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Abstract

This thesis proposes a new, fully convolutional neural network architecture for frame-wise
automatic chord recognition and, by doing so, expands the deep learning vocabulary of the
field. The architecture is based on the MultiResUnet, which is then extended with spatial
dropout, image pyramids, and a structured training approach. In the first step, three data
sets are merged to obtain a data collection of 361 songs with a total of up to 20 hours, 27
minutes, and 16 seconds of real-world music. Furthermore, pitch-shifting data augmentation
is applied where each song is shifted up or down by one to six discrete semitones resulting in
12 deformations for each audio file. Moreover, all original and pitch-shifted audio files are
transformed into a three-dimensional representation via the harmonic constant-Q transform.
This representation is used as an input to the model mentioned above. The model is then
trained in a supervised manner and predicts for each frame, the root pitch class, the active
pitch classes, and the bass pitch class from the spatial dropout’s output layer. Afterward,
results are evaluated using 15 different comparison methods implemented by the mir_eval
package. In addition, it is also shown that the proposed model exceeds the baseline over
every single chord recognition metric, while training time per epoch is reduced by half, and
fewer training parameters are required. The thesis continues with a detailed root confusion
and strict quality-wise error analysis. Finally, it concludes with a two-track analysis where
the reference annotations and the models’ estimation are visualized and compared against
each other.



Zusammenfassung
Diese Arbeit schlägt eine neue, vollständig konvolutionale neuronale Netzwerkarchitektur
für automatisierte und Frame-basierte Akkord-Erkennung vor und erweitert damit die Deep
Learning Ansätze in diesem Feld. Die Architektur basiert auf dem MultiResUnet, das dann
um spatial dropout, Bildpyramiden und einen strukturierten Trainingsansatz erweitert wird.
In einem ersten Schritt werden drei Datensätze zusammengeführt, um eine Datensammlung
von 361 Liedern mit insgesamt bis zu 20 Stunden, 27Minuten und 16 Sekunden realer Musik
zu erhalten. Darüber hinaus wird durch eine Tonhöhenverschiebung eine Datenvergrößerung
vorgenommen, bei der jedes Lied um einen bis sechs diskrete Halbtöne nach oben oder
unten verschoben wird, was zu 12 Deformationen für jede Audiodatei führt. Weiter werden
alle originalen und tonhöhen-verschobenen Audiodateien über die harmonisch Konstante Q-
Transformation in eine dreidimensionale Darstellung umgewandelt. Diese Darstellung wird
als Eingag für das oben erwähnte Modell verwendet. Das Modell wird dann via überwachtes
Lernen trainiert und sagt für jedes Frame die Grundtonklasse, die aktiven Tonklassen und die
Basstonklasse aus der Ausgabeschicht des spatial dropout voraus. Anschließend werden die
Ergebnisse mit Hilfe von 15 verschiedenenVergleichsmethoden, die durch das Paket mir_eval
implementiert wurden, ausgewertet. Außerdem wird gezeigt, dass das vorgeschlagene Mod-
ell für jede einzelne Akkorderkennungsmetrik das zu Grunde liegende Vergleichsmodell
übertrifft, während die Trainingszeit pro Epoche um die Hälfte reduziert wird und weniger
Trainingsparameter erforderlich sind. Die These wird mit einer detaillierten Grundakkord-
und einer strengen qualitativen Fehleranalyse fortgesetzt. Schließlich schließt sie mit einer
Analyse von zwei Liedern, in denen die Referenzannotationen und die Schätzung derModelle
visualisiert und miteinander verglichen werden, ab.
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1 Introduction
After two decades of active research, automatic chord recognition (ACR) has become a classic
yet still openMIR challenge. The interest comes from the importance of harmony inWestern
tonal music and the demand the general public places on chord-based music representations
of popular music. However, manually identifying chords from recorded audio is an arduous
and time-consuming task and requires professional musical training. To save time and help
less experienced musicians, web-services such as Chordify use ACR techniques to display
chords of any audio file to their users [11]. Alexa [3], a popular web analytics service,
ranks Chordify among the top 6000 websites in global internet engagement, i.e., 200 million
unique users, at the time of writing [20]. Therefore there is ample motivation to develop
efficient, high-performance automated chord recognition systems. Furthermore, since chords
and chord progressions are highly abstract mid-level representations of polyphonic music,
they also play a role in other high-level MIR tasks such as genre classification [5], cover song
identification [7, 53] and music emotion recognition [15, 18], music structure segmentation
[76] and even melody transcription [52].

Historically speaking, typical chord recognition systems followed a three-stage pipeline1:
feature extraction, pattern matching, and chord sequence decoding (post-filtering), where
all three stages were originally hand-crafted. However, with the emergence of deep neural
networks, focus shifted to data-driven methods. Most modern deep learning-based ACR
systems follow a two-stage architecture that is quite common in speech recognition. The first
stage, also called acoustic model, processes the acoustic features in audio signals and extracts
discriminative features from them [47, p.10] while the second stage, called temporal or lan-
guage model, takes the estimates of the acoustic model and models the temporal relationship
and structure in the sequence of chord symbols and decodes them into human-readable chord
segments [47, p.10-11]. Almost all ACR systems transform the raw audio files via a short
term Fourier transform (STFT) [4] or a constant-Q transform [12, 13] into a more suitable
time-frequency representation. This time-frequency representation serves as an input to the
acoustic model. Various acoustic models have been explored over time such as convolutional
neural networks (CNNs) [37, 62, 95], deep belief network (DBN) [10, 23], feed-forward deep
neural network (DNN) [84, 48, 69], and hidden Markov models (HMMs) [17]. Later on,
with the advancements in temporal modeling, HMMs were replaced by RNNs [10]. Most
ACR systems that followed were either variants or extensions of the system above. For ex-
ample, [23, 34, 93, 62, 69, 95] used either bidirectional long-short term memory (BLSTM)
recurrent neural networks [82, 29] or long-short term memory (LSTM) [33] or bidirectional
gated recurrent units (Bi-GRUs) [16] to avoid the vanishing gradient problem that the vanilla
RNNs had [75].

The general assumption in ACR is that RNNs have a better ability to model long-range
dependencies and learn and apply musical knowledge instead of just smoothing the acoustic
model’s output. Nevertheless, this belief is challenged by two studies: first, [6] developed a
broad temporal convolutional neural network (TCN) and conducted a series of experiments
in sequence prediction tasks from various domains in which generic RNNs (namely, vanilla
RNNs, LSTMs, and GRUs) were known to perform rather well. Their results showed that a
general TCN, with its components all coming from standard modern practices in computer
vision, could indeed outperform LSTMs/GRUs (with the same model size as the TCN) in

1For a thorough review of chord recognition before the advent of deep learning techniques, see [64]
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most of their considered tasks.

Second, [50] stated that incorporating and training sophisticated temporal models on a time-
frame basis is pointless in practice. They carried out two experiments to support their claim.
Firstly, two temporal models, namely, a first-order Markov chain and an RNN with LSTM
units, were compared according to their capacity to model chord sequences. The results
showed that RNN, despite its higher modeling capability, performed only marginally better.
Secondly, the performance of two temporal models was investigated by integrating them into
a full chord recognition framework. The results of this experiment suggested that when com-
plex RNNmodels were deployed within a complete chord recognition framework, they could
not outperform the simpler first-order HMM. In addition, [58] compared two different deep
learning approaches for melody extraction: the first framework was based on a BLSTM-RNN
model that approached melody extraction as a sequence prediction problem. In contrast, the
other framework considered it as a segmentation problem. Their results indicated that the
segmentation based system could deliver comparable and, in one case, even better results
than the well established BLSTM-RNN approach.

Meanwhile, more modern design principles and architectures in computer vision found their
way into the MIR domain. For example, [95] used DeeplabV3+ [14] for polyphonic music
transcription, whereas [25, 44, 35] applied the U-Net architecture [79] for dominant melody
estimation, singing voice separation and melody extraction, respectively. While other fields
in the MIR domain are leveraging state-of-the-art computer vision deep learning techniques
with great success, ACR has not caught up to the latest trends in computer vision and, as
discussed before, considering ACR as a sequence prediction task and applying RNNs and its
variants as a temporal model led most ACR systems to converge to the same architecture.
Thus, it would be intriguing to see if rather new deep learning architectures in computer
vision can improve chord recognition accuracy.

Therefore, in this master’s thesis, the typical conventions of using RNNs for temporal model-
ing shall be abandoned, and a new perspective of the problem shall be adopted. The following
chapters will demonstrate how by exploiting intrinsic structural similarities between chord
classes and using a well known fully convolutional architecture in the field of biomedical
image segmentation, namely the U-Net architecture, and applying specific modification to it
that are motivated by the best practices in computer vision, a chord recognition framework is
established that not only delivers comparable results with the state-of-the-art approaches in
ACR but also has fewer parameters and is faster to train.

2



1.1 Chronological summary of deep learning-based approaches in ACR to the current state of the art

1.1 Chronological summary of deep learning-based approaches in ACR
to the current state of the art

The following state of the art chapter refers to the developments in ACR in the last eight years
and specifically to data-driven/deep learning approaches, which are summarized in Table 1.

Humphrey and Bello [37] were the first who proposed a convolutional neural network (CNN)
for the task of automatic chord recognition (ACR). Their system comprised three convo-
lutional layers, an optional pooling layer, and two fully connected layers. They found out
that data augmentation reduced the extent to which the network could over-fit the training
data. Moreover, they observed that over-fitting occurred in the network’s fully connected
layers rather than the convolutional ones. Korzeniowski and Widmer [49] dropped the fully
connected layers in their system in favor of general average pooling (GAP) [55] and made the
network deeper. They used the hidden representation computed by their CNN as features and
fed them into a conditional random field (CRF). The primary purpose of the CRF in such a
setting is to smooth the sequence.

Nakayama and Shuichi [70] argued that the network architecture of most chord recogni-
tion systems using deep learning was shallow, so they used a deep residual neural network
[31] to make the network architecture deeper (15 layers). However, the improvement that
residual learning brought in comparison to shallower architectures was minimal. It is no
secret that many audio processing tasks adapt network architectures that initially came from
computer vision. Whereas in computer vision, deep architectures such as ResNet [31] or
Inception [88] do indeed outperform shallower ones, they do not necessarily perform better
in audio processing tasks. Koutini et al. [51] analyzed the receptive field of CNNs within
deeper architectures over input spectrograms and their generalization on unseen samples to
understand why these deeper architectures perform worse than shallower ones (for the task of
audio sound classification). They showed that for relatively small datasets, a large receptive
field over the frequency dimension pushes the CNNs to overfit on the training samples while
a smaller than necessary receptive field causes underfitting and hinders the CNN’s ability
to learn discriminative features. Moreover, by tuning the receptive field of two modern
deep architectures (namely, ResNet and DenseNet [39]), they managed to match and even
outperform VGG-based [85] models. Note that almost all convolutional neural network ar-
chitectures used in ACR are still VGG-based, leaving room for improvement.

Wu and Li [94] used a fully convolutional neural network architecture with seven layers
to extract harmonically relevant features. They also introduced the concept of residual learn-
ing via two skip connections to their network. However, their CNN was trained not only with
audio, but also with MIDI-audio pairs. The feature sequence calculated by CNN was fed into
a BLSTM for pattern matching, and finally, a CRF inferred the output label sequence. Note
that both the classifier (BLSTM) and the decoder (CRF) were trained individually.

They concluded that their system’s bottleneck was the BLSTM-CRF sequence classifica-
tion/decoding model rather than the acoustic model. However, their conclusion regarding the
decoder was already mentioned in another study by [50].

Park et al. [74] reasoned that most machine learning approaches proposed for ACR such
as CNNs and RNNs, have limitations in capturing long-range dependencies and require an
additional model that needs to be trained individually to achieve better performance. They

3



1.1 Chronological summary of deep learning-based approaches in ACR to the current state of the art

developed an ACR system based on a Bi-directional Transformer (BTC) [24], which is
an attention-based network architecture that is not based on any recurrence or convolution
operation. They showed that their system was able to utilize its receptive field and identi-
fied sections of chords that were important for the task of chord recognition and captured
long-term dependencies while benefiting from a more straightforward training procedure.
However, [91] showed that softmax-normalized depthwise-separable convolutions that share
weight over the channel dimension (also called lightweight convolutions) and dynamic con-
volutions could perform competitively or even better than the best-reported self-attention
models for large-scale machine translation and language modeling tasks. Also, the argument
that CNNs are limited in their ability to capture long-range dependencies can be disputed by
the already discussed TCN and the meanwhile famous Wavenet [72] model, an architecture
based on dilated convolutions which could not only utilize a very large receptive field and
deal with long-range temporal dependencies but could also be efficiently trained on data with
ten thousands of samples per second of audio.

Jiang and Chen [45] addressed the challenges of large-vocabulary chord recognition such
as class imbalance and the frequency of chord qualities present in the data sets and proposed
a model that decomposes the chord labels into smaller sub-components, i.e., root and triad,
bass, seventh and ninth, eleventh and thirteenth, each one having a smaller chord vocabulary.
Then, a multi-task classifier was trained to detect all the sub-components (given the audio
features). Finally, the results were assembled to form the final chord label. Their model
used CRNN (convolutional neural network plus a BLSTM) for feature processing and a CRF
for sequence decoding. Their decomposition algorithm extends the structured representation
used in this thesis by including 9Cℎ, 11Cℎ, and 13Cℎ chords.

Wu and Carsault [92] designed a variational autoencoder with continuous and discrete latent
variables that corresponded to chroma textures and chord labels and trained a deep classifi-
cation model in a semi-supervised manner. Furthermore, they claimed that their approach
effectively unifies the discriminative and generative methods. Moreover, error analysis re-
vealed that their semi-supervised learning method still confused rare chord types for more
popular ones. In addition, it was also affected by the ambiguity between several chord types
in the chroma representation and faced difficulties with seventh chords and inversions in a
large-vocabulary chord setting.

Odekerken, Koops, and Volk [71] used several symbolic representations in addition to audio
to overcome the problem of limited data sets with which most ACR systems are trained.
Their system’s input consisted of audio, MIDI, and tab files that were collected through web
scraping. Tab and MIDI files were then manually matched to the audio files. For training
the audio files, ten recent ACR architectures were used. All estimated chord sequences from
different representations were integrated into one final output sequence via a data fusion
method. Their method improved on average, the weighted chord symbol recall scores of all
ten architectures by 3.05%.

4



1.1 Chronological summary of deep learning-based approaches in ACR to the current state of the art

Automatic Chord Recognition (2012 - 2020)
Year Author(s) Title Approach / Key

Contribution(s)
2012 [37] Rethinking Automatic Chord Recognition with

Convolutional Neural Networks
CQT, CNN

2013 [10] Audio Chord Recognition with Recurrent Neu-
ral Networks

STFT,DBN,RNN

2015 [84] Audio Chord Recognition with Hybrid Recur-
rent Neural Networks

various acoustic
models, RNN

2015 [97] Chord Detection Using Deep Learning CQT,DNN,SVM,
HMM

2016 [48] The Deep Chroma Extractor STFT,DNN
2016 [23] A Hybrid GMM-HMM-Deep Learning Ap-

proach for Automatic Chord Estimation with
very Large Vocabulary

DBN,MLP,
BLSTM-RNN

2016 [49] A fully convolutional auditory model for musi-
cal chord recognition

STFT,CNN,CRF

2017 [34] Music chord recognition from audio data using
bidirectional encoder-decoder LSTMs

CQT,BLSTM

2017 [70] Residual DNN-CRF Model for Audio Chord
Recognition

Mel, DRN,CRF

2017 [93] Music Chord Recognition Based On MIDI-
TrainedDeepFeatureAndBLSTM-CRFHybrid
Decoding

DRN,BLSTM,CRF

2017 [62] Structured Training for Large-VocabularyChord
Recognition

CQT,CNN,Bi-
GRU

2018 [69] DNN-LSTM-CRF Model for Audio Chord
Recognition

STFT,DNN,CRF,
GRU, LSTM, Bi-
LSTM

2019 [94] Automatic Chord Recognition With MIDI-
Trained Deep Feature and BLSTM-CRF Se-
quence Decoding Model

HCQT, CNN,
BLTSM,CRF

2019 [74] A Bi-Directional Transformer For Music Chord
Recognition

CQT, BTC

2019 [45] Large-vocabulary Chord Transcription Via
Chord Structure Decomposition

CQT,CRNN,new
CSD

2020 [71] DECIBEL: Improving Audio Chord Estimation
for Popular Music by Alignment and Integration
of Crowd-Sourced Symbolic Representations

various Audio,
MIDI and Tabs
ACR techniques
+ Data Fusion

2020 [92] Semi-supervised Neural Chord Estimation
Based on a Variational Autoencoder with Dis-
crete Labels and Continuous Textures of Chords

semi-supervised
learning based on
VAE

Table 1: Chronological summary of deep learning based advances in ACR from 2012 -
2020.
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1.2 Aim and Goals of the Thesis

1.2 Aim and Goals of the Thesis
In the introduction section, the convergence ofACR systems towards a recurrent convolutional
model was discussed. Scholz, Ramalho, and Cabral [81] shed further light on the dimin-
ishing performance of ACR systems in the MIREX competition and gave two suggestions
for development: ACR systems should either incorporate more musical expert knowledge
(especially in the post-processing phase) or explore new deep learning techniques. The latter
lend themselves particularly well for this thesis since there are myriad deep learning models
that have not been used in chord recognition yet. Therefore, this thesis’s primary goal is to
design a fully convolutional encoder-decoder model that is computationally more efficient
than the recurrent convolutional models and yet attains comparable results to that of the
state-of-the-art approaches without relying on any recurrence. For this purpose, the archi-
tecture of choice is a modified MultiResUnet [40], an extended, and improved version of the
U-Net architecture designed to work with very few training samples. To the author’s best
knowledge, MultiResUnet has not been used in ACR research yet. The proposed model’s
performance is compared to a robust convolutional recurrent architecture proposed by [62],
which is equally well suited for limited- and large-vocabulary chord recognition and shall
serve as a baseline throughout the experiments.

Furthermore, since only a small percentage of published studies have reported inversion
prediction results, this thesis will address the problem by evaluating model performance
across all bass-agnostic as well as bass-sensitive mir_eval chord recognition metrics. More-
over, by extending the proposed model with the structured training approach of the baseline
and evaluating their results in a large-vocabulary setting, further insights into both systems’
behavior shall be gained.
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2 Methods
This section outlines the data sets, data augmentation, proposed architecture, training strategy,
and deep learning methods used for the experiments.

2.1 Reference Annotations
One of the first significant efforts to gather reference chord annotations led to the development
of the Isophonics dataset [42], covering bands such as The Beatles (12 albums, 180 songs),
adding up to approximately 8 hours, 8 minutes, and 53 seconds of music, Carole King (one
album, 14 songs), and Zweieck (one album, 18 songs) as well as Queen (Greatest Hits I-II,
20 songs, totaling approximately 1 hour, 13 minutes and 51 seconds of music). Due to
content access, only 180 songs from The Beatles and 20 songs from the Queen repertoire
are used from this data set. Later on, in 2011, the Music and Audio Research Lab (MARL)
[67] provided 100 chord annotations from the RWC-Pop collection, totaling approximately
6 hours, 46 minutes, and 45 seconds of music. In 2013, [28] provided the chord annotations
for the first five albums of Robbie Williams, which contain 61 songs with a total of about
4 hours, 17 minutes, and 47 seconds of music. Figure 1 shows the reference annotation for
the first 21 seconds of the song-’Good Night’ by The Beatles. From the figure, it can be seen
that the first 0.471 seconds of the song does not contain any chords, hence the no-chord label
’N’. Then, for the next 2.062 seconds, a G: maj7 chord is played, followed by a C/5 chord, et
cetera.

Figure 1: Reference annotation for the first 21 seconds of the song- ’Good Night’ by The
Beatles.

A chord in the reference annotation can be any valid string that complies with the formal
language defined by [30, 93-106]:
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2.2 Data Augmentation

A>>C : (8=C4AE0;1, 8=C4AE0;2, ...)/10BB

or

A>>C : Bℎ>ACℎ0=3 (4GCA0 − 8=C4AE0;B)/10BB

The colon ’:’ separates the root pitch name from a comma-delimited list of intervals written
in parenthesis. The forward slash ’/’ character denotes the bass note if it differs from the
root, i.e., the chord type is inverted; shorthand is an abbreviation for a given chord type,
e.g., the shorthand for major is maj; extra-intervals is an optional list of added or suppressed
intervals. Table 2 lists the 14 chord qualities and corresponding interval list and semitones
under consideration for this thesis. The table allows decomposing any chord string to its
intervals and semitones. For example, a C major triad with a fifth in the bass can be written
as C: maj/ 5, which is the third chord symbol2 shown in Figure 1. The fifth in the bass of C
changes the order of its interval list and semitones to (5, 1, 3) and {7, 0, 4}, respectively.

Chord Type Shorthand Interval List Semitones

Triad Chords

Major
Minor
Augmented
Diminished

maj
min
aug
dim

(1, 3, 5)
(1, b3, 5)
(1, 3, #5)
(1, b3, b5)

{0, 4, 7}
{0, 3, 7}
{0, 4, 8}
{0, 3, 6}

Sixth Chords Major Sixth
Minor Sixth

maj6
min6

(1, 3, 5, 6)
(1, b3, 5, 6 )

{0, 4, 7, 9}
{0, 3, 7, 9}

Seventh Chords

Major Seventh
Minor Seventh
Dominant Seventh
Diminished Seventh
Half-Diminished Seventh
Minor Major Seventh

maj7
min7
7
dim7
hdim7
minmaj7

(1, 3, 5 ,7)
(1, b3, 5, b7)
(1, 3, 5, b7)
(1, b3, b5, bb7)
(1, b3, b5, b7)
(1, b3, 5, 7)

{0, 4, 7, 11}
{0, 3, 7, 10}
{0, 4, 7, 10}
{0, 3, 6, 9}
{0, 3, 6, 10}
{0, 3, 7, 11}

Suspended Chords Suspended Fourth
Suspended Second

sus4
sus2

(1, 2, 5)
(1, 4, 5)

{0, 5, 7}
{0, 2, 7}

Table 2: Chord types and corresponding interval list and semitones.

2.2 Data Augmentation
The data augmentation technique used in this thesis follows the observation that not every
chord quality in the data set appears in every root position. For example, there are only
six root position minmaj7 chords in the entire data collection, making it impossible for this
quality to appear in every root position. Humphrey and Bello [37] and Humphrey [36, pp.
81-82] exploited the linearity of pitch in the constant Q transform and shifted the pitch of
their audio signals up or down by one to six semitones so that all chord qualities could be
observed in all root positions, and all root, bass, and pitch values would occur. However, this
operation does not retain the labels, so they must be adjusted accordingly. Later on , this

2The Beatles data set does not use the maj shorthand for major triads. In this data set, a major triad without
a shorthand implies maj.
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2.3 Pre-Processing

data manipulation technique was also explored by [49], where it proved necessary to prevent
overfitting.

2.3 Pre-Processing
In the input pre-processing step, to better capture harmonic relationships, each audio signal
is transformed into a log-frequency magnitude spectrogram via a harmonic constant-Q trans-
form . Constant-Q transform (CQT) is a technique that transforms a time-domain signal G(=)
into a time-frequency representation where the center frequencies of the frequency bins are
geometrically spaced, and their Q-factor (the ratios of center frequencies to band-widths) of
all bins are equal [46].

Brown [12] showed that the linear representation given by the discrete Fourier transform
(DFT) yields to components that do not map to musical frequencies and for musical applica-
tions, its use is inefficient. In other words, the Fourier transform faces two problems [83]: 1)
it does not account for a proper resolution regarding the frequency of different musical inter-
vals. Since octaves are closer in lower and sparser at higher frequencies, a higher resolution
would be needed at lower, and a lower resolution would be required at higher frequencies.
2) Implementing a variable window size in the Fourier analysis is a computation heavy and
tedious process. The CQT transform, on the other hand, not only accounts for a variable
window size but also sets the window size for each frequency.

Consider the geometrically spaced center frequencies 5: as : [83]:

5: = (2
:
1 ) . 5<8= (: = 0, ...) (1)

where k represents the k-th frequency bin, and b denotes the number of filters per octave. If
semitone spacing is desired, b = 12, else if a quarter-tone spacing is required, b = 24; 5<8=
designates the minimum frequency of the CQT. Choosing the bandwidth of the k-th filter as :

Δ
2@C

:
= 5:+1 − 5: = 5: . (2

1
1 − 1) (2)

results in a constant Q factor which can be written as follows [12]:

& =
5:

Δ
2@C

:

=
1

(2 1
1 − 1)

(3)

Based on (2) and (3) the CQT of a discrete time-domain signal G(=) is defined by [12]:

- (:) = 1
# [:]

# [:]−1∑
==0

, [:, =]G(=) exp− 9 2c&
# [:] = (4)

# [:] is the variable window length given by :
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2.3 Pre-Processing

# [:] = 5B

5=
& (5)

where 5B is the sampling rate. , [:, =] is a window function (usually Hanning). Comparing
(4) to the discrete short time Fourier transform [4]:

- (:) = 1
# [:]

#−1∑
==0

, [=]G(=) exp− 9 2c:
#
= (6)

shows that the window function in the constant-Q transform is a function of k as well as
n. Another difference between (4) and (6) is that in the CQT, since the number of terms
varies with k the sum has to be normalized by # [:]. However, equation 1 is limited in its
coverage of semitones as precise coverage can only be granted for the power of 2 harmonics.
Since k and B are integers, 5: can not output the integers 3, 5, 6, 7, 9, etc., making it
challenging to capture particularly odd harmonics. The problem was addressed by [9], and
led to the formulation of the harmonic constant-Q transform (HCQT):

5: = ℎ . 5<8= . 2
:
� (7)

As evident by the equation mentioned above, the calculation of the HCQT does not dif-
fer much from a standard CQT; the only difference is the scaling of the minimum frequency
by the harmonic: (ℎ. 5<8=). In addition, the same number of octaves and frequency resolution
are maintained across all harmonics. Stacking these scaled CQTs results in a 3-dimensional
representation indexed by time, frequency, and harmonic (H[C, 5 , ℎ]), as such, the HCQTs’
third axis will contain the audio signal’s harmonic components, now localized in the time-
frequency domain across the first and second dimensions [25]. This property of the HCQT
allows the efficient use of two-dimensional CNNs’ 3-D filters, which can now be trained to
localize the harmonic components in the time and frequency plane [26].

Figure 2 illustrates the HCQT of the song- ’Good Night’ by The Beatles, computed at
a sampling rate of 44.1 kHz with a hop length of 4096 samples (≈ 93 ms in time), for
ℎ ∈ {1, 2, 3}: the fundamental (1), and up to two harmonics above the fundamental. The
minimum frequency ( 5<8=) of the transform is 32.70 Hz at h = 1, with 36 bins per octave
spanning over 6 octaves in frequency. Shifting focus towards the figure, a visible frequency
shift from ℎ = 1 to ℎ = 3 can be observed, but the energy across the harmonic axis does not
seem to vary significantly.
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Figure 2: Harmonic constant-Q transform of the song- ’Good Night’ by The Beatles
computed for ℎ ∈ {1, 2, 3} with the minimum frequency of 32.70 Hz at ℎ = 1. Sampling rate
and hop length of the transform were set to 44.1 kHz and 4096 samples. The transform spans
over 6 octaves, with 36 bins per octave.

2.4 Network Architecture
This section briefly introduces the concept of fully convolutional neural networks. It then
provides a detailed summary of U-Net and MultiResUnet. Afterward, spatial dropout,
structured representation, and the complete set of mir_eval chord recognition metrics will be
explained. The section concludes with data set statistics.

2.4.1 FCN

.
Both U-Net andMultiResUnet fall under the umbrella of fully convolutional encoder-decoder
architecture. The fully convolutional neural network (FCN) [57] uses, as the name suggests,
only convolution, pooling and upsampling layers, i.e., no dense or recursive layers are used
in this architecture. However, the use of strided convolutions or upsampling layers produces
a final feature map that lacks the necessary spatial resolution for detecting object boundaries.
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2.4 Network Architecture

The removal of max-pooling layers, on the other hand, leads to an underperformance, since
the receptive field only increases linearly and not exponentially with the number of layers
[43].

2.4.2 U-Net

The U-network architecture [79] shown in Figure 3, is a modified and extended fully convo-
lutional network architecture designed to work with very few training samples. The network
architecture comprises a contracting/encoding (downsampling) path and an expansive/de-
coder (upsampling) path. The contracting path has four blocks; at each block, two unpadded
three by three convolutions are applied where each convolution is succeeded by a rectified lin-
ear unit (ReLU) [68]. The second convolution layer is followed by a two by two max-pooling
operator for downsampling. The stride of all max-pooling layers is set to two. After each
max-pooling operation, the number of feature channels is doubled. The bottom-most block
is the bottleneck layer, which contains two consecutive three by three convolution layers,
each succeeded by a ReLU operation. The expansive path mirrors the contracting path and
consists of an upsampling of the expansive path’s feature map, concatenated with the corre-
sponding contracting path’s feature map, followed by two three by three convolutions, each
using a ReLu activation function. The convolutional layer’s output in the encoding path is
transferred to the decoder before each block’s pooling operation. These connections between
the encoder and the decoder are called ”skip connections” and are the novelty of the U-Net
architecture and allow the network to retrieve spatial information lost due to downsampling
[27]. Concatenating the upsampled feature map with the corresponding contracting path’s
feature map results in a better localization. The upsampling operator is a two by two trans-
posed convolution [96] that halves the number of feature channels. Finally, the classification
layer uses a one by one convolution operation with a sigmoid activation function to generate
the output segmentation map.

Figure 3: Illustration of the U-Net [79].
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2.4 Network Architecture

2.4.3 MultiResUNet

The MultiResUNet illustrated in Figure 6 is essentially an extended and improved U-Net
architecture first proposed by [40]. As mentioned before, the U-Net applied sequence of two
three by three convolution layers after each pooling and upsampling layer. MultiResUNet,
however, applies three three by three convolution layers after each pooling and upsampling
layer while gradually increasing the number of filters of the convolution layers (from the
first to the third convolutional layer). The reason for doing so is the observation that if two
convolutional layers follow each other in deep networks, the number of filters in the first
one has a quadratic effect over the memory footprint [89]. Therefore, each convolutional
layer’s number of filters is gradually increased to prevent the earlier layers’ memory load from
inordinately propagating to the network’s deeper layers [40]. Furthermore, the concatenation
of all three convolution layers’ output allows the extraction of spatial features from different
scales hence the name MultiResUnet. Also, a residual connection between the input of the
first convolution layer and the three concatenated layers’ output is added [31]. The steps
described above are visualized in Figure 4. To keep the number of parameters between
MultiResUnet and U-Net roughly the same, a , parameter is defined which controls the
number of filters inside the MultiRes block and is computed as follows:

, = * ∗ U (8)

Where * is the number of filters in the U-Net’s corresponding layer ([32, 64, 128, 256,

512]), and U is the scalar coefficient set to 1.67. In each MultiRes block the three successive
convolution layers have [,6 ], [

,
3 ] and [

,
2 ] filters, e.g. starting with the first block and setting

U = 32, results in, = 53.44. Therefore, for this block, the first, second, and third convolution
layers will have 8, 17, and 26 filters. Similar to the U-Net model, W’s value is doubled after
each max pooling or upsampling layer.

Figure 4: Illustration of a MultiRes block [40] where the number of filters in the following
layers is increased, and a residual connection between the block’s input and output is added.
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2.4 Network Architecture

Figure 5: Illustration of a Res path . The encoder features are passed through a sequence of
convolutional layers [40]. As with the MultiRes block, residual connections are introduced
between the convolutional layers’ input and output.

Moreover, in the U-Net architecture, the encoded features preceding the first max-pooling
layer are concatenated with the decoder’s top-most upsampled features. The features coming
from the encoder are computed at an earlier stage of the network and are low-level features.
In contrast, the features computed at the last decoder level are high-level features since they
go through much more processing before arriving at the decoder’s last layer. Hence, there is a
semantic gap between the two sets of features being concatenated. Ibtehaz and Rahman [40]
state that the fusion of two sets of features coming from two different modalities may cause
some discrepancy throughout the learning and can negatively affect the prediction procedure.
Nevertheless, the discrepancy is likely to decrease the more downwards the features go in
the encoding path. The reason is that the encoder features go through more processing as
they approach the bottleneck layer, while at the same time, they are merged with the decoder
features that have not yet gone through much more processing. Therefore, the semantic
gap between the encoder and the decoder features at the bottom-most skip connection is
the smallest while being the largest for the up-most skip connection [40]. Hence, in the
MultiResUnet architecture, instead of directly propagating the encoder features to the decoder,
each skip connection (here called, Res path) applies a different number of convolution layers
to the encoder features. For example, the bottom-most Res path applies one, and the most
upward Res path includes four convolution layers. Moreover, additional residual connections
are added to the convolution layers in the ’Res path’ to facilitate the learning process. Figure
5 illustrates the upmost Res path in MultiResUnet with four convolution layers and added
residual connections. Looking at the figure reveals one oddity: the residual path includes
a one by one convolution layer, which is missing in the original ResNet [31]. The authors
mention that the one by one convolution layer is left there to ”maybe” allow for extra spatial
information extraction. However, such one by one convolution layers are usually applied
where there is a need to reduce or increase the depth dimension of a network (for example,
when there are dimension mismatch problems). Nonetheless, this is not the case because
the number of input features does not change during the convolution operations, so it is
practically left there for experimental purposes.
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2.5 Preventing overfitting with spatial dropout

Figure 6: Illustration of the original MultiResUnet [40], which was first proposed for the task
of medical image segmentation.

2.5 Preventing overfitting with spatial dropout
The regular dropout [32, 86] is a regularization technique first used to avoid overfitting
in fully connected neural networks. Nevertheless, for rather recent CNN models, dropout
is partially dismissed, due to its minor performance improvements [54] and is replaced
by the batch normalization technique [41]. For a given convolution feature map of size
= 5 40C ∗ C8<4 ∗ 5 A4@D4=2H, spatial dropout only performs = 5 40C dropout trials and the dropout
value is extended across the entire feature maps [90]. Now, suppose adjacent time frames
or frequency bins within feature maps are highly correlated (as is normally the case in
early convolution layers). In that case, regular dropout will not regularize the activations
and otherwise decrease the effective learning rate (over-training) [19]. Hence, using spatial
dropout instead of the regular dropout should help promote independence between feature
maps. Recently, [54] conducted a series of experiments on various CNN architectures by
either adding spatial dropout layers to existing models or replacing standard dropout layers
with spatial dropout layers and observed performance improvements for the CNN models.
Motivated by the studies mentioned above, a set of experiments was carried out on the
MultiResUnet model by either adding dropout or spatial dropout layers and observing the
changes in performance. To this end, using a single spatial dropout layer in conjunction
with batch normalization layers (which the MultiResUnet already incorporated after all
convolutional layers except the classification layer) has led to the best results and is kept for
the main experiments.
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2.6 Structured Representation

2.6 Structured Representation
Most ACR systems map all chords to the classic 12 major, 12 minor triads, and one ’no-
chord’ (N) formulation (overall 25 classes). Sixth , seventh, ninth, eleventh, thirteenth
chords and chord inversions are quantized into root triads, e.g. G : sus2 → G : maj
, G : dim7 → G: min or G : maj(9) / 5 → G : maj . Ignoring information such as sup-
pressed or additional notes introduces label noise andmay negatively affect accuracy [38, 62].
The assumption here is that all classes are unrelated (mutually independent). Therefore
through this quantization process, all observations are assigned to the corresponding one-of-
K classification. The flip side of the coin is that this formulation ignores the chords’ inherent
structure and weights all errors equally. For example, if the model predicts C: maj7 instead
of A : min7 the penalty is just as bad as if it had predicted �♯ : maj7 . However, some
mistakes are more severe than others, e.g. C: maj7 and A : min7 share the three notes C,
G and E while C: maj7 and �♯ : maj7 share none, which is not reflected in the one-of-K
classification problem. Some studies [94, 93, 62, 23, 45, ] focus on large vocabulary chord
recognition to avoid the noise introduced by mapping all chords to the classic major-minor
formulation, and match the set of active pitches against a larger template. Omitting larger
chord templates will map a compound chord such as �♭ : min(9) / 5 (A flat minor add 9
with a fifth in the bass) to �♯ : min . However, �♯ : min ( �♯, � and �♯ ) neither implies
the presence of the added 9 ( �♯) in the chord nor the fifth ( �♯) in the bass, although it is
explicitly contained in the reference annotation. The structured representation , on the other
hand, is a label decomposition algorithm consisting of two parts: a) simplification, which is
common to all chord classification models; and b) encoding. The following steps can best
describe the simplification [62]:

1. Define a mapping of all valid chord 3 types to a finite chord vocabulary.

2. Discard inversions and suppressed or additional notes, e.g.,

�♭ : min(9) / 5 → �♭ : min

3. Decompose labels into root and pitch classes4 (w.r.t the roots):

�♭ : <8=→
{

8 root
(0, 3, 7) pitch classes

4. Match the set of active pitches against the desired templates 5

5. Resolve enharmonic equivalencies by mapping the root and matched templates to a
canonical form:
(8, (0, 3, 7)) → �♯ : <8=

6. If the set of active pitches does not match one of the templates 6, map it to X (the
unknown chord symbol).

7. Define a special root/bass category for the non-chord symbol N and map X to an
all-zeros pitch vector.

3The syntax of valid chord types is defined in Section 2.1.
4List of semitones is presented in Table 2.
5List of chord types under consideration for this thesis is presented in Table 2.
6Power chords, i.e., chords with only the root and the fifth or one-chords (G (1)) are examples of chords that

will map to X.
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2.7 Chord recognition evaluation methods

Encoding comprises the decomposition of each chord into a set of musically meaningful
sub-components: root pitch class, bass pitch class, and active pitch classes. Root and the
bass pitch classes are sparsely encoded as integers in the range of (0, 12). 7 The set of active
pitch classes is binary encoded. Figure 7 visualizes the steps described above.

Figure 7: An illustration of the label decomposition algorithm, where target chords are
represented as both binary vectors encoding the root, bass and pitch classes, and in simplified
canonical form. N, X map to a special root/bass class N, and the all-zeros pitch vector [62].

2.7 Chord recognition evaluation methods
The quality of an automatic chord recognition algorithm is evaluated by comparing a ground
truth to a predicted annotation. The MIREX ACE contest uses chord symbol recall (CSR)
for this task [66]. Up until 2013, MIREX used an approximate CSR calculated by sampling
both the predicted annotations and the ground-truth every 10ms and dividing the number
of correctly annotated samples by the total number of samples [65]. Since 2013, MIREX
assumes the ground-truth annotations and the predicted annotations as continuous segmenta-
tion of the audio and considers the cumulative length of the correctly overlapping segments
for CSR calculation [65]. The segment-based approach is a more precise and computationally
more efficient method to calculate the CSR [30, p. 220]. The formula for the segment-based
CSR is given by [30, p. 209] :

�(') ((� , (�) =

∑
(
9

�

∑
(8
�
|(8
�
∩ ( 9

�
| ·M) (( 9�, (

8
�
)∑

(
9

�

|( 9
�
|

(9)

The ground-truth annotation � and predicted annotation � are a sequence of the segments
(� and (� respectively. | · | denotes the duration of a segment. M is the matching function
defined by :

M) =

{
1 if - matches .
0 otherwise

(10)

) specifies the comparison method for evaluating the matching function’s results and is
dependent on the chord vocabulary used.

7The last integer is reserved for the non-chord symbol N
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Chord Comparison Functions
Name Equal Unequal Ignored
root F♯:aug , G♭:min D:maj/3 , B:maj ——
thirds G:aug , G:maj F:maj7 , F:min ——
triads G:hdim , G:dim C:aug , C:maj ——
tetrads A:7 , A:9 D:7, D:maj7 ——
mirex D:maj6 , B:min D:maj , B:min ——
majmin C:min7 , C:min C:maj , C:sus2 dim, sus2, sus4
sevenths C♯:maj9 , C♯:maj7 C♯:maj7 , C♯:7 dim, sus2, sus4

Table 3: Common chord comparison functions and examples implemented in <8A_4E0;

Table 3 lists seven of the most common comparison functions used in ACE. The ’root’ com-
parison function only considers the root enharmonic of a chord spelling, i.e., both F♯: aug
and G♭: minwill be mapped to the root F♯ and their qualities, aug, and minwill be discarded.
Under this constraint, both will be equal. The ’thirds’ function compares chords at the level
of their major or minor thirds (root and thirds), e.g., ’G: aug has a major third interval and
hence is mapped to major and since its root is G, it is equal to G: maj. Diminished seventh
(dim7) chords have a minor third and are mapped to minor, sus2 and sus4 chords replace
the third with a second and fourth, respectively, which means that they do not have a major
or minor quality. However, the ’thirds’ function maps such chords to major. The ’triads’
function compares chords at the level of major or minor triads (minor, diminished, major,
augmented, suspended), e.g., C: maj7 and C: 7 both share the same root and major triad and
are equivalent, while C: min and C: dim are not. The ’mirex’ function compares chords at
the pitch class level; two chords are considered equal when they have at least three notes in
common. The ’mirex’ function is a more relaxed evaluation since it allows for misidentified
roots and related chords, e.g., D: maj6 (D, F♯, A and B) and B: min (B, D and F♯) share
three pitches and even though do not share the same root are considered equivalent. The
’maj-min’ function compares only major, minor, and no-chords (N), and ignores other chords
for the evaluation. The ’sevenths’ function considers only the major, major seventh, minor,
minor seventh, and seventh (dominant seventh) for evaluation. Chords outside of this set are
ignored. The ’tetrads’ function extends the ’sevenths’ rule to all chords within an octave,
including sixth and half-diminished chords (minor seventh flat five). Extended chords such as
9’s, 11’s, and 13’s are rolled into an octave where upper voicings are included as extensions
[78]. Therefore, comparison at ’tetrads’ will not distinguish between A: 7 and A: 13, i.e.,
both are equal. The open-source evaluation toolbox, <8A_4E0; [78] implements each of the
seven comparison functions and their inversions (except for the root and ’mirex’, which have
no inversions) and is used in this thesis to compare the performance of both architectures
under consideration.

If the CSR is to be calculated for the entire data set, it is also weighted according to the
duration of each song contained in it. The resulting value is called the weighted chord sym-
bol recall (WCSR) [65]. The WCSR measures how accurate a chord recognition algorithm
is at predicting the right chord for an instant in the audio file [30, p. 214] . However, a human
listener might not perceive the annotation with the highestWCSR to be the best. For example,
Figure 8 shows the ground-truth annotation and two predicted chord annotation sequences.
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Figure 8: CSR comparison between annotation A, B, and the ground-truth. Annotation A
has a better CSR score than annotation B. However annotation A is more fragmented than
annotation B. Therefore, a human listener may prefer Annotation B over Annotation A as it
is easier to play and more natural to listen to.

Annotation A has a CSR value of 13/19 = 0.685 because it has 13 correct matching frames
out of 19 frames. Annotation B has a CSR value of 12/19 = 0.632 because it has 12 correct
matching frames out of 19 frames. However, for annotation A the chord recognizer has
produced a rather fragmented chord sequence. For annotation B, even though the chord
recognizer has failed to recognize the right chord label for the first five seconds, it still has
managed to predict the correct chord label for the three chord segments A, G, and D. A
human listener may prefer the second annotation as it provides a more coherent structure
of the underlying harmony, is easier to play and more natural to listen to. Hence, relying
on (weighted) CSR alone is not sufficient to illustrate how consistent the algorithm is [30,
p. 214]. Therefore, besides weighted CSR, to properly overview different algorithms’
performance, another metric is required, which measures the segmentation’s quality, i.e.,
how over- or under-segmented the predictions are. Mauch [59] adopted the directional
Hamming divergence from image processing as a measure of segmentation quality in chord
recognition. Let S8= [starttime8,endtime8] be an element of a contiguous segmentation S, the
directional Hamming divergencemeasures howmuch of it is not overlapped by themaximally
overlapping segment of the other segmentation [p. 51][59]. Afterward, the resulting values
are summed over all intervals. Given two segmentations S0 = (S0

8
), S = S8 the directional

Hamming divergence is computed as [30, 59, p. 217, p. 52] :

ℎ(( | |(0) =
#
(0∑
8=1
( |(0

8 | − <0G
9
|(0
8 ∩ ( 9 | ) (11)

where |·| is the duration of a segment. The directional Hamming divergence describes how
fragmented S is to S0. Let S0 = S� be the chord sequence of the ground-truth, and S = S� the
annotation generated by a recognition algorithm, then ℎ((� | |(�) ∈ [0,T] is measure of over-
segmentation of annotation A w.r.t to the ground-truth annotation. Conversely, ℎ((� | |(�)
measures an under-segmentation of A w.r.t the ground-truth annotation. In both cases, the
closer the value to zero, the better the transcription. Continuing with the chord sequences in
Figure 8:
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2.8 Combined Chord recognition F-measure

ℎ((� | |(�) =
#
(�∑
8=1
( |(�8 |−<0G

9
|(�8 ∩(�9 | ) = (5−2)+(5−2)+(3−3)+(2−2)+(2−1)+(4−1) = 10

(12)

This value indicates that annotation A is over-segmented. However, it is not under-segmented
since:

ℎ((� | |(�) =
#
(�∑
8=1
( |(�8 | − <0G

9
|(�8 ∩ (�9 | ) = 0 (13)

Annotation B has an identical segmentation to the ground-truth, therefore: ℎ((� | |(�) =
ℎ((� | |(�) = 0. Equation 14 and 15 transform the directional Hamming divergence into a
quality measure for over-segmentation and under-segmentation where near-zero values for
Over-Segmentation or Under-segmentation correspond to highly over-segmented or under-
segmented annotations [59, p. 52].

Over-Segmentation(( | |(0) = 1 − ℎ(( | |(0)∑#
(0

8=1 |(
0
8
|
∈ [0, 1] (14)

Under-Segmentation(( | |(0) = 1 − ℎ((0 | |()∑#
(0

8=1 |(
0
8
|
∈ [0, 1] (15)

Equations 16 combines both segmentationmeasures into a single Segmentationmeasure [71]:

(46<4=C0C8>=((, (0) = min

{
Over-Segmentation((, (0)
Under-Segmentation((, (0)

(16)

Taking the minimum has the advantage that an annotation only gets a high segmentation
value if neither over- nor under-segmentation is dominant [59, p. 52] . The (46<4=C0C8>=
measure can be evaluated without taking the chord symbols in a segment into account.

2.8 Combined Chord recognition F-measure
The previous subsection introduced theWCSR and the Segmentation score as way to evaluate
the quality of a chord recognition algorithm . The two scores can be combined into an single
chord recognition F-measure:

� (�, �) = 2 ∗ �('(�, �) ∗ Segmentation(�, �)
�('(�, �) + Segmentation(�, �) (17)

Where G and E represent the ground-truth and estimation of the chord recognition algorithm,
respectively. The combined chord recognition F-measure is a complementary measure to
CSR and provides more information about the performance of the model than using CSR on
its own [30, p. 221].
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2.9 Data Collection Statistics
This subsection presents some of the statistics for the reference annotations. The complete
data set contains 37007 non-unique chord symbols (including the non-chord symbol ’N’)
with an overall duration of 20 hours, 27 minutes, and 16 seconds, which matches all audio
files’ aggregate time. The non-chord symbol ’N’ is neither a root pitch class nor a chord
quality. However, it is still included in the statistics as its own category to put its ratio to
other root pitchclasses or chord qualities into perspective. Table 4 shows the frequency and
duration statistics for root pitch classes in the data collection. The values in the table account
for absolute frequency counts, duration totals, and their percentages. Furthermore, values are
also graphically shown in Figure 9. Note that the statistics consider root pitch classes and not
root pitch names contained in the data collection. For example, B (2275 chord symbols, 1
hour, 9 minutes and 22 seconds) and Cb (37 chord symbols, 51 seconds) have different pitch
names but belong to the same pitch class B/Cb. Therefore, the frequency and duration of these
two pitch names are aggregated to form the pitchclass B/Cb (2312 chord symbols, 1 hour,
10 minutes, and 13 seconds). Furthermore, it can be observed that frequency distributions
(% frequency in the table) and total time percentages (% time in the table) are quite similar.
Howver, the latter is more important than the former since, as mentioned in Section 2.7, it is
the cumulative length of the correctly overlapping segments and not the frequency of chord
symbols that is used for CSR calculation.

Pitch Class Frequency % frequency Aggregate time % time

A 4986 13.47 10119.047 13.74
G 5164 13.95 9671.23 13.13
D 4923 13.30 9561.910 2.98
C 4078 11.02 8193.20 11.13
E 3643 9.84 8161.95 11.08
F 3160 8.54 5900.82 8.02
B/Cb 2312 6.25 4213.06 5.73
A#/Bb 2069 5.60 3947.43 5.36
F#/Gb 1600 4.32 2962.30 4.02
D#/Eb 1529 4.13 2830.80 3.84
N 871 2.35 2726.65 3.70
G#/Ab 1393 3.77 2679.54 3.64
C#/Db 1279 3.46 2668.35 3.62

Table 4: Statistics for the root pitch classes contained in the merged data collection.

Figure 9: A histogram of the pitch classes contained in the merged data collection.
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2.9.1 Root-invariant, bass-blind chord quality statistics

Table 10 presents the root-invariant, bass-blind statistics for 14 chord qualities under con-
sideration. Root-invariant means that for each quality, its total duration is summed over all
root pitch classes. Bass-blind accounts for the inclusion of inversions in the statistics, e.g.,
the aggregate time of maj is the total sum of the duration of all root position and inverted
major chord qualities present in the data set. The aggregate time values are also graphically
shown by the histogram in Figure 108. Immediately visible from the figure is the extreme
class imbalance in the data set. To better understand this class imbalance, chord qualities
are grouped into majority classes (maj, min, min7, 7, N, and maj7), and minority
classes ( maj6, sus4, dim, aug, min6, hdim7, sus2, dim7, minmaj7). Firstly,
it can be observed that there is a relative class imbalance between these two groups. The
ratio of aggregate time, for example, between the most and least common chord qualities,
maj and minmaj7 is nearly three orders of magnitude (42239.64 B42

47.95 B42 ≈ 900). Secondly, there is
an overall visible lack of data for minority classes (absolute class imbalance). For example,
the total duration of all minority classes accounts for only 4.03 % of total time of the entire
data set. Further investigation into the data collection reveals the occurrence of some chord
qualities in only the same small number of tracks, e.g., the chord qualities majmin7, sus2,
and hdim7 appear in 3, 22, and 23 tracks, thus limiting these chord qualities’ variability.

Quality Frequeny % frequency Aggregate time % time

maj 21221 57.34 42239.64 57.36
min 6235 16.85 12264.81 16.66
min7 2415 6.53 4426.24 6.01
7 1981 5.35 4042.83 5.49
N 871 2.35 2726.64 3.70
maj7 1086 2.93 2334.16 3.17
maj6 508 1.37 877.30 1.19
sus4 412 1.11 678.46 0.92
dim 263 0.71 383.67 0.52
aug 192 0.52 322.07 0.44
min6 112 0.30 210.13 0.29
hdim7 91 0.25 162.31 0.22
sus2 104 0.28 154.48 0.21
dim7 70 0.19 128.41 0.17
minmaj7 30 0.80 47.95 0.07

Others 1416 3.12 2637.19 3.58

Table 5: Root-invariant, bass-blind statistics for the 14 chord qualities in the merged data
collection.

8The entity ’Others’ in the table includes all chord qualities that are not examined for this thesis.
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2.9 Data Collection Statistics

Figure 10: A root-invariant histogram of the qualities contained in the merged data collection.

2.9.2 Root-invariant, bass-sensitive chord quality statistics

Table 6 presents the root-invariant, bass-sensitive statistics for 14 inverted chord qualities
under consideration. The aggregate time values in the table are also graphically shown by
the histogram in Figure 11. Summing all time-percentage values in the table (% time) reveals
that total duration of all inverted chord qualities account for approximately 8.054 % of total
duration of the whole data set. Visible from Figure 11, is the presence of relative, and
absolute class imbalance discussed in the previous section.

Quality Frequency % frequency Aggregate time % time

maj/ 2705 7.31 3991.91 5.42
N 871 2.35 2726.64 3.70
min/ 725 1.96 971.04 1.32
7/ 154 0.42 212.21 0.29
maj7/ 110 0.30 210.09 0.29
min7/ 141 0.38 197.26 0.27
maj6/ 65 0.18 91.07 0.12
min6/ 36 0.10 54.00 0.07
sus4/ 33 0.09 43.07 0.06
minmaj7/ 24 0.06 38.88 0.05
dim/ 24 0.06 38.64 0.05
hdim7/ 19 0.05 28.22 0.04
dim7/ 18 0.05 26.28 0.04
aug/ 11 0.03 20.46 0.03
sus2/ 2 0.01 3.262 0.004

Table 6: Root-invariant, bass-sensitive statistics for triads and tetrads contained in the merged
data collection. ’/’ denotes the inversion symbol, i.e., chord types presented here are in their
inverted form.

.
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Figure 11: A root-invariant, bass-sensitive histogram of inverted triads and tetrads contained
in the merged data collection. ’/’ denotes the inversion symbol, i.e., chord types presented
here are in their inverted form.

The relative class imbalance can be best described by the ratio between the most and least
common inverted chord qualities: maj/ and sus/2 , which is more than three orders of
magnitude (3991.91 B42

3.262 B42 ≈ 1224). Indicative of the absolute class imbalance is the overall lack
of data for inverted chord-types: sus2/, aug/, dim7/, hdim7/, dim/, minmaj7/,
sus4/, min6/, and maj6/. For example, the total duration of all rare inverted chord
types mentioned above accounts for about 0.46 % of the entire data set’s duration.
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3 Experimental Setup

3.1 Input Pre-Processing Setup
Table 7 lists the input pre-processing setup used during the experiments. Each audio file
and its corresponding chord annotation are first pitch-shifted up or down by one to six
semitones. Furthermore, all pitch-shifted and original audio files are transformed into a log-
power harmonic constant-Q spectrogram (phase information is discarded ) with a minimum
frequency of 32.7 Hz, 36 bins per octave, spanning over 6 octaves, and clipped at 80 3� (the
magnitude is scaled to dB) below the peak. All audio signals are analyzed at a sampling rate
of 44.1 kHzwith a hop length (the number of samples between CQT frames) of 4096 samples.
The resulting frame rate is approximately 44100

4096 ≈ 10.77 Hz. The amount of frequency over-
sampling, i.e., bins per semitone (over_sample) and the number of harmonics (ℎ) used for
the HCQT calculation, are both set to 3. The number of frequency bins (=18=B) used as an
input to the two models is given by equation 18 where 12 is the number of semitones in an
octave. Pitch-shifting data augmentation is performed with the muda package [60]. HCQT
calculation is facilitated using Librosa [63] .

=18=B = =>2C0E4B ∗ 12 ∗ >E4A_B0<?;4 = 6 ∗ 12 ∗ 3 = 216 (18)

Setup
input feature log-magnitude

5B 44100 Hz
hop length 4096 samples

5?B 10.77 Hz
5<8= 32.7 HZ

=>2C0E4B 6
bins per octave 36
over_sample 3

ℎ 3
=18=B 216

Table 7: Input Pre-Processing Setup

3.2 Modified MultiResUnet
The configuration of the originalMultiResUnet depicted in Figure 6 with its four max-pooling
layers in the down-sampling path and four transposed convolution layers in the up-sampling
path and * = 32 for the first MultiRes block results in a network that has far too many
parameters compared to the baseline. Therefore, to achieve a fair comparison between the
two models (in terms of the parameter count), the number of max-pooling layers in the
down-sampling path, and the number of transposed convolution layers in the up-sampling
path is reduced to three. The stride for each max-pooling layer is set to (1, 2), i.e., pooling
is only performed on the frequency and not the time domain as pooling on the time domain
slightly degraded the results. The stride for the transposed convolution layers is set to (1,
2) accordingly. The number of filters in the first MultiRes block is set to 16, instead of
32. In addition, the activation function of all three by three convolution layers is changed to
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3.2 Modified MultiResUnet

ELU [22]. The steps describe above are summarized in Table 8 9. Furthermore, an image
pyramid is applied to MultiRes block1 and MultiRes block 2 [2]. The output of the last
MultiRes block enters a spatial dropout layer with a rate of 0.2 (20 %). Figure 12 illustrates
the spatial dropout and the structured representation for the modified MultiResUnet. The
color-coded header for each box specifies the operation’s type. Each box’s body describes
the configuration of that operation, e.g., the ’axis’ parameter inside the batch normalization
boxes defines on which axis batch normalization is performed on. The structured training
approach predicts for each frame C, the root pitch class, the bass pitch class, and the set
of active pitch classes from the spatial dropout layer’s output. Root and bass prediction
are modeled as a multi-class prediction, each using a soft-max non-linearity (conv2d_44,
conv2d_45). Pitch class estimation is modeled as a multi-label prediction, and therefore
uses a sigmoid non-linearity (conv2d_43). The output of the three convolutional layers are
concatenated with the spatial dropout layer’s output to construct the structured representation
from which the final chord label is predicted (conv2d_46) [62]. Finally, the average pooling
layers perform downsampling on the frequency domain (reduce the dimension from 216 to
1), and the lambda layers squeeze the output of the average pooling layers, i.e., they reshape
the output of the average pooling layers, so it matches the shape of the encoded labels.

Modified MultiResUnet
Block Layer (filter size) #filters Path Layer (filter size) #filters

MultiRes Block 1

MultiRes Block 7

Conv2D (3,3)
Conv2D (3,3)
Conv2D (3,3)
Conv2D (1,1)

4
8
13
25

ResPath 1

Conv2D (3,3)
Conv2D (1,1)
Conv2D (3,3)
Conv2D (1,1)
Conv2D (3,3)
Conv2D (1,1)

16
16
16
16
16
16

MultiRes Block 2

MultiRes Block 6

Conv2D (3,3)
Conv2D (3,3)
Conv2D (3,3)
Conv2D (1,1)

8
17
26
51

ResPath 2

Conv2D (3,3)
Conv2D (1,1)
Conv2D (3,3)
Conv2D (1,1)

32
32
32
32

MultiRes Block 3

MultiRes Block 5

Conv2D (3,3)
Conv2D (3,3)
Conv2D (3,3)
Conv2D (1,1)

17
35
53
105

ResPath 3 Conv2D (3,3)
Conv2D (1,1)

64
64

MultiRes Block 4

Conv2D (3,3)
Conv2D (3,3)
Conv2D (3,3)
Conv2D (1,1)

35
71
106
212

Table 8: Modified MultiResUnet Architecture Details

9For a comparison between the original and modified MultiResUnet see, [40]
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3.3 Baseline

Figure 12: Spatial dropout and classification heads of the modified MultiResUnet.

3.3 Baseline
The re-implemented baseline used for the experiments is the convolutional and recurrent
estimators for music analysis model (Crema) [61], which is the updated, and optimized model
first proposed by [62]. Figure 13 provides a detailed summary of the model. The model has
nine layers (not counting reshaping/merging and batch norm). The first convolution layer uses
only one filter with a kernel size of 5 * 5, and the second convolution layer includes 72 filters
with a kernel size of 1 * 72. Both convolutional layers use a relu activation function [68] and
construct the encoding part of the model. The decoding part comprises two bi-directional
gated recurrent units (Bi-GRU) [21]. Crema’s structured training approach is similar to that
of the MultiResUnet described above but relies on fully connected layers for root, bass, pitch,
and final chord label prediction.
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3.3 Baseline

Figure 13: Summary of the convolutional and recurrent estimators for music analysis model
(Crema)
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3.4 Training

3.4 Training
Both models are trained on 6 second patches equaling 64 frames:

5 ;>>A (6 ∗ 5B ∗
1

hop length
) = 5 ;>>A (6 ∗ 44100 ∗ 1

4096
) = 64. (19)

Furthermore, both models are trained using a batch size of 16 with each epoch having 512
batches. Hence, both models’ input has the shape: (16, 64, 216, 3). 16 is the batch size, 64
is the number of time frames (6 seconds), 216 is the number of frequency bins, and 3 stands
for the number of channels. Models are trained in a supervised manner using the Adam
optimization method with default parameters (learning rate at start = 10−3). The learning rate
is reduced if there is no improvement in the validation score after 10 epochs. The models are
trained for a maximum of 100 epochs. Early stopping is activated if the validation accuracy
does not improve for 20 epochs. During training, each model learns to jointly estimate the
structured representation and chord labels where the former learns to minimize the sum of all
losses, i.e., root, pitch, bass, and decoder losses across all outputs [62]. The loss function used
for root pitch class, bass pitch class, and final chord label prediction is the sparse categorical
cross-entropy which is given by [8, p. 209] :

ℓ(\) = −1
=

=∑
C

2∑
9

HC 9 ;>6(?C 9 ) (20)

where the double sum is over the time frames t, with n denoting the number of frames, 9
represents the categories with c denoting the number of the categories (classes), and H is the
label and ?C 9 ∈ (0, 1) :

∑
9 ?C 91∀C, 9 is the prediction of the model for a frame. ’Sparse’

indicates that the labels are integer encoded rather than one-hot encoded.

The loss function used for pitch class prediction is the binary cross-entropy, which is a special
case of equation 20 for 2 = 2 [8, p. 206]:

ℓ(\) = −1
=

=∑
C

[HC log(?C) + (1 − HC) log(1 − ?8)] (21)

For c = 12, the binary cross-entropy sets 12 separate binary classification problems where
each binary classifier is trained independently. Then the loss is summed over the different
binary problems, producing a multi-label for each frame. The models are implemented in
Tensorflow 1.9 [1] (tf.keras 2.1).

3.5 Evaluation
The proposed system and the re-implemented baseline are evaluated using 5-fold cross-
validation [87] on the compound data set described in Section 2.1. 1

4 of each training set
is hold out for validation where there is no overlap between the training and test set with
each fold having roughly the same number of tracks. In addition, for the Beatles and Robbie
Williams data set, each split has the same album distribution. Both systems are compared
using the methods described in Section 2.7. The average training time per epoch for the
MultiResUnet and Crema is roughly six and 16 minutes.
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4.1 Main Results

i) both models’ highest WCSR achieved is for the ’root’ comparison with MultiResUnet
yielding a 1.6 % improvement over the baseline.

ii) WCSR scores for the ’thirds’ and ’triads’ drop compared to the ’root’ with MultiRe-
sUnet, still gaining a 1.7 % and 1.9 % improvement over the baseline.

iii) WCSR for the ’triads’ is lower than the ’thirds’, which is expected because the ’thirds’
comparison is solely based on the root and the presence or absence of the minor third scale
degree. Thus, diminished chords which do have a minor third scale degree will be grouped
with minor chords (min) and all other chords, for example, augmented chords (aug) with
major (maj). Therefore, 263 dim, and 192 aug chords, which make up 0.96 % of the to-
tal duration of the entire data set, are now considered min, and maj, respectively. As a
result, neither model will be penalized for predicting, for example, a dim instead of a min
chord. However, the ’triads’ comparison distinguishes between maj, min, aug, and dim
chords, and will include the previously excluded ’dim’, and ’aug’ chords for evaluation. As
a result, bothmodels can be penalized for predicting thewrong triad, hence the drop inWCSR.

iv) WCSR scores for the ’majmin’ comparison is higher than the ’triads’ with the Mul-
tiResUnet yielding a 1.3 % improvement over Crema. However, this is not surprising since
maj, and min chords alone make up 74.02 % of the entire data set’s total duration.

v) WCSR scores for the ’sevenths’ drop significantly compared to the other methods dis-
cussed so far, with the MultiResUnet showing a 3.1 % improvement over the baseline. The
’sevenths’ extends the ’majmin’ comparison by including the maj7, min7, and 7 chords for
evaluation. The total duration of these seventh chords makes up to 14.67 % of the duration
of the entire data set for which the models can now be penalized for.

vi) WCSR scores for the ’tetrads’ comparison follow the same trend as the ’sevenths’ with
MultiResUnet yielding a 2 % improvement over Crema. The ’tetrads’ comparison extends
the ’sevenths’ rule by considering chords at the level of their entire quality within a single
octave. Including new chord types such as min6, maj6, hdim7, dim7, and minmaj7 result in
lower WCSR scores than the ’sevenths’ comparison. Overall, it can be concluded that both
models are:

• quite robust at estimating major and minor triads

• better at estimating major and minor than augmented and diminished triads

• better at estimating triads than tetrads

Comparison methods discussed so far are all bass-blind, i.e., only root position chords are
considered for evaluation. Algorithms that can not generate inversions always estimate root
position chords by default. For the inversion-sensitive comparisons, both models first have
to find the most probable bass note, and if that bass note is within the detected quality, it
will be predicted as an inversion. One small implementation detail worth mentioning is that
inversion prediction does not require creating new vocabulary entries as the bass prediction
of the structured training approach can be used to predict bass notes, which are then added to
the models’ predicted annotations. WCSR scores for the bass-sensitive comparison methods
are listed in Table 10. From the table, it can be observed that the results for inversion-sensitive
comparisons are lower than the inversion-agnostic ones. One possible explanation for this
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4.1 Main Results

Method thirds_inv triads_inv majmin_inv sevenths_inv tetrads_inv

MultiResUnet 0.806 0.785 0.822 0.711 0.676
Crema 0.796 0.744 0.803 0.684 0.644

Table 10: Median weighted recall scores of the bass-sensitive comparison methods for
MultiResUnet and Crema.

drop is the small ratio of chords in their inverted form to root position chords. For example,
the total duration of all inverted chord types considered for evaluation makes up less than 9
% of the entire data set’s total duration.

Therefore the possibility of wrongfully estimating a bass on a root position outweighs the
benefit of possibly estimating the right inversion [77]. Furthermore, the problematic inter-,
and more importantly, absolute class imbalance among these inverted chord types only adds
to the problem hindering models from learning the subtle differences between some of these
inverted chord types, for example, ’dim/’ vs. ’hdim7/’ vs. ’dim7/’. From the results shown in
Tables 9 and 10, it can be concluded that extending the chord vocabulary towards inversions
will not necessarily result in better recognition but provides a much more detailed view of
the algorithm’s performance under consideration.

Method underseg overseg seg

MultiResUnet 0.924 0.859 0.841
Crema 0.910 0.848 0.830

Table 11: Segmentation scores for models under consideration.

In Section 2.7 it was stated that WCSR alone is not sufficient by itself to show how consistent
chord recognition algorithms are. Therefore, three metrics were introduced to measure an
algorithm’s under-, over-, and overall segmentation quality. Table 11 reports the results of
this evaluation, which suggest that chord estimates generated by both models tend to be over-
rather than under-segmented, with the MultiResUnet achieving better scores across all three
metrics. The final segmentation score of the proposed model shows a 1.1 % improvement
over the baseline, i.e., chord estimates produced by MultiResUnet have a better segmentation
quality. This is an important finding as it showcases the potential of segmentation architectures
in sequence prediction tasks where RNNs are ought to perform better. Also, MultiResUnet
requires 51971 fewer training parameters than the baseline, while training time per epoch is
reduced by half.

Section 2.8 introduced the combined chord recognition F-measure as a means to provide
more information about the performance of algorithms. Tables 12 and 13 present the F-
measure scores of both models under consideration. Results are in accordance with WCSR
scores listed in Tables 9 and 10. Both models are better at predicting ’root’, ’majmin’, and
’triads’ than ’sevenths and ’tetrads’. Furthermore, both models show a better performance for
bass-blind rather than bass-sensitive methods with MultiResUnet yielding better F-measure
scores across all mir_eval metrics. However, MultiResUnet’s higher F-measure scores were
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expected as the combined chord recognition F-measure is the harmonicmean of chord symbol
recall and segmentation, where the model had already achieved better results in both cases.

Method root thirds triads majmin mirex sevenths tetrads

MultiResUnet 0.854 0.834 0.823 0.840 0.834 0.777 0.755
Crema 0.839 0.823 0.801 0.825 0.823 0.762 0.731

Table 12: F-measure scores of the bass-blind methods for models under consideration.

Method thirds_inv triads_inv majmin_inv sevenths_inv tetrads_inv

MultiResUnet 0.8101 0.802 0.817 0.759 0.734
Crema 0.799 0.784 0.801 0.740 0.716

Table 13: F-measure scores of the bass-sensitive methods for models under consideration.

4.2 Error Analysis
The error analysis presented in this section is motivated by the huge class imbalance in
the data set, which makes WCSR, by definition (see Section 2.7 ), put greater emphasis on
the majority classes. Therefore, performing strict root and quality-wise error analysis is
crucial to gain further insights into model performance on rare chord types. As a result, the
normalized root and within-root quality confusion matrices [62] are presented in this section,
leading to a better understanding of the models’ errors during prediction. The root confusion
matrix for MultiResUnet is shown in Figure 15. The x- and y-axis represent the estimated and
actual root pitch classes, respectively. The main diagonal shows how accurately the model
could estimate the actual root pitch classes. Except for D♯, the higher accuracy for A, G,
C, D, and F is in agreement with the occurrence of these pitchclasses in the data collection
(see Table 4). One visible trend from the figure is the confusion of most roots towards their
perfect fourths (P4) and perfect fifths (P5). For the root C, for example, 2% and 3% of the
errors are towards E, and G, i.e., its P4 and P5. One possible explanation for this is the strong
correlation of the fundamental frequency of the perfect fifth 5 5 to that of the root 5 1 which
is given by [73]:

5 5 ≈ 3
2
5 1 (22)

The result is an overlap of every even harmonic of the fifth with the root note’s harmonic.
This overlap may confuse the model towards estimating a P5 instead of the actual root note.
The normalized root confusion matrix for the baseline is depicted in Figure 16. Similar to
Figure 15, the confusion of roots here are mostly towards their P4 and P5, and the higher
accuracy for A, G, C, D, and F is following their natural bias in the data set.

The within-root quality confusion matrices for MultiResUnet, and Crema are depicted in
Figures 15 and 16, and are computed as follows: for each frame of a test track, its reference
label is first simplified according to the simplification procedure described in Section 2.6,
and then the simplified reference label is compared to the label predicted by the model if
the roots match [62] . Mathematically, this can be expressed as %[4BC8<0C43_@D0;8CH =
A4 5 4A4=24_@D0;8CH |4BC8<0C43_A>>C = A4 5 4A4=24_A>>C]. Finally, the results are summed
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over all tracks and normalized by the frequency of the qualities in the reference annotations
[62]. The first and second columns in MultiResUnet’s within-root quality confusion matrix
reveal a natural bias towards predicting more major and minor chords. This is expected as
maj, and min chords alone make up to 74.02 % of the entire data set duration. The confusion
of minor chords (min) is mostly towards major (maj). Furthermore, the performance for
dominant seventh chords (7) seems to be relatively low, and 81 % of actual 7 frames are
predicted as maj, even though 7 chords are the fourth most frequent chord quality in the data
set. The confusion of 7 to maj is likely the result of V vs. V7 confusion. For example,
the triad built on the fifth scale degree of a major scale is a major triad (V); however, the
tetrad built on the fifth scale degree of a major scale is a dominant seventh (V7) chord.
As a result, the model might have confused these two chord types and thus mapped the 7
to maj. Note that some confusions can be understood as simplifications (see Section 2.6):
e.g., (maj7, 7) to maj or (min7, minmaj7) to min. Nevertheless, the model still struggles
with rare classes such as min6, aug, sus2, and sus4 chords. Moreover, the model resolves
hdim7, and dim7 chords towards min. One possible explanation is that the frequency of these
rare chord qualities in the data set is far too low for the fully convolutional model to learn
the relevant hierarchical features necessary for their classification, and, therefore, resolves
them towards the most frequent chord classes. Likewise, 99 % of the frames classified as
’X’ (unknown chords) map to the most frequent chord quality, namely the maj chord. The
within-root confusion matrix of the Crema model depicted in Figure 18 shows a similar bias
towards min, and maj chord classes. However, the Crema model shows improvements for
the rare chord classes: dim, hdim7, dim7, sus2, and sus4. Moreover, the entries in the first
two columns of Crema’s within-root quality confusion matrix reveal a reduction of confusion
to maj and min, which indicates that Crema is more robust towards the inherent quality
bias in the data set. The comparison of within-root confusion matrices, and WCSR scores
listed in Table 9 indicates that strict quality-wise recall may have an inverse relationship with
weighted average recall. Acknowledging this relationship, model selection may conclusively
be a function of the application. For example, what should the model under consideration
excel at? Classifying simpler chords, i.e., major or minor chords? Or should the model be
able to classify rather rarer chord types, i.e., minmaj7, and dim7?

Moreover, it should be mentioned that the number of MultiRes blocks and Res paths and the
number of filters within each one has been reduced in the original MultiResUnet to achieve a
fair comparison between the models (in terms of parameter count), i.e., the original architec-
ture has not necessarily been optimized, but instead shrunk to meet the criteria, which may
have had a negative impact on the final result.

Finally, in the next section, the thesis is concluded with a two-track analysis since the
predictions of two computationally different models allow to investigate to what extent they
coincide.
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Figure 15: Frame-wise root confusion matrix for Crema. Confusion of most roots is towards
their perfect fourths and perfect fifths.

Figure 16: Frame-wise root confusion matrix for the Crema model. Confusion of most roots
is towards their perfect fourths and perfect fifths.
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Figure 17: Within-root, frame-wise quality confusion for MultiResUnet.

Figure 18: Within-root, frame-wise quality confusion for Crema.
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4.3 Track Analysis
As a final investigation into model performance, focus now shifts towards track analysis
where w.r.t reference annotations, the models’ estimated chord sequences for two songs will
be compared against each other. Furthermore, each track is accompanied by a table listing
its results for several mir_eval metrics.

4.3.1 ’Wild Honey Pie’

Figure 19 shows the reference and estimated chord sequences for the song- ’Wild Honey
Pie’ by The Beatles. Noteworthy of this song is its tuning frequency deviation from concert
pitch by roughly a quarter tone [30, p. 249] . However, the reference annotation indicates
that the key of the song is in G major. This property raises the question of how robust
the models are against tuning deviations. In addition, the reference annotation of this song
includes only 7 chords where the first 39 seconds follow a repetitive G:7→ F:7→ E:7→
Eb:7→ D:7 progression. For the remainder, the reference annotation alternates between G:7
and F:7. However, results of strict quality-wise confusion matrices indicated that the models
face difficulties estimating 7 chords with MultiResUnet more so than Crema which makes
this track particularly interesting as it only contains 7 chords.

To the question above, Crema’s estimated chord sequences clearly illustrate that the model is
not following the song’s harmonic progression at all and stays for the majority of the time on
’N’. One possible explanation for this is the tuning issue described above, which prevents the
model from estimating the correct root of chords and, therefore, stays on the ’N’. Crema’s
poor root and ’sevenths’ comparison scores listed in Table 14 follow the above assumption.
In contrast, MultiResUnet’s estimated chord sequences follow the harmonic progression of
the song to a certain degree (up to triads), e.g., the last 11.33 seconds of the song where the
reference annotation takes turns between G:7 and F:7. From the figure, it can be observed that
the proposed model alternates mostly between G:maj and F:maj and achieves a much higher
CSR for the root comparison method than Crema. However, the predictions of MultiResUnet
are severely over-segmented, which leads to a considerable number of wrong predictions,
resulting in a worse ’sevenths’ score than Crema. Nevertheless, the higher ’sevenths’ score
of Crema here is not the result of the model being better at predicting sevenths but rather a
consequence of its under-segmentation as neither of the three A♯:7 nor two A♯:maj6 chords
predicted by it match the chord sequences of the reference annotation. Moreover, the poor
CRS scores of the ’sevenths’ comparison coupled with the graphically displayed chord esti-
mations of Figure 19 illustrate both models’ deficient performance regarding 7 chords which
are in agreement with their confusion matrices.

Method root sevenths underseg overseg seg

MR_Unet 0.3351 0.0058 0.9504 0.42317 0.42317
Crema 0.0102 0.0102 0.3170 0.94115 0.3170

Table 14: CSR scores of models under consideration for the song- ’Wild Honey Pie’ by The
Beatles.
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Figure 19: Reference and estimated chord sequences for the song ’Wild Honey Pie’.

38



4.3 Track Analysis

4.3.2 ’Dear Prudence’

The song- ’Dear Prudence’ by ’The Beatles’ is one of the only three songs in the entire data
set containing minmaj7 chords. As listed in Table 5, there are 30 such chords in the merged
data collection, of which 24 are in their inverted form. Surprisingly, all 24 inverted minmaj7
chords are contained in this particular song, making it a good candidate for track analysis.
Reference and estimated chord sequences for ’Dear Prudence’ are illustrated in Figure 20.
Out of the two models, Crema is the only one holding three B: minmaj7 / b3 chords in its
estimated chord sequences. However, they all overlap with a single G: maj7 / 3 chord in
the reference annotation and are considered a mismatch for inversion-agnostic and inversion-
sensitive methods. Another noteworthy characteristic of this song is a 20 seconds long D:
maj chord in the middle of the reference annotation where the MultiResUnet has correctly
estimated this chord’s entire duration, except for a spurious jump. In contrast, Crema’s
estimated chord sequences for this chord are visibly over-segmented. Table 15 presents the
CSR scores of several mir_eval comparison methods for the models under consideration.

Method root majmin majmin_inv tetrads tetrads_inv underseg overseg seg

MR_Unet 0.6286 0.65774 0.3540 0.4018 0.3001 0.5304 0.8646 0.5304

Crema 0.5814 0.5710 0.3000 0.3585 0.2564 0.5858 0.7962 0.5858

Table 15: CSR scores of models under consideration for the song- ’Dear Prudence’ by the
The Beatles.

Noticeable from the table is the sharp drop in CSR scores while changing the comparison
method from ’majmin’ to ’majmin_inv’. The same applies to ’tetrads’ and ’tetrads_inv’. The
cause of the decline in CSR scores is the relatively large number of incorrect bass notes
predicted for the inverted chord types as the ’majmin_inv’ and ’tetrads_inv’ comparisons
penalize the models for predicting the wrong bass notes. Furthermore, since CSR scores of
MultiResUnet are higher but its segmentation result lower than Crema’s, it offers the opportu-
nity to compare model performance by the F-measure, e.g., the F-measure of MultiResUnet
and Crema for ’majmin_inv’ is 0.4246 and 0.3968. However, while the CSR scores for
’majmin_inv’ showed a performance difference of 5.4 % between the models, the F-measure
now indicates a difference of 2.78 % between the two.
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Figure 20: Reference and estimated chord sequences for the song ’Dear Prudence’.
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5 Conclusion and Outlook
This thesis comprises the design and development of a new, fully convolutional neural network
architecture for the task of frame-wise automatic chord recognition. The design’s relevance is
evaluated by comparing the proposed model’s performance against a recurrent convolutional
baseline using 15 mir_eval chord recognition metrics. Results of the bass-agnostic compar-
ison functions show that the proposed model is quite robust at predicting major and minor
triads (WCSR_’maj_min’ = 0.854). However, the performance drops slightly for the ’triads’
(≈ 3.1 %) and significantly for the ’tetrads’(≈ 15.7 %) comparison functions. Results of the
bass-sensitive comparison functions are up to a 6 % lower than the bass-agnostics. Never-
theless, the proposed model shows improvements across all bass-agnostic and bass-sensitive
comparison functions.

Shifting focus towards segmentation scores, MultiResUnet achieves better results across
all three segmentation metrics, i.e., the chord sequences predicted by the model have a better
segmentation quality. This is an important finding as it highlights the potential of fully con-
volutional encoder-decoder segmentation architectures in sequence prediction tasks where
RNNs are ought to perform better.

Furthermore, within-root quality confusion matrices illustrate the poor performance of Mul-
tiResUnet on the minority chord classes. The recurrent convolutional baseline, however,
shows improvements for all minority classes. One possible explanation is that the frequency
of these rare chord qualities in the data set is far too low for the fully convolutional model
to learn the relevant hierarchical features necessary for their classification. The seemingly
conflicting results of weighted average chord symbol recall and within-root quality confusion
allude to the notation that model selection may conclusively be a function of the application.
However, MultiResUnet requires 51971 fewer training parameters while training time is re-
duced by half, making it an appropriate candidate for real-time applications downstream.

Although the proposed model showcases the many potentials of fully convolutional encoder-
decoder architectures, there are clear directions forward in extending the concepts presented in
this thesis: first, to achieve a fair comparison between the proposedmodel and the baseline (in
terms of parameter count), the number of MultiRes blocks and Res paths was reduced. This
might have negatively affected the final performance of the model. Second, given the limited
data sets available for automatic chord recognition, the problematic chord distributions in
these data sets, and the difficulties of curating such corpora, there is an opportunity to move
away from supervised learning and explore the potential of semi-supervised or unsupervised
methods.
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