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Abstract 
 

Head-related transfer functions (HRTFs) provide all the necessary information a 

listener needs to perceive and localize sounds in binaural synthesis. HRTFs can very 

accurately be obtained using acoustic measurements or numerical simulations with 3D 

meshes but both methods are time-consuming and need extravagant technical equip-

ment. Therefore, HRTF individualization based on anthropometric features (AFs) of 

the head and ears is a desirable ambition. 

In this work, a comprehensive database of HRTFs for 93 subjects was created. The 

database includes HRTFs obtained by acoustical in-ear measurements in an anechoic 

chamber and numerically modeled HRTFs which were created using 3D meshes and 

BEM calculation. To generate 3D meshes of all subjects a Kinect scanner was used to 

scan the heads and torsos whereas an Artec spider scanner was used to create high-

resolution pinna scans. Scans for each subject were post-processed and merged to gen-

erate models appropriate for BEM calculation. For the reproducibility of some work 

steps, a semi-automatic workflow was used. 

Most AFs were automatically extracted using an approach by Dinakaran et al. 

(2016). Pinna rotation and flare angle were semi-automatically detected via Python 

scripts. A correlation of AFs was calculated showing the deep linkage between various 

features. 

Cross-validation was used to compare measured and modeled HRTFs showing few 

individual deviances but an overall good fit on average. 

A listening test was carried out with 42 subjects using dynamic binaural synthesis. 

In the first part of the listening test subjects evaluated different HRTFs against their 

own HRTF. In the second part of the listening test, subjects rated differences between 

their own modeled against their own measured HRTF. The ratings during the listening 

test were given in respect to different perceptual qualities. 

Statistical analysis using a hierarchical mixed-effects model was used to predict 

HRTF ratings by AFs. Parameter tuning, including feature interaction and squared fea-

tures helped to account for the complicated interdependency of AFs. 

Finally, effect sizes were estimated for each AF by determining the predictor im-

portance for each feature. Hence, key features for HRTF individualization could be 

identified the top 3 key features being pinna rotation angle, cavum concha width and 

cymba concha height. This showed that the pinna-related features are prior to head 

and torso-related features. 

In a second statistical approach, support vector machine regression models were 

used to recommend the most appropriate HRTF from the database based on a person’s 

AFs. 
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Zusammenfassung 
 

Kopfbezogene Übertragungsfunktionen (HRTFs) liefern für die Binauralsynthese 

alle erforderlichen Informationen, die ein Hörer benötigt, um Klänge wahrzunehmen 

und zu lokalisieren. HRTFs können sehr präzise durch akustische Messungen oder 

durch numerische Simulationen mit 3D-Modellen generiert werden, jedoch sind beide 

Methoden zeitaufwendig und erfordern anspruchsvolle technische Messmittel. Eine 

HRTF-Individualisierung, die auf anthropometrischen Merkmalen des Kopfes und der 

Ohren basiert, ist daher ein erstrebenswertes Ziel. 

In dieser Arbeit wurde eine umfassende Datenbank, bestehend aus 93 HRTFs er-

stellt. Die Datenbank enthält sowohl HRTFs, die durch akustische Messungen im Ge-

hörgang der Probanden erstellt wurden als auch HRTFs, die auf Basis von 3D-Model-

len durch BEM-Berechnung generiert wurden. Um 3D-Modelle aller Probanden zu er-

stellen, wurde ein Kinect-Scanner zum Erfassen der Köpfe und Torsos verwendet. Ein 

Artec-Spider-Scanner wurde zur Erstellung detailreicher Ohrmuschelscans verwendet.  

Ein Großteil anthropometrischer Merkmale wurde automatisch mithilfe einer von 

Dinakaran et al. (2016) entwickelten Methode extrahiert. Die Rotations- und Nei-

gungswinkel der Ohrmuschel wurde semi-automatisch mithilfe von Python-Skripten 

ermittelt. Eine Korrelation anthropometrischer Merkmale wurde berechnet, um wech-

selseitige Beziehungen verschiedener Merkmale aufzuzeigen.  

Eine Kreuzvalidierung wurde angewandt, um gemessene und berechnete HRTFs 

zu vergleichen. Dabei wurden zwar einige individuelle Abweichungen sichtbar, aber 

es zeigte sich ein im Durchschnitt insgesamt gute Übereinstimmung. 

Ein Hörversuch mit dynamischer Binauralsynthese wurde mit 42 Probanden durch-

geführt. Im ersten Teil des Versuchs verglichen die Probanden einige fremde HRTFs 

mit der eigenen. Im zweiten Teil des Hörversuchs beurteilten die Probanden Unter-

schiede zwischen der eigenen berechneten und gemessenen HRTF. Die Bewertung er-

folgte jeweils im Hinblick auf verschiedene perzeptive Qualitäten. 

Ein hierarchisches Mixed Model wurde anschließend verwendet, um HRTF-Bewer-

tungen mittels anthropometrischer Merkmale vorherzusagen. Quadrierungen sowie 

Interaktionen von Prädiktoren trugen dabei der komplizierten Interdependenz anth-

ropometrischer Merkmale Rechnung. 

Schließlich wurden die Effektstärken für jedes Merkmal geschätzt wodurch Schlüs-

selmerkmale für die HRTF-Individualisierung identifiziert werden konnten. Die drei 

wichtigsten Merkmale sind: Rotationswinkel der Ohrmuschel, Breite der Cavum Con-

cha und Höhe der Cymba Concha. Hiermit wurde verdeutlicht, dass ohrmuschelbezo-

gene Merkmale ausschlaggebender als Merkmale des Kopfes oder des Rumpfes sind. 

In einem zweiten statischen Ansatz wurden Support Vector Machine Regressions-

modelle verwendet, um basierend auf anthropometrischen Merkmalen die passendste 

HRTF aus der Datenbank für eine Person zu bestimmen.  
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1 Introduction 

1.1 Motivation 

When we hear sounds, this happens because the ear converts small pressure changes 

that cause the eardrum to vibrate into sound information, which in turn is perceived and 

processed by the brain. Binaural synthesis in virtual acoustics aims to reproduce the sig-

nals at the eardrums. The idea behind binaural synthesis is, that if a technical system 

produces the same sound pressures a real source would produce at the listener’s ear canal 

entrances and eardrums, then the recipient perceives a virtual source that cannot be dis-

tinguished from a real source (Møller et al., 1996). However, for two different recipients 

listening to the same sound source, the information at the eardrums would not be identi-

cal because the signals that arrive at the eardrums are distorted and shaped by the listen-

ers head, the torso and the pinnae (outer ears) (Møller, 1992). These individual charac-

teristics have been analyzed by our brains throughout our whole lives to self-train and 

fine-tune our very accurate auditory localization performance in correspondence to the 

visual system (Hartmann, 1999). The human brain has learnt to decode interaural level 

differences (ILD) and interaural time differences (ITD) on both ears to determine locali-

zation of a sound source in the lateral dimension (Blauert, 1997). Even though, small 

head movements are used to distinguish a source coming from front or back (Møller, 

1992), ITD and ILD are not sufficient for precise vertical localization of sound sources on 

the median plane which are equidistant from both ears. Due to their shape, the pinnae 

are responsible for a complex combination of diffractions, resonances and reflections 

which are direction and distance dependent. For example, reflections caused by the ear 

canal entrance funnel, the cavum concha, are needed for localization of sources on the 

median plane (Hebrank and Wright, 1974). Through these spectral cues, spatial infor-

mation of a sound field is coded into spectral and temporal attributes (Blauert, 1997). 

 

The influence of the head, the torso and the pinnae on acoustic signals at the eardrum 

has been described as head-related transfer function (HRTF). HRTFs are directional trans-

fer functions that are defined as the ratio of sound pressure at the blocked ear canal to 

the sound pressure at the center of the head, the interaural center with the head of the 

listener absent (Møller, 1992). Therefore, in binaural synthesis HRTFs provide all the nec-

essary information that the listener needs to perceive and to localize sounds (Nicol, 2010). 

 

Very accurate ways of measuring HRTFs are by either placing microphones in the ear 

canals and measuring acoustic signals for the complete audible frequency spectrum for 

all directions as in (Masiero et al., 2012) or by performing numerical simulations using 

individual 3D meshes as in (Katz, 2001a). However, both methods require elaborate 
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equipment, specific skills to perform the measurements and can be time-consuming and 

uncomfortable for the listener. Hence, it seems appealing to do HRFT individualization 

based on anthropometric features (AFs) of the head and ears. Key features which influ-

ence the HRTFs could either be used to choose a best fit from an HRFT dataset or to 

numerically create a HRFT. However, anthropometric key features to be idiosyncratic still 

must be studied and found. This work wants to contribute to that question and find rele-

vant AFs of pinna and head for HRTF individualization. 

 

1.2 State of the art 

1.2.1 Numerical HRTF simulations 

Creating virtual sound sources using HRTFs is not something new and has been stud-

ied since the early 90s. Over two decades ago Bronkhorst (1995) showed that virtual 

sound sources can almost be as accurately localized as real sound sources.  

So far, the standard approach to acquire HRTFs has been in an acoustical manner by 

placing a small microphone in the entry of the subject’s ear-canal who is sitting on a chair 

in an anechoic environment. However, using acoustic measurements can be a difficult and 

resource-demanding procedure and oftentimes is uncomfortable for the listener who must 

sit through multiple frequency sweeps. 

HRTFs can be numerically calculated using the boundary element method (BEM) in 

which the Helmholtz equation which describes an acoustic wave in a domain is being 

transformed into a boundary integral equation. The boundary surface is being discretized 

to solve this integral equation numerically. This calculation of the HRTF is made on the 

assumption that only the surface characteristics of the head are relevant and propagation 

through the head is ignored (Katz, 2001a). Furthermore, the human skin was shown to 

be acoustically rigid, while hair is responsible for absorptions (Katz, 2001b).  Sufficient 

frequency resolution was shown to be 100Hz. A minimum of six elements on the 3D mesh 

was suggested per period of an acoustic wave which limits the shortest possible wave-

length to six element edges (Katz, 2001a). 

 

Using numerical BEM calculations for HRTFs has been tested and evaluated in several 

studies and showed to yield a sound localization performance similar or better to acous-

tically measured HRTFs (Ziegelwanger et al., 2015b, Ziegelwanger et al., 2013)  

This work uses open-source software mesh2HRTF 1  (Ziegelwanger et al., 2015a) 

which numerically calculates HRTFs by an implementation of the 3-dimensional Burton-

Miller collocation BEM which is coupled with the multi-level fast multipole method (ML-

                                                
1 https://sourceforge.net/projects/mesh2hrtf/ (accessed June 20, 2018) 
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The analysis of peaks and notches of the HRTF and their origin was taken further by 

Takemoto et al. (2012), who compared HRTFs and pinna-related transfer functions and 

who studied pressure nodes and anti-nodes. Particular peaks and notches were selected 

from the HRTF which delivered frequencies and source positions for following examina-

tions of pressure distribution patterns on the pinna using sinusoidal waves. They found 

that the pinna generates the basic peak-notch patterns and that the basic pattern was 

common between different subjects, however, with differing fine structures. The study 

also showed that peak frequencies are not sensitive to changes in the source elevation 

angle, whereas notches are. Takemoto et al. (2012) also showed that among subjects the 

frequency and the location of nodes and anti-nodes was different. They concluded that 

the relationship between the individual pinna geometry and the frequencies and ampli-

tudes of spectral peaks and notches still could not be clarified because of the complexity 

of the pinna shape. 

 

So far, the findings on the attempt to clearly assign specific AFs to peaks and notches 

of HRTFs suggest that the scattering and the diffraction of incident sound waves by the 

pinna is a complex process that is difficult to describe. The statistical relationship between 

HRTFs and anthropometric parameters seems to be highly complicated and cannot be 

described by the linear combination of a few pinna-related parameters (Xie, 2013). 

 

1.2.3 HRTF individualization 

By definition, HRTFs express a linkage between the listener’s morphology and his or 

her hearing. It follows, that similarity in anatomy leads to similarity in HRTFs (Middle-

brooks, 1999a). However, individualization of HRTFs by means of anthropometric key 

features does not necessarily include an understanding of why a certain feature contrib-

utes to the HRTF. Middlebrooks (1999a) used frequency scaling and hypothesized that for 

different participants different anatomical dimensions would result in similar spectral fea-

tures at different frequencies. Middlebrooks found that the scaling method is successful 

in aligning major spectral features along the frequency axis but that it does have no effect 

on idiosyncratic features such as the detailed shapes of peaks and notches. It was also 

shown that localization errors could be reduced by scaling another person’s HRTF to the 

listeners dimension. However, this procedure which is based on the assumption of differ-

ent subjects having similar anatomical shapes with differing features can only be seen as 

a rough approximation (Xie, 2013). 

 

Algazi et al. (2001b) measured HRTFs for 45 subjects including 27 anthropometric 

head, torso and pinna features. These measurements are widely used and known as the 

CIPIC HRFT database. A set of AFs was defined, and identifiers were assigned which are 

used in this work as well (see Table 2). In their work Algazi et al. also looked for AFs 
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correlating to the frequency of the first pinna notch (fpn). They found the cavum concha 

height to be the best predictor but the pinna angles and the fossa height also to be among 

top predictors for fpn. 

 

Other approaches tried to achieve HRTF customization by taking anthropometric fea-

tures into consideration. Zotkin et al. (2002) used a course closest neighbor approach and 

the CIPIC database to show that localization performance and liking significantly in-

creases by just measuring the anthropometric features of subjects and comparing them to 

the measures of the database.  

To further improve HRTF individualization, several approaches tried to identify an-

thropometric top predictors on the basis of which a matching HRTF from a data base 

could be selected. Zotkin et al. (2003) introduced HRTF personalization using a set of 

seven AFs and an additional low-frequency head-and-torso model. Again, CIPIC HRTF 

database was used und the study concluded that the incorporation of the head-and-torso 

model enhances localization performance, whereas the personalization based on AFs does 

not always perform well.  

Liu and Zhong (2016) reduced Zotkin’s list of seven features to four features (namely 

cavum concha height, pinna height, pinna rotation angle and pinna flare angle). Their 

matching method included the analysis of correlation results of pinna parameters and 

spectral distortion comparison, also using CIPIC database. The authors finally proposed a 

customization method which was tested in a localization performance test. The results 

suggested that the study’s method is supposedly prior to Zotkin’s.  

Xu et al. (2007) also based their research on the CIPIC database and studied the mor-

phological influence on HRTFs by correlation analysis and principle component analysis 

(PCA). The authors suggested that three factors explain most of the HRTF amplitude, 

namely a factor consisting of shoulder-related measures and two factors representing ro-

tation and flare angles.  

 

Some studies have based their research on self-generated data which seems important 

to compare and generalize findings. Fels and Vorländer (2009) varied different AFs for 

pinna and torso via CAD and BEM calculation which allowed them to examine isolated 

effects. Results showed that the pinna shape does not influence ITD but has a clear influ-

ence on ILD. Their results also showed that the distance between ear and shoulder and 

the head depth have a huge influence on HRTFs. Among pinna features, their findings 

suggest that the cavum concha depth and width have the greatest influence and that also 

the rotation angle of the pinna plays an important role. This underlines the influence of 

the cavum concha on HRTFs once more and suggests that also the pinna rotation angle 

should be considered. 
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Bomhardt (2017) used a database of acoustically measured HRTFs and 3D ear models 

(Bomhardt et al., 2016) to examine the influence of AFs on HRTFs by applying the previ-

ous mentioned scaling method (Middlebrooks, 1999a) in which the frequency vector was 

scaled with an optimal scaling factor to minimize inter-subject spectral differences for two 

different HRTFs. Bomhardt analyzed the relationship between AFs and the scaling factor 

and found the cymba concha height to have the strongest positive influence. Bomhardt’s 

work (2017) also included individualization of HRTFs by PCA using AFs. Individualization 

results were evaluated by testing the localization performance which revealed that indi-

vidual HRTFs work slightly better for subjects than individualized HRTFs. 

 

Ghorbal and Auclair (2017) showed that the aim to identify meaningful AFs for HRTF 

individualization has led to various results from several studies which overlap in some 

cases and are contradicting in others. The authors also stated that a consensus has not 

been found yet and try to contribute to that goal by varying a set of AFs through defor-

mation of meshes and BEM calculation. The study focused on AFs which were identified 

from previous studies including cavum concha height and width, cymba concha height, 

fossa height, pinna height and width as well as pinna rotation and flare angle. The authors 

identified cavum concha width as the parameter with the highest effect, followed by fossa 

height.  

 

It can be summarized that HRTF individualization based on AFs has been analyzed 

and examined in several studies. However, besides finding a consensus about the cavum 

concha in accordance with earlier mentioned reflection and attenuation theories, still no 

appropriate set of key features has been identified. Also, only few studies consider the 

subjects’ perception of HRTF individualization results and if doing so, usually only locali-

zation performance is being examined. 

 

1.3 Outline 

This work wants to contribute to HRTF individualization by using perceptual analysis 

to identify anthropometric key features. Choosing a perceptual approach rather than per-

forming spectral analysis, as seen in previous works, has the advantage of going straight 

to the core of the question. 

First a new HRTF dataset will be created consisting of acoustically measured and BEM 

calculated (modeled) HRTFs for 93 subjects. In sections 2.1 to 2.6, 3D-meshes which are 

needed for BEM calculation will be created, covering head and pinnae. For mesh align-

ment and mesh preparation before BEM calculation, various Python scripts will be used 

to create a semi-automatic work flow in sections 2.5 and 2.7.  Under 2.11 AFs will be 

measured automatically using an algorithm by Dinakaran et al. (2016) while some fea-

tures will be semi-automatically determined using a Python script.  
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In 2.12 a listening test will be designed and conducted with 42 subjects who will com-

pare other subjects’ HRTFs against their own HRTF. In a second part of the listening test, 

subjects will additionally compare their own modeled version against their own measured 

version of HRTF. The listening test will be carried out including dynamic binaural synthe-

sis. Individual headphone equalization filters will be created for each subject under 

2.12.3. The rating of HRTFs during the listening test will happen in respect to various 

audio qualities, i.e. SAQI items (Lindau et al., 2014). 

 

Comparison of acoustically measured and BEM modeled HRTFs will be carried out in 

several ways. Cross-validation under 3.1 will visually and by means of different error 

measures compare measured and modeled HRTFs and state average results. Secondly, 

listening test results for the evaluation of similarity between measured and modeled will 

be analyzed under 3.14. Additionally, a comparison of rating means will be carried out 

under 3.3. 

 

Statistical analysis will focus on the central question of this work: How can HRTF 

individualization work based on anthropometry? Therefore, two different approaches are 

being followed. One approach focuses on the identification of anthropometric key fea-

tures while the other approach focuses on the recommendation of suiting HRTFs from a 

dataset.  

In sections 3.5 and 3.8 to 3.11, multilevel mixed-effects regression models will be used 

to determine regression coefficients for each SAQI item. Effect sizes will be determined 

for each AF under 3.12. This will allow a ranking of AFs by predictor importance and 

therefore deliver a list of key features. For the second approach under 3.13, a support 

vector machine regression will be used to build a recommender which can moderately 

predict the fit of HRTFs from the dataset for a subject based on anthropometrics.  
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2 Methods 

2.1 Preliminary Work 

For this work 3D surface meshes of listeners’ head, torso and pinnae were generated 

for 93 subjects. The subjects were between 13 and 61 years old, the age median being 34. 

From the 10 female and 83 male subjects there were 54 who were affiliated with TU 

Berlin, 32 joining from Sennheiser and 7 subjects coming from Huawei Technologies in 

Munich. All subjects except of two had listening test experience. Some had previously 

taken part in more than 20 listening tests, the median being 8 listening tests.  

 

The head  and upper torso area was scanned with a low-cost scanner, the Kinect sen-

sor2 as in (Dinakaran et al., 2016). The Kinect uses RGB camera and depth sensors to 

capture 3D environments with a resolution of 0.5 mm accuracy (Yang et al., 2015).  Dur-

ing this procedure the subjects were seated on a swivel chair and were instructed to look 

straight forward, focusing a point in the far distance. The subjects’ hair was covered using 

a swim cap to create a smooth surface for 3D scanning and to reduce the influence of hair 

on the scans. The Kinect 3D scanner, and the Kinect fusion with the developer toolkit 

browser v1.8.03 were used to generate 3D surface meshes by slowly rotating the subjects 

by 360 degrees. The Kinect sensor was set up about a meter away from the subjects and 

was set to its maximum resolution of 748 voxels per meter. The Kinect scans where then 

manually post-processed in Meshlab4, an open source system for processing and editing 

3D meshes. During this post-processing step, first, unsuitable parts in the mesh such as 

surroundings, unwanted parts of the torso, and irregular parts close to holes were re-

moved and secondly, holes were filled. In this way meshes representing the head and the 

facial shape sufficiently were created. 

The pinnae were scanned as in as in (Dinakaran et al., 2018). A much higher resolu-

tion was accomplished via an Artec Space Spider scanner5 which uses blue structured 

light technology to achieve 0.05 mm point spacing accuracy. This means that the Artec 

Space Spider captures 10 times more detailed meshes than the Kinect sensor. To create a 

single mesh again multiple scans were captured at multiple angles.  

 

In addition to the 3D scans the subjects’ HRTFs were measured acoustically by placing 

miniature electret condenser microphones in the ear canals of subjects as in (Lindau and 

Brinkmann, 2012). The measurements took place inside the low-reflection room of TU 

                                                
2 https://www.microsoft.com/en-us/store/d/kinect-sensor-for-xbox-one/91hq5578vksc (accessed 

June 20, 2018) 
3 https://developer.microsoft.com/en-us/windows/kinect (accessed June 20, 2018) 
4 www.meshlab.net/ (accessed June 20, 2018) 
5 https://www.artec3d.com/3d-scanner/artec-spider (accessed June 20, 2018) 
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Berlin by using a fully spherical multi-channel measurement system (Fuß et al., 2015) 

shown in Figure 4. 

 

 
Figure 4: Multi-channel measurement system inside the low-reflection room of TU Berlin. The Photo 

was taken from (Fuß et al., 2015) 

 

Also, for each subject a photo was taken in which the position of the microphone in 

the ear canal was marked. An example with FABIAN (Lindau and Weinzierl, 2006) can be 

seen in Figure 5. 

  

 
Figure 5: FABIAN head in the low-reflection room of TU Berlin with marked position of microphone in 

the ear canal 
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To cancel out the on-axis frequency responses of microphones, amplifiers and speakers 

a reference microphone was placed in the position of the subject, with the subject absent. 

HRTFs were then obtained via spectral division. 

 

The above mentioned preliminary work was conducted by Fabian Brinkmann from TU 

Berlin and by Manoj Dinakaran from Huawei Technologies. 

 

2.2 High-resolution pinna meshes 

The high-resolution scans of pinnae generated by the Artec scanner had to be post-

processed and cleaned to produce usable 3D meshes. The Artec scanner creates a file 

format that can only be post-processed and opened with Artec Studio6, Artec’s data pro-

cessing software which can be purchased in form of an annual subscription plan. For this 

work an Artec Studio 12 Professional license was used to import raw scanner data con-

sisting of all the unaligned meshes for the current project.  An example is shown in Figure 

6. In this work the number of single scans per ear ranged from 9 to around 25 scans.  

Most of the RAM and CPU exhaustive steps of post-processing were accomplished on 

a PC at TU Berlin with a dual-boot system consisting of Ubuntu 14 and Windows 7. The 

PC was supplied with 32 GB of RAM and an 8-Core Intel i7-4790K processor with 4 GHz. 

During the procedures described below the weakest link was the RAM size, even 

though the available memory seemed sufficient at first glance. This issue became espe-

cially relevant in BEM calculations but also during the phase of post-processing of Artec 

scans. For that reason, once the most applicable post-processing procedure was found, 

the command history was disabled in Artec Studio 12 under File/Settings/Performance. 

This made corrections in the form of undoing a command impossible but saved a lot of 

computation time and made the following steps faster and smoother. 

 

To generate high-resolution pinna meshes the following procedure delivered the best 

and quickest results:  

First the meshes were auto-aligned using the auto alignment tool. This roughly aligned 

the meshes so the basic details of the pinna could be recognized (Figure 7). Single scans 

which did not align properly during this process were usually deleted because generally 

the number of scans was more than sufficient to create an acceptable outcome. In most 

cases 6 scans would have already been enough to create high-resolution pinna meshes 

but of course the area the scans captured also played a role.  

In a second step the erase tool was used to delete outer areas which either did not 

contribute to the pinna or consisted of noisy parts caused by hair on the edge of the swim 

cap (Figure 8). This reduced the file and RAM size and made the following steps faster 

                                                
6 https://www.artec3d.com/de/3d-software/artec-studio (accessed June 20, 2018) 
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and more accurate. A part of the plane representing the shape of the head around the 

pinna was left because it was useful during the further processing of alignment and com-

bining meshes. 

The third step consisted of the fine alignment called global registration (Figure 9). 

Global registration converts all one-frame surfaces to a single coordinate system using 

information on the mutual position of each surface pair. To do so, it selects a set of special 

geometry points on each frame, followed by a search for pair matches between points on 

different frames.7 For the algorithm to perform correctly the initial approximation that 

was achieved by automatic pre-alignment was necessary. The settings for the step were 

changed to “geometry” because of the rich geometry and poor texture of the pinna. The 

settings for “minimal distance” and “iterations” were left in default values of 50 mm and 

2000. After global registration the maximal error which is shown in the workspace on the 

right side has usually decreased to 0.1mm. Meshes with errors above 0.2 mm were deleted 

if they did not contain fundamental and unique information. However, if a scan held 

unique information that no other scan captured (for example the area behind the ear) the 

project was re-assessed, and more cleaning and editing was done before redoing global 

registration.  

Artec Studio online documentation8 suggests performing outlier removal following 

global registration to remove more noise in the mesh. In the case of this work it was found 

that this can be a time-consuming task taking up to a few hours because outlier removal 

is based on a statistical algorithm that calculates the mean distances between every sur-

face point and a certain number of adjacent points. Therefore, the elimination of 3D-noise 

was done in a later step and global registration was followed by fusion, a step which 

creates a polygonal 3D model by solidifying and melting the captured frames (Figure 10). 

To do this a “sharp fusion” was carried out with the option “watertight” selected to close 

any holes in the mesh. Because outlier removal was not done prior to the fusion small 

objects disconnected to the main mesh were usually visible. This remaining noise now in 

the form of small disconnected particles could be cleaned by applying a “small object 

filter” with settings set to default. A trade-off between detail and further calculation time 

was chosen by setting the resolution for “sharp fusion” to 0.5mm. Because further mesh 

simplification is applied for BEM simulation later, this measure seemed reasonable. The 

final mesh was than exported choosing the Stanford triangle (.ply) format. 

 

                                                
7  http://docs.artec-group.com/as/12/en/process.html#global-registration (accessed June 20, 

2018) 
8 http://docs.artec-group.com/as/12/en/process.html#eliminating-3d-noise-outlier-removal (ac-

cessed June 20, 2018) 
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Figure 6 Artec Studio – raw and unaligned 

meshes 

 

 
Figure 7: Artec Studio – auto-aligned mesh 

 

 
Figure 8: Artec Studio – red area will be de-

leted using the erase tool. 

 

 
Figure 9: Artec Studio – mesh after global reg-

istration. Fine alignment reduces the error. 

 

 
Figure 10: Artec Studio – final mesh after sharp fusion process and small object filter application 
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2.3 Closing ear canals 

As mentioned earlier, HRTFs are directional transfer functions that contain infor-

mation of sound events at a defined location, namely the blocked ear canal (Møller, 1992). 

Many of the high-resolution pinna scans that were taken with the Artec scanner still 

showed the opening of the ear canal. To reach comparable results for all subjects, the ear 

canals were closed in such a way that the bottom of the cavum concha as the deepest spot 

closed the ear canal with a flat surface, as if a microphone would be placed in the ear 

canal (Figure 11 and Figure 12). This procedure was done by Manoj Dinakaran. 

 

 
Figure 11: a subject’s ear with remains of ear 

canal entrance 

 

 
Figure 12: creating a blocked ear canal closed 

by adding a flat surface 

 

 

Side note:  

During the mesh processing procedure it was found that mesh centering as described 
under 2.5 is easier to perform before ear canal openings are being deleted. Therefore, 
this closing of ear canals was carried out after the centering step.  

 

2.4 Merging pinna and head 

When both, the Kinect scan of the whole head and the high-resolution pinna were 

post-processed both had to be aligned to each other and merged into a single mesh. This 

was done using the Geomagic Studio’s point-based glue9. Figure 13 shows a pinna in two 

different resolutions: one mesh created with the Kinect and the other one taken with the 

Artec scanner.  

                                                
9 http://www.geomagic.com/en/products-landingpages/re-designx-wrap (accessed February 21, 

2018) 
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Figure 13: pinna of subject 7 in different resolutions: Kinect mesh with a lower resolution on the left and 

an Artec scan with a much higher resolution on the right  

 

Additionally, the torso was deleted at defined position at the end of the neck leaving 

most part of the neck. Reproducibility for this task was achieved by selecting two points 

on the neck automatically. Similar to Dinakaran et al. (2016) an outline of the 3D mesh 

in side view was extracted as shown in Figure 14. On the front of the neck the point is 

determined by the minimum position in x-direction and on the back of the neck the gra-

dient on z-axis serves to calculate the selected point. 

 

 

 

 
Figure 14: Side view of 3D surface mesh with the extracted outlines for determining defined points for 

a neck end 
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Deleting torsos from the meshes had several reasons. One was that the torso was not 

captured fully and the amount that was captured during the scan with the Kinect sensor 

also varies depending on the subject’s height. Secondly, only the frontal position was cap-

tured, hence for multidirectional HRTF simulation including a torso, other head directions 

would have to be captured as well. Thirdly, the torso adds many elements to the mesh 

which means that BEM calculation time would increase dramatically.  

This working step was completed by Manoj Dinakaran. 

 

2.5 Centering and Natural Head Position 

Before starting BEM calculations, it was vital that the subjects’ meshes were being 

aligned identically. This was important for reproducibility and for the following steps be-

cause during alignment the designation of ear canal positions took place indirectly. The 

meshes were aligned to the interaural center, the ear canal being the y-axis with the left 

auricular point on the positive half-axis and the nose pointing in positive x-direction. The 

z-axis pointed upwards. In HRTFs, by definition, the interaural center is the coordinate 

origin (Møller, 1992). Aligning the meshes as said also followed the approach of Ziegel-

wanger et al. (2015). 

Because manual alignment of meshes to their interaural center can be a fiddly task set 

out for irreproducible results this work followed a semi-automatic approach. Meshes were 

imported into Blender10, an open source 3D modelling software equipped with a Python 

API. A Python script for semi-automatic alignment was written for which the selection of 

three points in the mesh is required. The first point to be selected was the center of the 

left ear canal entrance, the second point the right ear canal entrance and the third point 

a position in the center of the face, e.g. the nose tip or preferably a spot between the eyes. 

Choosing the ear canal entrances as reference points, special anthropometric occurrences 

such as one ear being vertically displaced from the other or being further back did not 

change the defined alignment of the mesh. In other words, the interaural axis was the 

same as the y-axis and were determined by the first two selected points.  

The execution of the script moved the interaural axis of the mesh on the y-axis in such 

a way that the third point determining the center of the head was in the coordinate origin 

of the y-axis. A more detailed explanation can be found in the header of the script11 itself. 

 

The described procedure corrected sideways tilts, head rotation and general mesh dis-

position in a comfortable way by selecting only three reference points. However, it should 

be noted that especially deciding on the center of the ear canal entrances can be a some-

                                                
10 https://www.blender.org/ (accessed June 20, 2018) 
11 Digital_Appendix\11 Scripts\Python_Blender\head_centering.py 
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what ambivalent task. Sometimes a clear ear canal entrance could not be identified be-

cause the mesh did not cover the entrance. In these cases, a thorough evaluation and 

comparison of both sides was done and the Artec scans of the pinnae were examined to 

gain additional information on where to place the position marks. 

 

The head centering script did not correct any head rotations around the interaural 

axis. However, a natural head position (NHP) is of great importance for later calculations 

because it determines the exact position that an unelevated, frontal signal is coming from. 

In other words, should the subject’s true NHP be something else than in the mesh the 

signal heard through the simulated HRTF might feel horizontally off. In cephalometry, the 

study and measurement of the head, a common way to determine whether a head or skull 

is in its NHP is using the Frankfurt Horizontal Plane (FHP). At the craniometric conference 

in Frankfurt am Main in 1882 the plane through left and right porion, which is the point 

of the human skull at the upper margin of the ear canal and the left orbitale, which is the 

bony socket of the eye, was decided to best represent the horizontal plane parallel to the 

surface of the earth (Moorrees, 1994). However, on one hand the meshes and pictures in 

this work do not contain mere bone or skull structures and on the other hand further 

research showed that the FHP is somewhat outdated in terms of representing NHP be-

cause there seems to be a discrepancy of a few degrees (Ramírez et al., 2013).  

NHP is defined as a reproducible position of the head obtained when the subject is in 

a relaxed position, sitting or standing, looking into the horizon or into an external refer-

ence point at eye level (Ramírez et al., 2013). The way that 3D scanning with the Kinect 

sensor took place fulfills these criteria, so that NHP was achieved for the subjects in most 

cases. After running the head centering script, the naturality of the head position was 

manually examined. For approximately 30 % of the subjects a manual correction of the 

NHP was applied by rotating the mesh around y-axis for 5 to 7 degrees. 

Finally, the mesh was exported again in Stanford triangle (.ply) format with “vertex 

colors” being the only checked option. 

 

 

2.6 Remeshing 

Before BEM calculation could start, a re-meshing of the 3D-models was an important 

measure to reduce the number of elements in the meshes by gradually increasing the 

element sizes.  Ziegelwanger et al. (2016) introduced a mesh-grading algorithm available 

as an implemented plugin for the open-source tool Openflipper12 which was used to re-

mesh the meshes. The re-meshing process created two different model versions per sub-

ject, one with the left ear in high resolution and one with the right ear, respectively. The 

                                                
12 https://www.openflipper.org/ (accessed June 19, 2018) 
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algorithm gradually re-meshed the meshes starting at the ear canal, i.e. the origin of the 

y-axis at the corresponding pinna. Hence, the previous step of centering meshes is vital 

because ear canal positions were defined. 

In this work a target length of 1 mm to 14 mm was used which reduced the number 

of elements from approximately 45000 to 15000 in most cases. Meshes with an average 

edge length (AEL) of 1mm were shown to lead to a sound localization performance sim-

ilar or better to acoustically measured HRTFs (Ziegelwanger et al., 2015b). The main 

reason to choose a 1mm to 14 mm grading was to reduce the number of elements and 

computation time as much as possible. A closer look on computation time corresponding 

to the number of elements will be taken under 2.8. 

Re-meshing deforms the contralateral ear and the shape of the face as can be seen in 

Figure 15.  

 

 

  
 

 

 

 
 

Figure 15: original and re-meshed meshes with applied 1 to 14 mm mesh-grading algorithm for subject 

2. The left side shows the contralateral side before and after re-meshing. The right side shows the right pinna 

prepared for BEM calculation on the bottom and before re-meshing on the top. 
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2.7 Preparation of mesh2HRFT input files 

Before BEM calculation using mesh2HRFT could start, input files had to be generated. 

A plugin that comes with mesh2HRTF and had to be installed in Blender generated 

mesh2HRFT input file format13. For installation the file “export_mesh2hrtf.py” had to be 

installed manually and after installation the option “NumCalc” was added in the se-

lectable export options. 

Once a certain mesh was imported into Blender several steps had to be be carried out. 

First, a definition of the microphone element needed for the reciprocal approach in which 

the roles of microphone and loudspeaker are interchanged by defining a vibrating element 

at the blocked ear canal, as described earlier had to be carried out. The ideal size for the 

virtual microphone was found to be 1mm in radius (Ziegelwanger et al., 2015b). This 

criterion was fulfilled through selection of only one single element with an AEL of 1mm 

as mentioned before. 

Defining a microphone element at the corresponding ear in the ear canal happened 

by selecting an element and assigning a material to that element which had to be called 

“Left_ear” and “Right_ear,” respectively. Another material called “Skin” had to be assigned 

to the rest of the mesh. Finally, the whole object name had to be changed to “Reference”. 

Figure 16 shows a screenshot of the material assignment and the selected left ear element. 

 

 
Figure 16: Material assignment in Blender using a Python script. The selected ear canal element is 

marked blue. 

 

To simplify the working process of material assignment and renaming the object, a 

Python script14 was created which carried out material assignment and renaming the ob-

ject automatically. For selecting the left and right ear canals, elements lying on y-axis 

where searched. For the re-meshed and somewhat deformed contralateral ear, the correct 

                                                
13 https://sourceforge.net/p/mesh2hrtf/wiki/Mesh2Input/ (accessed June 20, 2018) 
14 Digital_Appendix\11 Scripts\Python_Blender\material_and_assignment.py 
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SL-FMM and ML-FMM are elegant means to save calculation resources by building 

clusters that combine certain mesh areas and produce results with similar accuracy with 

a substantially reduced memory requirement (Kreuzer et al., 2009). Unable to use SL-

FMM and ML-FMM during this work had a major effect on the calculation time for the 

180 different meshes (2 ears for 90 subjects that were included).  

Note: The reported bug responsibly for distortions above 14kHz when using SL-FMM 

and ML-FMM has been fixed by Wolfgang Kreuzer in the meanwhile.  

 

As stated before, the weakest link during BEM calculation was the available memory. 

A RAM size of 32 GB seems sufficient for most tasks but soon became insufficient for 

larger meshes. For BEM calculation the amount of memory needed was around 16.5 bytes 

per element. Equation 1 was used to estimate the amount of memory needed during BEM 

calculation which is dependent on mesh size and the number of used CPU cores ncores. The 

number of elements of the mesh elementsmesh appears as a squared term in the equation 

due to the way that BEM calculation works, using square matrix calculation as described 

in (Ziegelwanger et al., 2015a). A system memory usage of approximately 0.5 GB was 

observed. If the needed memory exceeded 32 GB for a certain mesh, the number of used 

CPU cores had to be reduced. This prevented memory from being outsourced to the hard 

disk drive which would have resulted in a drastic slowdown of the whole process.   

[𝐵ܩ] 𝑦ݎ݋݉݁݉ ݀݁݀݁݁݊  =  ௘௟௘௠௘௡௧௦𝑚𝑒𝑠ℎ మ × ଵ଺.ହ ௕𝑦௧௘௦ଵ଴ଶସయ  ×  ݊௖௢௥௘௦ +   ݐ݁ݏ݂݂݋_݉݁ݐݏ𝑦ݏ 

 
Equation 1: estimation of needed memory for BEM calculation based on the number of mesh elements 

and the number of used CPU cores 

 

The above equation shows that meshes of up to around 16.000 could still be processed 

with all 8 available CPU cores. For some meshes of subjects with large heads only four 

CPU cores could be used for calculation. It follows that for meshes with many elements 

calculation time is increased in two ways: through the higher number of elements BEM 

calculation has to be completed for and through fewer possible parallel processes. The 

observed and estimated time for BEM calculation of a single element was 9.5s on a single 

core. Calculation time of a mesh could therefore be estimated using Equation 2. 
 ܿ𝑎݈݈ܿݑ𝑎ݐ𝑖ݐ ݊݋𝑖݉݁ [ݏ] = ×  ௠௘௦ℎݏݐ݈݊݁݉݁݁  9.ͷ݊ݏ௖௢௥௘௦  

 

Equation 2: estimation of needed BEM calculation time dependent on the number of mesh elements and 

used cores 

  

Around five hours were needed for BEM calculation of a single mesh, however, in 

some cases much longer due to the above stated reasons. 
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After preparation of input files, the files were loaded on the Linux machine. A bash 

script16 was used to successively go through all input file folders of all meshes and simul-

taneously start NumCalc instances, i.e. mesh2HRTF executables for the number of as-

signed CPU cores. 

 

2.9 MATLAB import 

After completion of BEM calculation, the results for each mesh were imported by ex-

ecuting a MATLAB script called “Output2HRTF.m”. An individual version of this script is 

automatically being created during input file preparation (see 2.7) and can be found in 

each folder of every calculated mesh. The script contains different information like the 

number of used CPU cores and the implemented microphone area, i.e. the size of the 

element that was chosen in the ear canal. This information is handed over to a function 

called “Output2HRTF_Main”17 which then collects the computed data, i.e. the complex 

sound pressure that was calculated by NumCalc on every field point of the spherical sam-

pling grid (evaluation grid). Through an earlier mentioned reciprocal approach, the sound 

pressure p at the blocked ear canals is obtained. The complex pressure ps of the point 

source in the origin serving as reference is calculated using Equation 3 for a monopole 

and using the reciprocal approach. The equation is originally defined in Equation 6.71 in 

(Williams, 1999) and includes the volume flow Qs, the radius r, the density of air   and 

the frequency f. 

ݏ݌  = −𝑖 ߩ଴ ʹ݂ߨͶߨ  ܳ௦ ݁𝑖 ଶ𝜋௙ ௥ݎ  

 

Equation 3: sound pressure for a monopole as in Eq. 6.71 in Williams (1999) 

 

The volume flow is defined as a product of velocity and the area of the vibrating ele-

ment (see section 6.7.11 in (Williams, 1999)). In this case the vibrating element is the 

size of the microphone element in the ear canal entrance.  

Following the definition of HRTFs given by (Møller, 1992) as mentioned earlier, “Out-

put2HRTF_Main” uses the complex sound pressure at the blocked ear canal p and the 

reference pressure in the origin ps to calculate the HRTF according to Equation 4.  

ܨܴܶܪ  =  ݏ݌݌

Equation 4: HRTF definition as in (Møller, 1992) 

 

                                                
16 Digital_Appendix\11 Scripts\bash_script\run_all_cores 
17 Digital_Appendix\11 Scripts\mesh2hrtf-0.1.2\Output2HRTF\Output2HRTF_Main 
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The division by the reference pressure containing information about the velocity and 

the size of the vibrating element leads to a normalization of the HRTF to 0 dB at low 

frequencies, following the original definition.  

Prior to use, the consideration of the actual microphone area was implemented in the 

“Output2HRTF_Main” function. In (Ziegelwanger et al., 2015b) the velocity had been 

fixed to 0.1mm/s.  

Finally, 220 frequency bins (100 Hz – 22 kHz) were calculated for 1730 field points. 

The data was then saved in the SOFA format (AES Standards Comittee, 2015). To use the 

SOFA as output format, a SOFA application-programming interface18 (API) for MATLAB is 

needed. 

 

2.10 HRTF post-processing 

Several signal processing steps were carried out to generate final HRIRs. For repro-

ducibility this was done using a script19. Most of the signal processing steps in MATLAB 

were done with functions from AKtools (Brinkmann and Weinzierl, 2017). First the SOFA-

file that was generated in the previous step was imported and transformed to an AKtools-

common format. This provided the complex spectrum for each node and frequency bin, 

except for the first frequency bin at 0 Hz which was not included in the calculation. This 

purely real part of spectrum was added manually to be 1 (0 dB). 

The first step was followed by a complex conjugation which was necessary because of 

an unwanted phase rotation the cause of which could not be identified. 

Next, the signal is extended to a both sided spectrum and transformed back into time 

domain by inversing the Fast Fourier Transform (FFT). 

It was stated earlier that by definition the HRTF provides information of sound pres-

sure at the ear canals in respect to a reference in the center of the head with the head 

absent (Møller, 1992). This division happens in the frequency domain and hence leads to 

a subtraction in the time domain and the occurrence of a group delay. The signal must be 

circulated by a few samples to prevent some samples from being on the negative time 

axis. Therefore, a circular shift of 60 samples was applied. 

In the next step, the impulse responses were windowed to reduce the sample size to 

256 and get rid of the unnecessary endings. Also, a fade-in of 10 samples and a fade-out 

of 20 samples was applied.  

BEM calculation using mesh2HRFT provided information at the nodes of the defined 

Lebedev sampling grid. Spherical harmonics transformation (SHT) could now be applied 

to compute the coefficients of the basis function’s expansion. This expansion then allows 

for an interpolation of the function anywhere on the sphere (Nicol, 2010). A SHT was 

                                                
18 https://github.com/sofacoustics/API_MO (accessed June 25, 2018) 
19 Digital_Appendix\11 Scripts\Matlab\save_sh_coeffs.m 
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applied with prior FFT. The SHT was carried out with sampling weights as defined by 

(Rafaely, 2015) in Eq 3.2. The order of SHT is defined by the used sampling grid. As 

mentioned in 2.7 the applied Lebedev sampling grid allowed a maximal SH order of 35. 

Complex valued SHs where used and the SH coefficients where then saved in one file per 

subject containing both, left and right ear as well as the frequencies vector and some 

additional meta data. 
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An overview of all anthropometric features that were extracted and measured and 

used for statistical analysis during this work can be found in Table 2. The extracted and 

measured AFs for all subjects can be found in the digital appendix20  

 

 
Table 2: anthropometric features, identifiers and measurement methods 

Anthropometric feature Identifier Method of measurement 

head width x1 

Automatic feature extraction 

(Dinakaran et al., 2016) 

head height x2 

head depth x3 

pinna offset down x4 

pinna offset back x5 

neck width x6 

neck height x7 

neck depth x8 

left cavum concha height L_d1 

left cymba concha height L_d2 

left cavum concha width L_d3 

left fossa height L_d4 

left pinna height L_d5 

left pinna width L_d6 

right cavum concha height R_d1 

right cymba concha height R_d2 

right cavum concha width R_d3 

right fossa height R_d4 

right pinna height R_d5 

right pinna width R_d6 

torso top width x9 

Manual measurement 

shoulder width x12 

height x14 

head circumference x16 

shoulder circumference x17 

left pinna rotation angle L_θ1 

Semi-automatic, scripted measurement in Blender 
left pinna flare angle L_θ2 

right pinna rotation angle R_θ1 

right pinna flare angle R_θ2 

 

                                                
20 Digital_Appendix\1 Documents\Anthropometrics.xlsx 
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The required input for the algorithm of Dinakaran et al. (2016) are 3D meshes of the 

subjects including shoulders that are centered to the interaural axis. Because in this work 

the subjects’ shoulders were unnecessary and were therefore deleted from the mesh ear-

lier during data processing an iterative closest point (ICP) alignment of unaligned meshes 

with shoulders to aligned meshes without shoulder was accomplished using the alignment 

tool in MeshLab21. The point based gluing method was used in which 4 similar points on 

each mesh had to be selected.  

ICP alignment and anthropometric feature extraction with following cross validation 

for evaluation using the mentioned algorithm was carried out by Manoj Dinakaran.  

 

However, the introduced automatic extraction method did not include AFs such as 

pinna rotation angle θϭ and pinna flare angle θϮ. These features were semi-automatically 

determined by means of a Python script, again using the Blender API. The script requires 

the manual selection of four points on the pinna to calculate rotation and flare angle. For 

reproducibility it is vital that the selected points are well defined.  

In the already mentioned work of Algazi et al., (2001) the definition of the flare and 

rotation angle, i.e. the reference dimensions are somewhat vague. For example, in Figure 

19 which shows the often-cited definition of AFs given by Algazi et al. the rotation angle 

is defined as the angle between the vertical and the pinna length d5. However, it is imag-

inable that the pinna length could also be measured differently by for example choosing 

the longest distance between two points at the external auricle. Another example is th 

flare angle which is defined as the angle between a line from tragus to antihelix with 

reference to a plane tangent to the head around the pinna. It stays ambiguous whether 

the line touches the antihelix in the same vertical position as the tragus or if the most 

salient point of the antihelix is being used. But when automatically or manually extracting 

these measures from 3D meshes a clear definition of reference points is central. 

In physiology the rotation of the ear is defined as the angulation of the longitudinal 

axis of the external auricle (Hall, 2007). In the 3D mesh that is the angle between the z-

axis (vertical axis) and the axis through the minimum and maximum point on the helix 

and ear lobe in z-direction as shown in Figure 20. 

The flare angle θϮ is dependent on axis that defines the the tragus-helix distance (Xie, 

2013).  In this work tragus-helix distance is defined as the distance between the point on 

the tragus with the largest absolute y-coordinate to the highest absolute y-level of the 

helix at the same height (z-level) as the selected point on the tragus. θϮ then is the angle 

between the axis that defines the tragus-helix distance and the sagittal plane, i.e. the x-

axis.  

                                                
21 http://www.meshlab.net/ (accessed June 20, 2018) 
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2.12 Listening test 

2.12.1 Test design 

To identify anthropometric key features that make HRTFs idiosyncratic and play a 

significant role in the perceptual evaluation of HRTFs, a listening test was designed in 

which the participants had to rate another person’s HRTF against a reference, this being 

their own HRTF. In the first part of the listening test perceptual evaluations were carried 

out four times under four different aspects for each HRTF. Four SAQI items from the Spa-

tial Audio Quality Inventory (Lindau et al., 2014) were chosen because these qualities are 

assumed to be easily identified for most binaural applications. The listening test used 

dynamic binaural synthesis and was therefore conducted with a Polhemus patriot head 

tracker, allowing head movement of the participants to increase localization performance 

(Møller, 1992).  The head tracker was positioned on top of the Sennheiser HD 800S head-

phone which was used during the listening test. 

Each of the 43 participants rated four different SAQI qualities separately for 15 differ-

ent HRTFs. Condition variation was included by two different source positions. Two dif-

ferent positions were used to create a measuring repetition for each rating with a slight 

variation. In the first case the sound source was coming from a frontal position with no 

elevation. In the shifted case the sound source was elevated for 15 degrees and shifted to 

the left for 30 degrees. 

Also, each subject rated the 15 HRTFs for both, the measured and the modeled HRTF 

data set. In the first part of the listening test this lead to 240 ratings each participant had 

to carry out. The definition of the used SAQI items can be found in the digital appendix23. 

The participants had access to the SAQI definition prior to the listening test and the 

definitions were again shown before entering a certain SAQI section. Difference and Col-

oration were changed slightly from the original definition to fit the purpose of this work. 

The used stimuli shown in Table 3 were selected because they were assumed to be the 

most appropriate to evaluate corresponding SAQI features. For Difference and Externali-

zation, a short reverberation free speech stimulus24 was used which contained an 8s long, 

German sentence taken from a poem and spoken by a female speaker. Speech contains 

fine nuances and has more dynamics than noise and therefore seem to be adequate to test 

the said SAQI items. Pink noise which contains all frequencies of the audible spectrum 

was chosen to evaluate changes in Coloration. For Source position a pulsed pink noise 

stimulus was chosen. The pules were 0.5 sec long with 0.3 sec pauses and 0.02 sec fade-

in and fade-outs similar to the localization experiment of (Majdak et al., 2010). The pink 

noise stimuli were both 5 sec long and all stimuli were played in a loop. 
 

 

                                                
23 Digital_Appendix\8 Listening_Test\Documents\SAQI_Features.pdf 
24 Digital_Appendix\8 Listening_Test\audio 
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Table 3: SAQI items for part 1 of the listening test 

SAQI 

item  
definition scale stimulus 

Differ-

ence 
Existence of a noticeable difference. 

unipolar (3 = high differ-

ence or change, 0 = no 

difference) 

speech 

Colora-

tion 

Existence of any coloration or difference in tim-

bre. 
pink noise 

Source 

position 
Existence of a source position change 

pulsed 

pink noise 

Externali-

zation 

Describes the distinctness with which a sound 

source is perceived within or outside the head 

regardless of their distance. 

bipolar (3 = more exter-

nalized, -3 more internal-

ized) 

speech 

  

For the first part of the listening test the order of the listening test was designed to be 

random with certain group consistencies.  This means, that first a SAQI item was selected 

randomly, for which all four groups of condition variations were rated (measured_front, 

measured_side, modeled_front, modeled_side). These groups were also selected ran-

domly in order and each group contained the specific 15 HRTFs the participant was sup-

posed to rate. Whisper (Ciba et al., 2009), an open source tool for performing listening 

tests  was used in this work. The 15 HRTFs were presented on two consecutive pages, the 

first containing 8 HRTFs and the second page containing 7. The HRFTs were distributed 

randomly across the pages. Figure 21 shows a rating page in which the A-, B- and Stop-

buttons can be seen. The buttons played the stimuli with different HRTFs, while A was 

always the reference.  

 

 
Figure 21: Whisper rating page for SAQI item source position used in the listening test 
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In the second part of the listening test, the similarity test, each subject rated their own 

measured HRTF against their own modeled HRTF in an A-B comparison for 26 SAQI 

items. For his part all audio qualities from the inventory were selected excluding the ones 

which refer to reverberation or did not apply for other reasons. The qualities were exam-

ined using different stimuli. A pulsed pink noise was again chosen for directional or lo-

calization-related qualities. Table 4 contains a full list of the used qualities for this section. 

A full definition of the SAQI items can be found in (Lindau et al., 2014). 

 
Table 4: SAQI items, used stimuli and scales which were included in the second part of the listening 

test 

SAQI item (perceptual quality) Scale Stimulus 

Difference Unipolar (3/0) Speech 

Tone color bright-dark 

Bipolar (3/-3) Pink noise 

High-frequency tone color 

Mid-frequency tone color 

Low-frequency tone color 

Sharpness 

Comb filter coloration 

Metallic tone color 

Tonalness 

Source expansion 

Loudness 

Horizontal direction 
Manual entry of angles 

Pulsed pink noise 

Vertical direction 

Front-back position Dichotomous (confused / not confused) 

Width 

Bipolar (3/-3) 

Height 

Localizability 

Distance 

Speech 

Externalization 

Spatial disintegration 

Speech intelligibility 

Naturalness 

Degree-of-Liking 

Crispness 

Drums Dynamic range 

Dynamic compression effects 
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2.12.2 Head related impulse responses 

As mentioned above, the listening test was carried out using dynamic binaural syn-

thesis to present the played stimuli in a real-time spatial audio environment. Open-source 

software SoundScape Renderer (Geier et al., 2008) was used for that purpose. The HRTFs 

had to be transformed to a spatial audio file format, the already mentioned SOFA format 

which could then be loaded into the custom version of the SoundScape Renderer (SSR).  

Converting HRTFs into a spatial audio format means that they are being transformed 

back into time domain. To generate these head-related impulse responses (HRIR) an in-

verse SHT was carried out. To generate smaller sized files for the SSR and save processing 

time, SOFA files were created only for directions necessary for the listening test. The azi-

muth ranged from -42° to 42°, while 0° represents the front. Elevation ranged from -16° 

to 16° with 0° representing the horizontal plane. The range for azimuth and elevation was 

chosen in respect to the highest values occurring during sound localization (Thurlow et 

al., 1967). This way extensive head movement was possible but unnecessary directions 

were not included. 

As mentioned earlier, two versions were included in the listening test for every HRIR, 

one with a source coming from the front and one in which the source was shifted 30° to 

the left and 15° up.  

It should also be noted that no room impulse response was added to the HRIRs. Leav-

ing aside room reflections created a somewhat unnatural result, but the goal of this work 

was to identify HRTF-related perceptual differences without any effects stemming from 

room reflections. The use of HRTFs without room reflections allows a more universal 

examination of perceptual differences. 

 

Finally, a filter was applied only to measured HRIRs to equalize the frequency roll-off 

caused by SH order truncation due to the limited number of sensors on the microphone 

array. Ben-Hur et al. (2017) introduced a digital filter which equalizes the frequency spec-

trum of a low spatial order signal. In numerical BEM simulation a much higher spatial 

resolution can be achieved. The coarser spatial resolution of the microphone array results 

in attenuation of higher frequencies during SHT which is why an equalization of SH order 

15 to order 35 is applied following equation 12 in  (Ben-Hur et al., 2017). Equalization is 

applied for averaged results for all directions simultaneously. The effect of this equaliza-

tion filter can be seen in Figure 22. 

For the above-mentioned procedure of creating HRIRs from HRTFs a MATLAB script25 

was used for reproducibility. 

 

                                                
25 Digital_Appendix\11 Scripts\Matlab\create_HRIRs.m 
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2.12.4 Listening test instructions 

Starting with the listening test the subjects filled out a form27 with some basic infor-

mation including their general hearing ability, health condition and listening test experi-

ence. The subjects also signed an agreement which stated that they had been sufficiently 

informed about the test, agreeing to take part in it and agreeing to the anonymous publi-

cation of results. After the test they could also leave comments on the fill out. 

Next, they were informed about the two separate sections of the listening test. The 

head tracker was then calibrated instructing the subjects to take a natural position looking 

straight forward. 

The subjects were informed that a various number of stimuli were being presented to 

them and that they should rate them only in respect to the current SAQI quality. They 

were told to always rate stimulus B in respect to stimulus A. Stimulus A was always their 

own HRTF, however, which was not communicated. The subjects were then instructed to 

create a ranking while evaluating the stimuli on each page, the highest perceived differ-

ences being rated the highest and vice versa (as can be seen in Figure 21). They were told 

that they could change and adjust ratings on each page as much as needed, always being 

able to listen to all stimuli repeatedly to create a logical ranking order. To familiarize the 

subjects with the evaluation process, a short training was added prior to the listening test 

presenting one page of stimuli which had to be rated and ranked. 

The subjects were then told about the second part of the listening test in which they 

would rate a single stimulus B to a reference A in respect to various perceptual qualities, 

however not knowing what exactly they rated. During this part, stimulus A was always 

the subject’s measured HRTF. In a short training the subjects could familiarize themselves 

with all occurring scale types. Finally, remaining questions were answered, and the listen-

ing test started. 

 

2.12.5 Listening test setup 

Two instances of SSRs were running, one with the subject’s headphone filter correc-

tion HRIR and another one containing all 15 HRIRs that the current subject should eval-

uate. The SSR loaded 64 HRIR SOFA-files simultaneously (four condition variations for 

each of the 15 HRTFs in addition to the subject’s own HRTF also in four condition varia-

tions). This way, no adjustments or changes on the SSR were necessary during the listen-

ing test.  

The subjects navigated through the listening test on a laptop with Whisper which also 

saved the evaluation results. When pressing buttons “A”, “B” and “Stop” Open Sound Con-

trol (OSC) signals were sent to the Linux machine on which the SSR instances were run-

ning. 

                                                
27 Digital_Appendix\8 Listening_Test\Documents\Versuchsunterlagen_HRTF.docx 
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Pure Data (PD)28, an open source visual programming language was also running on 

the Linux machine and received the OSC signals sent from Whisper. The OSC signals 

included information about the current SAQI quality, play or stop commands, the played 

HRTF number, the position of the sound source (front or side) and the data set type 

(measured and modeled). A PD patch29 was created to process this information and select 

stimuli according to the current SAQI feature which were then routed to one of the 64 

inputs of the SSR. Figure 26 shows a schematic illustrating the basic setup of the listening 

test. 

 

 
Figure 26: schematic of listening test setup 

 

JACK audio connection kit30 was used to route audio between different programs on 

the Linux machine. PD had 64 outputs which were connected to the SSR instance with 

64 HRIRs. The stimulus was routed only to the one HRTF which was currently played. 

The output of this SSR instance was connected to the second SSR with headphone filters, 

the outputs of which were connected to the main audio output. 

The audio output of the Linux machine sent the audio signal to a Lake People Phone-

Amp G109 pre-amplifier to which the HD 800S headphones were connected. Prior to the 

listening test the volume was manually adjusted on the pre-amp and in the PD patch for 

each stimulus separately.  

                                                
28 https://puredata.info/ (accessed June 28, 2018) 
29 Digital_Appendix\8 Listening_Test\hrtf_indi.pd 
30 http://jackaudio.org/ (accessed June 28, 2018) 
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The head-tracker which provided the SSR with head movement information was 

mounted to the headphone and was connected to the Linux machine via a serial/parallel 

USB adapter. 

 

2.12.6 Configuration files 

Out of the whole data set 90 HRTFs were selected for the listening test excluding a 

few cases in which acoustical measurements were faulty. To ensure that each of the 90 

HRTFs would be rated equally often, conditions were created using a MATLAB script31 

which created 60 unique conditions, each containing 15 HRTFs to be rated (the best-case 

scenario of participants joining the listening test was assumed to be 60). For each condi-

tion several “allowed” subject IDs existed, namely every subject ID not included in the 

condition. This prevented subjects from rating their own HRTF.  

Configuration files32 for the SSR were created in asd-format from these 60 conditions. 

Each configuration file contained the set of 15 HRTF to rate in all four condition variations 

including the subjects HRTFs as a reference. Because the order in which subjects would 

take part in the listening test was unknown, configuration files for each condition had to 

be created for all “allowed” subjects. Configuration files for the SSR included name and 

path of the HRIRs to load. Also, the SOFA-files range (azimuth_range= 318 to 42; eleva-

tion_range= -16 to 16) was included in the configuration file to prevent a source position 

bug from occurring in the used custom SSR version. Additionally, configuration files33 for 

the headphone filter SSR instance were created to load the matching filters for each sub-

ject.  

A fitting condition had to be chosen for each subject at the beginning of the listening 

test. The setup on the Linux machine could then be started by running a bash-script34 and 

entering subject ID and condition number. The bash script opened both SSR instances 

with said configuration files, the PD patch and the JACK client with predefined connec-

tions35. 

 

 

  

                                                
31 Digital_Appendix\11 Scripts\Matlab\Conditions\generateConditions.m 
32 Digital_Appendix\8 Listening_Test\configs\HRIR_configs 
33 Digital_Appendix\8 Listening_Test\configs\HPfilter_configs 
34 Digital_Appendix\8 Listening_Test\Versuch_Start.sh 
35 Digital_Appendix\8 Listening_Test\configs\jackConnections.xml 
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2.13 Statistical analysis 

2.13.1 Cross-validation of measured and modeled HRTFs 

A cross-validation of measured and modeled HRTFs was carried out similar to (Brink-

mann et al., 2017) to analyze resulting differences between the different methods. Cross-

validation between measured and modeled HRTFs was suggested by Turku et al. (2008) 

due to a lack of true external reference. In other words, only relative differences can be 

high lightened because it stays uncertain, in which direction to interpret differences. 

Cross validation was done by inverse SHT, creating HRIRs for a sampling grid (with 

full range for the azimuth angle, elevation angle ranging from -30° to 90° and with 5° of 

resolution). The previously mentioned SH order equalization filtering which eliminates 

frequency roll-offs of measured HRTFs was also applied. ERB errors were then calculated 

between modeled and measured HRTFs and averaged across ears and all directions or 

ears and frequencies. Also, a pooled representation of ERB errors of all subjects was done.   

Additionally, the approach of Baumgartner et al. (2014) to model sound-source local-

ization in sagittal planes was used to compute localization errors. Baumgartner’s model 

uses HRTFs and is based on the comparison of internal sound representation with a tem-

plate. Monaural and binaural perceptual factors are considered, and the model finally 

results in a probabilistic prediction of polar angle responses. The model also calculates 

polar root-mean-spare errors (PE) and the quadrant error rate (QE) as defined by (Mid-

dlebrooks, 1999b). The PE is defined as the root-mean-square average of all polar errors 

(localization errors on the median plane) that are less than 90° in magnitude. Polar errors 

greater than 90° are scored as quadrant errors, because quadrant confusion on the median 

plane can occur in that case. The quadrant error rate QE is therefore the percentage in 

which quadrant errors occur. The model is used via a MATLAB function (baumgart-

ner2014.m)36.  

The cross-validation calculation was done by Fabian Brinkmann using MATLAB 

scripts37. 

 

2.13.2 Comparison of rating means with t-tests 

During the first part of the listening test, participants rated a set of 15 HRTF against 

their own HRTF in both versions, measured and modeled. The rating means for measured 

and for modeled HRTFs were analyzed using a paired sample t-test for each of the four 

                                                
36 http://amtoolbox.sourceforge.net/amt-0.9.9/doc/models/baumgartner2014.php (accessed May 

30, 2018) 
37  Digital_Appendix\6 crossValidation\a_crossValidationAllSubjects.m, b_crossValidationAllSub-

jects.m 
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SAQI items. The assumption of normality of differences between the scores (i.e. the rat-

ings) was tested and confirmed. Effect sizes r for t-statistics t were calculated with degrees 

of freedom df  according to Equation 5 (Field, 2009). 

 

ݎ = √ ଶݐଶݐ + ݂݀ 

Equation 5: effect size r for t-statistic (Field, 2009) 

 

2.13.3 Correlation of Anthropometric Features 

For later analysis and identification of key predictors it is also helpful to know whether 

and how AFs are correlated. That a variety of AFs are correlating suggests itself because 

it seems logical that a large pinna width also means that there is a large cavum concha 

width. A correlation was therefore calculated using SPSS between all AFs. Left and right 

values of AFs were combined into one mean value. Pearson’s r and the one-tailed signifi-

cance level for all AFs is reported in Table 18. 

 

2.13.4 Parameter tuning and interactions 

The following two sections explain how regression models were built to predict listen-

ing test results with AFs. Section 2.13.4 explains how the input parameters, namely the 

AFs were tuned and transformed to create the best results using multiple regression. In 

section 2.13.5 regression models are extended by random effects to create multilevel 

mixed-effects models. Section 2.13.6 covers the estimation of effect sizes of the independ-

ent variables (AFs) in the created multilevel models. 

 

Statistical analysis was done separately for the two different parts of listening test 

results. In the first part, each participant rated four SAQI features, comparing his or her 

own HRTF against 15 different HRTFs for two directions and in both modes, modeled and 

measured, as was mentioned earlier. The ratings of all subjects were collected using a 

MATLAB script38 and transformed into a long data structure39 which then held all the rat-

ings, each line representing a single data point.  

Analysis of the data was carried out regarding the focus of this work, which was to 

find a relationship of the listeners’ AFs to the perceived quality of another person’s HRTF. 

It therefore suggests itself to somehow create a relationship between the listener’s anthro-

pometric data (listener’s AF) and the anthropometrics of the person who’s HRTF was rated 

(owner’s AF). By doing this, a set of independent variables (IV) is created that can be used 

                                                
38 Digital_Appendix\11 Scripts\Matlab\get_ratings_long_interaction.m 
39 Digital_Appendix\9 Listening_Test_Data\Main_Test_LongFormat 
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and tested as predictors in further analysis. In a first step it was therefore tested which 

kind of relationship between the listener’s AF and the owner’s AF is most beneficial. Each 

two corresponding AFs were transformed in several ways, including ratio, difference, a 

cubic or a logarithmic relationship as well as some other relationships. A full list of tested 

transformations can be found in Table 6. A multivariate linear regression was performed 

using SPSS to find the relationship of AF pairs yielding the highest R2, i.e. the set of IVs 

explaining the most variance of the given ratings. Furthermore, multivariate regression 

was done twice, once with all predictors entered and once with a stepwise backwards 

method. The stepwise backwards method excludes certain predictors automatically to test 

the contribution of each predictor by looking at the significance value of the t-test for each 

one (Field, 2009). Table 6 under 3.2 contains a full list of every tested anthropometric 

pair relationship with corresponding R2 values for all SAQI qualities. The simple differ-

ence between anthropometric feature pairs (diff-features) yielded the best overall results 

and was chosen as the transformation mean to create a relationship between the listener’s 

AF and the owner’s AF. 

 

As can be seen in Table 6, the coefficient of determination R2 is still rather low, which 

means that so far, a small part of the existing variance can be explained by the included 

predictors. In a next step interactions and squared differences were introduced to the 

model. This was done, because it was assumed that AFs might not only have an effect on 

their own, but a combination of certain variables might even be more influential. Addi-

tionally, squared diff-features were introduced to the model to add non-linear effects. Be-

fore diff-features were transformed to squares and interactions were added, diff-features 

were grand mean centered by subtracting the mean of all scores from every single score 

for each variable separately. This way the estimation precision of the model increases 

(Field, 2009).  

By adding squared diff-features and interactions to the model, the number of predic-

tors increases to a great extent. Now, instead of the included predictors consisting of 29 

anthropometric diff-features alone the new model could be calculated with 1276 predic-

tors. It should be noted that of course double or triple interactions of AFs could have been 

included as well as higher polynomial orders. However, the limiting factor was the num-

ber of available data and the resulting degrees of freedom, which will be discussed further 

under 4.3. 

The regression was then carried out for each SAQI feature in a partly stepwise manner 

with a block wise entry using SPSS. The first block consisted of anthropometric diff-fea-

tures and was added to the model using forced entry (known as Enter in SPSS). This way 

all main effects were forced into the model. All following predictors were added stepwise 

forward. Table 5 shows a brief overview of the order of the added predictor blocks and 

the method of predictors and interactions that were added into the regression model. 
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Table 5: order and methods of entry of predictors and interactions into the regression model 

Entry position Predictors Entry method 

1 ݀𝑖݂݂_݂݁𝑎ݏ݁ݎݑݐ Forced entry 

2 ݀𝑖݂݂_݂݁𝑎ݏ݁ݎݑݐଶ 

Stepwise forward 
3 ݀𝑖݂݂_݂݁𝑎ݏ݁ݎݑݐ × ݀𝑖݂݂_݂݁𝑎ݏ݁ݎݑݐ 

4 ݀𝑖݂݂_݂݁𝑎ݏ݁ݎݑݐ × ݀𝑖݂݂_݂݁𝑎ݏ݁ݎݑݐଶ  

5 ݀𝑖݂݂_݂݁𝑎ݏ݁ݎݑݐଶ  ×  ݀𝑖݂݂_݂݁𝑎ݏ݁ݎݑݐଶ 

 

Regressions where then calculated for each SAQI feature and for both modes, modeled 

and measured. 

In this work the MSE was calculated using the residual sum of squares (SSR) divided 

by the number of observations n as shown in Equation 6. SSR is calculated using the 

predicted values ypred and the true determined response values ytrue  (Fahrmeir et al., 2016) 

as and can be found in the numerator of Equation 6. Often in regression the divisor for 

SSR are the degrees of freedom, however this work uses a more basic approach for later 

comparison with other models and machine learning approaches.  

ܧܵܯ  =  ∑(𝑦௣௥௘ௗ − 𝑦௧௥௨௘)ଶ݊  

Equation 6: definition of mean square error MSE 

 

 

2.13.5 Multilevel mixed-effects models 

In the listening test the subjects had to evaluate SAQI features like Coloration. How-

ever, no anchor was included in the test, defining what a weak or a strong Coloration is. 

Hence, ratings can be highly subjective. It was therefore assumed that that data has a 

hierarchical structure (multilevel structure) and consists of nested data, each participant’s 

rating representing one level (Hox et al., 2010). A random intercept was added to the 

model to account for subjective rating differences of each subject. This lead to a multilevel 

mixed-effects model (mixed model) containing both, random effects and fixed effects 

(consisting of predictors which remained in regression model during the previous step). 

The mixed model was calculated in MATLAB. For each model the excel file40 contain-

ing regression coefficients which were calculated during the previous step was loaded to 

select a list of predictors. First a model without random intercept was calculated. Next, a 

mixed model with random intercept was calculated using the setting “maximum likeli-

hood” to estimate the model parameters which also enables a later comparison of models 

                                                
40 Digital_Appendix\10 Statistical_Models\Regression_Models 
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(Peugh, 2010). Random effects where assumed to be independent, so the covariance pat-

tern was set to “full”, which corresponds to the standard setting “VC” in SPSS (Field, 

2009).  

A chi-square difference test (χʹDiffሻ, also called likelihood ratio test using the deviance 

values of two models (−2 times the log likelihood) was performed to test the influence 

of the added random intercept (Peugh, 2010). The full model in Equation 7 means the 

model with more predictors, which in the mentioned case would be the model with added 

random intercept. 

 𝜒ௗ𝑖௙௙ଶ =  ሺ−ʹ݈ܮ݃݋𝑅௘ௗ௨௖௘ௗ𝑀௢ௗ௘௟ሻ − ሺ−ʹ݈ܮ݃݋𝐹௨௟௟𝑀௢ௗ௘௟ሻ = 𝑖𝑎݊ܿ݁𝑅௘ௗ௨௖௘ௗ𝑀௢ௗ௘௟ݒ݁݀ −  𝑖𝑎݊ܿ݁𝐹௨௟௟𝑀௢ௗ௘௟ݒ݁݀
 

Equation 7: Deviance difference for likelihood ratio test as in (Peugh, 2010) 

 χʹDiff, i.e. the deviance difference could then be referenced to a chi-square distribution 

test with the corresponding change in degrees of freedom (Peugh, 2010). When compar-

ing two similar models, one with and one without random intercept the change in degrees 

of freedom between them is 1. The chi-square test (one-sided) then calculated a p-value 

for χʹDiffሺͳሻ. When significant (p<.05), the added predictor or predictors enhanced the 

model.  

 

Next, non-significant predictors (p >.05) in the mixed model were identified and re-

moved from the model which was then calculated again creating a reduced model. How-

ever, this was only carried out for interaction terms because main effects are ought to 

remain in the model. Another likelihood ratio test tested if the reduced models with 

viewer predictors yielded a significant enhancement (p <.05). Secondly, the Akaike in-

formation criterion (AIC) which is another model estimator was used to compare the re-

duced to the full model. The AIC value is expected to be smaller in a better model (Field, 

2009). The reduced model was only chosen as the final model when both mentioned 

criteria where fulfilled: a significant result of the likelihood ratio test and a lower AIC 

value. Usually, the reduced model again contained some non-significant predictors. An 

even further reduction did not yield enhanced models in terms of the above stated criteria, 

so one reduction was carried out at the most. 

 

In statistics the coefficient of determination R2 is used to state information about how 

much of the total existing variance can be explained by a model, so R2 is the proportion 

of variance in the dependent variable which can be explained by the independent varia-

bles (Field, 2009). In linear regression, the calculation of R2 is straight forward whereas 

with multilevel mixed-effects models it seems to be a challenge to report the amount of 

variance explained in a consistent and comparable way (LaHuis et al., 2014). This work 

uses the approach provided by Nakagawa and Schielzeth (2013) in which the goodness-
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of-fit is expressed by two different values: R2
conditional and R2

marginal. In this approach R2
condi-

tional expresses the variance explained by the whole model, including fixed and random 

effects while R2
marginal expresses the variance explained by fixed effects only. Conditional 

and marginal R2 are calculated as shown in Equation 8 and Equation 9 as defined in 

(Nakagawa and Schielzeth, 2013) for a linear multilevel model with one random factor. 

For the calculation of both versions of R2 the variance of the random effect 𝜎௥ଶ, the residual 

variance 𝜎𝜀ଶ and the variance of fixed effects 𝜎௙ଶ are needed. The estimation of 𝜎௙ଶ can be 

achieved by calculating a vector of fitted values by fixed effects alone which leads to the 

same result as multiplying the design matrix of the fixed effects with the vector of fixed 

effect estimates. 𝜎௙ଶ then is the calculated variance of this vector of fitted estimates (Nak-

agawa and Schielzeth, 2013). 

 ܴ௠௔௥௚𝑖௡௔௟ଶ = 𝜎௙ଶ𝜎௙ଶ + 𝜎௥ଶ + 𝜎𝜀ଶ  
Equation 8: marginal R2 representing the variance explained by fixed effects only 

 ܴ௖௢௡ௗ𝑖௧𝑖௢௡௔௟ଶ = 𝜎௙ଶ +  𝜎௥ଶ𝜎௙ଶ + 𝜎௥ଶ + 𝜎𝜀ଶ  
Equation 9: conditional R2 representing the variance explained by fixed and random effects 

 

The MSE is calculated as stated under 2.13.4 and a comprehensive summary of model 

criteria for all calculated models is given in Table 9 under 3.5.1. 

Lastly the model with was re-calculated with uncentered IVs to create a final model 

with correct estimates, i.e. regression coefficients. The final models can be found in the 

digital appendix41. 

 

2.13.6 Effects sizes 

Because it is this work’s goal to not only develop means to predict or recommend a 

certain degree of fit when choosing HRTFs from a database based on AFs but also to 

identify key features, effect strengths of the main effects (mere AFs, without interactions) 

must be analyzed. Effect strengths of coefficients in linear regression are delivered by 

standardized coefficients (betas). However, in multilevel mixed-effects multilevel models 

no standardized coefficients are reported which leaves the option of calculating the model 

on manual z-standardized IVs. This way, all predictors in the model are supplied with an 

estimate which is equivalent to their effect strength. However, in final models a lot of 

interactions can be found which hinders a direct evaluation of the strength of main effects. 

Therefore, another approach was chosen to estimate effect sizes in the form of predictor 

                                                
41 Digital_Appendix\10 Statistical_Models\Mixed_Models 
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importance. For each main effect all its occurrences were removed from the model but 

interactions with other predictors remained and R2 was calculated again for the model 

without a certain effect. When for example the effect size of the cavum concha height 

(d1) was estimated, left and right occurrences (L_d1, R_d1) were deleted as well as any 

squared values. Also, interactions with self (such as L_d1 with squared R_d1) were re-

moved. Next, the calculated R2 without a certain main effect was subtracted from the R2 

of the full model and the difference was attributed to the corresponding effect. Finally, all 

remaining interactions were removed one by one and the established R2 difference was 

divided up and added to both main effects contributing to the interaction. Conditional R2 

was used for this analysis. This way, the importance of predictors could be evaluated by 

analyzing how much the R2 of the model increases (R2
increase) when a certain main effect 

is added to the model with all other effects already present.  

Multilevel mixed-effect models and the predictor importance (R2
increase) of main effects 

were calculated using a script42 for reproducibility. 

 

2.13.7 Support vector machine regression 

The above described statistical approaches aim to create models explaining a maxi-

mum amount of variance and help isolate key predictors. If the focus was creating a rec-

ommender model which selects the best fitting HRTF from a dataset based on AFs, a 

measure of choice could also be using a machine learning approach. A person’s AFs could 

be measured and set into relationship to all AFs in the data set by simply calculating the 

difference as described under 2.13.4. A recommender system could then be used to pre-

dict perceived Difference or Coloration for each HRTF in the data set and the HRTF with 

the minimal predicted rating could be chosen as a best fit. In this work a support vector 

machine regression (SVM-R) was used to build recommender models using a MATLAB 

script43. 

Machine learning tools such as SVM-R can fit a dependent variable to predictor vari-

ables non-linearly, which is advantageous in the case of interactions and non-linear rela-

tionships. However, to test how the model performs on “unknown” data, the first step was 

to split the dataset into a training and a testing set, while 75 % was used for training and 

25 % for testing. This training and testing set ratio is the default setting in Python’s scikit-

learn machine learning library44. A script45 was used to be able to create the same training 

set again later. Using SVM-R this step is vital, because very low values for the MSE can be 

achieved, which, however might be due to overfitting.  

                                                
42 Digital_Appendix\11 Scripts\Matlab\Mixed.m 
43 Digital_Appendix\11 Scripts\SVM_regression.m 
44  http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html 

(accessed June 29, 2018) 
45 Digital_Appendix\11 Scripts\Matlab\testing_training.m 
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To build an SVM-R model, several hyperparameters can be varied, namely kernel func-

tion, kernel scale (called sigma in scikit-learn) the box constraint (called C in scikit-learn), 

and epsilon. The kernel functions that were tested were a gaussian-kernel, a rbf-kernel 

(radial basis function kernel) and a polynomial kernel. The polynomial kernel was also 

tested with different polynomial orders. To test various settings of hyperparameters, k-

fold cross-validation was used. With k= 10, the data set is split into 10 parts randomly 

while 9 parts are being individually fitted to one remaining validation part. Then a differ-

ent one of the 10 parts is assigned as the validation set and the process is repeated until 

each part has been used as the validation part once. A prediction error is estimated for 

each fit and the prediction errors are combined to a final cross-validation error (Hastie et 

al., 2009).  

In this work, to minimize the cross-validation error instead of a grid search a Bayesian 

Optimization Algorithm is used in MATLAB to search for optimal hyperparameters by run-

ning through a maximum amount of 500 different settings. Prior to this optimization dif-

ferent kernel functions were tested. In all cases, the gaussian kernel yielded the best re-

sults, which is why further optimization was done with a gaussian kernel. 

The final model was then tested using held-out data, i.e. the training set. The coeffi-

cient of determination R2 was calculated using a standard approach for linear regression 

models. These values must be handled with caution because, as previously stated with 

reference to multilevel mixed-effects models (see section 2.13.5), R2 is defined as the ratio 

of variance explained by the model to the total amount of variance. This definition led to 

an individual adaption of R2 for mixed models and an adaption might as well be needed 

in respect to SVM-R models. When comparing different approaches such as mixed models 

with hierarchical structure and SVM-R models, it might be best to focus on the MSE in-

stead. However, it seems that the standard definition of R2 for linear regression models is 

also being used in standard machine learning libraries (see the definition for R2 called 

“score” in the scikit-learn library46 for Python). The definition of R2 can be found in vari-

ous statistical textbooks, such as (Field, 2009) and uses the residual sum of squares (SSR) 

and the total sum of squares (SST).  

 

The calculation of SST includes the true_mean which is the mean of all response val-

ues ytrue. SST is then defined as Equation 10. 

 

 ܵܵܶ =  ∑ሺ𝑦௧௥௨௘ −  𝑎݊ሻଶ݁݉_݁ݑݎݐ

Equation 10: total sum of squares SST 

 

                                                
46  http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html (accessed June 29, 

2018) 
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R2 is then calculated as shown in Equation 11. 

 ܴଶ =  ͳ − ܴܵܵܵܵܶ 

Equation 11: coefficient of determination R2 

 

An SVM-R model was calculated for each SAQI item and each dataset. A comprehen-

sive summary of calculated values for R2s and MSEs with corresponding kernel parame-

ters is given in Table 17 under 3.13. 

 

2.13.8 Descriptive statistical analysis of the similarity test 

The second part of the listening test consisted of an A-B comparison part in which the 

subjects had to rate their own measured against their own modeled HRTF for various 

SAQI qualities (see section 2.12.1 for more details). Whisper, the tool the listening test 

was conducted with, automatically normalizes all ratings between 0 to 1 for unipolar 

scales and between -1 to 1 for bipolar scales. Also, degrees (as for horizontal and vertical 

direction) are normalized from -1 to 1 in which sources that are shifted 90 to the left 

would generate scores of 0.5 and sources shifted 45° to the right would generate scores 

of -0.25. 

All ratings were summarized into one file, using a MATLAB script47. The mean and the 

standard error of the mean (SE) were calculated for the ratings and are presented under 

3.14. SE is calculated by dividing the standard deviations by the root of the number of 

observations. 

  

                                                
47 Digital_Appendix\11 Scripts\Matlab\get_ratings.m 
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3 Results 

3.1 Cross-validation 

During cross-validation of measured and modeled HRTFs ERB errors and localization 

errors based on Baumgartner’s model were calculated. Also, basic visual comparison of 

magnitude spectra was done, and numerous plots were generated for each subject’s HRTF 

set which can be found in the digital appendix48.   

Figure 27 shows an exemplary comparison of magnitude spectra for different positions 

on the horizontal plane for the left ear of subject 9. The general trend of the magnitude 

spectra is similar for both HRTF versions, but clear differences also become obvious. Be-

low 5kHz the curves basically overlap while the modeled HRFT looks like a smoothed 

version of the measured one. Above that some magnitude differences appear. Sometimes 

peaks or notches are higher or lower in one or the other method. In the 0° position, the 

magnitude spectrum does not fall as deep at 8kHz for the modeled curve but instead the 

little peak at around 9 kHz seems to be overestimated in the modeled HRTF. For the dom-

inant peak at around 15khz a similar occurrence exists oppositely. 

Sometimes the HRTFs look like they are offset on the frequency axis. This behavior is 

even more dominant for other subjects, as can be seen in Figure 28 showing the magni-

tude spectra of subject 3. Here, the magnitude spectrum at 0° shows this effect very clearly 

in which, starting at around 6.5kHz, the trend of the modeled HRTF seems to be shifted 

upwards for appr. 1.5 kHz. Figure 28 is a very drastic example of this behavior. More 

slightly variants of which, however, can be noted in several cases. Reasons for this fre-

quency shift could be errors during the acoustical measurement such as a slight movement 

of the microphones in the ear canals which might have gotten out of place or a slight 

movement of the subject during measurement. Another reason for differences could be 

the fact that no torso was included in BEM calculation which has been shown to have an 

influence on the lower frequency areas of HRTFs (Algazi et al., 2001a). Also hair and 

clothing was not considered, both have absorbing effects (Katz, 2001b). The semi-auto-

matic selection of the ear canal also yields a source of error because the selected element 

might not exactly represent the ear canal entrance or the position in which the micro-

phone was placed during acoustical measurement. In the affected frequency region, even 

a few mm can cause a major frequency shift due to small wavelengths. 
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3.2 Parameter Tuning 

Table 6 contains the results of the parameter tuning procedure to find the most useful 

relationship between the listener’s AFs and the HRTF owner’s AF. Here, only results of the 

measured dataset is being reported but the modeled dataset yielded similar values. 

The table shows that the difference of AFs seems be the most effective transformation 

mean. However, R2 values of .2 for Difference and Coloration still low but no interactions 

have been added up to this point. 

 
Table 6: Parameter tuning for finding an optimal relationship of AFs 

Relationship of AFs SAQI feature R2 

  Forced entry stepwise backwards 

𝒍𝒊࢙࢚࢘ࢋ࢔ࢋ’࢙ 𝑨𝑭࢕𝒘࢘ࢋ࢔’࢙ 𝑨𝑭  

Difference .199 .197 

Coloration .158 .157 

Externalization .104 .104 

Source Position .144 .143 

𝒍𝒊࢙࢚࢘ࢋ࢔ࢋ’࢙ 𝑨𝑭 −  𝑨𝑭 ࢙’࢘ࢋ࢔𝒘࢕

Difference .198 .198 

Coloration .198 .198 

Externalization .115 .113 

Source Position .139 .139 

ሺ𝒍𝒊࢙࢚࢘ࢋ࢔ࢋ’࢙ 𝑨𝑭ሻ૛ሺ࢕𝒘࢘ࢋ࢔’࢙ 𝑨𝑭ሻ૛  

Difference .180 .179 

Coloration .148 .146 

Externalization .099 .098 

Source Position .147 .146 

ሺ𝒍𝒊࢙࢚࢘ࢋ࢔ࢋ’࢙ 𝑨𝑭ሻ૜ሺ࢕𝒘࢘ࢋ࢔’࢙ 𝑨𝑭ሻ૜  

Difference .166 .164 

Coloration .140 .139 

Externalization .095 .094 

Source Position .144 .141 

√𝒍𝒊࢙࢚࢘ࢋ࢔ࢋ’࢙ 𝑨𝑭√࢕𝒘࢘ࢋ࢔’࢙ 𝑨𝑭  

Difference .202 .201 

Coloration .164 .162 

Externalization .108 .107 

Source Position .138 .137 

𝒍𝒊࢙࢚࢘ࢋ࢔ࢋ’࢙ 𝑨𝑭૛ −  𝑨𝑭૛ ࢙’࢘ࢋ࢔𝒘࢕

Difference .197 .197 

Coloration .167 .165 

Externalization .116 .113 

Source Position .146 .145 

 

As previously mentioned, regression models were calculated using both an approach 

with forced entry of all predictors and a stepwise backwards method. When comparing 

both columns, almost similar values can be seen. This indicates that no or only small 

suppressor effects exist. Suppressor effects would occur if a predictor had a significant 
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to uncertainties caused by noise or positioning errors of microphone and subject which might in consequence cause higher perceived differences in one’s own and another person’s HRTF. 
 
Table 7: t-statistic and effect sizes for Comparison of rating means 

Comparison pair Difference of means SE t Effect size r 

Difference - measured and modeled 0.08 0.01 9.30** .25 

Coloration - measured and modeled 0.09 0.01 10.65** .29 

Source position - measured and modeled 0.08 0.01 10.61** .29 

Externalization - measured and modeled -0.04 0.01 -4.03** .11 

**p < .01 

 

3.4 Results of multiple regression with interaction 

Regression models with interactions and block-wise entry were created. As mentioned 

above, only the main effects were force-entered into the model while interactions were 

added stepwise forward. This reduced 1276 predictors to 67 to 109, depending on the 

SAQI item. Tables with regression coefficients for each of the four SAQI items and both 

data sets can be found in the digital appendix49. Table 19 in the appendix contains results 

for Difference exemplarily with standardized and unstandardized coefficients, the stand-

ard error and p-values. 

Table 8 contains R2 and MSE values for all SAQI items. A comparison with regression 

results in Table 6 makes obvious that including squared predictors and interactions sig-

nificantly enhances the models. This shows that the statistical relationship between 

HRTFs and morphological features is highly complicated.  

 
Table 8: coefficients of determination and mean square errors for multiple regression with interactions 

for different SAQI items and data sets 

SAQI item Data set No. predictors R2 R2 adj. MSE 

Difference 

measured 

98 .47 .42 0.035 

Coloration 86 .46 .42 0.041 

Source position 84 .40 .35 0.044 

Externalization 67 .29 .25 0.072 

Difference 

modeled 

94 .47 .43 0.032 

Coloration 95 .49 .45 0.039 

Source position 109 .48 .43 0.029 

Externalization 73 .26 .21 0.054 

 

 

                                                
49 Digital_Appendix\10 Statistical_Models\Regression_Models 
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All models are statistically significant (p<.01). Like the above shown results without 

interactions in Table 6, Difference and Coloration yield the highest coefficients of deter-

mination while Externalization yields the lowest. Interestingly, better results are achieved 

for the modeled HRTF set in general. The lowest MSE can be found for Source position 

in the modeled set.  

 

3.5 Mixed model results 

3.5.1 Model criteria and goodness-of-fit measures 

Hierarchical models with random intercepts for participants were created and tested 

as explained under 2.13.5. Table 9 shows relevant model criteria for models without ran-

dom intercept and for final models with random intercept which were further reduced in 

some cases.  

 
Table 9: model criteria of multilevel mixed-effects models showing Deviance (-2logL) and AIC for models 

without intercept and final models with random intercept. The variance of random effects var(u0j) and results 

from chi-square difference test are also included. 

  No random intercept  Final model with random intercept 

SAQI item  Deviance AIC 𝝌ࢊ𝒊ࢌࢌ૛ ሺ૚ሻ Deviance AIC var(u0j) 
No. 

pred. 

Difference 

m
e

a
su

re
d

 -294.80 -96.80 372.2** -632.15 -476.15 0.0059 75r 

Coloration 329.98 503.98 815.6** -485.59 -307.59 0.0072 86 

Source position 43.89 213.89 417.5** -373.58 -199.58 0.0050 84 

Externalization 312.56 448.56 46.6** 275.66 403.66 0.0015 61r 

Difference 

m
o

d
e

le
d

 

-665.46 -475.46 94.5** -759.92 -565.92 0.0003 94 

Coloration 107.53 299.53 629.9** -514.98 -330.98 0.0012 89r 

Source position -676.70 -456.70 196.5** -873.17 -649.17 0.0009 109 

Externalization -98.54 49.46 1.9 -95.69 50.31 0.0001 70r 

Note: ** p< .01. Significant results for the chi-square difference test indicate model enhancement 

through random intercept. 

 

The χʹDiff column shows the deviance difference between models without and unre-

duced models with random intercept. The results of χʹDiff tests (chi-square distribution) 

indicate the significance of variance in intercepts across participants. This variance 

var(u0i) is very small in most cases, however, the mostly significant results of χʹDiff tests 

and lower AIC values for models with random intercept show that adding random inter-

cepts for participants enhances the models significantly. This is true for all cases except 

Externalization in the modeled data set. SAQI item Coloration in the measured data set 

shows the highest variance across participants, var(u0i) =0.0072, χʹDiffሺͳሻ = 815.6, p<.01. 
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As previously explained, some models were reduced further by deleting non-signifi-

cant predictors after a random intercept was added. Again, χʹDiff tests and AIC comparison 

showed if reducing the models enhances them significantly. For 50% this was the case. 

Reduced models are marked with a lowered “r” in the number of predictors column and 

they also have fewer predictors than in Table 8. 

 

Table 10 contains goodness-of-fit measures for the final hierarchical mixed models. As 

explained under 2.13.5., the conditional R2 and MSE values account for full models in-

cluding random effects, whereas marginal values describe variance explained by fixed 

effects only. Significant model enhancements by adding random intercepts and account-

ing for the hierarchical structure of the data was already expressed by the model criteria 

in Table 9 and can also be seen by MSE values given in Table 10. Comparison to MSE 

values in Table 8 shows that MSE values could be decreased. 

 

Most variance is explained for Difference and Coloration, the highest R2
conditional value 

being .48 for Coloration in the modeled data set. The lowest MSE of 0.028. can be found 

for Source position in the modeled data set. The least variance can be explained for Ex-

ternalization with R2=.28 for the measured and .26 for the modeled data set. 

 
Table 10: marginal and conditional values for R2 and the MSE for the final hierarchical regression models 

SAQI item Data set R2
marginal R2

conditional MSEmarginal MSEconditional 

Difference 

measured 

.37 .47 0.039 0.032 

Coloration .34 .45 0.045 0.036 

Source position .32 .39 0.046 0.040 

Externalization .27 .28 0.073 0.071 

Difference 

modeled 

.46 .47 0.032 0.032 

Coloration .46 .48 0.039 0.037 

Source position .45 .47 0.030 0.028 

Externalization .25 .26 0.054 0.054 

 

In general, acceptable values are achieved for most SAQI items predicted by AFs with 

interactions using multilevel mixed-effects models with random intercepts for partici-

pants. The models can account for approximately 50% of the variance, still leaving the 

rest unexplained. However, in Cohen’s definition of effect sizes for multiple regression the 

amount of explained variance is equivalent to a large effect (Cohen, 1988). 

 

Developed mixed models with estimates, standard errors and confidence intervals can 

be found in the digital appendix50 for each SAQI item. Table 20 in the appendix presents 

the estimates for Difference with measured HRTFs exemplarily.   

                                                
50 Digital_Appendix\10 Statistical_Models\Mixed_Models 
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3.5.2 Side note: hierarchical structure 

On a short side note it should be mentioned that χʹDiff values in Table 9 are often much higher for the measured HRTF set. The differences between Rʹconditional and Rʹmarginal in Table 

10 point in the same direction. In the modeled data set there is almost no difference between Rʹ values with and without included random effects. This indicates that adding a hierarchical structure to the data was much more helpful for the measured HRTF set. In Figure 33  and 
Table 7 under ͵.͵  rating means were compared. On average, ratings for measured HRTFs were significantly higher than ratings for modeled HRTFs. It was hypothesized that differ-ences between one’s own and another person’s HRTF are presumably clearer when listening to measured HRTFs. It therefore appears that individuality in rating plays a bigger role when higher differences are perceived than in cases with lower differences. 
 

3.6 Evaluation of prediction models for HRTF individualization 

In the previous section regression models were created to predict the given listening 

test ratings for perceived differences of one’s own and another person’s HRTF. The amount 

of explained variance of around 50% in the final multilevel mixed-effects models already 

suggests that the models could be used for HRTF individualization based on AFs. To ex-

press this finding more tangibly the models were used to predict the best fitting HRTF for 

each subject. This was done by identifying the HRTF out of the 15 HRTFs which each 

subjects evaluated for which the regression model predicted the lowest rating (which 

would then be the smallest predicted perceived difference). The actual rating of this HRTF 

was then compared to the minimal and maximal rating that the subjects gave for the 15 

evaluated HRTFs.  

Figure 34 shows the averaged results across all subjects for each SAQI item and both 

versions of HRTF (measured blue and modeled HRTFs light-blue). The blue bars are the 

averaged minimum and maximum ratings and represent the average range of HRTFs that 

the subjects evaluated. The white lines represents the averaged mean values of HRTF 

ratings. The black lines represent the averages of the actual HRTF ratings that were 

selected to be the best fits by the final multilevel models.  

The figure shows that HRTF individualization based on AFs using the developed 

regression modeles seems to work well in most cases. Externalization again is the 

exception which is not surprising given the previous stated results.  The selected HRTF 

can usually be found closer at the bottum of the blue bars representing the best case than 

at the white lines representing the mean ratings. However, also room for optimization of 

the regression models becomes obvious because it would be desirable that the predicted 

best fits would be even closer to to the real best fits. 
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3.7 Anthropometric feature correlation 

Pearson correlation coefficients were calculated for 21 AFs. Table 18 in the appendix 

contains correlation results. Results suggest several strong correlations between AFs. 

Some of these strong correlation results were selected and are presented in Table 11. They 

are sorted in such a way to show that some AFs correlate well with several other features. 

Most AFs in Table 11 are torso, head or neck related. Shoulder circumference for ex-

ample correlates strongly with shoulder width, which is not surprising. But it also corre-

lates highly with neck width, r=.79 and even with pinna height, r=.58, (all ps<.001, one-

tailed). Pinna height in turn correlates with several pinna related AFs.  

  
Table 11: results for some selected strong anthropometric feature correlations 

Anthropometric features  Pearson correlation coefficient 

 Shoulder circumference and...  

x1, x17 … head ǁidth .66** 

x6, x17 …ŶeĐk ǁidth .79** 

x9, x17 …torso top ǁidth .74** 

x12, x17 …shoulder ǁidth .77** 

x8, x17 …ŶeĐk depth .69** 

d5, x17 …piŶŶa height .58** 

 Pinna height aŶd….  

d5, d4 …fossa height .57** 

d5, x8 …ŶeĐk depth .58** 

d5, d6 …piŶŶa ǁidth .54** 

d5, d1 …Đaǀuŵ ĐoŶĐha height .50** 

d5, x6 …ŶeĐk ǁidth .57** 

 Neck width aŶd…  

x1, x6 …head width .76** 

x8, x6 …ŶeĐk depth .67** 

x12, x6 …shoulder ǁidth .70** 

 Shoulder width aŶd…  

x12, x8 …neck depth .56** 

x12, x9 …torso top width .71** 

**. Correlation is significant at the 0.01 level (1-tailed).     
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3.8 Effect sizes for Difference 

For each evaluated SAQI feature anthropometric features that present themselves to 

be top predictors were identified. As mentioned before, this was done using two different 

data sets, one in which HRTFs where measured acoustically and one in which HRTFs were 

numerically modeled. To identify general anthropometric top predictors, it is therefore 

useful to work with two different data sets based on identical anthropometrics because a 

general identification of top predictors should show similar results. This is not always the 

case as will be shown in the following sections. Sometimes a certain AF appears to be in 

the top 3 of the modeled case but in the measured data set occupies the last place (for 

example x12 in Coloration). Self-contradicting results as these therefore were not consid-

ered in finding the best predictors for a certain SAQI feature. The first 10 predictors in 

the tables that where sorted by predictor importance where examined. 

Table 12 contains effect sizes of anthropometric predictors for the perceived Differ-

ence.  

 
Table 12: Effect sizes (R2

increase) for Difference. Predictors which are among the top 10 in both HRTF sets 

are in bold letters. 

Difference - measured Difference - modeled 

Main Effect Predictor Importance (R2
increase) Main Effect Predictor Importance (R2

increase) 

d2 .053 d1 .061 

d1 .047 d2 .057 

d4 .036 θϮ .051 

x7 .035 θϭ .042 

d6 .033 d3 .033 

x16 .032 x14 .033 

d3 .030 x9 .030 

θϭ .030 x5 .028 

x12 .029 d6 .027 

x8 .029 x2 .027 

x1 .028 x1 .025 

x4 .026 d4 .021 

x17 .026 x8 .020 

x14 .026 x7 .017 

x2 .022 x3 .016 

θϮ .021 x17 .014 

x6 .016 x4 .014 

x5 .015 x12 .014 

x3 .013 x16 .012 

d5 .010 x6 .011 

x9 .008 d5 .011 
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Cavum concha height d1 and cymba concha height d2 clearly present themselves as 

the most important features for predicting Difference. That is, if cavum concha height and 

cymba concha height are deviating between listener and HRTF owner, the listener per-

ceives a difference in respect to his own HRTF.  

Pinna width d6 and cavum concha width d3 which are correlated, r=.41, p (one-

tailed) < .01 are also among the first 10 predictors in both cases. The rotation angle θ1 

also seems to play a big part in generating a perceivable difference when deviating be-

tween listener and HRTF owner.  

Interestingly, for Difference no torso or head-related AFs can be identified among the 

first important predictors being present in both, the modeled and the measured HRTF set. 

Head circumference x16 and height x14 appear among the first predictors but not con-

sistently among both sets. 

 

3.9 Effect sizes for Coloration 

Table 13 contains the sorted predictors for Coloration. The rotation angle of the pinna θ1 seems to play a major role in predicting a perceived difference in timbre when com-

paring one’s own HRTF to another person’s HRTF. Both, in modeled and in the measured 

test set θ1 is among the first three predictors. Although the rotation angle is significantly 

correlated to the flare angle θ2, r=-.27, p (one-tailed) < .01, the flare angle only appears 

in the measured data set. Cymba concha height d2 is also among the top 5 predictors in 

both sets while being the second most important predictor for modeled data. Cavum con-

cha width d3 has the highest predictor importance in the measured set and also plays a 

role in the modeled part, taking position 6. 

Again, it can be noted that no head or torso related features are present consistently 

in both data sets among the top 10 positions. However, shoulder width x12 is the third 

strongest predictor in the modeled part. Shoulder width is significantly correlated to head 

height x2, r=.34, head depth x3, r=.31 and neck depth x8, r=.56 (all ps <.01, one-tailed) 

which are all among the first 8 predictors in the measured set. It can therefore be assumed 

that head and torso related features also play a role in predicting the perceived coloration 

of another person’s HRTF in comparison to one’s own.  
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Table 13: Effect sizes (R2
increase) for Coloration. Predictors which are among the top 10 in both HRTF sets 

are in bold letters. 

Coloration - measured Coloration - modeled 

Main Effect Predictor Importance (R2
increase) Main Effect Predictor Importance (R2

increase) 

d3 .068 θϭ .124 

θϮ .047 d2 .101 

θϭ .041 x12 .074 

x2 .035 d5 .071 

d2 .032 d6 .067 

x3 .029 d3 .064 

x7 .028 d4 .057 

x8 .027 x9 .048 

d4 .027 x6 .044 

x4 .027 x14 .041 

x17 .026 x17 .039 

x5 .025 d1 .036 

d1 .025 θϮ .035 

x6 .024 x4 .035 

x14 .023 x5 .031 

x16 .022 x8 .027 

d6 .021 x7 .026 

d5 .012 x3 .020 

x1 .010 x1 .012 

x9 .007 x2 .009 

x12 -.002 x16 .008 

 

 

3.10 Effect sizes for Source Position 

Predictors for Source position stand out to the previous described items Difference and 

Coloration. Table 14 contains predictors, sorted by effect strength and this time head and 

torso related AFs can also be found among top predictors. The subject’s height x14 is the 

top predictor in the measured set and the sixth predictor in the modeled set. Height sig-

nificantly correlates to various other features, the two strongest correlations being shoul-

der circumference x17, r=.51 and head depth x3, r=.49, (all ps <.01, one-tailed), both 

also playing a role as top predictors for Source position. Shoulder circumference x17 takes 

the forth place in ratings for the measured data set but only place eleven for the modeled 

set. Head depth x3 is the fifth most important predictor for measured HRTFs and the eight 

most important for modeled HRTFs, respectively.  Pinna flare angle θ2 is among the top 

four predictors in both data sets. Rotation angle θ1 has an extraordinary high predictor 

importance in the modeled set but a much lower importance in the measured set, which 
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is at least confusing but appears similarly for Coloration in Table 13. Other pinna-related 

features among the top ten most important predictors for Source position are cymba con-

cha height d2, cavum concha width d3, fossa height d4 and pinna height d5. 

The fact that for Source position head and torso-related features play an important 

role is presumably since ITD plays a major role for source localization, as described earlier. 

ITD was shown to correlate strongly to head width, i.e. the inter-tragus distance (Algazi 

et al., 2001b). 

 
Table 14: Effect sizes (R2

increase) for Source position. Predictors which are among the top 10 in both HRTF 

sets are in bold letters. 

Source Position - measured Source Position - modeled 

Main Effect Predictor Importance (R2
increase) Main Effect Predictor Importance (R2

increase) 

x14 .048 θϭ .128 

d2 .045 d3 .093 

θϮ .043 d4 .079 

x17 .039 θϮ .073 

x3 .036 d1 .071 

d3 .036 x14 .069 

d5 .036 d2 .066 

θϭ .033 x3 .047 

d4 .029 x5 .046 

d6 .027 d5 .045 

x9 .026 x17 .042 

x1 .025 x1 .039 

x12 .021 x7 .035 

d1 .021 x8 .033 

x16 .021 x12 .031 

x8 .021 x2 .029 

x2 .019 x6 .028 

x7 .018 d6 .022 

x4 .017 x9 .019 

x6 .015 x4 .014 

x5 .013 x16 .013 
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3.11 Effect sizes for Externalization 

Cavum concha width d3 and pinna width d6 can be identified as the most relevant 

features for Externalization. No real consensus can be found for cavum concha height d1 

which is the most important predictor for Externalization for modeled HRTFs and only 

the ninth most important one for measured HRTFs. Pinna offset down x4 did not play a 

huge role for previously discussed SAQI item but for Externalization it can be found at 

the sixth and seventh rank. Pinna offset down describes the pinna relative to the head. It 

is therefore interesting that another feature sharing this specific characteristic, namely 

the pinna flare angle θ2 can also be found among the most important predictors for Ex-

ternalization among both datasets.  

Head circumference x16 is the tenth most important predictor on both cases and adds 

a head-related feature to the model.  

 
Table 15: Effect sizes (R2

increase) for Externalization. Predictors which are among the top 10 in both HRTF 

sets are in bold letters. 

Externalization - measured Externalization - modeled 

Main Effect Predictor Importance (R2
increase) Main Effect Predictor Importance (R2

increase) 

d3 .049 d1 .036 

x3 .042 d3 .022 

d6 .033 d6 .019 

x14 .028 θϮ .019 

x5 .026 d5 .019 

x2 .025 x4 .018 

x4 .024 θϭ .018 

θϮ .024 x7 .017 

d1 .022 x8 .016 

x16 .021 x16 .015 

d2 .020 d2 .014 

d5 .020 x3 .013 

θϭ .016 x12 .011 

d4 .015 x1 .010 

x1 .012 x14 .009 

x7 .010 d4 .007 

x9 .008 x17 .007 

x17 .007 x6 .007 

x6 .005 x9 .006 

x12 .003 x5 .005 

x8 .002 x2 .000 

  



 

 

Results 

 

67 

3.12 Anthropometric key features 

The listening test was conducted with four SAQI features representing different per-

ceivable differences in binaural hearing. To identify general anthropometric key features 

for HRTF individualization, the above results for all SAQI qualities and data sets were 

combined calculating the average predictor importance (the amount of R2
increase). The re-

sults are presented in Table 16. AFs are sorted by the average predictor importance 

strength. 

 
Table 16: anthropometric features with average predictor importance sorted by strength 

Identifier Anthropometric feature Predictor Importance (R2
increase) 

θϭ pinna rotation angle .054 

d3 cavum concha width .049 

d2 cymba concha height .048 

d1 cavum concha height .040 

θϮ pinna flare angle .039 

x14 height .034 

d4 fossa height .034 

d6 pinna width .031 

d5 pinna height .028 

x3 head depth .027 

x17 shoulder circumference .025 

x5 pinna offset back .024 

x7 neck height .023 

x12 shoulder width .023 

x4 pinna offset down .022 

x8 neck depth .022 

x2 head height .021 

x1 head width .020 

x9 torso top width .019 

x6 neck width .019 

x16 head circumference .018 

 

Eight among the top nine features are pinna related, the strongest being pinna rota-

tion. The pinna flare angle is the fifth strongest predictor on the list. The findings are 

based on perceptual motivated analysis but are in agreement with another work in which 

the morphological  influence on HRTFs was studied (Xu et al., 2007) and pinna rotation 

and flare angle were isolated as key features. Liu and Zhong (2016) partly link the en-

hancement of their anthropometry-based matching methods in comparison to prior meth-

ods to the inclusion of pinna rotation and flare angle because these measures add infor-

mation about pinna position relative to the head surface. 
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The second most important feature is the cavum concha width and the forth predictor 

in the list is the cavum concha height. This finding does not surprise and underlines the 

results of previous other findings (Algazi et al., 2001b; Fels and Vorländer, 2009; Ghorbal 

and Auclair, 2017). 

Cymba concha height takes the third place, right behind cavum concha. This finding 

was in some way expected because of the importance of the cymba concha height for 

Difference. However, so far only in Bomhardt’s work the cymba concha was also identified 

as a highly influential feature (Bomhardt, 2017). Besides that, no other studies are known 

to validate this finding and so far, cymba concha height has always been found to be 

among minor parameters to influence HRTFs (Ghorbal and Auclair, 2017). 

Among the top ten key features only two non-pinna related AFs can be found. The 

subject’s height is the sixth most important predictor. For Source position the height was 

the top predictor which was not surprising due to its correlation with shoulder, head and 

torso related features.  

 

The results in Table 16 also help identify minor parameters.  Most neck, shoulder and 

head related features seem to contribute only little to the explained variance. The already 

mentioned height of the subject seems to contribute more than head depth and head 

width, the latter being important measures for ITD (Algazi et al., 2001b). It can be noted 

that results suggest that key features for HRTF individualization mainly consist of pinna 

features, namely cavum concha, cymba concha and pinna angles. 
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3.13 SVM regression results 

A support vector machine regression was used to create a recommender to predict 

unknown data by splitting the listening test results into training and testing set. More 

details about the procedure can be found under 2.13.7. 

In Table 17 the relevant kernel hyperparameters are presented for a gaussian kernel. 

Also, R2 measures were calculated using a standard regression approach, which is why 

these values must be viewed with caution. Using machine learning techniques, overfitting 

of data can easily happen which is why 10-fold cross-validation was used. However, it can 

still be seen, that R2 values for the training set (when testing the SVM-R on the same data 

it was trained with) are noticeably higher than in the previous mentioned multilevel mod-

eling. Feeding new and unseen data to the SVM-Rs however, leads to much lower amount 

of explained variance. 

More interesting are MSE values for test and training set because they can directly be 

compared to other models. Here again, for the training set comparably low MSE values 

are reached which are much higher for the test set. 

 
Table 17: SVM-R kernel hyperparameters and goodness-of-fit values for all SAQI items 

SAQI item  
Kernel 

scale 
Epsilon 

Box 

constraint 
R2

train R2
test MSEtrain MSEtest 

Difference 

m
e

a
su

re
d

 

4.0281 0.1421 0.5761 .67 .26 0.021 0.050 

Coloration 6.2411 0.1743 1.1480 .58 .27 0.032 0.056 

Source position 6.3282 0.1709 0.5736 .46 .13 0.042 0.054 

Externalization 5.6309 0.2381 0.2956 .36 .04 0.065 0.101 

Difference 

m
o

d
e

le
d

 

6.4510 0.1146 0.4990 .54 .25 0.026 0.053 

Coloration 5.0772 0.1607 0.5552 .62 .24 0.029 0.055 

Source position 5.0609 0.1228 0.4011 .54 .29 0.025 0.043 

Externalization 0.0158 0.2756 0.1428 .30 .00 0.048 0.085 

 

The prediction of SAQI ratings using SVM-R works differently well for different SAQI 

qualities. While Externalization ratings seem to be difficult to predict (which might have 

to do with the very low reported difference during this part of the test) other items, such 

as Difference and Coloration work better. The lowest MSEtest could be achieved for Source 

position with the modeled data set, which is in accordance with multilevel model results 

(compare to Table 10). However, the amount of variance explained and the achieved MSE 

values for predicting new data still leave room for further investigation. Also, the huge 

gap between error for training and error for test set despite cross-validation suggests an 

overfitting of the training set data. 

Finally, a multilevel mixed-effects model was created for the test set and tested on the 

training set for the items Difference (measured) and Coloration (modeled). As explained 

above, a previous block-wise regression with all parameters, including interactions and 
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squares was carried out. This was done to compare multilevel modeling to SVM-R in re-

spect to a recommender application predicting unknown results. An MSEtest of 0.053 was 

achieved for Difference and 0.062 was achieved for Coloration. The achieved values using 

SVM-R, which are presented in Table 17, indicate that SVM-R fits unknown data slightly 

better and that for recommender applications SVM-R should be preferred over multilevel 

mixed-effects modeling. 

 

3.14 Similarity test results 

The A-B comparison between the subject’s own modeled against the own measured 

HRTF was carried out for several SAQI qualities. The mean and SE were calculated with 

combined rating results. As it was noted earlier, all ratings were normalized between 0 to 

1 and -1 to 1 for unipolar scales, respectively. Results are shown in Figure 35 to Figure 

37.  

More general SAQI items were gathered in Figure 35 showing that subjects perceived 

a distinct Difference between their measured and modeled HRTF with a rating of around 

0.3. Considering the results in Figure 36 in which coloration-related SAQI items are pre-

sented, it can be assumed that the perceived Difference by a great proportion stems from 

measured HRTFs which are brighter on average and seem to have more energy in the 

higher frequency region. This can clearly be seen at items High-frequency tone color, Tone 

color bright-dark and Sharpness, and the negative rating of Low-frequency tone color. 

Participant’s comments after the listening test also reflect and undermine these findings. 

SH order equalization, as described in 2.12.2 was applied to adjust the frequency roll-off 

of measured HRTFs to modeled HRTFs, however it could be that a stronger equalization 

is needed to lift higher frequency regions of measured HRTFs to the same level as modeled 

HRTFs.  

More amplitude in higher frequency regions might also be partially reflected in the 

items Crispness, Loudness and even Speech intelligibility which are rated higher for mod-

eled HRTFs. 

The items Naturalness and Degree-of-liking are relatively equal for measured and 

modeled HRTFs, which is noteworthy because of the mentioned coloration effects. 

 

When it comes to Localizability modeled HRTFs tend to be slightly more ambiguous 

compared to measured HRTFs which is suggested by the rating of approximately -0.05. 

Other source-related items such as Width and Height suggest that using modeled HRTFs 

the source felt bigger, which, however does not reflect in Source expansion. Additionally, 

modeled HRTFs are perceived as being closer and more internalized which is reflected in 

Distance and Externalization ratings of approximately -0.1. 
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4 Conclusion and Discussion 

4.1 BEM calculated HRTFs 

A comprehensive data set containing measured and modeled HRTFs for 93 subjects 

was created in this work. HRTFs were acoustically measured and BEM calculated based 

on 3D meshes. One advantage of calculating HRTFs, especially for subjects is that the 3D 

scanning procedure might be less uncomfortable than acoustical measurements in which 

subjects must sit still for a longer period of time with microphones inserted into both ear 

canals. On the other hand, there are quite a few challenging steps following 3D scanning 

that must be carried out before the subject’s HRTF is attained. For example, 3D mesh 

preparation can be quite comprehensive including mesh cleaning, mesh combination, 

mesh-alignment and remeshing. Semi-automatic working steps using Python scripts for 

mesh alignment and material assignment were developed throughout this work and 

helped to generate a quicker and more reproducible work flow. Faster options of BEM 

calculations, namely SL-FMM and ML-FMM could not be used due to a bug. Hence, BEM 

calculation of HRTFs for the left and right pinna took approximately 40 days for all 93 

subjects. 

Cross-validation of measured and modeled HRTFs showed differences between these 

two versions for some subjects, but an overall comparison showed moderate median ERB 

errors. Localization performance evaluation using the model of Baumgartner et. al (2014) 

revealed higher PE and QE values for modeled HRTFs. The median PE of the measured 

data set was 35° and therefore just slightly above the general sensitivity of ± 30°. The PE 

for the modeled data set was noticeably higher with 42°. This suggests that the measured 

HRTFs represent true HRTF better than modeled HRTFs.  

Another aspect that points in a similar direction was the comparison of rating means 

with paired-sample t-tests. It was shown that differences between one’s own HRTF and 

another person’s HRTF are being rated higher when listening to the measured HRTF set. 

The effect strength of these findings was medium for Difference, Coloration and Source 

position but weak for Externalization. These findings suggest that differences between 

one’s own and another person’s HRTF were perceived more distinct using HRTFs from the 

measured set. This again could result from measured HRTFs representing the true HRTFs 

of participants more accurately.  

However, the similarity test in the second part of the listening test which inquired this 

topic by letting all subjects compare their own modeled and their own measured HRTF 

contradicts the above conclusion. The test showed no difference in rated Degree-of-liking 

and Naturalness for measured and modeled HRTFs. A clear difference between the two 

versions can be perceived, mainly in tone-color-related SAQI items. It appears that in 

modeled HRTFs high frequencies are more emphasized and that they are also perceived 

sharper than their measured correspondences. It was speculated that despite an SH order 



 

 

Conclusion and Discussion 

 

74 

equalization of measured HRTFs, modeled HRTFs show more energy in higher frequency 

areas resulting from the measurement methods. This might also be the cause for the find-

ing that modeled HRTFs are perceived with higher Loudness and more Crispness and that 

also Speech intelligibility is slightly better. A clear overall Difference between modeled 

and measured HRTFs can be seen, while Source position varies slightly, and the source is 

perceived wider and higher with a modeled HRTF. 

 

4.2 HRTF individualization using anthropometric key features 

4.2.1 Explained variance  

This work provides a list of anthropometric key features that were derived from tables 

of effect sizes for 4 different SAQI items. These SAQI items were selected owing to their 

good representation of relevant qualities in terms of binaural hearing. To search for the 

influence of anthropometrics and the perceived fit of a certain HRTF, the listener’s AFs 

HRTF owner’s AFs were set into relationship. The mere difference between corresponding 

AFs showed to be the transformation yielding the best results in terms of explained vari-

ance. 

Explainable variance differs between different SAQI items and among data sets. For 

SAQI items Difference and Coloration R2
conditional values of .45 to .48 could be achieved. 

That most variance could be explained for these qualities, is probably due to their good 

perceivability. Especially differences in Coloration are very easy to rate using pink noise, 

which was reported by many participants. For Source position also, a large proportion of 

variance could be explained but values differ between the measured (R2
conditional = .39) and 

modeled data set (R2
conditional = .47). For Source position the overall lowest MSE could be 

achieved with modeled HRTFs. Exceptional low values of explained variance were 

achieved for Externalization with 26 to 28%. An explanation is again delivered by the 

participants feedback who reported that ratings for Externalization were very hard to give 

because a difference was hardly perceivable. Most participants reported that while one 

source felt very internalized and close to the head the other source was perceived almost 

the same. It can be assumed that the difficult perceivability in Externalization differences 

results from the absence of room reflections in HRIRs. 

According to Cohen’s definition of effect sizes the amount of explained variance for 

all SAQI items equates to a large effect (Cohen, 1988). 

 

4.2.2 Recommender 

An evaluation of HRTF individualization using the developed multilevel mixed-effects 

regression models was done to show how close a predicted best fitting HRTF is to the real 

best fit among a set of 15 HRTFs. Figure 34 showed that HRTF individualization based on 
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AFs using the developed models yields results that are quite promising. The selected HRTF 

was closer to the best case in the set than to the average rating. However, also room for 

optimization was shown because it is desirable that a recommender selects the HRTF 

which provides the real best fit.  

For unknown data, i.e. a test set, it was shown that SVM-R delivers slightly better 

prediction results than multilevel models. However, the large gap between training and 

test set errors (measured MSEtrain=0.021, MSEtest=0.050 for Difference, measured) de-

spite 10-fold cross-validation suggests an overfitting of the training data. This indicates 

that the rating of HRTFs of a given data set is highly individual and generalization should 

be done carefully. However, a recommending system that uses SVM-R to predict percep-

tual differences for different HRTFs of a data set based on the relationship of the listener’s 

AFs to AFs underlying to each HRTF in the data set could still lead to satisfactory results. 

SVM-R could predict ratings for Difference, Coloration and Source position and the HRTF 

with the best (i.e. the lowest) rating could be chosen from the data set. 

 

4.2.3 Hierarchical structure 

Rating of SAQI items is an extremely individual process, which can be seen at the 

significant enhancement of models by adding random intercepts. Interestingly, this effect 

appears much stronger in the measured data set. The deviance difference χ2
diff between 

models with and without intercept is much bigger for the measured data set which can 

be seen in Table 9. Besides, the difference between R2
marginal (describing the model without 

random effects) and R2
conditional (describing the full mixed model) is much higher for the 

measured HRTF data set. Figure 33 and Table 7 showed that on average, ratings for meas-

ured HRTFs are significantly higher than for modeled HRTFs. It therefore appears that 

individuality in rating plays a higher role when higher differences are perceived than in 

cases with lower differences. In other words, subjects seem to agree on how to assess 

lower differences, but higher differences are more likely to be rated individualistically. 

 

4.2.4 Effect sizes and top predictors 

Calculation of effect sizes for AFs in multilevel mixed-effects regression models for 

different SAQI items was an important step to identify key predictors. For this purpose, it 

was useful that subjects rated the same HRTFs in two different versions. Consistencies 

could be identified among top 10 predictors for each SAQI item.  

For perceived overall Difference, cavum concha height and cymba concha height are 

of great importance. For Coloration, cavum concha width, cymba concha height and the 

pinna rotation angle play a major role. Coloration between different HRTFs was reported 

to be very noticeable, which is why it can be assumed that for the Difference ratings, often 
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Coloration played a role. Reflection and resonances caused by the cavum concha are ex-

tensively described by varies publications  (Hebrank and Wright, 1974; Lopez-Poveda and 

Meddis, 1996). It is therefore not surprising to find said feature among the list of top 

predictors. 

For Source position, the pinna rotation angle, the pinna flare angle and two non-pinna 

related features are important, namely the subject’s height and the head depth. That head 

and torso-related measures are vital for Source position is not surprising because, as dis-

cussed earlier, for horizontal localization ITD plays a major role. ITD is highly determined 

by the inter-tragus distance (Algazi et al., 2001b) which strongly correlates to head width. 

Interestingly, head width only takes the 12th position among sorted effect sizes in Table 

14 but both, head depth and the subject’s height significantly correlate with head width 

(see Table 18). Besides that, the subject’s height correlates significantly with 14 other AFs.  

For Externalization, rating differences was reported to be very ambivalent, as men-

tioned earlier. The top predictors are cavum concha width, pinna width and two features 

describing the pinna relative to the head, namely rotation angle and the pinna’s offset 

down.  

 

Table 16 finally presented general effect sizes of AFs for HRTF individualization which 

were attained by combining the results of all SAQI items and data sets. The above de-

scribed characteristics can be found here as well, meaning that mainly pinna-related fea-

tures are among the top 10 predictors. Sorted by effect size, the following top predictors 

could be identified: pinna rotation angle, cavum concha width, cymba concha height, 

cavum concha height, pinna flare angle, height, fossa height, pinna width, pinna height 

and head depth. These findings are in basic agreement with other studies that were men-

tioned under 1.2.2. Under 3.12 it was already discussed that the important roles of the 

cavum concha and the pinna angles were already shown in previous studies. Cymba con-

cha height had not been identified as a top predictor in any of the studies that were re-

viewed by Ghorbal and Auclair (2017). This is somewhat surprising, because cymba con-

cha height is the third most important feature for HRTF individualization of this work. 

This work can contribute a ranked list of key features to already existing findings. 

Results suggest that key predictors for HRTF individualization must most importantly in-

clude features describing the pinnae relative to the head, such as the pinna angles. Sec-

ondly, features describing the fine structures of the pinnae, especially the cavum concha 

must be included. Thirdly features describing the entire auricle, such as the pinna width 

should be included. Lastly, the subject’s height and the head depth seem to deliver exten-

sive information for non-pinna related effects. The results also show that most torso and 

neck-related features play a minor role in the individualization of HRTFs.  

 

It should however be noted that top predictors and effect sizes must be viewed with 

caution because results seem to be very dataset dependent. In Coloration, the second most 
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important predictor only appears as the second last predictor within the other HRTF set. 

Also, it was shown that adding feature interactions and squared features significantly en-

hanced regression models. This shows that anthropometry has complicated dependencies 

and nonlinearities, and that attempting oversimplification could lead to unrealistic re-

sults. Also, the frequent occurrence of strong intercorrelation between AFs show that an 

identification of single AFs as key features can only be considered as a simplification. 

Statistical analysis of the relationship between perceived HRTF differences and various 

AFs suggests that pinna-related spectral behavior is complicated and individualized. 

 

4.3 Possible sources of error 

Previous studies showed that results can differ for different HRTF measurements even 

for the same subject (Majdak et al., 2013). Reasons for this can be a slightly different 

position of the microphone in the ear canal or a microphone which changes its position 

during measurement. It is therefore unavoidable that differences between the amplitude 

spectra of measured and modeled HRTFs occur.  

In this work, the biggest challenge during mesh preparation was the decision of se-

lecting ear canal entrances which then determined where microphone elements for the 

reciprocal calculation were being placed. Although a careful examination of each mesh 

was carried out, it cannot be assured that the exact position has always been hit. This was 

because ear canals sometimes were hard to identify in the 3D meshes. Earlier research 

concerning this topic has shown that the exact element selected as microphone element 

does not matter as long as the element is in the ear canal (Ziegelwanger et al., 2015b). 

However, this cannot always be guaranteed. Consequently, there are several causes for 

differences between measured and modeled HRTFs or the difference of any version of 

these HRTFs to the true HRTF of a person.  

 

Another aspect which must be considered as a possible source of error is the removal 

of the torso for reasons which were stated earlier (see 2.4). The torso shapes the HRTF 

mainly in frequency regions below 3.5kHz (Katz, 2001a) through elevation dependent 

torso reflections (Algazi et al., 2001a, Algazi et al., 2002) and therefore should not be 

neglected. At must be assumed that this aspect also adds to a deviation between measured 

and modeled HRTFs. 

 

No reliability test was included during the listening test to assess if participants’ ratings 

would be given similarly another time. It can be assumed that some of the unexplained 

variance stems from ratings in which participants were not sure how exactly they should 

rate. Especially for small differences between HRTFs this could be the case, as well as for 

the SAQI item Externalization in general, for which it has been repeatedly reported that 
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ratings were difficult to give.  Also, order effects which might play a role were not con-

sidered due to the listening test design, in which each participant rated different HRTFs. 

 

For SAQI items Difference, Coloration and Source position almost 50% of variance in 

ratings could be explained through AFs as predictors. This also means that the models 

could not account for at least half of the variance. This means that general statements 

about AFs for HRTF individualization must be given cautiously. 

Adding AF squares and simple interaction terms enhanced the models but also limita-

tions due to lacking degrees of freedom were reached. The data sets contain 1260 ratings 

and after adding AF squares and interactions already 1276 predictors were included. 

Hence, the available degrees of freedom, which are N-1 are already outnumbered. Step-

wise selection of predictors into regression models quickly reduced the number of param-

eters. But it is obvious that much more ratings would be needed to analyze the compli-

cated relationship of AFs to HRTFs on a perceptual basis in order to attain findings that 

can be generalized.  

 

4.4 Future work 

Modeled HRTFs were BEM calculated with simplified meshes, not containing torsos, 

and therefore, elevation dependent torso reflections were neglected.  A parametric model 

to include torso influence could improve BEM modeled HRTFs, especially in lower fre-

quency regions.  

Statistical analysis showed that the relationship between AFs and the perceived degree 

of similarity between one’s own and another person’s HRTF is not straight forward but 

rather interdependent and complicated. Regression models were enhanced by adding 

squared terms and by including simple interaction between each term. It can be assumed 

that when triple interaction and a higher polynomial order of transformation is added to 

AFs, even more variance could be explained. However, to achieve this, much more data 

in form of listening test ratings would be needed to retrieve a higher number of degrees 

of freedom. 

Further analysis with the available data of this work could be possible using other 

statistical approaches. As it was mentioned before, some research used PCA to create fac-

tors within AFs to reduce dimensions. While this work tried SVM-R, other machine learn-

ing techniques could also be applied to the underlying data. Cluster analysis or the imple-

mentation of a bagged tree algorithm could be among promising approaches.  

Finally, a subsequent listening test could be carried out in which the best fit of the 93 

HRTFs of this work could be selected for participants based on the results of this work. A 

localization test could then provide useful insights for the effectiveness of HRTF individ-

ualization based on AFs. 
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Appendix 

Pearson correlation coefficients of anthropometric features with each other 
N = 95 

 

Table 18: Pearson correlation results of anthropometric features.  

Note: N=95.  

**. Correlation is significant at the 0.01 level (1-tailed). 

*. Correlation is significant at the 0.05 level (1-tailed). 

AF x1 x2 x3 x4 x5 x6 x7 x8 x9 x12 x14 

x1 1 .468** .372** -.063 .205* .764** -.151 .573** .493** .551** .246** 

x2 .468** 1 .502** .042 .138 .358** -.160 .354** .337** .337** .405** 

x3 .372** .502** 1 -.083 .174* .411** .095 .333** .209* .308** .490** 

x4 -.063 .042 -.083 1 -.072 -.048 .092 -.045 -.067 -.098 -.089 

x5 .205* .138 .174* -.072 1 .186* -.020 .120 .201* .183* .140 

x6 .764** .358** .411** -.048 .186* 1 -.068 .671** .543** .694** .324** 

x7 -.151 -.160 .095 .092 -.020 -.068 1 -.292** -.071 -.062 .275** 

x8 .573** .354** .333** -.045 .120 .671** -.292** 1 .381** .558** .213* 

x9 .493** .337** .209* -.067 .201* .543** -.071 .381** 1 .706** .420** 

x12 .551** .337** .308** -.098 .183* .694** -.062 .558** .706** 1 .468** 

x14 .246** .405** .490** -.089 .140 .324** .275** .213* .420** .468** 1 

x16 -.018 .077 .103 .119 -.004 -.023 -.011 -.139 -.039 .000 .111 

x17 .661** .444** .374** -.071 .222* .790** -.067 .689** .735** .767** .510** 

d1 .214* .310** .347** -.004 .094 .326** -.152 .339** .205* .313** .236* 

d2 .191* .186* .175* -.042 .106 .171* -.093 .129 .095 .237* .182* 

d3 .102 .016 .126 .137 .089 .256** -.044 .284** .204* .319** .096 

d4 .201* .124 .139 .003 .098 .366** .064 .341** .155 .262** .204* 

d5 .425** .231* .386** .002 .133 .568** -.002 .577** .405** .488** .251** 

d6 .200* .224* .356** .073 .188* .350** .103 .312** .239** .220* .218* 

θϭ .182* -.063 .120 .035 -.193* .322** .213* .171* .154 .169 .127 

θϮ -.250** -.126 -.052 .085 -.189* -.194* .089 -.235* -.263** -.168 -.095 

 

  



 

 

Appendix 

 

89 

Table 18 continuation: Pearson correlation of AFs 

  x16 x17 d1 d2 d3 d4 d5 d6 θϭ θϮ 

x1 -.018 .661** .214* .191* .102 .201* .425** .200* .182* -.250** 

x2 .077 .444** .310** .186* .016 .124 .231* .224* -.063 -.126 

x3 .103 .374** .347** .175* .126 .139 .386** .356** .120 -.052 

x4 .119 -.071 -.004 -.042 .137 .003 .002 .073 .035 .085 

x5 -.004 .222* .094 .106 .089 .098 .133 .188* -.193* -.189* 

x6 -.023 .790** .326** .171* .256** .366** .568** .350** .322** -.194* 

x7 -.011 -.067 -.152 -.093 -.044 .064 -.002 .103 .213* .089 

x8 -.139 .689** .339** .129 .284** .341** .577** .312** .171* -.235* 

x9 -.039 .735** .205* .095 .204* .155 .405** .239** .154 -.263** 

x12 .000 .767** .313** .237* .319** .262** .488** .220* .169 -.168 

x14 .111 .510** .236* .182* .096 .204* .251** .218* .127 -.095 

x16 1 -.089 .143 .142 -.135 -.178* -.040 -.061 -.094 .127 

x17 -.089 1 .396** .186* .222* .317** .578** .377** .207* -.343** 

d1 .143 .396** 1 .088 .031 .336** .496** .229* -.137 .231* 

d2 .142 .186* .088 1 .094 -.041 .249** .138 -.084 -.074 

d3 -.135 .222* .031 .094 1 .388** .327** .405** .198* -.125 

d4 -.178* .317** .336** -.041 .388** 1 .572** .367** .069 .206* 

d5 -.040 .578** .496** .249** .327** .572** 1 .539** .257** -.078 

d6 -.061 .377** .229* .138 .405** .367** .539** 1 .016 -.135 

θϭ -.094 .207* -.137 -.084 .198* .069 .257** .016 1 -.271** 

θϮ .127 -.343** .231* -.074 -.125 .206* -.078 -.135 -.271** 1 
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Regression Coefficients for SAQI item Difference  

 

Table 19: regression coefficients for Difference with interactions from the measured data set  

Note: R2 =.47, R2 adj. = .42, *p < .05, **p < .01 

  Unstandardized Coefficients 

  

Standardized Coeffi-

cients 

 Predictor B Std. Error β 

(Constant) 0.29 0.01   

x1_diff_centered -0.01 0.01 -.04 

x2_diff_centered 0.04 0.01 .21** 

x3_diff_centered -0.04 0.01 -.17** 

x4_diff_centered -0.06 0.03 -.07 

x5_diff_centered -0.03 0.02 -.05 

x6_diff_centered 0.00 0.01 -.01 

x7_diff_centered -0.01 0.01 -.05 

x8_diff_centered -0.03 0.01 -.22** 

x9_diff_centered -0.02 0.00 -.29** 

x12_diff_centered 0.01 0.00 .23** 

x14_diff_centered 0.00 0.00 .13** 

x16_diff_centered 0.00 0.00 .18** 

x17_diff_centered 0.00 0.00 .01 

L_d1_diff_centered 0.16 0.07 .15* 

L_d2_diff_centered -0.38 0.07 -.26** 

L_d3_diff_centered 0.05 0.05 .05 

L_d4_diff_centered 0.11 0.05 .16* 

L_d5_diff_centered 0.02 0.05 .05 

L_d6_diff_centered 0.01 0.04 .02 

L_θϭ_diff_centered 0.01 0.00 .19** 

L_θϮ_diff_centered 0.00 0.00 .09 

R_d1_diff_centered -0.04 0.09 -.03 

R_d2_diff_centered -0.04 0.08 -.02 

R_d3_diff_centered 0.06 0.05 .07 

R_d4_diff_centered -0.26 0.06 -.37** 

R_d5_diff_centered 0.09 0.05 .19 

R_d6_diff_centered -0.02 0.05 -.02 

R_θϭ_diff_centered -0.01 0.00 -.22** 

R_θϮ_diff_centered 0.00 0.00 -.14** 

x14_diff_c_square 0.00 0.00 .10** 

L_d2_diff_c_square 0.86 0.21 .15** 

x7_diff_c_square 0.00 0.00 -.02 

L_d5_diff_c_square -0.04 0.02 -.07 

R_d4_diff_c_square 0.35 0.08 .27** 

L_d4_diff_c_square -0.06 0.07 -.05 

x16_diff_c_square 0.00 0.00 -.04 

L_d1_diff_c_square 0.11 0.15 .03 

R_d1_diff_c_square 0.28 0.23 .08 
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x3_diff_c_square 0.00 0.00 -.02 

x1_diff_c_square 0.01 0.01 .04 

x8_diff_c_square 0.01 0.00 .17* 

x7_R_d6_inter 0.07 0.01 .18** 

x7_L_d5_inter 0.00 0.01 -.01 

L_d2_R_d1_inter -0.18 0.24 -.03 

x3_R_d2_inter -0.09 0.05 -.06 

x8_L_d4_inter -0.01 0.01 -.02 

x9_L_d3_inter 0.02 0.01 .08** 

R_d1_R_d4_inter -0.58 0.15 -.22** 

x3_x17_inter 0.00 0.00 .14** 

R_d2_R_θϭ_inter 0.00 0.01 .01 

x5_L_d5_inter -0.06 0.03 -.06* 

R_d2_R_d4_inter 0.58 0.15 .13** 

x3_x12_inter 0.00 0.00 -.08 

x4_R_d3_inter -0.19 0.09 -.06* 

x1_x9_inter 0.01 0.00 .28** 

x14_R_d5_inter -0.01 0.00 -.32** 

x14_R_d1_inter 0.02 0.00 .20** 

L_d1_R_θϮ_inter 0.01 0.00 .11** 

x2_R_d6_inter 0.06 0.02 .10** 

L_d2_R_d3_inter -0.97 0.24 -.18** 

L_d2_L_d3_inter 0.54 0.24 .10* 

x6_x9_inter -0.01 0.00 -.21** 

x17_R_θϭ_inter 0.00 0.00 .17** 

x8_R_d3_inter -0.07 0.02 -.15** 

x1_x17_inter 0.00 0.00 -.17* 

x7_x12_inter 0.00 0.00 -.08** 

x8_R_d2_inter 0.12 0.03 .13** 

x12_R_d6_inter 0.03 0.01 .23** 

x7_R_d3_inter 0.05 0.02 .09** 

x7_R_θϭ_inter 0.00 0.00 -.08** 

x1_L_θϭ_inter 0.01 0.00 .19** 

x1_x6_inter -0.05 0.01 -.29** 

x1_x14_inter 0.00 0.00 .09* 

x1_R_θϭ_inter 0.00 0.00 -.12* 

x12_L_d6_inter -0.02 0.01 -.18** 

x2_L_d2_inter -0.11 0.04 -.10** 

x9_L_d2_inter 0.02 0.01 .08* 

x6_x8_inter 0.01 0.01 .16 

x8_square_R_d1_square_inter -0.06 0.02 -.19** 

L_d6_square_R_d2_square_inter -2.67 1.14 -.07* 

R_d3_square_R_d6_square_inter 0.53 0.24 .06* 

L_θϭ_square_L_θϮ_square_inter 0.00 0.00 -.08* 

x4_square_x8_square_inter 0.03 0.01 .09** 

x4_square_L_d6_square_inter -0.58 0.31 -.06 

x6_square_x8_square_inter 0.00 0.00 .10 
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x3_square_L_θϮ_square_inter 0.00 0.00 .07* 

x9_diff_L_d2_square_inter 0.00 0.03 .01 

x7_diff_x17_square_inter 0.00 0.00 .15** 

x7_diff_x12_square_inter 0.00 0.00 -.10* 

x4_diff_R_d2_square_inter 2.01 0.61 .12** 

x7_diff_R_d2_square_inter 0.35 0.10 .11** 

x6_diff_R_d2_square_inter 0.31 0.19 .07 

x14_diff_R_d2_square_inter -0.06 0.02 -.13** 

x12_diff_R_d2_square_inter 0.12 0.05 .13* 

x7_diff_R_d3_square_inter -0.09 0.04 -.07* 

x2_diff_R_d1_square_inter 0.27 0.08 .15** 
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Multilevel mixed-effects model estimates for SAQI item Difference 

Table 20: multilevel mixed-effects model for Difference (measured data set) 

Note: R2
conditional =.47. R2

marginal = .37, *p < .05, **p < .01 
   

95% CI 

Name b SE b Lower Lower 

(Intercept) .29** 0.02 0.26 0.32 

x1_diff -.01 0.01 -0.04 0.01 

x2_diff .04** 0.01 0.02 0.05 

x3_diff -.03** 0.01 -0.05 -0.01 

x4_diff -.06 0.04 -0.13 0.01 

x5_diff -.03 0.02 -0.07 0.00 

x6_diff .02 0.01 -0.01 0.05 

x7_diff -.00 0.01 -0.02 0.01 

x8_diff -.02** 0.01 -0.04 -0.01 

x9_diff -.01** 0.00 -0.02 0.00 

x12_diff .00 0.00 0.00 0.01 

x14_diff .00 0.00 0.00 0.00 

x16_diff .00** 0.00 0.00 0.00 

x17_diff -.00 0.00 0.00 0.00 

L_d1_diff .09 0.08 -0.07 0.26 

L_d2_diff -.30** 0.09 -0.47 -0.13 

L_d3_diff .05 0.05 -0.06 0.15 

L_d4_diff .11* 0.06 0.00 0.22 

L_d5_diff .04 0.06 -0.07 0.15 

L_d6_diff -.07 0.05 -0.16 0.03 

L_θϭ_diff .00* 0.00 0.00 0.01 

L_θϮ_diff .00 0.00 0.00 0.00 

R_d1_diff -.09 0.10 -0.29 0.11 

R_d2_diff -.02 0.09 -0.21 0.16 

R_d3_diff .02 0.06 -0.10 0.14 

R_d4_diff -.24** 0.06 -0.36 -0.12 

R_d5_diff .05 0.06 -0.06 0.16 

R_d6_diff .06 0.05 -0.05 0.16 

R_θϭ_diff -.01** 0.00 -0.01 0.00 

R_θϮ_diff -.00 0.00 0.00 0.00 

x1_diff_square .01 0.01 -0.01 0.03 

x8_diff_square .01** 0.00 0.01 0.02 

x14_diff_square .00 0.00 0.00 0.00 

L_d2_diff_square .70** 0.18 0.35 1.05 

R_d4_diff_square .23** 0.05 0.12 0.33 

x1_x6_inter -.05** 0.01 -0.07 -0.03 

x1_x9_inter .01** 0.00 0.00 0.01 

x1_x14_inter .00** 0.00 0.00 0.00 

x1_L_θϭ_inter .01** 0.00 0.00 0.01 

x1_R_θϭ_inter -.00 0.00 -0.01 0.00 

x2_L_d2_inter -.12** 0.03 -0.18 -0.05 
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x2_R_d6_inter .05** 0.02 0.02 0.08 

x3_x17_inter .00 0.00 0.00 0.00 

x4_R_d3_inter -.16 0.08 -0.32 0.01 

x5_L_d5_inter -.08** 0.03 -0.13 -0.02 

x6_x9_inter -.00 0.00 -0.01 0.00 

x7_x12_inter -.00** 0.00 0.00 0.00 

x7_R_d3_inter .04* 0.02 0.01 0.07 

x7_R_d6_inter .06** 0.01 0.04 0.08 

x7_R_θϭ_inter -.00** 0.00 0.00 0.00 

x8_R_d2_inter .10** 0.03 0.04 0.16 

x8_R_d3_inter -.05** 0.02 -0.08 -0.01 

x9_L_d3_inter .01* 0.01 0.00 0.02 

x12_L_d6_inter -.02** 0.01 -0.03 -0.01 

x12_R_d6_inter .02** 0.01 0.01 0.04 

x14_R_d1_inter .02** 0.00 0.01 0.02 

x14_R_d5_inter -.01** 0.00 -0.01 0.00 

x17_R_θϭ_inter .00** 0.00 0.00 0.00 

L_d1_R_θϮ_inter .01** 0.00 0.01 0.02 

L_d2_R_d3_inter -.48** 0.15 -0.77 -0.19 

R_d1_R_d4_inter -.31** 0.11 -0.54 -0.09 

R_d2_R_d4_inter .44** 0.13 0.18 0.69 

x3_square_L_θϮ_square_inter .00* 0.00 0.00 0.00 

x4_square_x8_square_inter .02* 0.01 0.00 0.04 

x4_square_L_d6_square_inter -.52 0.28 -1.07 0.04 

x8_square_R_d1_square_inter -.03** 0.01 -0.06 -0.01 

L_d6_square_R_d2_square_inter -1.55 1.04 -3.59 0.49 

L_θϭ_square_L_θϮ_square_inter -.00 0.00 0.00 0.00 

x2_diff_R_d1_square_inter .24** 0.07 0.10 0.39 

x4_diff_R_d2_square_inter 1.33* 0.56 0.22 2.43 

x7_diff_x12_square_inter -.00** 0.00 0.00 0.00 

x7_diff_x17_square_inter .00** 0.00 0.00 0.00 

x7_diff_R_d2_square_inter .28** 0.09 0.10 0.47 

x12_diff_R_d2_square_inter .14** 0.03 0.08 0.21 

x14_diff_R_d2_square_inter -.06** 0.02 -0.09 -0.03 

x17_diff_L_d1_square_inter -.02* 0.01 -0.03 0.00 

 

 

 

 




