp. 541–551, 1989.

49

https://GitHub.com/FacebookResearch/Nevergrad

[61] Y.-T. Zhou, R. Chellappa, A. Vaid, and B. K. Jenkins, “Image restoration using a
neural network,” IEEE Transactions on Acoustics, Speech, and Signal Processing,
vol. 36, no. 7, pp. 1141–1151, 1988.

[62] J. L. Elman, “Finding structure in time,” Cognitive science, vol. 14, no. 2, pp. 179–
211, 1990.

[63] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation,
vol. 9, no. 8, pp. 1735–1780, 1997.

[64] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,
and Y. Bengio, “Learning phrase representations using rnn encoder-decoder for
statistical machine translation,” arXiv preprint arXiv:1406.1078, 2014.

[65] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated
recurrent neural networks on sequence modeling,” arXiv preprint arXiv:1412.3555,
2014.

[66] G. Weiss, Y. Goldberg, and E. Yahav, “On the practical computational power of
finite precision rnns for language recognition,” arXiv preprint arXiv:1805.04908,
2018.

[67] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for seman-
tic segmentation,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 3431–3440, 2015.

[68] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

[69] T. Salimans and D. P. Kingma, “Weight normalization: A simple reparameteriza-
tion to accelerate training of deep neural networks,” in Advances in Neural Infor-
mation Processing Systems, pp. 901–909, 2016.

[70] F. Krebs, S. Böck, and G. Widmer, “Rhythmic pattern modeling for beat and
downbeat tracking in musical audio.,” in ISMIR, pp. 227–232, 2013.

[71] G. Tzanetakis and P. Cook, “Musical genre classification of audio signals,” IEEE
Transactions on speech and audio processing, vol. 10, no. 5, pp. 293–302, 2002.

[72] U. Marchand and G. Peeters, “Swing ratio estimation,” pp. 423–428, 2015.

[73] S. W. Hainsworth and M. D. Macleod, “Particle filtering applied to musical tempo
tracking,” EURASIP Journal on Advances in Signal Processing, vol. 2004, no. 15,
p. 927847, 2004.

[74] A. Holzapfel, M. Davies, J. R. Zapata, J. Oliveira, and F. Gouyon, “Selective sam-
pling for beat tracking evaluation,” IEEE Transactions on Audio, Speech and Lan-
guage Processing, vol. 20, no. 9, 2012.

50

[75] B. Sturm, “Faults in the ballroom dataset.” http://media.aau.dk/null_space_

pursuits/2014/01/ballroom-dataset.html, 2014. Access: August 22, 2019.

[76] P. Grosche and M. Muller, “Extracting predominant local pulse information from
music recordings,” IEEE Transactions on Audio, Speech, and Language Processing,
vol. 19, no. 6, pp. 1688–1701, 2010.

[77] J. Schlüter and S. Böck, “Improved musical onset detection with convolutional
neural networks,” in 2014 IEEE international conference on acoustics, speech and
signal processing (ICASSP), pp. 6979–6983, IEEE, 2014.

[78] J. Tompson, R. Goroshin, A. Jain, Y. LeCun, and C. Bregler, “Efficient object
localization using convolutional networks,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 648–656, 2015.

[79] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate deep network
learning by exponential linear units (ELUs),” arXiv preprint arXiv:1511.07289,
2015.

[80] N. Whiteley, A. T. Cemgil, and S. J. Godsill, “Bayesian modelling of temporal
structure in musical audio.,” in ISMIR, pp. 29–34, Citeseer, 2006.

[81] N. Degara, E. A. Rua, A. Pena, S. Torres-Guijarro, M. E. P. Davies, and M. D.
Plumbley, “Reliability-informed beat tracking of musical signals,” IEEE Transac-
tions on Audio, Speech, and Language Processing, vol. 20, pp. 290–301, Jan 2012.

[82] J. S. Downie, “The music information retrieval evaluation exchange (2005–2007):
A window into music information retrieval research,” Acoustical Science and Tech-
nology, vol. 29, no. 4, pp. 247–255, 2008.

[83] S. Böck, F. Korzeniowski, J. Schlüter, F. Krebs, and G. Widmer, “madmom: a new
python audio and music signal processing library,” CoRR, vol. abs/1605.07008,
2016.

[84] M. E. P. Davies, N. Degara, and M. D. Plumbley, “Evaluation methods for musical
audio beat tracking algorithms,” tech. rep., Centre for Digital Music, Queen Mary
University of London, 2009.

[85] S. W. Hainsworth, Techniques for the automated analysis of musical audio. PhD
thesis, University of Cambridge, UK, September 2004.

[86] A. P. Klapuri, A. J. Eronen, and J. T. Astola, “Analysis of the meter of acoustic
musical signals,” IEEE Transactions on Audio, Speech, and Language Processing,
vol. 14, pp. 342–355, Jan 2006.

[87] P. Leveau and L. Daudet, “Methodology and tools for the evaluation of automatic
onset detection algorithms in music,” in In Proc. Int. Symp. on Music Information
Retrieval, Citeseer, 2004.

51

http://media.aau.dk/null_space_pursuits/2014/01/ballroom-dataset.html
http://media.aau.dk/null_space_pursuits/2014/01/ballroom-dataset.html

[88] C. Cannam, C. Landone, and M. Sandler, “Sonic visualiser: An open source applica-
tion for viewing, analysing, and annotating music audio files,” in Proceedings of the
ACM Multimedia 2010 International Conference, (Firenze, Italy), pp. 1467–1468,
October 2010.

[89] N. Collins, “Towards a style-specific basis for computational beat tracking,” 2006.

[90] S. Böck, M. E. Davies, and P. Knees, “Multi-task learning of tampo and beat:
Learning one to improve the other,” 20th International Society for Music Informa-
tion Retrieval Conference (ISMIR 2019), 2019.

[91] S. Bai, J. Z. Kolter, and V. Koltun, “Deep equilibrium models,” arXiv preprint
arXiv:1909.01377, September 2019.

52

	Introduction
	Motivation
	Goals of the Thesis

	Related Work
	Rhythm
	Terminology
	Rhythm Perception

	Machine Learning
	Sequence to Sequence Modeling
	Feature Extraction
	Performance Measure
	Model Selection
	Optimization
	Regularization
	Validation
	Hyperparameters

	Deep Neural Networks
	Feedforward Neural Networks
	Convolutional Neural Networks
	Recurrent Neural Networks
	Temporal Convolutional Networks

	Method
	Dataset
	Data Preprocessing
	Feature Learning
	Temporal Decoding

	Evaluation
	Evaluation Methods
	Results
	Filter Activation Maps
	Network Training
	Labeling

	Conclusion
	References

