
Technische Universität Berlin

Audio Communication Group

Fakultät I
Einsteinufer 17
10587 Berlin

http://www.ak.tu-berlin.de

Master Thesis

Adding Context Information to Deep Neural Network based
Audio Source Separation

Ramón Wiegratz -

Abstract

This thesis deals with deep learning-based music source separation. Based on a convolu-
tional time-frequency masking architecture, a number of unique strategies are developed
that enhance the receptive field of the network to a more relevant and music-specific
context. This leads to a better exploitation of the data, as well as a more stable training
convergence. Firstly, the exponentially scaled harmonic relationships inside a spectro-
gram are made accessible to the convolutional neural network by restructuring the input
data and aligning harmonically related frequency bins over the feature dimension. Sec-
ondly, a post-processing network is proposed to re-align the contaminated mixture phase,
which is commonly used for the reconstruction of the source signals. Finally, a novel
self-attention mechanism is proposed, which is able to filter out unwanted interferences
and distortions by utilizing the repetitive nature of music. All proposed methods are
evaluated on the MusDB18 dataset and improve the instrument separation. The final
separation method outperforms the current State-of-the-Art results on MusDB18. Ad-
ditionally, an ablation study on different source separation network architectures and
training methods is provided with this thesis.

Zusammenfassung

Diese Masterarbeit behandelt die Quellen Separierung von Musik mithilfe von Deep
Learning. Grundlage bildet ein Convolutional Neural Network (CNN) welches einen
spektralen Filter berechnet. Hierfür werden spezielle Methoden entwickelt, mit welchen
das Netzwerk relevante und Musik-spezifische Informationen besser Nutzen kann. Diese
führen zu einer effizienteren Datenauswertung und besserer Lern-Convergence. Zunächst
werden die exponentiell skalierten harmonischen Zusammenhänge innerhalb eines Spek-
trogramms dem CNN zugänglicher gemacht, indem das Eingangs-Spektrogramm um-
strukturiert wird und harmonisch verwandte Frequenzbereiche über die Feature Di-
mension aufgereiht werden. Des Weiteren wird ein Post-Processing CNN genutzt, um
die verrauschte Mix Phase, die üblicherweise für die Rekonstruktion der Quell-Signale
verwendet wird, anzugleichen. Schließlich wird ein neuer self-Attention Mechanismus
vorgeschlagen, der unerwünschte Interferenzen und Verzerrungen herausfiltert, indem die
repetitiven Eigenschaften von Musik ausgenutzt werden. Alle vorgeschlagenen Methoden
verbessern die Separierung von Instrumenten auf dem MusDB18-Datensatz. Die finale
Methode übertrifft die aktuellen State-of-the-Art Ergebnisse, evaluiert auf MusDB18.
Darüber hinaus wird in dieser Arbeit eine Studie über verschiedene Netzwerk Architek-
turen und Trainingsmethoden zur Quellen Separierung durchgeführt.

ii

Acknowledgements

I would like to thank the following people who all helped me, each in their own way, to
finish this thesis.

Athanasios Lykartsis for his constant support, trust and for giving me the time and
freedom to find my own approach to this topic.

Roman Gebhardt for helping me during this thesis and for the many excellent semi-
nars, which really encouraged me during my studies.

Thomas Koch and Christian Weißig from Fraunhofer HHI, for giving me complete
access to a server with two NVIDIA GTX 1080 Ti, which I was able to use throughout
this thesis. Without this computational power I wouldn’t have been able to achieve my
results.

Anvit and Sanju for helping me revising the written part of this thesis.

And last but not least, my parents for their unconditional love and always being sup-
portive.

Thank you!

iii

Contents

List of Figures v

List of Tables vi

1. Introduction 1
1.1. Motivation and Goals . 1
1.2. Human Perception of Auditory Scenes . 2
1.3. Problem Formulation . 5

2. Theoretical Background 9
2.1. Early Approaches . 9
2.2. Deep Learning Approach . 25

3. Method 40
3.1. Dataset . 40
3.2. Data Augmentation . 41
3.3. Training . 42
3.4. Baseline Model and Network Architecture 43
3.5. Model Extensions . 47
3.6. Phase Alignment . 53

4. Evaluation 57
4.1. Evaluation Metrics . 57
4.2. Results . 63
4.3. Ablation Study . 66
4.4. Discussion . 71

5. Conclusion 74
5.1. Summary . 74
5.2. Future Work . 75

Bibliography 77

Appendices 85

A. Hyperparameter Settings 86

B. Ablation Study Results 88

iv

List of Figures

1.1. Waveform vs. Time Frequency Domain 3

2.1. NMF Example . 16
2.2. FNN architecture for source separation . 30
2.3. TF masking separation process . 31
2.4. U-Net architecture for separation . 34

3.1. Spleeter U-Net architecture . 44
3.2. Proposed U-Net architecture . 46
3.3. Harmonic feature map example . 47
3.4. Harmonic Index Matrix . 48
3.5. Proposed U-Net architecture with additional GRU 50
3.6. Proposed U-Net architecture with densely-connected encoder 52
3.7. Repetitive phrase detection example . 54
3.8. Proposed Phase Alignment Network architecture 56

4.1. SDR density plot . 59
4.2. SI-SDR density plot . 61
4.3. Learning curves example with and without harmonic feature map extensions 67
4.4. Phase alignment example . 70

5.1. Example of future DNN design . 76

v

List of Tables

4.1. Oracle performance benchmarks . 62
4.2. U-Net architecture comparison . 64
4.3. Final evaluation results . 65
4.4. Comparison to State-of-the-Art . 65
4.5. Dataset evaluation results . 68

A.1. Number of feature maps per layer in the proposed U-Net 87
A.2. Hyperparameter settings for the densely-connected architecture 87
A.3. Sample weights for the M-U-Net training 87

B.1. Standard deviation of the evaluation results 88
B.2. Ablation study of harmonic feature map extensions 88
B.3. Ablation study of data augmentation size 89
B.4. Ablation study over the number of trainable parameters 89
B.5. Ablation study over the number of used repetitive phrases in the PA-Net 89

vi

1. Introduction

1.1. Motivation and Goals

After 50 years of research, Music Source Separation has reached a stage, where first
commercial application are beginning to emerge. The ability to separate single source
instruments out of a song has many different applications. Besides the obvious benefits
for Karaoke, musicians will be able to cover songs much easier, as specific play-alongs
can be easily created. Djs will have much more sophisticated ways of mixing and remix-
ing different songs together. Sampling, the art of creating new music out of already
existing music, can be used in much more precise and unrestricted ways, although copy-
right infringements might become harder to detect. Also other scientific research fields,
especially the Music Information Retrieval (MIR), will benefit, as analytic tasks, like au-
tomatic music transcription, will become more straightforward. Source separation could
lead to massive amounts of musical data that, for example, could be used to train new
generative models, like WaveNets, on music synthesis.

Currently, the design of music source separation models is mostly influenced by re-
cent developments in the field of deep learning. Hence, most research is focused on the
adaption of general deep learning methods to solve the music source separation problem,
while often not taking into account the specific characteristics and properties of music.
However, previous approaches, which were not based on deep learning, have already
shown that these specific properties can be utilized to achieve separation. In this thesis
the current deep learning methods are examined and their shortcomings are pointed
out. Thereafter, solutions to the identified problems are developed based on specific
properties of music, like the harmonic series and structural repetition. The developed
methods extend the current deep learning separation models and provide them with a
better contextual perspective on musical data. Finally, the developed methods are eval-
uated on real-world music source separation data.

Additionally, the theoretical part of this thesis tries to provide a compact summery
over the vast amount of literature existing in this field. Hopefully, this summary will
help future students, who like to approach this field of research as well.

1

1. Introduction

1.2. Human Perception of Auditory Scenes

The human brain is astonishingly good at separating and locating sound sources from
a perceived sound mixture. On a crowded street there can easily be a hundred differ-
ent sound sources. Driving cars, talking people, barking dogs, and many more are all
superimposed and perceived as two pressure waves on our eardrums. Nevertheless the
human brain can locate every sound source and focus on a single conversation inside
this mixture without any problems. This task seems so natural to humans, that its
complexity is often underestimated. Albert S. Bregman, the founder of the Auditory
Scene Analysis Theory, puts this task into perspective with an example:

Imagine you stand at a lake without being able to see or hear anything, except the
height of the arriving water waves. Then you are asked questions about what is hap-
pening on the lake. Are there people swimming in the lake and how many? Is the
nearer one swimming from left to right or right to left? Did something fall into the
water? You must answer these questions just from the movement of the arriving waves,
without having any additional information. This would seem to be an impossible task.
Yet consider a very similar problem. As you sit in a room your ear picks up the pressure
waves from a lake of air surrounding you. Just like in the previous case, you are offered
no information about the happenings except for the movements of these waves. Still,
your brain makes it exceptionally easy to answer the same kinds of questions: Are there
people talking in the room, and how many? Is the nearer one moving from left to right
or right to left? (adapted from [1], page 34)

How can the human brain analyze and separate the surrounding sound mixture so
well? Auditory Scene Analysis creates a theoretical foundation over the strategies being
used by the human auditory system while organizing sound into perceptually meaningful
elements. It describes the process with several grouping principles that decide if a sound
is integrated into another element, or segregated, forming a new element. Auditory
Scene Analysis is inspired by the principles of perceptual organization discovered by the
school of Gestalt psychology.

After the sound mixture arrives on the eardrum, the first stage of analysis takes place
in the cochlea, here the sounds are decomposed into separate neural patterns representing
different frequencies [2]. This representation allows separating sound by its frequency
content. For pure tones, e.g. sounds consisting of a single frequency, this process can
already separate the mixture into sources. Although for almost all the sounds occurring
in a natural environment this is not the case. They are constructed of complex spectra,
containing lots of different frequency components. Figure 1.1 shows a piano note and a
snare drum hit, as well as their resulting mixture, both in the time-domain representation
(left side) and in the spectral representation (right side). Here it is easy to see that the
sources can be separated much easier in the spectral domain. However, for complex
mixtures containing many different sounds, this is still not a trivial task.

2

1. Introduction

Figure 1.1.: Representation of a piano note, a snare hit, and their mixture. On the left
side, the waveform in the time-domain and on the right side, the spectral
representation in the frequency-domain are shown.

The core idea of Auditory Scene Analysis builds upon the grouping of different fre-
quency parts to form sources. This perceptual organization happens both over time
(sequential clustering) and over frequencies (simultaneous clustering). Hereby the dis-
tance in the spectral representation plays an important role. It shows that there is a
tendency for similar sounds to group together where both nearness in frequency and in

3

1. Introduction

time are reasons for this grouping process [1]. Although spatial distance is one obvious
factor for building these perceptual clusters many other properties play a key role in this
process, among them are:

1. Timbre (differences in the sound quality despite having the same pitch caused by
differences in the harmonic series)

2. Spectral similarity (to what extent they share frequency components or similar
frequency regions)

3. Temporal properties (such as the abruptness of onset of sounds)

4. Geometric location in space (the direction the sound is perceived from)

5. Intensity

Using these cues, human perception tends to create the ’simplest’ clusters that it
can, by grouping components together that show high similarities. Also, the history of
already identified clusters plays an important role in the identification process. Only
highly dissimilar sounds are explained by a new events. These clusters then form differ-
ent auditory streams in our perception that one can focus on separately [1].

Bregman divides the cause for the formation of a cluster into three categories. The first
two categories are based on sound recognition and can be seen as a recall of an already
learned spectral pattern. He divides these into automatic recognition and voluntary
recognition. Automatic recognition corresponds to the processes we subconsciously re-
spond to, e.g. someone calling our name. Voluntary recognition on the other hand
corresponds to the conscious process of focusing on one specific known sound, e.g. a
conductor paying attention to a specific instrument in an orchestra. As it’s not possible
to store a blueprint for every sound and these blueprints have to be learned in the first
place, there must be a more fundamental process underlying the auditory scene analy-
sis. This is the third category that Bregman calls the primitive auditory scene analysis.
It relies on general acoustic properties, which are given by physical laws. Our sensory
system has evolved to take advantage of the regularities emerging from these rules [3].

In [2] Bergman points out four of these regularities which can be found in natural
sounds, though he states that there still might be more unknown:

1. Unrelated sounds seldom start or stop at exactly the same time.
(old-plus-new strategy)

2. The gradualness of change:

- A single sound tends to change its properties smoothly and slowly.

- A sequence of sounds from the same source tends to change its properties
slowly.

4

1. Introduction

3. When a body vibrates with a repetitive period, its vibrations give rise to an acoustic
pattern in which the frequency components are multiples of a common fundamental
(harmonic series).

4. Many changes that take place in an acoustic event will affect all the components
of the resulting sound in the same way and at the same time
(principle of common fate).

These regularities apply to the earlier mentioned properties which are measuring the
similarity of different frequency components of a spectrum. Our brain tends to clus-
ter sounds according to these rules and their similarity to create separate auditory
streams. Bregman proves this with many different auditory experiments which can
be found in [4] and also tried out interactively at http://auditoryneuroscience.com/
scene-analysis.

1.3. Problem Formulation

Sound is a series of overlapping pressure waves propagated through the air (or any other
medium). A microphone picks up these pressure differences over time and converts
them into an electrical signal. This signal is measured at a fixed sampling frequency
(for music typically at 44.1 kHz) and then recorded in a digital format. The time-series
can be represented mathematically by a time-dependent variable: x[t]. If more than
one microphone is used to record the sound pressure waves they can be written as a
multi-channel signal in a vector notation: x[t] ∈ RI , where I is the number of signals
(I = 2 for stereo). During this thesis vectors, matrices and tensors will be written in
bold. Due to the digital recording process, all signals will be written in a discrete form
x[t] and not as continuous signals x(t).
In audio source separation, it is very common to use a Time-Frequency (TF) represen-
tation of the signal as sources tend to be less overlapped in the TF representation than
in their waveform [5]. The Short-Time Fourier Transformation (STFT) is the most com-
mon TF representation. It transforms a fixed-length signal x[t] into a complex matrix
X̄ ∈ CF×N , with F × N so-called TF bins.1 The angle of the complex-valued STFT
accounts for the phase of the corresponding sinusoid at that TF bin, while the magnitude
accounts for its amplitude in the signal. To index a TF representation either the bracket
notation X̄[f, n] or the subscript notation x̄f,n will be used depending on the context.
The latter subscript notation will also be used if there is more than one variable of the
same nature. For example, the multi-channel signal x[t] ∈ RI can also be written with
the subscript notation xi[t] with i = 1, 2, ..., I.

1Complex valued variables will always be written with a bar on top.

5

1. Introduction

Auditory Scene Analysis shows that the separation process of sound mixtures into
sources performed by the human brain relies on a lot of different strategies to validate
itself. These strategies are based on regularities that are found in naturally occurring
sounds and can be seen as a combination of physical laws and probabilistic assumptions
about the world around them. These regularities create a shared evidence that is used
to separate the mixture into perceptually meaningful elements. A simple experiment
by Bregman shows that the auditory system can be easily fooled when sounds are not
mixed according to these regularities:

”We start with a tone that glides up and down in frequency repeatedly. Then we
remove a bit from each rising and each falling portion and replace it with a silent gap,
causing discontinuities to be heard in the gliding tone ”...”. However, when loud noise
bursts are inserted where the gaps were ”...” the tone is heard as complete, gliding right
through them.”...” The presence of an ’occluder’ – in this case a sound that might have
obliterated parts of the tone – is interpreted as hiding the tone, and the brain restores
what it predicts to be missing.” (in [1], page 34)

This proves how much the auditory system relies on these assumptions rather than
having a fixed solution to the source separation problem. A very similar observation can
be found when trying to solve the Audio Source Separation problem mathematically.
This field of research is called Blind Source Separation and is often described with the
cocktail party problem. Imagine there are J persons at a cocktail party, each of them
is talking, representing a separate sound source. The individual sound sources can be
seen as signals and written down in a vector notation s[t] = [s1[t], s2[t], ..., sJ [t]]T . Inside
the room are I microphones capturing the auditory scene through the observed signals
x[t] = [x1[t], x2[t], ..., xI [t]]

T . Each observed signal captures a mixture of all the source
signals. In a very naive way this process can be written down as:

xi[t] =
J∑
j=1

ai,jsj [t] with i = 1, ..., I (1.1)

And in a more compact vector-matrix notation, with mixing matrix A ∈ RI×J , it can
be written as:

x[t] = As[t] (1.2)

Equation 1.1 and 1.2 describe the stationary instantaneous mixture process. This
means that all observed signals (e.g. the microphone signals) at time t are linear combi-
nations of the source signals (e.g. the speakers) at time t. Therefore the observed signals
only differ in the loudness of their contained sources described by mixing coefficients ai,j .
These differences can be explained by the distances between speakers and microphones,
where ai,j describes the amount of signal of speaker j contained on microphone i.

6

1. Introduction

The stationary instantaneous mixture process is inaccurate for almost all-real world
scenarios. This is mainly due to the laws of acoustics. As sound travels at around
343 meters per second, different delays occur on the observed signals. Also, any real
environment, such as a room, has physical boundaries, e.g. walls, floor, ceiling. The
sound waves emitted by a source are reflected on these boundaries and form new sources,
which are delayed and filtered versions of the original source signal. This process is
called reverberation. These two factors can be included in the mixture process by using
a convolutive model:

xi[t] =
J∑
j=1

L∑
k=1

ai,j [k]sj [t− k] with i = 1, ..., I (1.3)

And written in a more compact version using the convolution operator ∗ and Finite
Impulse Response (FIR) filter coefficient vector ai,j ∈ RL:

xi[t] =
J∑
j=1

(ai,j ∗ sj)[t] with i = 1, ..., I (1.4)

Here L defines the length of the FIR filter ai,j and should be as long as the last
reflection that occurs inside the acoustical environment. It is identical to the impulse
response of the acoustical environment taken on the position of the speaker j with
microphone i. The convolutive mixing model is accurate for a stationary scene, although
it cannot model moving sources. If sources are moving inside the room, a non-stationary
model has to be used by making FIR filter ai,j time depended:

xi[t] =

J∑
j=1

(ai,j,t ∗ sj)[t] with i = 1, ..., I (1.5)

To account for noise in the recording process an additive noise term can be added to
the mixing model as well:

xi[t] =
J∑
j=1

(ai,j,t ∗ sj)[t] + η with i = 1, ..., I (1.6)

Equation 1.6 is a quite realistic model of a natural mixing process, accounting for the
slow propagation of sound, delays, reverberation, and noise. A major problem with this
model is the massive amount of parameters it contains. There are I × J × L × T FIR
coefficients, where T is the length of the audio recording in samples. Furthermore, the
additive noise term makes it very difficult to solve the equation for the source signals
sj [t] [6]. As a consequence for most of the Blind Source Separation solution, either the
stationary instantaneous mixture model 1.2 or the stationary convolutive mixture model
1.4 with small FIR coefficient lengths L are used.

7

1. Introduction

A special case arises in the case of professionally mixed music. Here it is very common
to ’master’ the final mixdown, which involves applying different signal processing steps
to ensure ’better’ sound quality. These processing steps include compression of the
mixture waveform, as well as other non-linear processing methods. In these mixtures, a
non-linear function has to be used to account for these processing steps:

xi[t] = f(

J∑
j=1

ai,jsn[t]) with i = 1, ..., I (1.7)

Equation 1.1 - 1.7 are all different approximations to model the mixing process of
the observed signals xi[t]. Generally, the Blind Source Separation problem is defined
as the procedure of estimating the original signals s[t] through the observed signals x[t]
[6]. Referring back to the earlier stated cocktail party problem: one wants to restore
the original conversations from the observed mixture signals that are recorded on the
microphones.

Using model 1.2 and in the case where there are as many sources as there are micro-
phones J = I, it is easy to see that one simply needs to invert mixing matrix A to find
the sources:

A−1x[t] = s[t] (1.8)

However, one seldom has the correct information over the mixing processes, so the
mixing matrix A is unknown. The source signals s[t] are unknown as well, as in the
case of known sources the problem formulation would be unnecessary. Therefore, the
problem is mathematically ill-posed as there are two unknowns variables and only one
known variable [7]. Hence, an infinite set of solutions (pairs of source signals and mixing
matrix) exists which create the observed mixture signals. This conclusion also holds for
all other models in equation 1.3 - 1.7 [8].

Following this conclusion, it can be seen why the human auditory system has to rely
on assumptions about the source signals and the mixing process, as without them the
problem cannot be solved. This breaks down the audio source separation problem into
a search for valid assumptions over the source signals, and the mixing process which
results in a unique solution to the blind source separation problem.

8

2. Theoretical Background

There are many approaches to the source separation problem since this field of research
has enjoyed tremendous research activity for roughly 50 years. Because this Thesis deals
with the specific problem of music source separation, only the main approaches related
to this problem will be mentioned here.

In general, solutions to the audio source separation problem can be divided into model-
based and data-driven approaches. The former tries to capture the source signals and
the mixing process with a particular mathematical model. The observed signals are then
used to derive the best fitting model parameters, for example in a Maximum Likelihood
(ML) manner. On the other hand, the data-driven approach exploits large databases of
audio examples where the isolated source signals are available. This enables the use of
machine learning methods to learn how to separate. These two different approaches also
reflect Bregman’s division into primitive and recognition based auditory scene analysis.
This chapter starts with a historical overview of model-based approaches to the audio
source separation problem in 2.1 and then moves on to modern deep learning-based
solutions in 2.2, which are achieving the current State-of-the-Art results.

2.1. Early Approaches

Introduction to Audio Source Separation

The two main goals that are driving the development of new solutions to the audio source
separation problem are Speech Separation and Music Separation. Respectively there are
two evaluation campaigns, the CHiME Speech Separation Competition1, and the SigSep
Music Source Separation Competition2. Because of its application as a preprocessing
step in natural language processing, speech separation has got more attention over the
last decades, however, most of the separation models can be applied to both problems or
can be easily adapted by changing the underlying mixing model, the number of observed
signals and the number of source signals [9].
The separation models mostly vary in their fundamental assumptions made to solve the
blind source separation problem (see chapter 1.3). While computational auditory scene
analysis tries to specifically replicate the functionality of the human auditory system
[10], most models are based inside a more general framework and include insights of
auditory scene analysis through specific mathematical constraints.

1https://chimechallenge.github.io/chime6/
2https://sigsep.github.io/

9

2. Theoretical Background

To show how these constraints are developed and to give a short example of how a
solution to the audio source separation problem might look let’s consider the simplified
problem of speech enhancement and its counterpart in music the vocal/accompaniment
separation. In this problem, the aim is to recover a voice signal which got corrupted by
noise. For simplicity let’s also assume the instant mixture model given in equation 1.1.
Given two sources, e.g. voice and noise, and only one microphone, we can simplify the
model even more by already including the mixing coefficients into the source signals:

x[t] = s[t] + n[t] (2.1)

Here s[t] is the voice signal, which we want to recover, while n[t] contains the residual
noise or the musical accompaniment. A very common method is to take the STFT of
the mixture signal resulting in the complex-valued matrix X̄ ∈ CF×N and perform the
separation only on the magnitude information |X̄| ∈ RF×N 1. Afterwards, the phase
information of the mixture signal is used to perform the inverse STFT. Furthermore, it
is often assumed that the magnitude spectra of the sources sum up to the mixture mag-
nitude spectrum, which is wrong as this ignores interference effects caused by different
phases of the source signals. Moreover, one can now assume that the noise signal is sta-
tionary and only consisting of a few non-varying elements (low rank). For background
noise in the speech enhancement problem, this might be a valid assumption. On the
other hand the accompaniment signal of normal music is definitely not stationary, but
it often has a very repetitive nature, so the low-rank assumption still holds. The speech
signal, on the contrary, has more variations (higher rank) but is relatively sparse in the
TF representation. The Robust Principle Component Analysis (RPCA) model captures
both these assumptions [11]. It models the low-rank noise magnitude matrix N ∈ RF×N
with the nuclear norm (sum of singular values) and the sparse speech magnitude matrix
S ∈ RF×N with the L1-norm (sum of absolute values of matrix entries) [12]. This results
in the following optimization problem:

minimize: ||N||∗ + λ||S||1
subject to: |X̄| = S + N

(2.2)

Solving this optimization problem to obtain S and N has shown to separate a voice
signal from background noise in cases where the source signals follow these assumptions.
Although a lot of partly erroneous simplifications have been made to the original mixture
model, this model can be used to separate the lead vocal from the rest of the musical
accompaniment, as shown in [12], or to separate a speech from a noisy background, as
shown in [13].

Separation models can be roughly divided into multi-channel-filtering, which mostly
relies on spatial information for the separation, and time-frequency-filtering, which
mostly relies on spectral information for the separation (like the RPCA) [14]. In the next
two subsections, the most prominent multi-channel- as well as time-frequency-filtering
models are summarized.
1F being the number of frequency bins in the STFT and N being the number of STFT windows

10

2. Theoretical Background

Independent Component Analysis

The Independent Component Analysis (ICA) is a very generalized statistical technique
to extract independent source factors from a mixture and is closely related to Projection
Pursuit. It is one of the first and also most general solutions to the blind source separa-
tion problem and a variety of ICA models exist. Because the ICA relies on a very weak
statistical assumption about the sources, it is outperformed by most other separation
models in the case of audio source separation. This section will just give a brief historical
overview of the basics of the ICA.

Hyvarinen et al. showed that it is sufficient to assume that the sources sj [t], at each
time instant t, are statistically independent [15]. In the ICA model, the source signals
and the observed signals are treated as random variables, discarding the time-series in-
formation and treating every time point as a realization of the random variable. This
makes the model also applicable to data without a time structure. The sources are sta-
tistically independent if the realization of one does not affect the probability distribution
of the other. This can be stated in terms of their joint probability distribution as follows:

p(s1, s2, ..., sJ) = p(s1)p(s2)...p(sJ) (2.3)

In general, the ICA problem is defined by solving for the unmixing matrix W = A−1

from equation 1.8, which will yield the independent components of the mixture. This
results in the following solution:

Wx = s (2.4)

There are a couple of limitations arising through this solution:

1. The number of observed signals I has to be bigger or equal to the number of
source signals J (so that A is invertible). Although there are approximations to
the so-called ICA with an overcomplete basis (see [8] - chapter 16).

2. The order of the independent components cannot be determined. This is a simple
result from the fact that both s and W are unknown.

3. The variances (energies) of the independent components cannot be determined
(due to the same reasons as stated in 2.). Instead, the variance of the sources is
fixed E{s2} = 1.

4. The sign of the independent components cannot be determined (due to the same
reasons as stated in 2.).

The ICA starts by whitening the data (zero mean and identity covariance matrix).
This converts the unmixing matrix W into an orthogonal matrix and consequently cuts
the number of estimated parameters down from J2 to J(J − 1)/2 [8].

11

2. Theoretical Background

An approach to solve for the independent components is derived from the Central
Limit Theorem, which can be summarized as follows: The sum of two independent ran-
dom variables tend to have a distribution that is closer to a Gaussian distribution than
the separate original variables [16]. Hence one needs to find a projection that maximizes
the non-gaussianity of wT

j x (wj being a row of the unmixing matrix W), which in case
of statistical independence equal one of the sources [15].

One way to measure the non-gaussianity of the projection is the kurtosis. The kurtosis
is closely related to the fourth moment of a probability distribution and measures the
tails of the distribution (high values in kurtosis correspond to large amounts of outliers
- i.e. data points far away from the mean). In general, Gaussians are almost the only
distributions which have a kurtosis of zero [15]. In practice, one could start with a ran-
dom vector wj and then optimize in the direction of the steepest growth of the absolute
value of the kurtosis with a gradient method. The independent components can be ei-
ther found one at a time or all together by decorrelating the estimated unmixing matrix
W after every gradient step, for example with Gram-Schmidt orthonormalization [8].
Because the kurtosis relates to the tails of the distribution, its value only relies on a few
data points furthest away from the mean. This makes the kurtosis not very robust and
very unstable.

A more stable way to measure the non-gaussianity of random variable involves using
the differential entropy of its probability distribution. The entropy of a random variable
is related to the information that the observation of the variable gives. The more un-
predictable and unstructured the variable is, the larger its entropy. Gaussian variables
have the largest entropy among all random variables of equal variance [8]. This can
be used to set up a new measure for non-gaussianity using the difference in differential
entropy of the projection wT

j x and a Gaussian variable of the same variance. This mea-
sure is called Negentropy. It is always non-negative and only zero when the observed
variable is Gaussian. Negentropy can be seen as an optimal measure for non-gaussianty
[8]. The problem in using Negentropy is, that the probability density function under-
lying the data needs to be known, which is rarely the case. Therefore, it needs to be
approximated. Hyvärinen has shown, that it can be approximated by several non-linear
functions, which can be chosen to have good statistical and computationally properties
[17]. This approximation leads to the FastICA algorithm, which is a popular and effi-
cient solution to the ICA problem [15].

Over the last decades, a lot of alternative approaches to the ICA problem were discov-
ered including minimization of mutual information, maximum likelihood estimation and
natural gradient methods, nonlinear decorrelation, separation by autocovariance (using
time structure and autocorrelation), and tensorial eigenvalue decompositions [8]. They
all show some equivalences in their solutions despite the difference in their approaches
and will be not discussed furthermore in this thesis.

12

2. Theoretical Background

For audio source separation often the convelutive mixture model is required, as de-
scribed in equation 1.3. In the convolutive case the ICA solution from equation 2.4 does
not hold anymore, because a deconvolutive FIR Filter is needed for every source signal.
A simple way to solve this problem can be achieved by using a fixed length FIR filter of
L samples and stacking up the delayed versions of the signal in the following way:

x̃[t] = [x1[t], x1[t− 1], ..., x1[t− L+ 1], x2[t], x2[t− 1], ..., x2[t− L+ 1],

..., xI [t], xI [t− 1], ..., xI [t− L+ 1]]T
(2.5)

s̃[t] = [s1[t], s1[t− 1], ..., s1[t− L+ 1], s2[t], s2[t− 1], ..., s2[t− L+ 1],

..., sJ [t], sJ [t− 1], ..., sJ [t− L+ 1]]T
(2.6)

Now the ordinary instantaneous ICA model can be applied to the stacked vectors with
the new mixing matrix Ã ∈ CIL×JL:

x̃ = Ã s̃ (2.7)

In theory, solving this ICA problem should simultaneously separate the sources and
perform a deconvolution. However, in practical applications, L needs to be quite large
(ten thousands of samples in length) to accurately model the reverberation of an acous-
tical space. This especially affects the dimensions of mixing matrix Ã, increasing the
computational complexity, as the number of parameters to be estimated grows with
I × J × L2. This problem can not be avoided, as it’s a result of the convolutive mixing
model [8].
Another approach to solve the convolutive ICA problem is to take the Fourier trans-
form, as convolutions are products between Fourier transforms in the frequency domain
[18]. In practice the Short Term Fourier Transform (STFT) is used, resulting in the new
complex-valued ICA problem:

x̄[f, n] = Ā[f] s̄[f, n] (2.8)

To correctly represent the convolutive mixture process, the STFT window size N has
to be bigger than the length of the FIR mixing filters L. This concept is called the
narrowband approximation and it gets more accurate when the sizes of the mixing fil-
ters impulse responses are small N >> L [19]. Otherwise, if N < L the separation
performance degrades [20].

There are a few consequences arising through the complex ICA model. Firstly, and
fortunately, the distributions of the transformed audio signals in the frequency domain
are by far more non-Gaussian than the distribution of the time domain signal [6]. This
increases the performance of the ICA model and improves convergence. Secondly, and
more problematic, the before mentioned permutation and scaling invariance, which is
not a big problem in the time domain, has now severe consequences. As mixing matrix

13

2. Theoretical Background

Ā[f] becomes a function of the frequency, it needs to be solved for every frequency bin
f = 1, 2, ..., F separately. The permutations (i.e. the ordering of the estimated sources)
and signs of the sources are usually different in each frequency bin solution of Ā[f]. For
the reconstruction of a source signal sj [t] in the time domain, one needs all its frequency
components. Hence, a method to align the permuted sources in different frequency bin
solutions is needed [8]. Different methods were proposed, most of them providing a
method for grouping frequency bins by their overall energy envelope [6].

While ICA is used in biomedical signal processing, image processing, telecommunica-
tions, econometric, data analysis, and feature extraction, its performance in audio source
separation is in general not satisfying [8]. This is due to various issues with the audio
mixing model as discussed in 1.3:

1. The convolutive mixing model complicates the ICA solution.

2. The additional sources caused by the reflections are not independent anymore.

3. Typical recordings are made with two microphones only, while the amount of
sources contained on the recording is much larger.

4. For most cases, a non-stationary mixing model (equation 1.5) needs to be used, as
sources move in space.

5. In the case of a low Signal to Noise Ratios, the noisy mixing model is required
(equation 1.6).

6. In the case of music, the non-linear mixing model (equation 1.7) is needed, com-
plicating the ICA solution even more (see [8] - chapter 17).

Due to these complications, it may be that the assumption of independence of the
source signals, is not enough for sound separation. The convolutive mixing model with
a large number of free parameters and a dynamically changing mixing matrix requires
more information on the signals and the mixing matrix [8]. This can be also seen in [21],
where musical sources can be separated quite well on artificially made instantaneous
mixtures by ICA, but as soon as the model is applied to real-world conditions (e.g.
propagation delays and reverberation) it fails.

14

2. Theoretical Background

Non-Negative Matrix Factorization

Since the ICA model is not well suited for the problems arising through real-world audio
signal mixtures other models were developed in order to take these issues into account.
Especially the Non-Negative Matrix Factorization (NMF) framework has shown good
capabilities to solve the audio source separation problem under different circumstances
with good performance [9]. In contrast to the ICA, NMF was not specifically developed
to solve the blind source separation problem, instead, it is a linear dimensionality re-
duction technique for non-negative data. It has become popular because of its ability to
automatically extract sparse and easily interpretable factors out of the data [22]. Par-
ticularly through the multiplicative update rules proposed by Lee and Seung [23], which
guarantee a fast convergence, NMF became a widely used technique for data analysis
and has been used in many fields. Data compression models like NMF logically should
be suitable for source separation, since in both cases the models tend to reduce the re-
dundancy in the signal [19]. The early work of Smaragdis and Brown adapted the NMF
model to the field of Music Information Retrieval (MIR) [24] and initiated the diverse
use of NMF-based research, especially in audio source separation.
The fundamental constraint of NMF, as already suggested by the name, is the non-
negativity of the data matrix X ∈ RF×N≥0 , where in general F is the dimensionality of
the data and N is the number of data points. The data matrix X is approximated by
two smaller matrices:

X ≈ V̂ = WH (2.9)

Where W ∈ RF×K≥0 and H ∈ RK×N≥0 are non-negative and of a lower rank than X.
The Hyperparameter K is usually chosen so that FK + KN << FN , yielding a low-
rank approximation V̂, that can only be achieved if the basis vectors W discover hidden
structures inside the data [23]. W contains K basis vectors in its columns that represent
these structures. They can be seen as elementary building blocks of the data. H on the
other hand contains the weights of these basis vectors for every sample n = 1, 2, ..., N .
To avoid scaling indeterminacy between different NMF components the columns of W
are often normalized to have a magnitude of 1.
In audio source separation X typically represents the magnitude or power spectrogram of
the audio mixture with F being the frequency axis and N the time axis of the STFT. In
the single-channel case (I = 1) the NMF factorizes the spectrogram X into K prototyp-
ical spectral patterns stored in the columns of W and their activation’s over time stored
in the rows of H. The prototypical spectral patterns tend to represent the sources of
the mixture. This decomposition into spectral building blocks and temporal activation
functions can be seen in figure 2.1, where a short piano sequence is separated into its
four root notes as well as a noisy attack sound.

In general, NMF is ill-posed and NP-hard. Hence there is no closed-form solution
and non-linear optimization methods are used to solve the factorization problem in an
iterative way which might only converge to stationary points (e.g. local minima) [22].

15

2. Theoretical Background

Figure 2.1.: NMF applied to the spectrogram of a short piano sequence composed of four
notes (Taken from [25]).

The NMF problem can be stated in a minimization problem:

min
W,H

D(X|V̂) subject to V̂ = WH and W,H ≥ 0 (2.10)

For the optimization process a cost function D(X|) is needed to measure the closeness
of approximation V̂ to the real data X. The most trivial choice is the Euclidean Distance
which provides convenient mathematical properties:

D(X|) =
F∑
f=1

N∑
n=1

(X[f, n]− V̂[f, n])2 (2.11)

16

2. Theoretical Background

Another very commonly used cost function is motivated by the probabilistic Kullback-
Leibler (KL) divergences and given by:

D(X|V̂) =
F∑
f=1

N∑
n=1

(X[f, n] log
X[f, n]

V̂[f, n]
−X[f, n] + V̂[f, n]) (2.12)

In audio source separation the Itakura-Saito (IS) divergence has shown good results
as it is scale-invariant, i.e. D(λX|λV̂) = D(X|V̂) [26]. In contrast to the former ones
it takes both low- and high-power components inside the data to the same amount into
account which is beneficial given the logarithmic scaling of loudness. The IS divergence
is given by:

D(X|V̂) =
F∑
f=1

N∑
n=1

(
X[f, n]

V̂[f, n]
− log

X[f, n]

V̂[f, n]
− 1) (2.13)

All three former cost functions can be generalized by a continuous family of func-
tions: the β-divergence [25]. To solve the optimization problem in equation 2.10 one
can simply use gradient descent to minimize the respective cost function. The famous
multiplicative update rule from Lee and Seung arises through gradient descent with an
adaptive re-scaled learning rate and ”can also be interpreted as a multiplicative rule with
the positive component of the gradient in the denominator and negative component as
the numerator of the multiplicative factor” (in [23], page 3). The multiplicative updates
ensure the non-negativity of W and H, yield an optimal convergence speed, and do not
require a manually set learning rate. The update rules for the specific cost functions and
their proofs of convergence are shown in [23] and for the IS-divergence in [26].

After the iterative estimation of the NMF components the sources are separated from
the mixture in the minimum mean square error sense via Wiener filtering [7]:

sj,f,n =
wj,fhj,n∑J
i=1wi,fhi,n

x̄f,n (2.14)

Where wj,f is a coefficient of W representing the spectrum of source j and hj,n is the
corresponding coefficient of H representing the intensity of that source at time frame n.
x̄f,n is the complex-valued STFT value of the audio mixture at frequency bin f and time
frame n. In this case, the number of sources equals the number of NMF components
(K = J), though in most cases the choice of the hyperparameter K is not so trivial
[22]. In theory each column wk with k = 1, 2, ...,K reflects an elementary building block
of the data. For audio signals, however, each sound source rarely consists of a single
NMF component (i.e. a single spectrum). For example, a musical instrument typi-
cally involves several notes with different pitches, while a speech source involves several
phonemes. Therefore individual NMF components need to be clustered together into
their respective sources [25].

17

2. Theoretical Background

This clustering problem can be avoided by using a fixed pre-defined source model.
The so-called supervised NMF makes use of source-specific dictionaries, which con-
tain prototypical spectra of the sources. By keeping the pre-defined dictionary W =
[W1,W2, ...,WJ] fixed during estimation the optimization problem becomes convex
and can be solved much faster [22]. The source-specific dictionaries must be learned in
advance. This requires isolated audio recordings of all the sources. Usually, the dictio-
naries are learned by performing a prior NMF over the individual sources. After this
NMF factorization W is kept for each source, while H is discarded. There are other
methods to create the source-specific dictionaries, which can be found in [27]. The su-
pervised NMF model suffers from one major limitation: unless regularisation such as
sparsity is enforced the number of dictionary elements must be smaller than the num-
ber of frequency bins [25]. If the number is bigger the dictionary might span up an
orthogonal basis and does not utilize any hidden structures in the data anymore. To
fully resemble all characteristics of an instrument or speech, a quite large number of
prototypical spectra is needed. The supervised NMF does not generalize well, as it can
only represent sources by a linear combination of its dictionary elements.

Another way to avoid the problem of grouping the NMF components {Wj ,Hj} $
{W,H} to the correct sources j is to include the clustering process directly into the
optimization objective. It is assumed that instead of representing each source with
individual NMF components {Wj ,Hj} all the sources share the same NMF components
{W,H} [28]. To determine the relationship of NMF component k to source j a third
matrix Q ∈ RK×J[0,1] is included in the factorization:

V =
K∑
k=1

wk ◦ hk ◦ qk (2.15)

Where ◦ denotes the outer tensor product and V ∈ R≥ 0F×N×J is defined as a three
dimensional tensor in this case. The columns of Q are normalized (

∑J
j=1 q[j]k = 1).

This ensures that mixture X is obtained by summing over the source dimension of V.
This factorization model is sometimes referred to as the Non-negative Tensor Factoriza-
tion (NTF) [28]. It has the advantage that one does not need to specify the amount
of NMF components Kj per source anymore, as the model will allocate them jointly
with the optimization. Though for a correct NMF component allocation Q needs to
be sparse (i.e., only a few non-zero components in the corresponding column). Thus,
a sparsity-inducing penalty on Q to the corresponding optimization criterion should be
added [19]. There are a lot of different NMF/NTF models for audio source separation
and its equivalent probabilistic formulation the Probabilistic Latent Component Anal-
ysis (PLCA). For the length of this thesis only the multi-channel NMF from Ozerov,
Vincent, and Bimbot presented in [7] and [29] will be discussed here as they generalizes
several different audio source separation models and are also the basis of the audio source
separation toolbox FASST 1 for MATLAB and Python.

1http://bass-db.gforge.inria.fr/fasst/

18

2. Theoretical Background

Their proposed model is based on a different mixing model than the ones presented
in chapter 1.3. Instead of a single source signal, the mixing model is built on spatial
source images:

x[t] =

J∑
j=1

sj [t] (2.16)

With spatial source image vectors sj ∈ RI for every source j = 1, 2..., J . In contrast to
the former mixing models which only account for point sources, this accounts for diffuse
sources as well as sources with directivity patterns that are not spherical [7]. The before
mentioned single channel NMF (equation 2.9) only relies on the non-negative magnitude
or power spectrograms while completely discarding the phase information of the STFT.
This inherently assumes that the source STFTs have the same phase or that only one
component is active in every time-frequency tile [30] [31]. In the multi-channel NMF, the
source spectrograms are modeled with the non-negative model while the mixing system
is modeled with a complex-valued system. Every complex-valued STFT coefficients
sj,f,n ∈ CI is treated as realizations of zero-mean circular complex-valued Gaussian
random variable with a structured variance (via NMF/NTF) and covariance [19]:

sj,f,n ∼ N (0, R̄j,f,nvj,f,n) (2.17)

This is called the Local Gaussian Model (LGM) in which the matrix R̄j,f,n ∈ CI×I ,
called the spatial covariance matrix, represents the spatial characteristics of the source,
and the non-negative scalar vj,f,n ∈ R≥0, called spectral power, represents the spectral
characteristics of the source [7]. The source STFT coefficients sj,f,n are assumed to be
mutually independent (conditionally to their covariance structure) over time, frequency,
and between sources [29].

The spatial covariance matrix R̄j can be adapted to different mixing models. In
the simplest case, it can be modeled with a rank-1 matrix: R̄j = aja

T
j , where aj is a

column vector of mixing matrix A from equation 1.1. This model only accounts for point
sources in an instantaneous mixing setup. To account for convolutive mixtures one can
create a spatial covariance matrix for every frequency bin R̄j,f . This model follows the
narrowband approximation and is only valid if the length of the convolutive FIR filter
L is smaller than the STFT window length. In contrast, if R̄j,f is modeled by a full
rank matrix, the model also takes long reverberations and diffuse sources into account
[7]. Similar to the ICA model, the spatial covariance matrix can also account for non-
stationary mixing setups through a time-depended covariance matrix R̄j,f,n, again, this
will increase the number of free model parameters dramatically. In contrast to the ICA
model the multi-channel NMF model can easily handle a variety of mixing situations:
single-channel (I = 1), underdetermined (1 < I < J), and (over-)determined (I ≥ J)
[29].

19

2. Theoretical Background

In order to account for different source types several models have been proposed to
model the spectral power structure vj,f,n, including: unconstrained models, block con-
stant models, Gaussian mixture models or hidden Markov models, harmonic NMF/NTF,
temporal activation constrained NMF/NTF and source-filter models [29]. The multi-
channel NMF model in [7] generalizes most of them by factorizing the spectral power
into eight non-negative matrices. First, the spectral power is decomposed into an exci-
tation spectral power vexcitj,f,n , and a filter spectral power vfiltj,f,n:

[19]:

vj,f,n = vexcitj,f,n · v
filt
j,f,n (2.18)

This reflects the source-filter model where for example the voice is modeled by an
excitation source, e.g. the glottal source, filtered by a transfer function, e.g. the vocal
tract. Each of them is structured by the NMF model as K characteristic spectral pattern
wj,f,k modulated in time by weights hj,k,n [19]:

vj,f,n =
K∑
k=1

wj,f,k · hj,k,n (2.19)

To further constrain and guide the factorization, each of the factors is modeled by
two more sub-factors. The characteristic spectral pattern wj,f,k is further factorised
into B elementary narrowband spectral patterns ej,f,b and their respective weights uj,b,k.
These narrowband patterns may be for instance harmonic, inharmonic, or noise-like
components with a smooth spectral envelope [7]. The time varying weights hj,k,n are
also further factorized into M time localized patterns pj,k,m, and their respective time-
varying weights gj,m,n. These can be typical exponential and linear decay patterns to
ensure temporal continuity. Alltogether the whole factorization of vj,f,n can be written
as follows [19]:

vj,f,n =

K∑
k=1

((

B∑
b=1

ej,f,buj,b,k)︸ ︷︷ ︸
wj,f,k

· (
M∑
m=1

pj,k,mgj,m,n)︸ ︷︷ ︸
hj,k,n

) (2.20)

This sub-factorization applies to both the excitation spectral power vexcitj,f,n and the

spectral filter power vfiltj,f,n. All sub-factors ej,f,b, uj,b,k, pj,k,m and gj,m,n for the excitation
and filter spectral power respectively can be rewritten in matrix form to construct the
final spectral power factorization model:

Vj = Vexcit
j �Vfilt

j = (Eexcit
j Uexcit

j Pexcit
j Gexcit

j)� (Efilt
j Ufilt

j Pfilt
j Gfilt

j) (2.21)

Here, � denotes the elementwise matrix multiplication (Hadamard product). The
multi-channel NMF model can be easily adapted to different modeling situations. This
can be done by using different constraints for the sub-factors. For example, the matri-
ces can be either fixed (supervised NMF, i.e. unchanged during estimation), adaptive,

20

2. Theoretical Background

or partially adaptive (just some rows or columns take part in the estimation, while
others stay fixed). By setting Uj and Pj to a fixed identity matrix one obtains the
original NMF model. By constraining Gj to only have a single nonzero element in
each column one can account for GMMs and HMMs [7]. Other typical constraints
are sparsity, often modeled with the L1-norm λ||·||1, which can be applied to all the
sub-factors respectively, and smoothness, mostly applied to the time-varying weights
λ
∑J

j=1

∑K
k=1

∑N
n=2(hj,k[n] − hj,k[n − 1])2 to achieve temporal continuity. Constraints,

like sparsity and smoothness, can simply be added to the minimization problem, where
λ is a hyperparameter reflecting the strength of the constrain.

Together with the spatial covariance, the model can be represented as the set of its
parameters: θ = {θj}Jj=1 = {R̄j ,E

excit
j ,Uexcit

j ,Pexcit
j ,Gexcit

j ,Efilt
j ,Ufilt

j ,Pfilt
j ,Gfilt

j }. It
is obvious that estimating model parameters in the maximum likelihood (ML) sense
would not lead to any consistent estimation, because there are more free parameters in
θ than data samples in X̄ [7]. The optimization starts by defining a likelihood criterion,
which describes the probability of the observed data X̄ ∈ CF×N given the current model
parameters θ:

θ̂ = arg max
θ

p(X̄|θ) (2.22)

In the case of prior knowledge, for example, a spatial covariance prior, an a posteriori
criterion can be used instead, which describes the probability of the current model
parameters θ given the observed data X̄.

θ̂ = arg max
θ

p(θ|X̄) = arg max
θ

p(X̄|θ)p(θ)︸︷︷︸
prior

(2.23)

Also, Bayesian inference can be used as the criterion, whereas the former two objec-
tive functions find the estimate of θ that maximizes the likelihood function (or the
posterior distribution) of θ, the goal of Bayesian inference is to infer the posterior dis-
tribution of θ, given an observation X̄ [32]. To maximize the likelihood function either
a Majorize-Minimization (MM) algorithm or a Generalized Expectation-Maximization
(GEM) algorithm (a specific case of MM) can be used. In the case of the Bayesian
objective Variational Inference (VI) can be applied [32].

The GEM algorithm provides an iterative solutions for parameter estimation when
it is difficult to optimize the ML objective in a closed-form. It consist of alternating
Expectation steps (E-step) and Maximization steps (M-step). Besides the observed data
X̄ and the model parameters θ, the GEM framework requires some sort of latent data
Z. The choice for Z can vary. One obvious choice for Z are the source signals sj,f,n but
others can be defined too [19]. After the model and the likelihood function are defined
the GEM algorithm estimates the model parameters by iterating through the following
E- and M-steps with iteration index l :

21

2. Theoretical Background

1. E-step: Compute the expectation of the so-called natural (sufficient) statistics,
given the observations X̄ and the current parameters θl .

2. M-step: Given the expectation of the natural statistics, update the parameters
θl+1 ← θl to increase the conditional expectation of the modified log posterior.

Depending on the model and choices for the GEM algorithm the parameter update in
the M-step might not be possible in a closed form and also contains an iterative opti-
mization itself [19]. The GEM algorithm can vary in the choice of the latent data Z,
the choice of the M-step updates, the initialization of parameters θ, and the stopping
criterion. During the model estimation, simulated annealing can be used by leaving the
last source J open to a noise term which is usually decreased in its variance during the
iterations [19]. The full derivation for the GEM estimation using multi-channel NMF
with the LGM assumption from equation 2.17 can be found in [7]. An overview of dif-
ferent variants of the GEM framework for multi-channel NMF can be found in [19]. An
example for the MM and VI based estimations methods can be found in [32].

Similar to the single-channel NMF, the final sources signals are separated after the
model parameters are estimated through a multi-channel Wiener filter, where [...]−1

denotes the matrix inversion:

sj,f,n = R̄j,f,nvj,f,n [
J∑
i=1

R̄i,f,nvi,f,n]−1 x̄f,n (2.24)

The multi-channel NMF framework is not only very flexible, but it can also be seen as
a ”statistical implementation of Computational Auditory Scene Analysis (CASA) prin-
ciples, whereby primitive grouping cues and learned grouping cues are simultaneously
used to segregate the sources, thereby avoiding error propagation due to sequential use
of grouping cues. Examples of primitive grouping cues accounted by this model include
harmonicity, spectral smoothness, time continuity, common onset, common amplitude
modulation, spectral similarity and spatial similarity” (in [7], page 7).

22

2. Theoretical Background

Other Methods

Besides the ICA and NMF model there exist a large variety of separation models, which
are either specific implementations of the formerly mentioned models or unique ap-
proaches to the audio source separation problem. This section will present some of these
approaches and their core ideas. However, it will not cover a detailed mathematical
description of each method due to the large variability of models.

One of the earliest methods of music source separation uses the harmonic source-filter
model, which expresses a source signal as a harmonic excitation signal filtered by a
transfer function, which is considered smooth in the frequency domain. In 1973, Miller
proposed to use the homomorphic vocoder to separate the excitation function and im-
pulse response of the vocal tract [33]. This idea gave rise to many different re-synthesis
models, which decomposes the sources with a set of sine waves of varying frequency
and amplitude. To separate a source, one needs to estimate the fundamental frequency
through some pitch detection algorithm and re-synthesis the source with an appropriate
spectral envelope through a sinusoidal bank. The re-synthesis models mostly vary in
their way of calculation of the fundamental frequency, clustering of the harmonic struc-
ture, estimation of the phase, and compensation for the residual non-sinusoidal noises.
It suffers from a very artificial sound quality, due to the discrepancies between the esti-
mated model parameters and the ground truth. Instead of re-synthesizing the sources
one can estimate the source by filtering out all other components. In a similar fashion
as the re-synthesis approach one can estimate the predominant fundamental frequencies
and cluster the TF bins accordingly and then filter out the lead source (mostly the vocal)
from the rest [34]. The harmonic filtering approach has a more natural sound quality,
though most sound sources do not follow a strictly harmonic sinusoidal model and also
contain in-harmonics and noise-like components. Also, it depends on the quality of the
pitch detection method, which especially in polyphonic mixtures without a predominant
source leads to wrong results. Instead of a pitch detection algorithm, prior knowledge
can be used in form of a score or a MIDI file [35].

As already seen in the RPCA and NMF/NTF model, one way of separation lies in
reducing the redundancy in the mixture signal by finding good low-rank approximations,
which in many cases yield estimates of the source signals. Another way of utilizing this
redundancy is by exploiting the repetitive nature of most popular music. Rafii et al.
used the self-similarity matrix of the TF representation to identify repeating sequences
of a song. By averaging over the most similar frames through a median filter they were
able to filter out the non-repetitive lead instrument/vocal from the repetitive accompani-
ment [36]. This approach was generalized through so-called Kernel Additive Modelling
(KAM), where the repeating TF bin pattern is modeled using specific kernels, which
account for periodicity, self-similarity and stability over time or frequency [37].

23

2. Theoretical Background

These methods suffer from the fact that only the lead instrument or lead vocal can be
separated from a repetitive background, which limits the use of these methods.

The conventional NMF model only uses spectral information but no time-depended
information (or only very simple temporal continuity constraints). An extension is the
incorporation of Hidden Markov Models (HMM). HMMs can model the relationship
between the hidden states at different time frames, in the form of temporal dynamics
[38]. Similar to the supervised NMF, the HMM structure has to be learned through
isolated source signals in advance. After fitting the model to the training data, there are
J models consisting of their own NMF dictionary and HMM model to represent each
source [38]. This approach can also adapt to the multi-channel case through a spatial
covariance structure [39].

Besides the well know Gaussian Mixture Models (GMM), which is also covered as
a specific case of multi-channel NMF framework, there are other clustering algorithms
used for audio source separation. An early approach by Bach et al. utilizes spectral
clustering algorithms. They propose a learned similarity matrix, made out of different
features inspired by Bregmans Auditory Scene Analysis, which describes the similarity
of every TF bin in the mixture spectrogram. They then use the eigenstructure of a sim-
ilarity matrix to partition points into disjoint clusters to achieve a binary separation [40].

As already mentioned earlier TF separation methods often arbitrarily discard phase
information. As a result, the phase of each source spectrogram is unknown, and instead,
the mixture phase is used, corrupting the reconstructed sources. A recently proposed
separation model by Liutkus et al. utilizes Gaussian Processes (GP) to perform separa-
tion in the time domain [41]. GPs are probability distributions over functions [42]. These
functions describe the source signals in the separation model and contain a mean and a
covariance function, also called the kernel. Through these kernels, specific prior knowl-
edge over the source signals can be included in the separation process. By estimating
the best fitting GP in a maximum likelihood way (or an approximation of it) the source
signals can be recovered. Alvarado et al. provided a way to reduce the computational
complexity of the GP in [42].

24

2. Theoretical Background

2.2. Deep Learning Approach

Many model-based separation methods make assumptions about the mixing model of
the sources, especially assuming a linear mixing process, and therefore do not take into
account the effects of dynamic range compression and non-linear distortions. Commonly,
methods yielding extremely good performance for linear generated mixtures completely
break down when tested on real-world musical recordings [5]. Data-driven approaches
have a clear advantage here, as they avoid making any assumptions and rather let the
model be learned from a large and representative database of examples. Especially
Artificial Neural Networks (ANN) have gained widespread attention over the last two
decades, due to the available large computing power as well as advances in machine
parallelism (e.g., cloud computing, GPUs, or TPUs). Current networks contain millions
of trainable parameters, sometimes also referred to as Deep Neural Networks (DNN),
and are trained to learn from a massive amount of data. For the recent break-through
of DNNs, the availability of ImageNet1, a database of 14 million (2021) labeled images
used in computer vision, was a major factor. This success has also taken over other
areas like signal and audio processing, often outperforming traditional methods. Also
in audio source separation the classical model-based methods, like NMF models, have
been outperformed by deep learning models [43].

Providing a full theoretical introduction into DNNs is out of the scope of this thesis,
particularly because the strategies used to create a DNN are extremely problem/data
specific, generalize just to a certain extend, and are often based on empirical studies.
A short introduction is given here, for more information the MIT Press Deep Learning
textbook [44] is recommended.

In general ANNs/DNNs are collections of artificial ’neurons’, functions that contain
trainable parameters, which are combined/cascaded together into a network structure.
One of the simplest artificial ’neurons’ is the perceptron, already proposed in 1958 [45].
A perceptron takes in N inputs xn, multiplies each input with a specific weight wn, and
then sums them up, finally adding a bias b to the sum to create a scalar output. The
whole process can be written in vector notation, with input vector x ∈ RN , trainable
weight vector w ∈ RN , and trainable bias b:

y = wTx + b (2.25)

Next, many perceptrons are combined into a layer, where all perceptrons receive the
same input but contain their own weights and biases. The whole effect of one layer on
the input can be written down as a linear transformation:

y = WTx + b (2.26)

With W ∈ RN×D, being the stacked weight vectors of all perceptrons in that layer, D

1http://image-net.org/about-overview

25

2. Theoretical Background

being the number of perceptrons, and y ∈ RD being the stacked output of all perceptrons
in that layer. These layers are then cascaded into a so-called Multi Layer Perceptrons
(MLP). Since the combination of several linear transformations can be described by a
single linear transformation (i.e. making the combination of several layers equal to a sin-
gle layer), the output of each layer is processed through a non-linear function, also called
the activation function, before it is further processed by the next layer. There are lots
of different non-linear functions used in deep learning, each of them containing different
properties. Most well know are the Rectified Linear Unit (ReLU), the Sigmoid function,
and the TanH function. MLPs are also called Feed-forward Neural Networks (FNN), as
the information moves only forward, from the input layer to the output layer. The num-
ber of layers L determines the depth of the network. Layers apart from the input and
output of the network are called hidden layers. Most DNN architectures are designed
according to the information bottleneck principle [46], reducing the data dimensionality
on every layer, forcing the network to only retain the most relevant information. In
general deeper networks are used to solve more complex tasks, as they can re-process
and re-structure the input data and find latent structures inside of it. A very common
problem with too large networks (or too small datasets), is overfitting. Here, the network
has too many free parameters and rather memorizes the whole training set instead of
finding abstract latent structures in the data. This leads to a bad generalization (i.e.
bad performance on unseen data).

DNNs are optimized using an objective function L(X,Y, θ), which takes in the input
data X, the target labels Y, and the trainable network weights θ. In most cases, the
objective function describes some kind of distance between the network output and the
desired output, so the goal is to minimize the objective function:

θ̂ = arg min
θ

L(X,Y, θ) (2.27)

Due to the non-linearities applied after each layer, DNNs cannot be optimized in a
closed-form. Instead, training is achieved by stochastic gradient descent [47]. Here a
randomly chosen small set of data-points called a mini-batch is used to estimate the
gradient and optimize the network parameters θ in an iterative way:

θnew = θold − µ∇θ
B∑
i=1

L(xi, yi, θold) (2.28)

Where B is the mini-batch size and µ ∈ R+ is the learning rate, a small scalar, which
determines the size of the gradient step. SGD is much more computationally efficient
than normal gradient descent, as the gradient only needs to be calculated over a small set
of data points, instead of the whole training data. For the calculation of the gradient, the
back-propagation algorithm is used [48], which is an efficient recursive implementation
of the chain rule. There are a variety of more sophisticated algorithms to apply the
gradient than SGD like Adam which uses adaptive learning rates for each parameter in
the network [49].

26

2. Theoretical Background

Besides the simple feed-forward structure of MLPs, many different neural network
structures and layer types exist. The two most important are the Convolutional Neural
Networks (CNN) and the Recurrent Neural Network (RNN). CNNs are based on con-
volving1 their input with many small learnable kernels, also referred to as filters, in place
of matrix multiplication. These kernels are much more parameter efficient, as they only
consider the local structure of the data and share the kernels across the whole data. A
very common example of such a learned kernel is an edge detector. The filtered output
of a convolutional kernel is called a feature map. CNNs require the input data to have
a grid-like topology, where a data point inside the grid shows some correlations to the
points surrounding it. Examples are time-series data, which can be thought of as a 1D
grid taking samples at a regular sampling-rate, and images, which have a spatial struc-
ture as a 2D grid of pixels [50]. Therefore both one- and two-dimensional convolutions
are mainly used in CNNs depending on the input data structure. Regardless of the
dimensionality of the data, a convolutional layer always contains an additional feature
dimension, which size is determined by the number of kernels used inside that layer.
Similar to FNNs, CNNs are arranged by cascading layers together, each one followed
by a non-linearity. After the non-linear function, a pooling function is often used to
down-sample the learned feature maps, reducing the size of the data and compressing its
relevant information. Instead of a pooling function, the size can also be directly reduced
by using strided convolutions, which simply skips every n-th value. Due to their local
operations and parameter efficiency CNNs are less invariant to scaling and translations,
as well as less prone to overfit [50]. They also make use of parallelization very efficiently.
RNNs, on the other hand, use internal feedback connections to process sequential data.
In contrast to FNNs and CNNs, they contain cycles in their graph and compute the
output for a sequence step from both the input at that step and their hidden state from
the previous step [51]. For offline applications, bidirectional RNNs can use a second
recurrence in reversed order, increasing the receptive field also to future steps of the
sequence. RNNs are the classical way of processing data with a temporal structure,
as they can model the dynamics of such data. Since they process each step of the se-
quence one after another they cannot be parallelized efficiently and as a consequence
take longer to train. Another issue with the recurrent feedback connections inside RNNs
is the exponential growth/decay of their hidden states and their respective gradients.
This is called the vanishing and exploding gradient problem and makes it difficult to
train standard RNNs. Modern RNNs, therefore, use more complex ’neurons’ such as the
Long-Short-Term Memory unit (LSTM) [52] or the Gated Recurrent Unit (GRU) [53],
which encapsulate their recurrent hidden states through gating mechanisms to alleviate
gradient problems. Recent trends show that CNNs are as efficient as RNNs in processing
time-series data and become more and more popular, especially in audio processing, due
to the large time series data involved. Also, Convolutional Recurrent Neural Networks
(CRNN) are used more and more. Here, convolutional layers extract local information,
reducing the high dimensional data to a compact set of features and recurrent layers
then model the dynamics of these features [54].

1Most implementations are actually based on cross-correlation, instead of real convolutions.

27

2. Theoretical Background

Another alternative to RNNs becoming increasingly popular are Attention-based mod-
els which learn alignments through weighted similarities between the input and output
sequences or within the input sequences jointly with the target optimization [55].

Audio Source Separation can be seen as a sequence to sequence regression problem,
where both input and output are values in a continuous range [43]. Many architectures
were proposed in the past, such as FNNs, CNNs, and RNNs with both LSTMs and
GRUs as well as combined architectures. Most deep learning source separation methods
typically estimate masking operations in the TF domain as they were originally adapted
from the NMF framework [56]. But also waveform-domain methods have become more
and more popular recently [57]. The next sections will provide an overview of the relevant
network architectures, training methods, and available datasets and finally point out
problems of current deep learning methods, which will be approached in chapter 3. For
a more general overview of deep learning methods used in audio processing, the summery
of Purwins et al. is recommended [43].

Datasets

One downside of DNN based source separation is the need for a large amount of training
data. Most audio-related deep learning tasks, except speech recognition, face relatively
small datasets, already limiting the complexity of these deep learning models [43]. This
is also a big problem in music source separation because data acquisition is a difficult
task. A data point has to contain the final mix down as well as all isolated source tracks.
In speech source separation this task is quite easy to solve, as in general one can take any
isolated speech recording and mix them together to produce a new data point. There are
large corpora of speech recordings already available, for example, the Wall Street Journal
(WSJ1) data set, containing over 78,000 utterances1. Besides that, also the generation
of new data sets is quite straightforward. In the case of music, this generic way of con-
structing new data is not possible since different sources in a song are highly correlated
and cannot be mixed together in randomly. They are subject to complex harmonic as
well as long- and short-term temporal relationships and span a very small and specific
subspace in the ways they’re mixed together. By mixing random musical phrases of dif-
ferent pitches and tempos together, one would certainly never obtain a common popular
music piece. Therefore, professionally composed, recorded, and mixed songs have to be
used for training [5]. Even though there is an endless amount of these mixdowns (e.g.
the Spotify database containing over 60 million songs2), it is almost impossible to get
access to the underlying isolated source tracks, as they are considered amongst the most
precious assets of their right holders. Because of these copyright issues, most datasets
are either private or comparably small and specific [43].

1https://catalog.ldc.upenn.edu/LDC94S13A
2https://newsroom.spotify.com/company-info/

28

2. Theoretical Background

Common public datasets used for music source separation are:

1. IKala and MIR-1k datasets - both used for vocal/accompaniment separation and
containing around 2 hours of music separated into two source tracks [58][59].

2. Medley-DB 2.0 dataset - created for a variety of MIR tasks. It contains by now
around 200 tracks of music, most of them including the isolated source tracks, split
into 54 categories [60].

3. DSD-100 and the MUSDB18 - both specifically created for multi-instrument music
source separation, within the SigSep Evaluation campaign. The MUSDB18 is an
extension of the DSD-100 and contains 150 tracks, separated into 4 isolated tracks:
vocals, bass, drums, and other. It was created partly with the Medley-DB dataset
[61] [62].

4. Slakh2100 - created to account for the relatively small sizes of the other datasets.
It contains 2100 tracks yielding a total amount of 145 hours of music, categorized
in 34 different instruments. The dataset was generated with public available Midi
scores played by a sampler. It does not contain any vocals and due to the generative
midi procedure only partly resembles a real song [63].

Since there is only limited data available, a common method during the training of
a DNN is data augmentation. For music source separation there are no standardized
augmentation procedures and they vary from one method to another. The most common
data augmentation techniques for music source separation were proposed by Uhlich et
al. in [64] and again evaluated Pretet et al. in [65]. They suggest to modifying the audio
data by:

1. random swapping of left/right channel for each source

2. random loudness re-scaling of the source tracks

3. random time-stretching

4. random pitch-shifting

5. random filtering

6. random mixing of source tracks from different songs

The implementations and results of these data augmentation techniques vary. Peréte
et al. evaluated each method separately and discovered that only channel swapping,
pitch-shifting and time-stretching contribute to the performance and noted a overall
maximum performance gain of +0.2 dB SDR, the other methods did not contribute sig-
nificantly [65]. Uhlich et al. results are very similar to this[64]. Both data augmentation
techniques were only evaluated under the vocal/accompaniment separation setting and
not in a multi-instrument separation setting. A very unique augmentation method was
proposed by Stoller et al. in [66], where they use another adversarial discriminator net-
works that is trained to distinguish real recordings from separator samples, making it
possible to implicitly train the separator network on unlabeled data.

29

2. Theoretical Background

Time-Frequency Masking Separation

Since NMF-models had shown that source separation is particularly efficient in the TF-
domain, using primarily the spectral information for separation, most deep learning
approaches also operate in the TF-domain.

Figure 2.2.: FNN architecture for music source separation (Adapted from [67]).

One of the first to use a DNN for music source separation was Huan et al. [68]. They
proposed a classical RNN structure with 3 hidden layers of 1000 hidden units each,
processing three concatenated STFT frames at a time to predict one separated STFT
frame and showed that this recurrent architecture outperforms the simple feed-forward
architecture. At the same time, Uhlich et al. developed a similar approach using a FNN
whose input consists of five concatenated STFT frames, trained in a consecutively way,
adding one layer at a time [67], up to five layers in total. Figure 2.2 shows the proposed
architecture. Later Uhlich et al. also updated their architectures with bidirectional re-
current LSTMs, improving their results over their previous feed-forward architecture [64].

Both these approaches have a relatively small temporal input context of only a few
consecutive STFT frames and instead use the recurrent structure to model longer tem-
poral structures. Simpson et al. proposed a different approach, using a much larger FNN
with an input context of 20 consecutive STFT frames concatenated to a super-vector.
The network had three layers and an output of 20 consecutive STFT frames. They
used a sliding window approach with a hop-size of one frame to get 20 estimates for
every STFT frame and then took the average over all estimates to get the final source
spectrogram. Since the FNN processed the mixture spectrogram with a sliding window,
they called their model a convolutional DNN, as it could be also seen as a CNN with a
kernel size of 20 × 10251. However, their model does not utilize the parameter efficient
structure, which ’modern’ CNNs provide, and it contains over one billion parameters (!)
[69].

11025 being the number of frequency bins in the STFT.

30

2. Theoretical Background

Chandna et al. pointed out that these DNN architectures are not completely exploit-
ing the local TF structure and instead rely on global features across the entire frequency
spectrum [70]. They were the first to adapt a ’modern’ CNN design and an informational
bottleneck structure to the music source separation problem. They used two convolu-
tional layers to encode 25 frames of the mixture spectrogram, two feed-forward layers
as the bottleneck, and another two transposed convolutional layers as the decoder and
showed that this parameter efficient design performed as well as previously proposed
MLP structures while containing fewer parameters [70].

Most researchers use a relatively simple objective function to train their models, like
the L1/L2-norm between the estimated spectrogram and the target spectrogram, similar
to the ones used for NMF (see eq.: 2.11-2.13). These objective functions are in many
cases ’good enough’, an example for a more complex objective function is given in [71].

Figure 2.3.: Sketch of the TF masking separation process.

All DNNs operating in the TF-domain make use of a masking function for the final
separation process, which was adapted from previous NMF-based separation approaches.
The TF mask enforces the constraint that the sum of the estimated results is equal to
the original mixture [68]. Figure 2.3 visualizes the spectral masking separation process.
The STFT of the mixture waveform is calculated and divided into phase and magnitude
information. The magnitude information is passed either as a concatenated super-vector
x ∈ RNFI to a FNN/RNN or as a tensor X ∈ RN×F×I to a CNN, where N is the number
of included STFT frames, F is the number of frequency bins in the STFT and I is the
number of channels (1 = Mono, 2 = Stereo). In general, N has to be chosen carefully to
provide a large enough temporal context but prevent too large amounts of parameters
as well as memory overflow. The DNN then yields a source estimate Yj,k ∈ RN×F×I for
each frame-block of length N in a song, which is either simply concatenated or concate-
nated by an overlap-and-add procedure. The concatenated source estimates are used to
create a final TF mask for each source track, which filters the complex-valued original
mixture STFT. The obtained filtered spectrograms are then used to reconstruct the time
domain signals through an ISTFT.

31

2. Theoretical Background

There are several masking functions, which can be used to filter the mixture STFT.
The most rudimentary approach is the binary mask, which simply assigns the TF-bin
to the source estimate with the highest energy:

Ŝj = Mj � X̄ with Mj =

{
1 if

Yj∑J
i=1 Yi

> 1
J

0 else
(2.29)

The binary mask comes with the drawback of a characteristic ’musical’ noise, due to
the abrupt phase and amplitude changes in the spectrogram and is mostly outdated [72].
Except Simpson et al. [69], most researchers have focused on a soft masking strategy,
where the TF mask lies in the continuous interval from 0-1, which has the advantage of
strongly reducing musical noise:

Ŝj =
J∑
j=1

(Yj)
α∑J

i=1(Yi)α
� X̄ (2.30)

The hyperparameter α can either be set to 1 for a normal ratio mask or to 2 for
an optimal single channel Wiener Filter [72]. Both the binary mask and the soft mask
ensures that the original mixture is obtained when all separated sources are summed up
again:

∑J
j=1 Ŝj = X̄. Since they both only contain real-valued numbers between 0 and 1

they automatically assign the mixture phase to every separated source, which especially
affects transient and sounds of low frequency negatively.
Most of the approaches mentioned above consider the single-channel source separation.
Nugraha et al. adapted the GEM algorithm, used for the multi-channel NMF/NTF (see
section 2.1), to DNN based separation models, by replacing the NMF/NTF-model with
several DNNs. The DNNs are used to estimate yj,f,n, the spectral energy of source j at
TF-bin f, n, while the GEM model predicts the frequency-dependent spatial covariance
matrix R̄j,f ∈ CI×I in an iterative way. Their DNNs architectures are very similar to
the one from Uhlich et al. shown in figure 2.2. Though, instead of using one DNN for
the whole estimation, they use several DNNs. Each DNN is used at a different iteration
stage of the GEM algorithm to re-estimate the source energies based on the previously
estimated energies and spatial covariances [56]. The final MWF mask therefore also
includes complex-valued spatial information of the multi-channel mixture x̄f,n ∈ CI :

ŝj,f ,n = yj,f,nR̄j,f,n [

J∑
i=1

yj,f,nR̄i,f,n]−1 · x̄f,n (2.31)

The adaptation of MWF into DNN based source separation was shown to be beneficial
for the separation quality [56]. The iterative GEM algorithm to derive the optimal
MWF coefficients was implemented in a python toolbox1 in the course of the Signal
Separation Campaign, to provide an easily accessible MWF masking function for any
DNN architecture.

1https://github.com/sigsep/norbert

32

2. Theoretical Background

All previous DNN separation approaches directly estimate either the source signals
or a source mask, using either one network per source class or a single network with
multiple dedicated source outputs. This makes it impossible to separate signals in a
class-independent way, where the included source classes are not known in advance.
Hershey et al. proposed a different method where they trained a deep network to pro-
duce a spectrogram embedding that is discriminative for grouping labels calculated from
the training data. The source separation is therefore implicitly encoded in the learned
embeddings and can be ”decoded” with a clustering algorithm. The approach is inspired
by previous clustering-based separation models and is closely related to the perceptual
grouping theory of computational auditory scene analysis [73]. They used a bidirectional
LSTM network to model the embedding process. Instead of using an objective function,
which minimizes the distance between the networks estimate and the original source
spectrogram, they proposed a novel class-independent objective function. The network
takes in the mixture spectrogram X and outputs a D dimensional embedding vector
vf,n ∈ RD for every TF bin in X, so that the embedding features of the TF regions
dominated by the same source are forced to get close to each other and those dominated
by different sources are forced to get separated from each other [74]. The embedding
vectors are stacked into a matrix V ∈ RFN×D and the network is trained to minimize
the following objective function:

L(V,Y, θ) = ||VVT −YYT ||2F
= ||VTV||2F − 2||VTY||2F + ||YTY||2F

(2.32)

In this case, YYT is an FN × FN binary affinity matrix, where the element is given
by YYT [n, n̂] = 1 if TF bins n and n̂ are dominated by the same source, otherwise the
element is set to 0. The objective function encourages the mapped embedding vectors
to become parallel if they are dominated by the same source and orthogonal otherwise
[73]. The second line of equation 2.32 prevents the objective function to calculate the
FN × FN affinity matrices and makes it possible to compute the gradients of the net-
work parameters θ within a reasonable amount of computational effort. After training
the network, the embedding vectors are used with computationally efficient clustering
algorithms such as k-means, to assign each TF-bin of the mixture spectrogram a binary
mask for separation. Since the number of clusters in the embedding space can be varied,
the network can separate mixtures with arbitrary amounts of source signals involved.
Hershey et al. proved this by separating three speaker mixtures with a network only
trained with two speaker mixtures [73]. Li et al. improved the results achieved by Her-
shey et al. using a CNN instead of the proposed RNN [74] and Lou et al. adapted the
deep clustering method to music source separation [75].

Although Deep Clustering is able to separate arbitrary class-independent mixtures, it
can only separate through a binary TF mask, which has been shown to be less effective
than other masking types [72].

33

2. Theoretical Background

Modern deep learning frameworks, like Tensorflow and Pytorch, made the development
of DNNs for source separation easier and led to a quite large variety of DNN architectures.
Jansson et al. adapted the fully convolutional U-Net architecture, initially developed for
medical imaging [76], for the task of source separation, because of its proven capacity
of recreating the fine low-level detail, required for high-quality audio reproduction [77].
The U-Net architecture is formed by an auto-encoder architecture with additional skip-
connections between layers at the same hierarchical level in the encoder and decoder
stage. While normal “hourglass” auto-encoder architectures are successful in discovering
global hidden structures in the data, a lot of local details are lost in the bottleneck
compression. The skip-connections alleviate this problem by allowing high-resolution
details to flow directly beside the deep encoded information inside the bottleneck.

Figure 2.4.: Fully convolutional U-Net architecture for music source separation (Taken
from [77]).

Figure 2.4 shows the architecture proposed by Jansson et al. in [77]. The U-Net
contains six encoder and six decoder stages and a final internal masking stage. They
used two-dimensional convolutions with a stride of 2× 2 in the down-sampling path and
transposed convolutions in the up-sampling path, both with a kernel size of 5× 5. Each
convolutional layer is followed by a batch normalization layer, which has been shown to
improve convergence during training [78], and a final leaky ReLU activation function.

34

2. Theoretical Background

They implemented three drop-out regularization layers in the deeper part of the network
to prevent over-fitting [79]. The final layer is used with a sigmoid activation function to
create an internal mask, which is then multiplied to the input spectrogram. The internal
masking procedure was also later proven to be beneficial for separation performance in
[80]. The model was trained using the Adam optimizer [49] on a large private database on
the vocal/accompaniment separation task and showed excellent performance [77]. It was
also adapted for multi-instrument separation tasks by a researcher team of Deezer under
the name Spleeter [81]. The auto-encoder structure with additional skip-connection was
reused by a lot of researchers in music source separation, like [82], [65], [80], [54], [83]
and builds the current foundation of modern source separation networks.

Stoter, Uhlich et al. updated their previously proposed recurrent LSTM model with
’modern’ deep learning techniques like batch-normalization [78], dropout regularization
[79], bottleneck design [46], skip-connections, and an internal masking process [80] and
created the open-source separation model OpenUnmix [84].

Takahashi et al. adapted the densely-connected convolutional structure from DenseNet
[85] to the source separation problem and created their MMDenseLSTM architecture.
The idea of DenseNet is to use concatenated output feature maps of all preceding layers
as the input to all succeeding layers, creating a connection between every layer of the net-
work. These connections effectively support the gradient flow inside the network, making
it possible to train much deeper networks while also requiring significantly fewer param-
eters (as features maps can be reused in every layer). Since DenseNet does not allow any
down-sampling paths, because of its inter-connectivity, Takahashi et al. created densely-
connected blocks, which are followed by a down-sampling layer and arranged them in
an encoder-decoder structure with typical U-Net skip-connections between them. They
furthermore introduced a multi-band structure with dedicated dense blocks to partic-
ular frequency bands, as otherwise, most kernels in a convolution layer focus only on
the higher energy band and neglect frequency regions with lower energy. By limiting
the bands that share the same kernels the network can efficiently capture local patterns
[86]. Although they process the whole spectrogram in multiple bands, their model only
contained 0.3 million parameters, due to the densely-connected architecture. They later
on updated their dense block architecture with another LSTM block in a unified archi-
tecture together with a final MWF, which achieves the current State-of-the-Art results
and outperforms the Ideal Binary Mask1 [54].

1The binary mask created with the original source tracks, see [14] for more information.

35

2. Theoretical Background

Time Domain Separation

Recently, the first end-to-end DNN models have been developed which directly perform
source separation in the raw waveform-domain. Since the TF mask relies only on the
magnitude information and discards the phase, it has a natural upper bound on the
performance of all methods relying on this strategy, for instance, the Ideal Ratio Mask
(IRM) or the Ideal Multi-channel Wiener Filter (IMWF) [57]. Time-domain models are
not limited by this upper bound and as TF masking models start to approach the or-
acle performance, it is a logical step to move on to a waveform-to-waveform separation
approach.

One of the first approaches to waveform domain separation was done by Stoller et al.
by adopting the U-Net form Jansson et al. [77] to the waveform-domain [87]. They re-
placed the 2D convolutions with longer 1D time-domain convolutions and used a learned
up-sampling layer instead of transposed convolutions in the decoder, to prevent aliasing.
They trained a single model with multiple outputs for the multi-instrument separation
task. The model was submitted to the 2018 SiSec evaluation campaign but was not able
to perform as well as models using a TF masking approach.

For speech source separation, Luo and Mesgarani proposed Conv-Tasnet, in which
they reuse the TF masking approach but instead of using an STFT they propose to use
a learned transformation. The model operates directly in the waveform domain for both
the inputs and outputs and uses a learned front-end that transforms back and forth
between the input mixture waveform and an over-complete basis representation. The
transformed representation is then masked by an internal separation network. They first
proposed a recurrent LSTM network to estimate the mask [88] and later updated their
model with stacked convolutional residual blocks [89]. The output of the encoder is mul-
tiplied by the mask obtained from the internal network before going through the decoder
back to the waveform-domain. Conv-Tasnet surpasses the IRM oracle performance in
speech separation. Defossez et al. adapted Conv-Tasnet to the music separation task.
Although it did not outperform the IRM on this task, it outperformed all current TF
masking models [57].
Furhtermore, Defossez et al. proposed Demucs, their own end-to-end source separation
network architecture, which is inspired by models used for music synthesis rather than a
masking approach. Their model consists of a convolutional encoder and a decoder based
on wide transposed convolutions with large strides and typical U-Net skip-connections
between each encoder/decoder as well as a bidirectional LSTM in its deepest stage [57].
Demucs predicts all source instruments through a single network with multiple outputs
and achieves very similar results to Conv-Tasnet. They also did a perceptual evaluation
study, showing that the synthesis separation approach of Demucs yields slightly higher
sound quality and fewer artifacts, while the masking approach of Conv-Tasnet yields
slightly less contamination by other sources but an inferior sound quality [57].

36

2. Theoretical Background

Multi-Class Separation

In general, there are three main design concepts for the separation process of numerous
source classes [83]:

1. Multiple independent DNNs, one trained for each source class.

2. A single DNN with multiple outputs, using a dedicated output for each source
class.

3. A single conditioned DNN, which outputs a specific source class depending on the
given condition.

Multiple DNNs for multi-class separation is the most common approach used by many
researchers, as it is straightforward to implement and yields good results. However, in
the case of high numbers of source classes, this method scales badly in terms of compu-
tational overhead, training/separation time, as well as the number of contained model
parameters. With currently available datasets, like MusDB18, which only contain a few
different source classes, these issues are not so serious. Still, it is an important aspect for
future research, where more complex and detailed datasets might be available. Also for
applications, where the computational overhead is crucial, such as real-time and mobile
applications, a single DNN architecture might be beneficial. In general, using one DNN
with multiple outputs solves the problem of computational overhead quite well. It is
also simple to implement, as just the last layer of the network needs to be changed.
Kadandale et al. proposed the M-U-Net, which adds multiple output layers to a U-Net
and showed an equal performance to dedicated U-Nets while containing fewer parame-
ters and lower training times (by a factor of 1

J) [83]. Training a single DNN to separate
multiple sources might result in a bias of the model towards sources with higher energy,
as their gradients can have higher magnitudes [90]. To prevent this, different weighting
strategies have been proposed, which weight each source class according to their overall
energy in the whole dataset (see [83] and [90]). Conditioning a DNN to extract differ-
ent source classes depending on a given condition combines the negative effects of both
previously mentioned strategies. The computational effort scales exactly the same as
for dedicated DNNs. This is so because each data point needs to be passed through
conditioned DNN multiple times in every training epoch, one time for each source class
[83]. A good overview of different conditioning strategies for music source separation
can be found in [91]. They will be not further explained here.

Especially for models that operate in the waveform-domain, the single DNN approach
is advantageous, as they need bigger convolutional kernels and have to process much
longer sequences to achieve the same receptive field. Therefore the training time can
be quite large and training multiple networks might not be feasible in a reasonable
amount of time. All previously mentioned waveform-domain networks use a multi-output
approach. Another example is Meta-Tasnet, which is a conditioned Conv-Tasnet used
for music source separation [92].

37

2. Theoretical Background

Current Problems

Although first waveform-domain models have been successfully developed, most architec-
tures still rely on a TF mask approach. 2D convolutional U-Net architectures converge
in a relatively low training time, provide a highly detailed output, are less prone to
over-fitting, and are able to capture a quite large receptive field without running into
memory issues. Hence, they’re still the most widespread network architectures in music
source separation. One major problem with the 2D convolutional processing, originally
developed for image processing, when being used on a spectrogram, is often ignored - the
exponential scaling of the frequency axis. While the general benefit of CNN’s lies in their
ability to only operate on local regions and generalize the obtained local features over
the whole input data while minimizing the number of required parameters, this attribute
relies on equally and linear scaled input dimensions. This applies to the time dimension
of the spectrogram, as time does not change its ’speed’ depending on the spectrogram
region. The distance between two successive spectrogram frames always remains the
same. However, the frequency dimension does not fulfill this requirement. This can be
easily shown with an example: Relationships between frequencies, especially in music
are based on the harmonic series, which consists of multiple frequencies of a fundamen-
tal frequency. A musical tone at a fundamental frequency of 100 Hz will have the first
harmonic at 200 Hz, the second at 300 Hz, and so on. On the other hand, a tone with a
fundamental frequency of 200 Hz will have the first harmonic at 400 Hz and the second
at 600 Hz, and so on. Hence, the distance between a fundamental and its harmonics
changes according to the frequency region. This exponential scale in the frequency axis
makes it very difficult for CNN’s to learn harmonic structures inside of its linear scaled
kernels. A very common approach to tackle this issue is to use a transformation that
results in a logarithmic or near logarithmic scaled frequency axis, like the constant-Q
transformation or a Mel-scale transformation. These transformations work very well
for classification tasks, where the CNN yields an abstract low dimensional output. In
audio source separation, however, the output of the network is again a fully detailed
spectrogram, for which an inverse transformation into the time-domain is required. Log-
scale-like transformation lose a lot of detail, especially in higher frequency regions. Also,
their inverse does not exist and they rather rely on approximations. Therefore, they
are an unsuitable representation for audio source separation. The multi-band structure
of MMDenseLSTM, which splits up the spectrum into three bands and processes them
with separate band-specific CNN kernels solves this problem partly and results in State-
of-the-Art separation performance, showing the benefit of tackling this issue [54].

An even more severe issue with the TF masking approach is the lack of phase infor-
mation. This degrades the separation process in two ways. Firstly, the network cannot
utilize the phase information to separate sources, this especially affects the performance
in a multi-channel situation. Secondly, the separated sources are created with the mix-
ture phase, which is a crude approximation of the real source signal. While the MWF is
at least able to use the phase differences caused by the spatial location of the source to
improve the separation, it cannot separate mixed phase information in TF-bins, which

38

2. Theoretical Background

are occupied by different sources. This ’noisy’ phase affects sources differently. Vocals,
for example, are relatively spares in the TF-domain and mostly occupy higher frequency
regions with an already relatively dense amount of TF-bins. Therefore, the effect of the
’noisy’ phase is not very audible in separated vocals, as in general, they have a high
chance to occupy their own TF-bins. The effect on other instruments is much higher.
The bass mostly occupies regions of low frequency. Here the TF-bin density is low, due
to the nature of the STFT, and many frequencies share the same TF-bin. Therefore,
also the phase information is much more likely to be corrupted by different sources.
This is can be perceived when listened to the bass sources separated with a TF masking
approach. The sound is very diffuse and blurred. Interestingly, this can also be seen in
the evaluation results when comparing TF domain models to waveform domain models.
The evaluation results of the bass are usually much worse than the results of the vocals
with a TF masking model, while they’re almost identical with a waveform-domain model
(see table 1 in [57] as an example). Also, the drum separation is affected by the ’noisy’
phase. Here, this is not so visible in the evaluation results, as drums are separated quite
well with the TF masking approach. However, drums contain a lot of transient sounds
with impulse-like attacks. These impulses require the phases of the whole spectrum to
align specifically. This does not happen with the ’noisy’ mixture phase and the separated
drum signal contains very hollow transients, which can be heard quite well and even seen
(shown in figure 4.4).

In the next chapter these problems are approached by modifying existing DNN ar-
chitectures and expanding their contextual perceptive field to music specific properties.
A way to provide the CNN kernels access to the harmonic series is developed and eval-
uated. To align the ’noisy’ mixture phase, another post-processing network, operating
in the time-domain, is created, which takes advantage of the repetitive nature of mu-
sic. Furthermore, different data augmentation, as well as data generation strategies are
developed and evaluated to counteract the general data scarcity.

39

3. Method

The practical part of this thesis deals with existing CNN based TF mask separation
methods, due to previously mentioned advantages, especially their relatively low con-
vergence time. Furthermore, it is a well-researched topic with lots of information about
network architectures and hyper-parameters available. The goal is to evaluate current
methods and find extensions, which solve the problems pointed out in section 2.2. The
implementation of all experiments is done with Python and Tensorflow.

3.1. Dataset

Throughout this thesis, the MusDB18 dataset will be used, as it is already structured
for the source separation problem and also serves as the standard evaluation baseline
for most music source separation papers. Therefore, the target will be to extract the
four source tracks including vocals, bass, drums, and others (i.e. residual instruments
like guitar, piano, ..., mixed into one track) from a professional stereo mixdown. To
speed up the training procedure all tracks are re-sampled from their original sample rate
of 44.1kHz to 16kHz. This is a common practice [84]. The provided split of 86 songs
for training, 14 songs for validation, and 50 songs for evaluation is used. The STFT is
performed with a window size of 2048 samples and a hop size of 512, these parameters
showed the best results in my initial experiments. The songs are sliced into segments of
N̂ = 512 STFT frames, resulting in a length of 16.5 seconds per data point. 32 slices
are sampled randomly from each song, which prevents a bias towards longer songs. This
sampling technique showed better results than slicing up all songs throughout. From the
STFT slices, the highest frequency bin is dropped to reduce the frequency bins to 1024,
which has a much better down-sampling property for CNNs (i.e. power of 2). After
the separation, the dropped frequency bin is replaced by the mean value of all other
frequency bins in the respective frame. One data point consists of the magnitudes of
the mixture slice and the corresponding magnitudes of the four source slices. The phase
information is discarded during the training process. The magnitude values are turned
into a log scale, clipped between 0 and -85 dB, and compressed to a single byte per
value. This reduces the amount of required disk space and was almost not audible when
being decompressed. The compressed data points are saved in the Tensorflow internal
’.tfrecord’ format to obtain a fast data input pipeline. This process avoids long audio
file loading times as well as expensive STFT calculations during training, effectively
reducing the training time. The final training set contains 2752 data points and the
validation set contains 448. During training, the magnitude values are converted back
to linear scaled 32bit float values.

40

3. Method

3.2. Data Augmentation

The used data augmentations are inspired by the ones used in [65] (see list 2.2). Pretet et
al. performed their augmentations on the STFT magnitudes frames1. I assume that this
results in a non-optimal augmentation, as these are rough approximations compared to
their time-domain implementation, especially for the time-stretching and pitch-shifting
augmentation techniques.

Therefore a completely time-domain-based augmentation setup is used in this thesis.
Channel swapping per source is performed with a chance of 50%. The loudness of each
source track is re-scaled with a uniformly distributed random factor between 0.5 and
1.25. A novel filtering augmentation is introduced, where every instrument is randomly
filtered with a chance of 50%. The filtering is achieved through a convolution of the
original source track with a randomly created normalized Impulse Response (IR) with a
randomly selected length between 2 and 32 samples. The IR has a high chance to have
a high value in its first sample. This will create a new frequency response, which still
preserves some of the frequency relationships of the original source. Instead of using
dedicated pitch-shifting and time-stretching algorithms, which in general degrade the
audio quality, the original audio is simply re-sampled to a lower or higher sample rate
and then played back in the original sample rate. This simultaneously results in a pitch
shift and time stretch without introducing artifacts into the audio. The re-sampling
factor is calculated by 2(u/12), with u being drawn from a uniform random distribution
between -6.0 and 6.0, spanning one octave. The re-sampling is applied to all source
tracks with the same factor to preserve rhythmic and harmonic relationships. The mod-
ified source tracks are then mixed together to create a new mixture. To simulate the
non-linear mixing process done by a professional audio engineer during ’mastering’, a
soft non-linearity is applied to the new augmented mixtures, with: x̂ = tanh(λx). Here,
λ is a scaling factor, which ensures that the non-linear distortion is just barely audible.
The augmented dataset contains three times as many data points as the original dataset
and also saved in a ’.tfrecord’ dataset, using the same procedure as described before.

Although always taken as a fact in most literature, to my knowledge no one ever
evaluated the assumptions that the high harmonic and temporal correlation between
instruments in a music mixture is necessary to the training success of a DNN for music
source separation. Therefore, a second dataset is created in which the mixtures are cre-
ated by randomly mixing four different source tracks from any of the available songs in
the MusDB18 training split. It contains three times the amount of data points as the
original dataset to take advantage of the combinatorial possibilities of this data genera-
tion technique. Both datasets will be used for training to evaluate if musical correlations
between different source tracks inside the training data are really necessary for the sepa-
ration success of a DNN. Besides this evaluation, the randomly generated dataset is also
used as another data augmentation source.

1This can be seen in their online published models at https://github.com/deezer/spleeter

41

3. Method

3.3. Training

If not mentioned otherwise all experiments utilize one specific DNN per source, yield-
ing four separate training’s. One training consists of 60 epochs per DNN, where one
epoch equals an iteration over 3200 data points. When using data augmentation, the
augmented data points are randomly interleaved between the original data points, and
the iterations per epoch are kept fixed at 3200 for a fair comparison. Before every epoch
the complete dataset is shuffled once. After 60 epochs the model at the epoch with the
best validation loss is evaluated. The L1 distance between the estimated source Y and
the original source S is used as the loss function during training:

L(Ŷ,S) =
1

FNC

F,N,I∑
f,n,i

||Y[f, n, i]− S[f, n, i]||1 (3.1)

The L1 loss has been used in many source separation papers and was shown to yield
stable and good performance. For the first 20 epochs, the learning rate is set to 0.001 and
then decreased exponentially for fine-tuning with: learning rate = 0.001 · e0.05(20−epoch).
Adam is used to apply the gradient to the model [49]. Experiments with normal SGD
without momentum did not converge in any reasonable time. A batch size of 8 data
points per batch is used, if not specified otherwise. The Glorot Uniform distribution is
taken to initialize all model parameters [93]. The training is calculated on two NVIDIA
GTX 1080Ti in parallel.

The final separation will be achieved through the normal ratio mask (equation 2.30
with α = 2), because the calculation of the MWF through EM is an expensive calcula-
tion. The best performing model will then be evaluated with the MWF (equation 2.31).
This is a common practice in the evaluation process of DNN based source separation.
The MWF is calculated with the python-based toolbox Norbert1. After masking the
complex-valued mixture spectrogram, the final source signals are obtained by perform-
ing an inverse STFT over the obtained source spectrograms.

1https://github.com/sigsep/norbert

42

3. Method

3.4. Baseline Model and Network Architecture

Since there is a large variety of already existing DNN architectures for the source sep-
aration problem, a subset of well-known architectures was chosen to serve as a baseline
for this thesis. These baseline models yield the current State-of-the-Art results, each
representing a different category of network architecture (i.e. RNN, CNN, etc.). They
will serve as the final evaluation benchmark.

1. Spleeter: A fully convolutional U-Net, which is an adaptation of the original
U-Net by Jansson et al. [77] implemented by researchers of the music streaming
service Deezer. The model was trained on a large private database (≈ 24, 000
songs). They also present results when only trained on MUSDB18 for a fair com-
parison [81].

2. OpenUnmix: A recurrent neural network architecture based on three LSTM
layers. It was specifically created as an open-source model for other researchers.
It achieves the comparably good evaluation results with a recurrent architecture,
without any convolutional layers [84].

3. MMDenseLSTM: The best performing model from the SigSep 2018. It is based
on a densely-connected convolutional architecture and processes the spectrum in
multiple bands. It also utilizes a recurrent LSTM to improve the performance
of its predecessor MMDenseNet. Because of it’s densely-connected convolutional
structure, it has the lowest amount of model parameters of all models mentioned
here (1.3M parameters). It was developed by researches of Sony and trained with
additional 800 songs. Evaluation results are also available when only trained on
MusDB18 for a fair comparison. [54].

4. Demucs: The newest model of all considered benchmarks used for this evalua-
tion. It was proposed by a research team of Facebook and performs separation
in the time-domain, in contrast to all former models, which are based on the TF
representation. It is also the only model using a multitasking approach, separating
all sources with a single network. It is built in a 1D convolutive U-Net structure
with an additional recurrent layer and is trained on 150 extra songs. Evaluation
results are also available when only trained on MusDB18 for fair comparison [57].

43

3. Method

F
ig

u
re

3.
1.

:
S
y
m

b
ol

ic
sk

et
ch

of
th

e
or

ig
in

al
S

p
le

et
er

b
as

el
in

e
im

p
le

m
en

ta
ti

on
.

T
h

e
co

lo
r

o
f

ea
ch

b
a
r

en
co

d
es

th
e

ty
p

e
o
f

la
ye

r
it

re
p

re
se

n
ts

.
T

h
e

h
ei

gh
t

of
th

e
co

lu
m

n
s

sy
m

b
ol

is
es

th
e

si
ze

of
th

e
fr

eq
u

en
cy

(F
)

a
n

d
ti

m
e

(N
)

d
im

en
si

o
n

.
T

h
e

d
ep

th
of

th
e

b
ar

s
re

p
re

se
n
ts

th
e

am
ou

n
t

of
fe

at
u

re
m

ap
s

(C
)

it
co

n
ta

in
s.

44

3. Method

Initial experiments with both publicly available models, namely Open-Unmix and
Spleeter, have shown a much faster convergence in terms of required epochs as well as
much faster calculation time per epoch with the fully convolutional U-Net architecture
of Spleeter. Therefore, the here proposed network architecture is based on Spleeter.

The public available implementation of Spleeter (from https://github.com/deezer/

spleeter/blob/master/spleeter/model/functions/unet.py) is used and converted
from Tensorflow 1.0 to 2.0. Figure 3.1 is a symbolic representation of the complete
architecture. The model consists of six fully convolutional encoder and decoder stages
with typical U-Net like skip-connections between each encoder/decoder pair. Each stage
consists of a two dimensional strided (encoder side) or transposed (decoder side) convo-
lution layer, a batch normalization, for faster and more stable convergence [78], and a
non-linear activation function. In the last stage, an internal mask is created by using a
sigmoid activation function in the last layer and multiplying it on the input tensor.

Since some of the design choices seem not optimal, the internal flow of information is
restructured. The number of total layers is doubled by adding a transition layer (another
convolutional layer without a down- or up-sampling operation) on every stage before re-
sampling the feature maps. A max-pooling layer is used instead of a strided convolution
as the down-sampling operation. These adaptations are inspired by the original U-Net
design proposed in [76]. I assume that the transition layer and max-pooling operation
improve the information flow inside the network, as it separates the filtering and the
down-sampling process into two dedicated tasks. By replacing the strided convolutions
with a max-pooling layer the amount of detail inside the feature maps is increased and
selectively down-sampled instead of simply skipping every second value. A symbolic
visualization of the architecture can be seen in figure 3.2. A detailed description of the
full Spleeter architecture as well as the here proposed changes with information about
the hyperparametrization of each layer (i.e. kernel size, number of feature maps, etc.)
can be found in appendix A.

45

3. Method

F
ig

u
re

3.
2.

:
S
y
m

b
ol

ic
sk

et
ch

of
th

e
p

ro
p

os
ed

U
-N

et
im

p
le

m
en

ta
ti

on
.

T
h

e
co

lo
r

o
f

ea
ch

b
a
r

en
co

d
es

th
e

ty
p

e
o
f

la
ye

r
it

re
p

re
se

n
ts

.
T

h
e

h
ei

gh
t

of
th

e
co

lu
m

n
s

sy
m

b
ol

is
es

th
e

si
ze

of
th

e
fr

eq
u

en
cy

(F
)

a
n

d
ti

m
e

(N
)

d
im

en
si

o
n

.
T

h
e

d
ep

th
of

th
e

b
ar

s
re

p
re

se
n
ts

th
e

am
ou

n
t

of
fe

at
u

re
m

ap
s

(C
)

it
co

n
ta

in
s.

46

3. Method

3.5. Model Extensions

Figure 3.3.: Example of the proposed harmonic feature maps. The first row shows the
original spectrum of a piano note, under that the first three aligned harmonic
feature maps are shown.

Harmonic Expansion

Inspired by the issues of the non-linear scaled harmonic relationships in the frequency
dimension, a novel technique is proposed to better utilize the harmonic structures in a
CNN based network where a high amount of detail is required in the output. The method
is based on the harmonic constant-Q representation proposed by Bittner et al. for CNN-
based F0 estimation [94]. They propose a three-dimensional input tensor X ∈ RN×F×H ,
where N,F are the standard spectrogram dimensions and H is a harmonic dimension,
listing the first H harmonic bins over the feature dimension of the input to the CNN.
This harmonic expansion is adapted to the normal STFT domain. Therefore, an index
matrix G ∈ ZF×H[0,1,...,F] is constructed. Each element in G[f, h] represents the index inside
the spectrum, indexing the harmonic h of the fundamental frequency at index f . The

47

3. Method

indices are simply calculated with: G[f, h] = f · h. The left side of figure 3.4 shows
the first eight entries of the harmonic index matrix with five harmonics. The matrix
is then used to index each channel i = 1, ..., I of the input spectrogram X ∈ RN×F×I≥0
to create the harmonic feature maps: X̂h[n, f, i] = X[n,G[f, h], i]. Figure 3.3 shows
the original spectrum and the first three harmonic feature maps of a single spectrogram
frame of a piano note. It can be seen that the harmonics of the fundamental frequency
at around 150 Hz align perfectly over the feature map dimension (red line). This align-
ment is independent of the fundamental frequency and affects all frequency equally. The
harmonic feature maps are then concatenated over the channel dimension to create the
final harmonic aligned input tensor X̂ ∈ RN×F×IH≥0 . If the index G[f, h] exceeds the
highest frequency bin F , the value in that feature map is simply set to 0.

Figure 3.4.: Visualization of the first 8 entries of the harmonic index matrix. On the left,
the first 5 harmonics are shown and on the right, the first 5 sub-harmonics
are shown. The sub-harmonic indexes are rounded to the nearest integer.

Because a frequency bin can also be the harmonic of another lower frequency bin, sub-
harmonic relationships are included as well in the harmonic feature maps. Therefore,
rational fractions (e.g. 1

2 ,
1
3 ,

1
4 ,...) are also included in the harmonic index matrix. The

sub-harmonic h is calculated by: Gsub[f, h] = f
h , which is then rounded to the nearest

integer. If the index Gsub[f, h] is lower than 1.0, the value in that feature map is set to
0. A representation of the sub-harmonic index matrix with the first five sub-harmonic
can be seen on the right side of figure 3.4.

48

3. Method

Furthermore, the sub-harmonic index matrix is extended, to also include other har-
monics of that sub-harmonic above and below f by including all other rational fractions
up to 2.0 (e.g. 1

2 ,
3
2 ,

1
3 ,

2
3 ,

4
3 ,...). I call these dense harmonic feature map extensions.

They are also concatenated to the final harmonic aligned input tensor. Hence, the final
CNN has access at every frequency bin f to the harmonic series of f , to the related
sub-harmonics of f as well as to their harmonic series around f .

The harmonic extension technique is implemented in a separate layer and used as the
input to the proposed model, which can be seen in figure 3.2. To simplify the notation of
the amount of sub-, dense-, and normal harmonics a shortcut notation is used referring
with ’h’ to the number of normal harmonics, ’s’ the number of sub-harmonics, and ’d’ to
the used dense harmonics. For example ’5h+1s’ refers to a harmonic extension including
the first 5 harmonics and the first sub-harmonic in the harmonic feature maps. Logically
the dense harmonic extensions always include the sub-harmonics as well.

Architectural Extensions

State of the Art source separation networks such as MMDENSELSTM [54], the dilated
Conv-GRU Network [95], Demucs [96], and OpenUnmix [84] all benefit from additional
recurrent layers inside their model architecture. Therefore, the proposed U-Net archi-
tecture is also expanded by an additional recurrent layer inside of the proposed U-Net
structure to evaluate the effect of the recurrent extensions. As shown in [54] the imple-
mentation of the recurrent unit in deeper layers of the network performs better. Doing
so, the network utilizes the prior convolutional layers to extract high-level features and
uses the recurrent layer to model the dynamics of these features over time. Hence, the
deepest transition layer inside the proposed U-Net is replaced by a Gated Recurrent
Unit (GRU). To maintain a higher time resolution for the GRU only the frequency di-
mension is reduced in the deepest two layers, instead of reducing both frequency and
time dimension. The frequency and feature dimensions are then flattened into a single
dimension and a 1 × 1 convolution is used to reduce the size of this dimension to an
appropriate dimension for the GRU. A bidirectional GRU unit is used and the output
of both directions are concatenated and then re-scale through another 1× 1 convolution
back to the original dimensionality. This can be seen in the symbolic visualization of
figure 3.5.

49

3. Method

F
ig

u
re

3.
5.

:
S
y
m

b
ol

ic
sk

et
ch

of
th

e
G

R
U

ex
te

n
si

on
to

th
e

p
ro

p
os

ed
U

-N
et

.
T

h
e

co
lo

r
o
f

ea
ch

b
a
r

en
co

d
es

th
e

ty
p

e
o
f

la
y
er

it
re

p
re

se
n
ts

.
T

h
e

h
ei

gh
t

of
th

e
co

lu
m

n
s

sy
m

b
ol

is
es

th
e

si
ze

of
th

e
fr

eq
u

en
cy

(F
)

a
n

d
ti

m
e

(N
)

d
im

en
si

o
n

.
T

h
e

d
ep

th
of

th
e

b
ar

s
re

p
re

se
n
ts

th
e

am
ou

n
t

of
fe

at
u

re
m

ap
s

(C
)

it
co

n
ta

in
s.

50

3. Method

Another aspect, from which MMDENSELSTM yields its State of the Art results, is
its densely-connected convolutional structure. Due to its ability to re-process feature
maps at every layer, it is a very parameter efficient network structure [85]. To evalu-
ate the effect of the densely-connected structure as well as the parameter efficiency of
this structure, the proposed U-Net is expanded with a densely-connected encoder struc-
ture. Therefore, the whole encoder of the U-Net is replaced with a densely-connected
encoder. The new encoder consists of three densely-connected blocks each followed by
a down-sampling stage. Figure 3.6 shows the proposed densely-connected U-Net. One
dense block consists of N densely connected layers, where each layer consists of a batch
normalization followed by a ReLU non-linearity and a final two-dimensional convolution
with M filters of size 5×5, as well as a concatenation layer, concatenating the output of
all previous layer with the output of the current layer. This structure is an adaptation
of the MMDENSENET encoder structure. The decoder block of the U-Net remains the
same, to maintain a high resolution in the up-sampling path. To also maintain the same
amount of skip-connections as in the normal U-Net, the down-sampling stages consist of
two separate max-pooling operations with one skip-connection between them, which are
divided by a convolutional layer used to reduce the feature map amount by a factor of
θ after every dense block. The dense block and down-sampling block structures are also
shown symbolically in figure 3.6. The used amount of kernels per Layer M , the number
of layers per dense block N and feature map reduction factor θ for all dense blocks are
shown in table A.2.

Multiple Networks vs. Single Network

To evaluate if the proposed U-Net performs well while separating multiple sources thru a
single network, the M-U-Net structure from [83] is implemented in the proposed U-Net.
The implementation is straightforward. The number of output channels in the last layer
is simply changed from I = 2 to J × I = 8 channels and then trained with all source

magnitudes stacked as a single tensor S ∈ RN̂×F×JI . This effectively reduces overall
utilized model parameters as well as the training time by a factor of 1

J . Also their
proposed weighting strategy ’EBW-P1’ is used, with: wj = Emax/Ej , which weights
the gradient of each source according to the overall energy distribution, where Ej is the
averaged energy of source j over all data points and Emax is the energy of the source
with the highest energy. This strategy has shown better results in my initial experiments
than the non-weighted training, as it avoids over-fitting of the model towards instruments
with higher energy. The obtained weights for each source can be seen in table A.3. The
results of the M-U-Net are compared with the results of the dedicated U-Nets to evaluate
these different strategies.

51

3. Method

F
ig

u
re

3.
6.

:
S
y
m

b
ol

ic
sk

et
ch

of
th

e
d

en
sl

y
-c

on
n

ec
te

d
en

co
d

er
ex

te
n

si
on

in
th

e
p

ro
p

o
se

d
U

-N
et

.
T

h
e

co
lo

r
o
f

ea
ch

b
a
r

en
co

d
es

th
e

ty
p

e
of

la
ye

r
it

re
p
re

se
n
ts

.
T

h
e

h
ei

gh
t

of
th

e
co

lu
m

n
s

sy
m

b
ol

is
es

th
e

si
ze

o
f

th
e

fr
eq

u
en

cy
(F

)
a
n

d
ti

m
e

(N
)

d
im

en
si

on
.

T
h

e
d

ep
th

of
th

e
b

ar
s

re
p

re
se

n
ts

th
e

am
ou

n
t

of
fe

at
u

re
m

a
p

s
(C

)
it

co
n
ta

in
s.

52

3. Method

3.6. Phase Alignment

Finally, an approach to solve the sound quality problems, caused by the ’noisy’ mixture
phase of the TF mask separation is proposed here. Since recent waveform-to-waveform
models have been shown to extract the correct source phase information [57], an ad-
ditional time-domain post-processing network is used to align the phase of the source
signals separated by the main TF masking network. Defossez et al. have noted that
Conv-Tasnet extracted sounds with hallow transients, similar to the one caused by the
TF mask. Therefore, their proposed Demucs separation network, which also showed the
highest sound quality in their perceptual evaluation study [57], is adapted for this task.

As the task of aligning the phase of an already separated source signal should be
’easier’ than the whole source separation itself, the last two encoder/decoder stages to-
gether with the recurrent LSTM layer of Demucs are discarded to reduce the depth
and computational effort of the network. Instead, only the first five encoder/decoder
blocks are implemented. Demucs uses a combination of several layers per block. First,
the input is processed by a convolutional layer with a large kernel as well as a large
stride and the output is sent through a ReLU non-linearity. Then the feature maps are
re-processed by a 1 × 1 convolutional layer and doubled in number, to be finally sent
through a Gated Linear Unit (GLU), which acts as an internal feature map gate. The
GLU was shown to be beneficial to the network performance [57]. The here proposed
Phase Alignment Network (PA-Net) uses the same encoder structure as Demucs, with
the exception that a batch normalization layer is used after each convolution, for a faster
convergence, which was not used in the original Demucs implementation1. The decoder
blocks are modified further: Instead of using a transposed convolutional layer with a
large stride for up-sampling, a combination of linear interpolated up-sampling and 1D
convolutional layers with kernel sizes of 3 is used. This was done to avoid aliasing in
the up-sampling path, similar to the design of Wave-U-net [87]. The decoder blocks are
implemented with additional batch normalization layers as well.

The input of PA-Net is set to 34304 samples, yielding a maximum receptive field of
only 2 seconds. Since the whole separated source tracks are already available, it could
be beneficial for the PA-Net to have access to more than 2 seconds of it. But instead of
simply increasing the input size, a different strategy to achieve a wider context field is
proposed here. Music is in general repetitive and the network could use these repetitive
phrases to average out the artefacts and residual noises, introduced during the previous
separation process. Hence, a novel attention mechanism is proposed, to efficiently enlarge
the receptive field of the network to the relevant repetitive information of the full source
track. The idea is inspired by the similarity-based median filtering approach by Rafi
et al. [36], where they use the correlation between different magnitude frames of the
mixture to find repeating sequences in a song.

1They use a different gradient weighting strategy instead.

53

3. Method

Figure 3.7.: Example of the proposed similarity measure, plotted for one specific frame
block of a drum track. The red lines in the waveform mark the discovered
repetitive phrases.

Similarly, the estimated source spectrograms of the separation networks are used to
find repetitive phrases inside each source track. But instead of simply calculating the
similarity matrix for each estimated source spectrogram Ŝj (i.e. Gj = ŜjŜ

T
j), also

referred to as the Gram matrix, a cosine-similarity inspired correlation is calculated over
blocks of several magnitude frames of length L:

gj,m,m̂ =
I∑
i=1

∑
n,f (S̃j,m,i � S̃j,m̂,i)[n, f]

||S̃j,m,i||F · ||S̃j,m̂,i||F
(3.2)

Here, S̃j,m̂,i ∈ RL×F×I is one block of magnitude frames starting at frame m and
ending at frame m+ L. The ||·||F operator denotes the Frobenius norm. Hence, gj,m,m̂
describes the similarity between the magnitude block starting at m and the magnitude
block starting at m̂. It is calculated for every pair [m, m̂] in the estimated source spec-
trogram. Afterwards, a peak finding algorithm is used to find the most similar block
pairs. Figure 3.7 shows an example of a similarity curve of one specific block, taken from
a drum track. It can be seen that the peaks in the similarity curve (blue curve on top)
correspond to very similar phrases in the source track. Especially for the source classes
drums and bass in MusDB18, this method was able to find pairs of almost identical
phrases.

54

3. Method

The Phase Alignment Network input size of 2 seconds (corresponding to magnitude
blocks of L = 64 frames) was chosen, since this yields approximately 1-2 bars of music,
depending on the tempo of the song. This was considered as a good ratio to yield
repeating sequences of a song, which are almost identical. The original phrase and
its K most similar phrases, detected by the peak finding algorithm, are stacked over
the channel dimension into one tensor. Initially this tensor was simply provided as
the input of the encoder. However, the network was not able to gain any information
from this representation. Although the phrases contain a very similar ’musical’ content,
their waveform representation is highly detailed and the phrases vary too much in this
representation. Therefore, the final PA-Net processes each phrase separately through
the same encoder, yielding K + 1 encoded representations (i.e. one for each similarity
phrase and one for the original phrase). To create a useful representation for the decoder
from all these encodings, a simplified self-attention mechanism is used. The original
self-attention mechanism uses a compatibility function, which is often a modified dot-
product with a learned linear transformation, to calculate feature similarities between
different elements of a sequence and uses another learned soft-max function to aggregate
them [55]. Since the waveform encodings are still high dimensional, the learned linear
transformations would add an unreasonable amount of parameters to the model and thus
are not implemented. Instead, only the compatibility function and the soft-max function
are kept without any learned transformations. In the implemented self-attention layer
the correlation between every encoded similarity phrase hk and the encoded original
phrase horig is calculated with a simple dot-product:

ek = hTk horig for every k = 1, 2, ...,K (3.3)

The final attention embedding ha is created by summing up all encoded similarity
phrase using a soft-max weighting:

ha =
K∑
k=1

αk · hk with αk =
exp(ek)∑K
i=1 exp(ei)

(3.4)

The attention embedding includes all the relevant information of the K encoded sim-
ilarity phrases, weighted according to their correlation to the encoded original. Since
this attention mechanism does not include any extra parameters or heavy computa-
tional effort, it is implemented after every encoding stage of the PA-Net. The attention
embedding ha are concatenated with the original encoded states horig over the feature
dimension and form the skip-connections between each encoder and decoder pair. The
complete proposed method together with the PA-Net architecture is shown in figure 3.8.

The PA-Net was trained with the source estimates of the proposed U-Net, separated
through MWF as the input and the original source tracks as the target. The L1-Norm
over the difference between estimate and target was used as a loss function since it is
phase-sensitive and showed good results in the original Demucs network [57]. One PA-
Net with 15 million parameters was trained for every source. The network is trained

55

3. Method

Figure 3.8.: Symbolic sketch of the Phase Alignment Network, with the Similarity At-
tention Mechanism. The color of each bar encodes the type of layer it
represents.

under very similar settings, as described in chapter 3.3, using a learning rate of 0.001
with an exponential decay over 60 epochs. Since the data points are much shorter,
96 examples were taken per song, instead of only 32. Seven similar phrases (K = 7)
are detected with the previously described method and given together with the original
phrase to the network. To avoid clicks between two consecutive blocks of 2 seconds
aligned by the PA-Net, an overlap-and-add procedure was used, with a hop-size of 1
second (i.e. overlap of 50%) together with a Hann-window to create the final phase-
aligned source track.

56

4. Evaluation

4.1. Evaluation Metrics

Finding good numerical performance measures to track the separation quality of different
audio source separation models is an important issue that made the comparison between
different separation methods hard and also subjective. To tackle this issue Vincent et
al. proposed a systematic evaluation method in [97] and made it publicly available as
a MATLAB toolbox1. The toolbox has become the evaluation standard and is used in
hundreds of papers as well as in the Signal Separation Evaluation Campaign (SiSep)
[98]. They also released a reference implementation in Python, the MusEval toolbox2.
Their proposed evaluation metric is inspired by the classical Signal-to-Noise Ratio (SNR),
given by:

SNR = 10 log10(
ps
pn

) dB (4.1)

Where ps and pn are the power of the signal and noise respectively. In the source
separation context the definition of pn, the energy of the unwanted components which
are not part of the source signal, is not trivial. Therefore Vincent et al. proposed to
divide the estimated source signal energy pŝ into four parts:

pŝ = ps + einter + earti + enoise/spat (4.2)

Where ps is the contained power of the original source signal inside the source estimate,
einter is the power of the interfering other source signals, earti is the power of artifacts,
which emerge during the separation process, and enoise is the power of additional sensor
noise [97]. Because enoise requires complete knowledge over the sensor noise signal, which
is mostly unknown, it got discarded in the second version of the toolbox and instead
replaced by espat., which measures the spatial distortion of the estimated source image
[99]. The decomposition is computed through several projections, which can be found
in detail in [97] and for the multi-channel version in [99].
The decomposition is then used to calculate energy ratios to evaluate the relative amount
of each of these four terms. The main evaluation metric is the Signal to Distortion Ration
(SDR), which measures the log-ratio between ps and the overall error energy:

SDR = 10 log10(
ps

einter + earti + enoise/spat
) dB = 10 log10(

||s||2

||s− ŝ||2
) dB (4.3)

1http://bass-db.gforge.inria.fr/bss_eval/
2https://github.com/sigsep/sigsep-mus-eval

57

4. Evaluation

Besides the SDR, which incorporates all possible kinds of distortion arising from dif-
ferent source separation algorithms, they proposed three other ratios for a more detailed
evaluation:

1. The Signal to Interference Ratio (SIR) accounts for the interference of other un-
wanted source signals inside the estimate:

SIR = 10 log10(
ps

einter
) dB (4.4)

2. The Signal to Artifacts Ratio (SAR) indicates the amount of introduced distortion,
for example, ’musical’ noise and ’gurgling’ artifacts in the source estimate:

SAR = 10 log10(
ps
earti

) dB (4.5)

3. The Image to Spatial distortion Ratio (ISR) accounts for the spatial distortion in
the multi-channel case (e.g. stereo image):

ISR = 10 log10(
ps
espat

) dB (4.6)

Because the decomposed power-terms, as well as the perceived separation quality
varies across time, the calculation of these ratios is usually done locally on windowed
frames of the signal and then averaged. A rectangle window is sufficient [97].

As already mentioned, there is a public reference implementation in Python, which is
used by most researchers for the evaluation of their model. For this thesis, I also use this
implementation. During initial experiments, a change of up to ±0.5 dB in the metrics
was noted depending on the evaluation hyperparameter. Since these hyperparameters
are rarely mentioned, the initial values given by the toolbox were used. The frame
and hop size are both set to one second and a rectangular window is used. The given
validation and test set splits of the MusDB18 dataset are re-sampled to 16 kHz and used
separately for evaluation. The final evaluation yields source and time-dependent metrics,
respectively for all songs in the validation and test set:

SDRn,j , SIRn,j , SARn,j , ISRn,j .

Figure 4.1 shows a typical density plot of SDRn,j taken over all sources, all frames,
and all songs, of the test set. The distribution is heavy-tailed towards the left with many
outliers towards negative values, as well as a spike at 0dB. Therefore, the mean is not
describing the overall performance well, as can be seen, marked in green. It is a very
commonly used practice to use the median of the distribution instead, shown in orange.
The SIR, SAR, and ISR follow a very similar heavy-tailed distribution.

58

4. Evaluation

Figure 4.1.: An example of the separation performance. The plot shows the density of
the SDR distribution taken over all sources, all songs and all frames. The
green bar indicates the mean, the orange bar indicates the median.

For the evaluation of this thesis the median, mean and standard deviation are calcu-
lated from the evaluation data in the following ways:

1. The statistics are calculated over all frames of a song. Afterwards, the statistics
over all songs per source are calculated from the previously calculated statistics.
This is the standard procedure given in the SiSep campaign. It prevents that
longer songs have a higher weight in the evaluation.

2. The statistics are also calculated over all frames and all songs concatenated to-
gether as this has a more accurate resolution, especially in the median and standard
deviation (although it is biased towards longer songs).

3. The same procedure as in 1. is applied but now all values from all sources are con-
catenated together before calculating the statistics to get an overall performance
measurement.

59

4. Evaluation

4. The same procedure as in 2. with all values from all sources concatenated, is applied
to get detailed (but biased) overall performance measurement. Figure 3.6 is created
this way. The spike at 0 dB is only visible here and averaged out with the standard
SiSep procedure (list item 1. and 3.).

Besides these different ways of calculating the statistics and the previously mentioned
unknown evaluation hyperparameter settings, there is another well-known issue with
this evaluation metric, particularly with the MusEval toolbox. The toolbox automati-
cally calculates the optimal gain coefficient, time lag, source permutation, and an FIR
filter with 256 taps between the estimates and the original sources [97]. As the evalua-
tion toolbox was originally developed for general blind source separation ”one potential
justification for this is that a reference may be available for a source signal instead of
the spatial image at the microphone which recorded the noisy mixture, and that spatial
image is likely to be close to the result of the convolution of the source signal with a
short FIR filter, as an approximation to its convolution with the actual room impulse
response (RIR). This however leads to a major problem, because the space of signals
achievable by convolving the source signal with any short FIR filter is extremely large
and includes perceptually widely different signals from the spatial image. (in [100], page
627) For music source separation of professional studio productions, these FIR filters are
completely unnecessary and can distort the whole evaluation results. This was shown
under extreme conditions in [100], where Le Roux et al. filtered out almost all frequency
components of a source but the SDR metric still showed a very good separation quality.
They proposed the Scale Invariant Signal to Distortion Ration (SI-SDR), which is only
invariant to a different gain factor between the estimate and the original source track.
The SI-SDR is given by:

SI-SDR = 10 log10(
||αs||2

||αs− ŝ||2
) dB (4.7)

With the optimal gain coefficient α = ŝT s
||s||2 [100].

For the evaluation of all experiments performed in this thesis, the MusEval toolbox
implementation of the SigSep is used on the test split of MusDB18 to make the results
comparable to the results of other researchers. Here, the statistics of the evaluation
data as described in the list items 1. and 3. are used. To detect distorted evaluation
results in these metrics due to the FIR filter problem an informal listening test on the
source estimates after each experiment is done. Furthermore, a version of the proposed
SI-SDR metric as described in equation 4.7 is implemented in Python. As they propose
the metric for single-channel evaluation, in the implemented version the left and right
channels of the estimate and the original sources are simply summed up and the metric
is calculated over the summed signals. It was noticed that the spike at 0 dB in figure
4.1, which is also prominent in the SIR, SAR, and ISR, does not exist in the SI-SDR
implementation, as can be seen in figure 4.2, which shows the distribution of the SI-SDR
of the same model.

60

4. Evaluation

This spike could be caused by a small normalization constant, which might be used for
numerical stability in the MusEval toolbox. Compared to the SDR plot from figure 4.1,
the SI-SDR distribution shows a much smoother distribution with a heavier left-sided
tail. This might suggests that the MusEval SDR implementation covers up outliers with
the FIR filter.

Figure 4.2.: The plot shows the density of the SI-SDR distribution taken over all sources,
all test songs and all frames. The green bar indicates the mean, the orange
bar indicates the median.

Besides the evaluation on the test split (50 songs), also the validation split (14 songs)
is evaluated for every experiment. The complete statistics for all evaluation results (cal-
culated as described in list 1 and 3) can be found attached separately to this thesis.
During the evaluation in this chapter, only the median of the SDR and SI-SDR, taken
over the test set, will be shown since it is much easier to grasp improvements.

61

4. Evaluation

As the values of these metrics might seem quite arbitrary, two oracle evaluation re-
sults are presented here. Firstly, the Ideal Ration Mask (IRM) is evaluated. The IRM
is created by using the original source spectrogram as the estimate to create the ratio
mask (eq. 2.30 with α = 2). It is the maximum benchmark which can be achieved
with a TF mask [14]. Note that this is not the universal maximum performance since
time-domain methods can theoretically achieve a performance of +inf dB (if s = ŝ in eq.
4.3). Secondly, the performance is evaluated when the mixture is taken as the estimate
(Mix). This can be seen as a minimum benchmark, although again lower values are
definitely possible, although any model performing worse than this benchmark would be
pointless. Both benchmarks represents a good range to interpret the evaluation results.
The benchmarks are shown in table 4.1. The complete benchmark results can be found
attached to this thesis. Note that in the Mix benchmark, the ISR and SAR are not
meaningful, since there are no spatial distortions or artifacts inside mixtures and these
metrics theoretically should be at +inf dB.

All Drums Bass Other Vocals
SI. SDR SI. SDR SI. SDR SI. SDR SI. SDR

IRM 9.09 9.03 9.76 9.26 7.97 8.13 8.37 8.83 10.47 10.31

Mix −5.32 −5.57 −3.96 −4.43 −5.58 −6.71 −5.31 −5.15 −5.37 −5.43

Table 4.1.: Upper (IRM) and lowest (Mix) benchmark performance on the MusDB18
testset given in SI-SDR (SI.) and SDR.

62

4. Evaluation

4.2. Results

In this section, the evaluation results of the different DNN architectures, described in
chapter 3, are shown and the best performing model is compared to the current State-
of-the-Art models (listed in section 3.4). Since most of the papers do not contain the
previously described metrics the final comparison is only done with the standard MusE-
val toolbox metrics.

In total seven different U-Nets were trained. If not mentioned otherwise, all models
are trained under the conditions described in section 3.3. For a fair comparison the
amount of feature maps is adjusted in each architecture, so all roughly have the same
number of trainable parameters.1 The number of trainable parameters is fixed to ≈ 30
million, which showed good results during initial experiments without indicating signs
of over-fitting in the validation loss. The list below shows the different U-Nets with their
respective abbreviation:

1. S: Original Spleeter architecture converted to Tensorflow 2.0 and trained with the
previously described settings.

2. U: Proposed deeper U-Net architecture.

3. UH : Proposed U-Net architecture with additional harmonic extensions (5h+3d).

4. UH+A: Proposed U-Net architecture with additional harmonic extensions (5h+3d)
and trained with augmented data.

5. GRUH+A: Proposed U-Net + GRU architecture with additional harmonic exten-
sions (5h+3d) and trained with augmented data.

6. DenseH+A: Proposed densely-connected encoder U-Net architecture with addi-
tional harmonic extensions (5h+3d) and trained with augmented data.

7. M-UH+A: Proposed Multitask U-Net Architecture with additional harmonic ex-
tensions (5h+3d) and trained with augmented data

Note that the results should be interpreted with caution because this thesis cannot
provide an empirical study with multiple training runs per model due to the computa-
tional complexity. One training with all instruments and including the evaluation took
between 10 and 96 hours on two NVIDIA GTX 1080 TI depending on the model type.
To provide at least some reliability, the UH+A model was trained five times and the stan-
dard deviations of all results were calculated. The results show a deviation of ≈ ±0.1 dB
per instrument due to randomly initialized parameters and the non-deterministic data
pipeline. The metrics taken over all sources jointly (list item 3.) only varied with a
standard deviation of ≈ ±0.05 dB and therefore can be seen as a quite stable indicator
for the general model performance.2

1The amount of feature maps in each model are shown in appendix A.1.
2All standard deviations of the SI-SDR and SDR can be found in appendix B.1.

63

4. Evaluation

All Drums Bass Other Vocals
SI. SDR SI. SDR SI. SDR SI. SDR SI. SDR

S 2.45 3.94 3.58 4.56 2.13 3.51 1.66 3.17 2.53 4.39

U 2.96 4.29 4.04 4.65 2.16 3.61 2.17 3.31 3.91 5.13
UH 3.35 4.59 4.34 5.03 2.76 4.12 2.38 3.72 4.73 5.40
UH+ 4.27 5.15 5.29 5.56 3.50 4.54 2.73 4.12 5.71 6.03

GRUH+ 4.26 5.10 5.25 5.55 3.32 4.53 2.84 4.16 5.82 6.17
DenseH+ 4.06 4.98 5.28 5.47 3.14 4.53 2.75 4.26 5.68 6.08

M-UH+ 3.69 4.82 4.95 5.60 3.33 4.10 2.22 3.92 4.80 5.50

Table 4.2.: Median values of SI-SDR and SDR of the evaluation of different proposed
separation network architectures.

Table 4.2 shows the median SI-SDR and SDR values of the main experiments trained
under standard conditions, as described in section 3.3. The best results are highlighted
in bold. At first, it can be seen that the proposed deeper U-Net outperforms the original
U-Net in all cases (S vs. U), validating the assumptions made for the deeper U-Net ar-
chitecture. Only in the case of the bass separation task, the results are too close, so they
cannot be judged reliable. Next, the harmonic feature map extensions show a constant
improvement in all instruments, outperforming the model without harmonic extensions
throughout (U vs. UH). The highest impact on the separation performance was caused
by the data augmentation (UH vs. UH+). The additional augmented data improved the
overall SI-SDR by almost 1 dB. The proposed U-Net with harmonic extended feature
maps and augmented data (UH+) shows the overall best performance. The evaluation
results of both architectural extensions, the GRU and the densely-connected encoder,
did not show any significant improvements over the normal U-Net architecture. Both
perform minimally better in the categories other and vocals and perform worse in cate-
gory bass. In general, they show a very similar performance to the normal UH+ model.
Finally, the multitasking U-Net (M-UH+), which separates all sources combined thru a
single U-Net, performs worse than the source dedicated U-Nets (M-UH+ vs. UH+).

Since the UH+ model showed the best evaluation results as well as a relatively fast
training time (compared to GRUH+ and DenseH+) it was chosen for the final benchmark
comparison. Therefore the training settings were modified. Firstly, the validation set
was included in the training set, adding 14 extra songs to the training set. This is a
common practice and all other State-of-the-Art results shown here were obtained on the
full training set of 100 songs. As this eliminates the validation loss during training, the
model at the last epoch was evaluated instead of the model with the best validation loss.
The number of data points per epoch was doubled from 3200 to 6400 and the batch size
was reduced to 4, to increase the total amount of gradient updates. After 60 epochs the
learning rate was decreased to 0.0001 and trained for another 30 epochs for the final
fine-tuning of the model. In total each individual network has seen 576,000 data points
and received 128,000 gradient updates. The training took around 20 hours per source

64

4. Evaluation

instrument. The final separation was then performed with both the ratio mask and the
MWF, as described in chapter 3. Both evaluation results are shown in table 4.3. It
can be seen that the additional data, as well as the longer training yields an improved
separation performance in comparison to the models trained under the standard settings.
The MWF improves the separation performance furthermore, as expected. Table 4.3
also includes the evaluation results of the full proposed separation method, using the
proposed U-Net for MWF separation and the final PA-Net as a post-processor. The
PA-Net was trained on the full training split separated with UH+, GRUH+, and the
final MWF model, to not exclusively train on the residual errors of a single model. The
PA-Net improves the separation performance particularly on the drums and bass, which
was expected, as it was designed to alleviate the ’noisy’ phase issue occurring in these
source classes.

All Drums Bass Other Vocals
SI. SDR SI. SDR SI. SDR SI. SDR SI. SDR

Mask 4.60 5.47 5.84 6.24 3.71 4.83 3.36 4.48 6.43 6.61
MWF 4.84 5.78 6.48 6.64 4.22 5.33 3.49 4.78 6.74 6.85

PA-Net 5.08 5.83 7.08 6.96 4.47 5.63 3.40 4.78 7.03 6.88

Table 4.3.: Median of SI-SDR and SDR of the final separation models, evaluated with
both Ratio Mask and Multi-channel Wiener Filter (MWF) and send through
the final Phase Alignment network (PA).

Table 4.4 shows the comparison to the current State-of-the-Art separation models.
For completeness, the first block shows the results of the models that were trained with
additional data. The second block shows the results which were only achieved with the
MusDB18 without additional data. Here, the proposed method outperforms all current
State of the Art models, except Demucs in the bass category. Especially in the category
other, the proposed model performs much better, almost outperforming the currently
best results achieved by MMDENSELSTM trained with additional 800 songs.

Model Extra Data Avg. Drums Bass Other Vocal

Demucs 150 6.33 7.08 6.70 4.47 7.05
MMDENSELSTM 804 6.04 6.81 5.40 4.80 7.16
Spleeter 24097 5.75 6.71 5.51 4.55 6.86

Proposed Method 0 6.04 6.96 5.54 4.78 6.88
Demucs 0 5.58 6.08 5.83 4.12 6.29
MMDENSELSTM 0 5.59 6.43 5.16 4.15 6.60
OpenUnmix 0 5.33 5.73 5.23 4.02 6.32
Spleeter 0 4.43 5.15 4.27 3.21 5.10

Table 4.4.: Benchmark comparison of the State-of-the-Art separation models compared
to the proposed method evaluated on the test split of the MusDB18.

65

4. Evaluation

4.3. Ablation Study

This section provides a more in-depth evaluation of the achieved results and obtained
hyperparameter settings. It also covers some interesting aspects, noted during the design
of the final separation process.

Other changes in the U-Net architecture than the once already described in section 3.4
did not show any positive effects. Changing the kernel size of the convolutional filters to
3 × 3 or to 7 × 7 both decreased the performance slightly (≈ −0.2 dB SI-SDR). Never-
theless, it was noted that in the case of lower amounts of total trainable parameter, the
3×3 kernels eventually outperform the 5×5 kernels, when both models are trained with
the same number of parameters. This indicates that a higher amount of feature maps
is more important for the separation than a bigger convolutional kernel size. Both, the
additional transition layers and the max-pooling operations showed the biggest impact
on the performance, each improving the results by ≈ 0.2 dB SI-SDR.

The proposed deeper U-Net architecture also showed two negative effects in compar-
ison to the original model (S vs. U). Firstly, the proposed U-Net takes almost twice
as long during training as the original Spleeter model.1 This is probably caused by the
additional transition layers as well as the bigger non-strided convolutions. Secondly, the
proposed model showed an unstable convergence of the validation loss during training.
An example for this can be seen in the lower plot of figure 4.3 in the blue curve, shown
for the vocal separation model (the other instrument categories showed a very similar
behavior). The validation loss shows heavy unstructured fluctuations during the conver-
gence. This is not the case when training the original Spleeter architecture, which can
be seen in the upper plot. One reason for this effect could be the deeper structure of the
proposed architecture, which makes the learning process more unstable.

Apart from improving the separation performance by ≈ 0.4 dB SI-SDR, the harmonic
feature map extensions showed another interesting property, counteracting the before
mentioned unstable validation loss convergence. This can be seen in the red curves of
figure 4.3. By including the harmonic feature maps, the validation error converges much
faster and much more stable. This is especially advantageous for the proposed deeper
U-Net, which showed a very unstable convergence before, but the same effect can also
be seen with the original Spleeter model in a weaker form. Interestingly, the improved
convergence of the validation loss is only caused by the sub-harmonic feature map ex-
tensions and not by the normal harmonic feature map extensions. This can be seen also
in figure 4.3 in the orange curve, which shows the validation error of the proposed model
trained with the first five harmonic feature maps (5h) without sub-harmonics feature
maps. Even though it converges to a lower minimum than the model without the ex-
tensions, it still shows a similar unstable convergence behavior. The stabilization effect
is already caused by including only the first sub-harmonic feature map (h = 1

2).

1Original: ≈ 9 hours, Proposed: ≈ 16 hours

66

4. Evaluation

Figure 4.3.: Training- (dark) and Validation- (bright) Loss during vocal separation train-
ing. Blue: Model with no harmonic extensions, Red: Model with 5 harmonic
and 3 subharmonics extensions, Orange: Model with 5 harmonic extensions.
The x-axis shows all 60 epochs spaced equally and the y-axis shows the loss
scaled linearly from 0-0.0004.

The dense harmonic extensions show the same improvements, as they automatically in-
clude the sub-harmonic feature maps.

A hyperparameter study of various harmonic feature map extensions was done and
can be found in the appendix B.2. In general, all of the harmonic feature map exten-
sions outperform the model without them in all metrics throughout, which confirms the
assumptions that the harmonic feature maps help the CNN to learn the exponentially
scaled harmonic relations. The effect was again verified by adding the harmonic feature
map extensions to the original Spleeter model, which also yielded an improved perfor-
mance. Analyzing the amount of included harmonics, it can be seen that more harmonic
feature maps do not necessarily improve the results. Almost the opposite is the case.

67

4. Evaluation

The first three to five harmonics seem totally sufficient. Higher amounts even suggest a
drop in performance again. Interestingly, the sub-harmonic extensions do not show any
improvements in the separation performance, although they cause a much more stable
convergence during training. The dense harmonic extensions on the other hand show
comparable good results in all settings.

All Drums Bass Other Vocals
Dataset SI. SDR SI. SDR SI. SDR SI. SDR SI. SDR

Normal 3.35 4.59 4.34 5.03 2.76 4.12 2.38 3.72 4.73 5.40

Random 3.12 4.48 4.89 5.36 1.75 3.28 1.80 3.38 4.76 5.44

Table 4.5.: Median of SI-SDR and SDR for the proposed U-Net (5h+3d) trained with
randomly generated mixtures of the MusDB18.

Another interesting result of the performed experiments is the effect of the randomly
generated training mixtures on the separation performance. Table 4.5 compares the
evaluation results of the proposed U-Net trained with the original MusDB18 against the
results when trained with the randomly generated MusDB18 training set (see section
3.2). The validation and test set used in both trained models was the original MusDB18,
without randomly generated mixtures. As described in section 3.2 the randomly gen-
erated dataset contains three times the amount of data points as the original dataset,
to take advantage of the combinatorial possibilities of this data generation technique.
Both experiments were trained under the standard settings with 3200 datapoints per
epoch for a fair comparison. It can be seen the original MusDB18 dataset outperforms
the randomly generated dataset in the overall performance (All: SI-SDR and SDR),
which validates the assumption that the network takes advantage of the harmonic and
rhythmic relationships between different sources. Astonishingly, the difference between
the two evaluation results is much smaller than expected and the original dataset is
even outperformed in the drum separation task with a relatively large margin as well
as in the vocal separation task. On the other hand, the categories bass and other show
poor results. This shows that mixing musical phrases randomly together could be a real
alternative for the creation of new datasets.

During the design of the training procedure the results of different data augmentation
sizes, as well as the combination of data augmentation with the randomly generated
mixture dataset was evaluated. In general, all data augmentation techniques improve
the separation performance. However, training only with normal data augmentation
techniques (see section 3.2) does not exceed a benefit of more than ≈ 0.4 dB SI-SDR. On
the other hand, the combination of normal data augmentation and randomly generated
mixtures showed a boost of almost 1 dB SI-SDR.1 This again proofs the benefit of the
random mixture strategy.

1The data augmentation evaluation results can be seen in the appendix B.3

68

4. Evaluation

Furthermore, the effect of reducing the total amount of trainable parameters on the
separation performance was evaluated by reducing the number of feature maps in each
layer.1 Both, the normal U-Net (UH+A) and the densely-connected U-Net (DenseH+A)
were evaluated with 30, 9, and 3 million trainable parameters. The evaluation results
are shown in the appendix in table B.4. The performance of the normal U-Net decreases
by around 0.4 dB SI-SDR because of the feature map reduction. The densely-connected
U-Net on the other hand shows a constant performance independent of the number of
contained parameters. The overall SI-SDR only varies by 0.09 dB. The normal U-Net is
outperformed in both cases with 9 and 3 million trainable parameters. This shows the
predicted parameter efficiency of the densely-connected structure and correlates with the
results of MMDENSELSTM, which yields the current State-of-the-Art results with only
1.3 million parameters [54]. Although it is parameter efficient, the densely-connected
structure showed an enormous computational overhead during training due to its deep
consecutive structure, which cannot take as much advantage of parallelization. It takes
around six times as long to train the densely-connected architecture in comparison to
the normal proposed U-Net under same the conditions.1

Finally, the effect of the PA-Net on the separated source signals was analyzed. Figure
4.4 shows the impact of the TF mask and the subsequent PA-Net post-processing on
a single snare sound taken from a drum track of the MusDB18 test split. It can be
seen, that the separated snare has a very slow attack, in comparison to the original
sound. The snare is perceived like it contains a fade-in, similar to the hit with a brush.
The PA-Net is able to restore the transient and re-align the ’noisy’ mixture phase, to
create the original impulsive attack. The sound quality of the separated drum signals
is noticeably improved through the PA-Net post-processing, which is also visible in the
evaluation results with a gain of 0.6 dB SI-SDR (see table 4.3). A similar effect is also
noticed on the separated bass signals. The PA-Net is able to repair the ’diffuse’ sound
quality of the separated bass tracks and re-align the ’noisy’ mixture phase. However,
a quite large amount of aliasing is introduced by the PA-Net, which cancels out the
positive effect. The bass evaluation results still rise with 0.25 SI-SDR. The modification
of the amount of used similar/repetitive phrases K inside the self-attention mechanism,
reveals that they provide the network access to additional useful information. However,
only the separated drum tracks contain enough repetitive phrases to efficiently exploit
this information. Here, the PA-Net trained with seven extra phrases (K = 7) showed
an improvement of 0.9 dB SI-SDR in comparison to the PA-Net trained without any
extra phrases (K = 0). The other source classes do not show such a high improvement,
as they are not as repetitive as the drums. The results can be found in appendix B.5.
In general, the PA-Net was able to reduce the amount of unwanted interfering source
tracks, ’musical’ noises, and other STFT artifacts quite well in all source classes. Unfor-
tunately, this effect was replaced by aliasing artefacts in most source tracks, except the

1The amount of feature maps can be found in the appendix A.1
1Normal 30M: ≈ 16 hours, Dense 30M: ≈ 96 hours

69

4. Evaluation

drum tracks.

Figure 4.4.: A single snare sound taken from the MusDB18 test split. The upper left
plot shows the original snare from the isolated source track. The upper right
plot shows the same snare, separated with the proposed U-Net (MWF) from
the mixture track. The lower plot shows the separated snare after being
processed by the PA-Net.

A final word on the used evaluation metrics - During the evaluation it was noted that
the gap between the evaluation results of two different models was almost always larger
in the SI-SDR metric than in the SDR metric (see S vs. UH+ in table 4.2 as an example).
Especially bad performing models are rated much higher in SDR than in SI-SDR. This
confirms the findings of Le Roux et al. in [100] and justifies the predominant use of SI-
SDR throughout this thesis. The adaptive FIR filter in the Museval toolbox is utilized
to ’hide’ bad performing separation models and distort the SDR results.

70

4. Evaluation

4.4. Discussion

Through the optimization of the internal flow of information, additional harmonic con-
text information, and generative data augmentation the separation performance of Spleeter
was improved with an average of 1.4 dB SDR. This demonstrates that the comparably
simple U-Net architecture can still compete and even outperform State-of-the-Art mod-
els with more complex architectures, like MMDenseLSTM, or time-domain models like
Demucs. The PA-Net post-processing has shown that the ’noisy’ phase of a signal can be
re-aligned afterward and was able to improve the performance by another 0.2 dB SDR.
Furthermore, it was shown that repetitive phrases inside a song can be used to improve
the overall sound quality, as long as the song contains enough repetitions. However, a
convolutional network architecture, which prevents aliasing artefacts in the down/up-
sampling path of the network still has to be found to take full advantage of this method.

All experiments have confirmed that the harmonic feature map extensions help the
CNN to learn the exponentially scaled harmonic STFT relations, which yields better
results and much more stable convergence. Interestingly, even the separation of the
drums benefits from the harmonic information, although they do not contain much har-
monic information. The ablation study showed that the normal harmonic extensions
improved the separation results, while the sub-harmonic extensions stabilized the train-
ing convergence without improving the results. The dense-harmonic extensions showed
the overall best results. One explanation for this observation could be that there are
much more frequency bins in a spectrum that contain the energy of a harmonic than
there are frequency bins that contain the energy of the fundamental frequency. In other
words, there is a much higher density of harmonics in a complex spectrum than there
are fundamentals. The sub-harmonic extensions are giving the network the ability to
relate a harmonic back to its fundamental frequency. This helps to explain a much big-
ger amount of information of the spectrum than relating a fundamental frequency to its
harmonic series like the normal harmonic extensions do. However, in the source separa-
tion task the latter is much more important: Identifying different instruments based on
their harmonic series. This explains why the sub-harmonic feature map extensions help
the network to find a much more stable solution space, which however does not improve
the separation performance. The network can relate a harmonic in the spectrum to
its fundamental frequency but it does not have access to the complete harmonic series
of that fundamental, which would identify the source instrument. The dense-harmonic
feature extensions solve this problem, which is probably the reason why they perform
the best of all harmonic feature extensions.

The training on only randomly generated mixtures showed unexpectedly good results,
indicating that harmonic and rhythmic relationships between sources are not so impor-
tant to the separation performance as assumed. Analyzing the different instruments it
can be seen that harmonic relationship between source instruments are utilized much
stronger than the rhythmic relationships between them, because the sources, which in

71

4. Evaluation

general form the harmonic foundation (e.g. bass, piano, guitar,...) showed a bad per-
formance when trained on randomly generated mixtures. Whereas the drum separation
task even benefits from the bigger variety of randomly generated data. The vocal sepa-
ration model trained with random mixtures showed slightly better results. Vocals have
in general a higher verity and are not always part of the harmonic foundation (i.e. rap
or spoken parts), which might explain why they benefit from the training on randomly
generated mixtures. This is not a proof that randomly generated datasets are an alter-
native for real datasets. However, considering that there are NJT̃ possible examples,
this technique might be superior in some situations.1 Although these mixtures are not
equivalent to a completely new example, their amount is enormous. This way, easily
accessible production music and loop libraries could be gathered and randomly mixed to
generate much bigger datasets for source separation while avoiding copyright infringe-
ment issues. The randomly generated mixtures also showed excellent results when used
as a data augmentation technique. The combination of normal data augmentation (i.e.
re-pitching, time-stretching, etc.) and additional randomly generated mixtures shows an
overall improvement of 0.56 dB SDR. Compared to Prétet et al. with 0.2 dB SDR [65]
and Uhlich et al. with a maximum of 0.35 dB SDR [64], this shows the effectiveness of
this combined augmentation.

Despite of the success of recurrent- as well as densely-connected-structures shown in
many papers (see chapter 3.5), the U-Net architecture could not benefit from any of these
extensions. Although the implementations were deduced from previous papers and also
tested to some amount in initial experiments, they were still arbitrary to some extent
and might only show their benefits in a large empirical study over the architectural im-
plementation and hyper-parameterization of these structures, which exceeds the scope
of this master thesis. Nevertheless the parameter efficiency of the densely-connected
structure was shown.

Also, the multi-tasking U-Net structure proposed by Kandale et al. in [83] did not
show their observed improvements compared to the dedicated U-Nets, when implemented
with the here proposed U-Net (see table 4.2 M-UH+). The multi-tasking architecture
still showed acceptable results while only containing 1

4 of trainable parameters and hav-
ing the fastest training time of all models trained here.2 Especially for bigger datasets
with a much higher amount of sources J , the multi-tasking approach can be beneficial.

All trained models, even the ones with high amounts of trainable parameters, did
not show ’classical’ signs of over-fitting visible in the learning curves. Both the train-
and validation-loss constantly decreased with each epoch. This might be due to the
relatively high amount of dropout layers used. The more likely factor, however, is
the high complexity of the source separation problem itself. The DNN has to learn

1Where N is the size of the original dataset in songs, J is the number of sources and T̃ is a symbolic
number describing all possible time lags applied to the source tracks to create a new unique mixture.

2U-Net: 16 hours, M-U-Net: 4 hours

72

4. Evaluation

a sequence to sequence regression with both the input and output containing each
N × F × I = 512 × 1024 × 2 = 1, 048, 576 floating-point values per data point. Con-
sidering that the final full augmented dataset contains around 22,000 data points, this
might make ’classical’ over-fitting of the training data impossible. Still, the test split of
MusDB18, which contains only 50 songs and is used currently as the standard evalua-
tion set in almost all papers, can lead to a severe model bias towards specific artists and
genres. This was already partly shown in [63]. As a reminder, the complete MusDB18
dataset contains only around 10 hours of music, which is not at all close to any represen-
tative set of examples, covering the vast varieties of different genres existing in music.
Since there are not many publicly available datasets, due to previously mentioned copy-
right issues, it is difficult to evaluate this model bias.

73

5. Conclusion

5.1. Summary

In this thesis, common deep learning-based music source separation methods were evalu-
ated and examined on their shortcomings. It was found that the CNN/CRNN based TF
masking approach, which is currently the most widespread method, makes two wrong
assumptions. Firstly, CNNs, originally developed for image processing, are not able to
efficiently utilize the harmonic relationships of music. Since the convolutional kernels
expect a uniform data-structure (i.e. scaling does not change depending on the region),
they are not well suited to learn the exponentially scaled harmonic relationships of a
spectrogram. Secondly, the mixture phase is used to reconstruct the separated source
signals, which causes a degraded sound quality and leads to a ’washed-out’ sound char-
acter with corrupted transients.

Two unique solutions to these problems were developed. It was shown that the har-
monic information can be made accessible to CNNs by simply restructuring the input
data and aligning harmonically related frequency bins over the feature dimension. These
harmonic extensions are very easy to implement, do not require any additional network
parameters or cause a large computational overhead, and were shown to efficiently boost
the separation performance. Furthermore, they lead to a faster and more stable training
convergence, making it possible to train even deeper networks. The developed harmonic
feature map extension layer can be attached to the input of any CNN/CRNN which
operates on a spectrogram and will hopefully also be able to improve other MIR and
audio-related deep learning tasks. Moreover, it was shown, that the ’noisy’ mixture
phase of the separated sources can be re-aligned by another waveform-domain network
yielding a good approximation of the original phase. Moreover, a novel self-attention
mechanism was proposed, which was able to average out unwanted interferences and
artifacts by utilizing repetitive phrases in the separated source track. Although this
approach did not improve all source classes equally, mainly due to aliasing problems, the
sound quality of the drum tracks was noticeably better.

Further, the assumption, that the training dataset requires professionally produced
music mixtures, with correct harmonic and rhythmic relationships between source in-
struments, was partly disproved. The generative mixing of source tracks showed very
similar results to the original mixtures and should be at least used for data augmentation.

74

5. Conclusion

Although the achieved results surpass most State-of-the-Art results, one could argue
that the used model is significantly larger in terms of contained parameters, which makes
a direct comparison in some sense ’unfair’. Since audio source separation is a very active
field of research, it will not take long until new DNN architectures achieve even better
results. Rather, the point of this thesis was to show, that the design of the separation
model can also benefit from incorporating music-specific context information. This was
achieved by giving the network better access to the relevant information, which led to
a better exploitation of the data. While many researchers base their improved perfor-
mance on the adaptations of most recent deep learning techniques into their model, the
here proposed ideas can be adapted to most music source separation DNN architectures
to improve their performance. Even though both harmonic information and repetition
were already exploited in previous model-based separation methods (e.g. NMF, KAM,
etc.) their implementation inside the deep learning framework is unique.

As long as the available datasets remain small, the here proposed ideas help to improve
the quality of the separated sources. In the longer run, raw waveform-domain networks,
similar to WaveNet [101], will eventually outperform TF methods, as they scale better
with additional data and computational power and contain no upper bound on their
performance.

5.2. Future Work

Building on the results of this thesis, a unified and more compact separation model, which
incorporates TF-masking, repetition based self-attention, and the waveform-domain
post-processing into one single DNN is suggested. Since current deep learning frame-
works already come with completely differentiable STFT and ISTFT implementations,
such an architecture is possible in theory. This would combine the advantages of both
methods. The sparse representation in the TF domain makes the separation easier and
the final waveform representation can be used to synthesis a high quality source audio.
The attention mechanism can further enhance the receptive field and provide the finale
waveform domain network with additional information. Through a joint optimization,
the network can learn to utilize the benefits of each representation. A symbolic repre-
sentation is shown in figure 5.1.

Another aspect of research are perceptual studies over different separation approaches
regarding the sound quality. Current State-of-the-Art networks like MMDenseLSTM
and Demucs both achieve similar results in terms of SDR, although their introduced
distortions are very different. On one side, the TF masking approach leads to a ’noisy’
phase, ’musical’ noises and other STFT artefacts. On the other side, the waveform-
domain processing yields aliasing and a ’harsh’ distortion. A perceptual evaluation of
these distortions is necessary since current evaluation metrics like SDR and SAR do not
provide enough information about the effect on the perceived sound quality.

75

5. Conclusion

Figure 5.1.: Symbolic representation of a DNN using both the time frequency domain
and the time domain for separation.

Furthermore, a perceptual study could also be used to develop new loss functions
to train DNNs for source separation, which focus more on the human perceived sound
quality. For example, Manocha et al. already proposed a perception based loss in [102],
which consists of a DNN trained on the human perceived just-noticeable-difference be-
tween two sounds.

Finally and probably most importantly, much bigger public available datasets are re-
quired for music source separation, so that also researches, outside of big companies, like
Spotify, Sony and Facebook, are able to generalize their proposed methods.

76

Bibliography

[1] Albert S Bregman. “Auditory Scene Analysis and the Role of Phenomenology
in Experimental Psychology.” In: Canadian Psychology/Psychologie canadienne
46.1 (2005), p. 32.

[2] Albert S Bregman. “Auditory scene analysis: Hearing in complex environments”.
In: (1993).

[3] Roger N Shepard. “Psychophysical complementarity”. In: Perceptual organization
(1981).

[4] Albert S. Bregman. Auditory scene analysis: The perceptual organization of sound.
MIT press, 1994.

[5] Zafar Rafii et al. “An overview of lead and accompaniment separation in music”.
In: IEEE/ACM Transactions on Audio, Speech, and Language Processing 26.8
(2018), pp. 1307–1335.

[6] Nikolaos Mitianoudis and Michael E Davies. “Audio source separation of con-
volutive mixtures”. In: IEEE transactions on Speech and Audio processing 11.5
(2003), pp. 489–497.

[7] Alexey Ozerov, Emmanuel Vincent, and Frédéric Bimbot. “A general modular
framework for audio source separation”. In: International Conference on Latent
Variable Analysis and Signal Separation. Springer. 2010, pp. 33–40.

[8] A. Hyvärinne, J. Karhunen, and E. Oja. “Independent Component Analysis”. In:
New Wiley Interscience (2001).

[9] Shoji Makino. Audio Source Separation. Vol. 433. Springer, 2018.

[10] Guy J Brown and Martin Cooke. “Computational auditory scene analysis”. In:
Computer speech and language 8.4 (1994), pp. 297–336.

[11] Emmanuel J Candès et al. “Robust principal component analysis?” In: Journal
of the ACM (JACM) 58.3 (2011), pp. 1–37.

[12] Po-Sen Huang et al. “Singing-voice separation from monaural recordings using
robust principal component analysis”. In: 2012 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2012, pp. 57–60.

[13] Zhuo Chen and Daniel PW Ellis. “Speech enhancement by sparse, low-rank, and
dictionary spectrogram decomposition”. In: 2013 IEEE Workshop on Applica-
tions of Signal Processing to Audio and Acoustics. IEEE. 2013, pp. 1–4.

77

Bibliography

[14] Emmanuel Vincent, Rémi Gribonval, and Mark D Plumbley. “Oracle estimators
for the benchmarking of source separation algorithms”. In: Signal Processing 87.8
(2007), pp. 1933–1950.

[15] Aapo Hyvärinen and Erkki Oja. “Independent component analysis: algorithms
and applications”. In: Neural networks 13.4-5 (2000), pp. 411–430.

[16] Hans Fischer. A history of the central limit theorem: From classical to modern
probability theory. Springer Science & Business Media, 2010.

[17] Aapo Hyvärinen. “New approximations of differential entropy for independent
component analysis and projection pursuit”. In: Advances in neural information
processing systems. 1998, pp. 273–279.

[18] Ella Bingham and Aapo Hyvärinen. “A fast fixed-point algorithm for independent
component analysis of complex valued signals”. In: International journal of neural
systems 10.01 (2000), pp. 1–8.

[19] Alexey Ozerov, Cédric Févotte, and Emmanuel Vincent. “An introduction to
multichannel NMF for audio source separation”. In: Audio Source Separation.
Springer, 2018, pp. 73–94.

[20] Shoko Araki et al. “The fundamental limitation of frequency domain blind source
separation for convolutive mixtures of speech”. In: IEEE Transactions on Speech
and Audio Processing 11.2 (2003), pp. 109–116.

[21] Alex Favaro, Aaron Lewis, and Garrett Schlesinger. “ICA for Musical Signal
Separation”. In: N/A ().

[22] Nicolas Gillis. “The why and how of nonnegative matrix factorization”. In: Reg-
ularization, optimization, kernels, and support vector machines 12.257 (2014),
pp. 257–291.

[23] Daniel D Lee and H Sebastian Seung. “Algorithms for non-negative matrix factor-
ization”. In: Advances in neural information processing systems. 2001, pp. 556–
562.

[24] Paris Smaragdis and Judith C Brown. “Non-negative matrix factorization for
polyphonic music transcription”. In: 2003 IEEE Workshop on Applications of
Signal Processing to Audio and Acoustics (IEEE Cat. No. 03TH8684). IEEE.
2003, pp. 177–180.

[25] Cédric Févotte, Emmanuel Vincent, and Alexey Ozerov. “Single-channel audio
source separation with NMF: divergences, constraints and algorithms”. In: Audio
Source Separation. Springer, 2018, pp. 1–24.

[26] Cédric Févotte, Nancy Bertin, and Jean-Louis Durrieu. “Nonnegative matrix fac-
torization with the Itakura-Saito divergence: With application to music analysis”.
In: Neural computation 21.3 (2009), pp. 793–830.

[27] Tuomas Virtanen and Tom Barker. “Separation of Known Sources Using Non-
negative Spectrogram Factorisation”. In: Audio Source Separation. Springer, 2018,
pp. 25–48.

78

Bibliography

[28] Alexey Ozerov et al. “Multichannel nonnegative tensor factorization with struc-
tured constraints for user-guided audio source separation”. In: 2011 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE. 2011, pp. 257–260.

[29] Alexey Ozerov, Emmanuel Vincent, and Frédéric Bimbot. “A general flexible
framework for the handling of prior information in audio source separation”.
In: IEEE Transactions on audio, speech, and language processing 20.4 (2011),
pp. 1118–1133.

[30] Cédric Févotte and Alexey Ozerov. “Notes on nonnegative tensor factorization of
the spectrogram for audio source separation: statistical insights and towards self-
clustering of the spatial cues”. In: International Symposium on Computer Music
Modeling and Retrieval. Springer. 2010, pp. 102–115.

[31] Derry FitzGerald, Matt Cranitch, and Eugene Coyle. “Extended nonnegative ten-
sor factorisation models for musical sound source separation”. In: Computational
Intelligence and Neuroscience 2008 (2008).

[32] Hirokazu Kameoka, Hiroshi Sawada, and Takuya Higuchi. “General formulation of
multichannel extensions of NMF variants”. In: Audio Source Separation. Springer,
2018, pp. 95–124.

[33] Neil Joseph Miller. Removal of noise from a voice signal by synthesis. Tech. rep.
Utah University Salt Lake City Dept. of Computer Science, 1973.

[34] Guoning Hu and DeLiang Wang. “Monaural speech segregation based on pitch
tracking and amplitude modulation”. In: IEEE Transactions on neural networks
15.5 (2004), pp. 1135–1150.

[35] Adiel Ben Shalom et al. “Optimal filtering of an instrument sound in a mixed
recording using harmonic model and score alignment”. In: Proceedings of the
International Computer Music Conference (ICMC). 2004.

[36] Zafar Rafii, Antoine Liutkus, and Bryan Pardo. “REPET for background/foreground
separation in audio”. In: Blind Source Separation. Springer, 2014, pp. 395–411.

[37] Antoine Liutkus et al. “Kernel additive models for source separation”. In: IEEE
Transactions on Signal Processing 62.16 (2014), pp. 4298–4310.

[38] Paris Smaragdis, Gautham Mysore, and Nasser Mohammadiha. “Dynamic Non-
negative Models for Audio Source Separation”. In: Audio Source Separation.
Springer, 2018, pp. 49–71.

[39] Takuya Higuchi and Hirokazu Kameoka. “Unified approach for audio source sepa-
ration with multichannel factorial HMM and DOA mixture model”. In: 2015 23rd
European Signal Processing Conference (EUSIPCO). IEEE. 2015, pp. 2043–2047.

[40] Francis R Bach and Michael I Jordan. “Learning spectral clustering, with appli-
cation to speech separation”. In: Journal of Machine Learning Research 7.Oct
(2006), pp. 1963–2001.

79

Bibliography

[41] Antoine Liutkus, Roland Badeau, and Gäel Richard. “Gaussian processes for
underdetermined source separation”. In: IEEE Transactions on Signal Processing
59.7 (2011), pp. 3155–3167.

[42] Pablo A Alvarado, Mauricio A Alvarez, and Dan Stowell. “Sparse gaussian process
audio source separation using spectrum priors in the time-domain”. In: ICASSP
2019-2019 IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). IEEE. 2019, pp. 995–999.

[43] Hendrik Purwins et al. “Deep learning for audio signal processing”. In: IEEE
Journal of Selected Topics in Signal Processing 13.2 (2019), pp. 206–219.

[44] Ian Goodfellow et al. Deep learning. Vol. 1. 2. MIT press Cambridge, 2016.

[45] Frank Rosenblatt. “The perceptron: a probabilistic model for information storage
and organization in the brain.” In: Psychological review 65.6 (1958), p. 386.

[46] Naftali Tishby and Noga Zaslavsky. “Deep learning and the information bot-
tleneck principle”. In: 2015 IEEE Information Theory Workshop (ITW). IEEE.
2015, pp. 1–5.

[47] Herbert Robbins and Sutton Monro. “A stochastic approximation method”. In:
The annals of mathematical statistics (1951), pp. 400–407.

[48] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. “Learning rep-
resentations by back-propagating errors”. In: nature 323.6088 (1986), pp. 533–
536.

[49] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimiza-
tion”. In: arXiv preprint arXiv:1412.6980 (2014).

[50] Yann LeCun et al. “Backpropagation applied to handwritten zip code recogni-
tion”. In: Neural computation 1.4 (1989), pp. 541–551.

[51] Jeffrey L Elman. “Finding structure in time”. In: Cognitive science 14.2 (1990),
pp. 179–211.

[52] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In: Neural
computation 9.8 (1997), pp. 1735–1780.

[53] Kyunghyun Cho et al. “Learning phrase representations using RNN encoder-
decoder for statistical machine translation”. In: arXiv preprint arXiv:1406.1078
(2014).

[54] Naoya Takahashi, Nabarun Goswami, and Yuki Mitsufuji. “Mmdenselstm: An
efficient combination of convolutional and recurrent neural networks for audio
source separation”. In: 2018 16th International Workshop on Acoustic Signal En-
hancement (IWAENC). IEEE. 2018, pp. 106–110.

[55] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural infor-
mation processing systems. 2017, pp. 5998–6008.

80

Bibliography

[56] Aditya Arie Nugraha, Antoine Liutkus, and Emmanuel Vincent. “Multichannel
audio source separation with deep neural networks”. In: IEEE/ACM Transactions
on Audio, Speech, and Language Processing 24.9 (2016), pp. 1652–1664.

[57] Alexandre Défossez et al. “Music source separation in the waveform domain”. In:
arXiv preprint arXiv:1911.13254 (2019).

[58] Tak-Shing Chan et al. “Vocal activity informed singing voice separation with the
iKala dataset”. In: 2015 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE. 2015, pp. 718–722.

[59] Chao-Ling Hsu and Jyh-Shing Roger Jang. “On the improvement of singing voice
separation for monaural recordings using the MIR-1K dataset”. In: IEEE Trans-
actions on Audio, Speech, and Language Processing 18.2 (2009), pp. 310–319.

[60] Rachel M Bittner et al. “MedleyDB 2.0: New data and a system for sustainable
data collection”. In: ISMIR Late Breaking and Demo Papers (2016).

[61] Antoine Liutkus et al. “The 2016 signal separation evaluation campaign”. In: In-
ternational conference on latent variable analysis and signal separation. Springer.
2017, pp. 323–332.

[62] Zafar Rafii et al. “MUSDB18-a corpus for music separation”. In: (2017).

[63] Ethan Manilow et al. “Cutting music source separation some slakh: a dataset to
study the impact of training data quality and quantity”. In: 2019 IEEE Workshop
on Applications of Signal Processing to Audio and Acoustics (WASPAA). IEEE.
2019, pp. 45–49.

[64] Stefan Uhlich et al. “Improving music source separation based on deep neural
networks through data augmentation and network blending”. In: 2017 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE. 2017, pp. 261–265.

[65] Laure Prétet et al. “Singing voice separation: A study on training data”. In:
ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP). IEEE. 2019, pp. 506–510.

[66] Daniel Stoller, Sebastian Ewert, and Simon Dixon. “Adversarial semi-supervised
audio source separation applied to singing voice extraction”. In: 2018 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE. 2018, pp. 2391–2395.

[67] Stefan Uhlich, Franck Giron, and Yuki Mitsufuji. “Deep neural network based
instrument extraction from music”. In: 2015 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2015, pp. 2135–2139.

[68] Po-Sen Huang et al. “Singing-Voice Separation from Monaural Recordings using
Deep Recurrent Neural Networks.” In: ISMIR. 2014, pp. 477–482.

81

Bibliography

[69] Andrew JR Simpson, Gerard Roma, and Mark D Plumbley. “Deep karaoke: Ex-
tracting vocals from musical mixtures using a convolutional deep neural network”.
In: International Conference on Latent Variable Analysis and Signal Separation.
Springer. 2015, pp. 429–436.

[70] Pritish Chandna et al. “Monoaural audio source separation using deep convolu-
tional neural networks”. In: International conference on latent variable analysis
and signal separation. Springer. 2017, pp. 258–266.

[71] Abhimanyu Sahai, Romann Weber, and Brian McWilliams. “Spectrogram feature
losses for music source separation”. In: 2019 27th European Signal Processing
Conference (EUSIPCO). IEEE. 2019, pp. 1–5.

[72] Antoine Liutkus and Roland Badeau. “Generalized Wiener filtering with frac-
tional power spectrograms”. In: 2015 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). IEEE. 2015, pp. 266–270.

[73] John R Hershey et al. “Deep clustering: Discriminative embeddings for segmen-
tation and separation”. In: 2016 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE. 2016, pp. 31–35.

[74] Li Li and Hirokazu Kameoka. “Deep clustering with gated convolutional net-
works”. In: 2018 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE. 2018, pp. 16–20.

[75] Yi Luo et al. “Deep clustering and conventional networks for music separation:
Stronger together”. In: 2017 IEEE international conference on acoustics, speech
and signal processing (ICASSP). IEEE. 2017, pp. 61–65.

[76] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-net: Convolutional net-
works for biomedical image segmentation”. In: International Conference on Medi-
cal image computing and computer-assisted intervention. Springer. 2015, pp. 234–
241.

[77] Andreas Jansson et al. “Singing voice separation with deep u-net convolutional
networks”. In: (2017).

[78] Sergey Ioffe and Christian Szegedy. “Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift”. In: arXiv preprint arXiv:1502.03167
(2015).

[79] Nitish Srivastava et al. “Dropout: a simple way to prevent neural networks from
overfitting”. In: The journal of machine learning research 15.1 (2014), pp. 1929–
1958.

[80] Stylianos Ioannis Mimilakis et al. “Examining the Mapping Functions of Denois-
ing Autoencoders in Singing Voice Separation”. In: IEEE/ACM Transactions on
Audio, Speech, and Language Processing 28 (2019), pp. 266–278.

[81] Romain Hennequin et al. “Spleeter: a fast and efficient music source separation
tool with pre-trained models”. In: Journal of Open Source Software 5.50 (2020),
p. 2154.

82

Bibliography

[82] Jen-Yu Liu and Yi-Hsuan Yang. “Denoising auto-encoder with recurrent skip
connections and residual regression for music source separation”. In: 2018 17th
IEEE International Conference on Machine Learning and Applications (ICMLA).
IEEE. 2018, pp. 773–778.

[83] Venkatesh S Kadandale et al. “Multi-task U-Net for Music Source Separation”.
In: arXiv preprint arXiv:2003.10414 (2020).

[84] Fabian-Robert Stöter et al. “Open-unmix-a reference implementation for music
source separation”. In: (2019).

[85] Gao Huang et al. “Densely connected convolutional networks”. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. 2017, pp. 4700–
4708.

[86] Naoya Takahashi and Yuki Mitsufuji. “Multi-scale multi-band densenets for audio
source separation”. In: 2017 IEEE Workshop on Applications of Signal Processing
to Audio and Acoustics (WASPAA). IEEE. 2017, pp. 21–25.

[87] Daniel Stoller, Sebastian Ewert, and Simon Dixon. “Wave-u-net: A multi-scale
neural network for end-to-end audio source separation”. In: arXiv preprint arXiv:1806.03185
(2018).

[88] Yi Luo and Nima Mesgarani. “Tasnet: time-domain audio separation network for
real-time, single-channel speech separation”. In: 2018 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2018, pp. 696–
700.

[89] Yi Luo and Nima Mesgarani. “Conv-tasnet: Surpassing ideal time–frequency mag-
nitude masking for speech separation”. In: IEEE/ACM transactions on audio,
speech, and language processing 27.8 (2019), pp. 1256–1266.

[90] Jaehoon Oh, Duyeon Kim, and Se-Young Yun. “Spectrogram-channels u-net: a
source separation model viewing each channel as the spectrogram of each source”.
In: arXiv preprint arXiv:1810.11520 (2018).

[91] Olga Slizovskaia, Gloria Haro, and Emilia Gómez. “Conditioned source separation
for music instrument performances”. In: arXiv preprint arXiv:2004.03873 (2020).

[92] David Samuel, Aditya Ganeshan, and Jason Naradowsky. “Meta-learning Extrac-
tors for Music Source Separation”. In: ICASSP 2020-2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2020,
pp. 816–820.

[93] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of training deep
feedforward neural networks”. In: Proceedings of the thirteenth international con-
ference on artificial intelligence and statistics. 2010, pp. 249–256.

[94] Rachel M Bittner et al. “Deep Salience Representations for F0 Estimation in
Polyphonic Music.” In: ISMIR. 2017, pp. 63–70.

[95] Jen-Yu Liu and Yi-Hsuan Yang. “Dilated convolution with dilated GRU for music
source separation”. In: arXiv preprint arXiv:1906.01203 (2019).

83

Bibliography

[96] Alexandre Défossez et al. “Demucs: Deep Extractor for Music Sources with extra
unlabeled data remixed”. In: arXiv preprint arXiv:1909.01174 (2019).

[97] Emmanuel Vincent, Rémi Gribonval, and Cédric Févotte. “Performance measure-
ment in blind audio source separation”. In: IEEE transactions on audio, speech,
and language processing 14.4 (2006), pp. 1462–1469.

[98] Fabian-Robert Stöter, Antoine Liutkus, and Nobutaka Ito. “The 2018 signal sep-
aration evaluation campaign”. In: International Conference on Latent Variable
Analysis and Signal Separation. Springer. 2018, pp. 293–305.

[99] Emmanuel Vincent et al. “First stereo audio source separation evaluation cam-
paign: data, algorithms and results”. In: International Conference on Independent
Component Analysis and Signal Separation. Springer. 2007, pp. 552–559.

[100] Jonathan Le Roux et al. “SDR–half-baked or well done?” In: ICASSP 2019-
2019 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE. 2019, pp. 626–630.

[101] Aaron van den Oord et al. “Wavenet: A generative model for raw audio”. In:
arXiv preprint arXiv:1609.03499 (2016).

[102] Pranay Manocha et al. “A differentiable perceptual audio metric learned from
just noticeable differences”. In: arXiv preprint arXiv:2001.04460 (2020).

84

Appendices

85

A. Hyperparameter Settings

Baseline Model and Proposed Model Architecture

This section provides a more detailed representation U-Net design as well as its hyper-
parameter settings. It ensures the reproducability of the achieved results.

The original Spleeter baseline model consists of six encoder and decoder stages with
typical U-Net like skip and concatenate operations between each encoder/decoder pair.
One encoder stage consists of a two-dimensional convolution with C filters of size 5× 5
and a stride of 2×2. After the convolution, a batch normalization is performed over the
channel axis followed by an Exponential Linear Unit (ELU) activation function. The
decoder layers are designed in a very similar way. A transposed two-dimensional convo-
lution with C filters of size 5×5 and a transposed stride of 2×2 is performed followed by
an ELU activation function and a batch normalization over the channel dimension. To
the lowest three decoder layer, a dropout with a chance of 50% is applied. After every
decoder layer, the output is concatenated to the output of the convolution in the en-
coder side forming the typical U-Net structure. The lowest encoder layer doesn’t utilize
a batch normalization or an activation function. The last layer of the decoder outputs
a single feature map which then gets processed by another two-dimensional convolution
with two filters of size 4 × 4, no stride, and dilation of 2 × 2, which is followed by a
sigmoid activation, creating a mask between 0− 1. The final output of this layer is then
multiplied to the input of the model, resulting in an internal learned mask.

The proposed model doubles the number of layers from 13 to 26 by using two convo-
lutional layers per stage instead of one. Each encoder stage consists of a down-sampling
layer and a transition layer. The deepest transition layer is configured to have a dilation
factor of 2 to increase the receptive field of the network. One down-sampling layer con-
sists of a two-dimensional convolution, which increases the feature map size, followed by
a batch normalization layer, a Rectified Linear Unit (ReLU), and a max-pooling opera-
tion with stride and pool size of 2×2. The transition layer consists of the same elements
except for the max-pooling operation. The decoder of Spleeter is restructured and build
up exactly symmetrical to the encoder, using a transposed convolution with a stride of
2× 2 for up-sampling, followed by a batch normalization layer and a ReLU. The output
of each encoder stage is concatenated to the output of the respective decoder stage. A
dropout layer with a 50% dropout chance is used in the three lowest decoder blocks.
The amount of feature map in the penultimate convolutional layer is re-scaled from one
feature map to sixteen, as it might be disadvantageous to collapse all the information

86

A. Hyperparameter Settings

into one feature map and then scale it up again in the last layer. The rest of the net-
work remains the same as in the original model. An internal mask is created by using a
sigmoid activation function in the last layer and multiplying it on the input tensor. The
number of feature maps per stage for the original and proposed U-Net can be found in
table A.1.

Model Param. Encoder GRU Units Decoder

Baseline 30 48 64 120 250 500 700 - 700 500 120 96 64 48

U-Net 30 48 64 96 160 300 600 - 600 300 160 96 64 48

U-Net GRU 30 48 64 96 160 300 600 700 600 300 160 96 64 48

U-Net Dense 30 68 51 171 128 488 378 - 378 189 189 79 79 32

U-Net 9 32 48 64 100 160 320 - 320 160 100 64 48 32

U-Net Dense 9 73 36 171 85 355 177 - 177 88 88 43 43 19

U-Net 3 20 30 50 70 90 150 - 150 90 70 50 30 20

U-Net Dense 3 64 27 117 49 229 97 - 97 48 48 24 24 12

Table A.1.: Overview of the number of feature map/number of filters used in the convo-
lutional layers for encoder and decoder. For the densely-connected models,
the number of feature maps after each block and after each down-sampling
stage are shown.

Param.
Dense Block 1 Dense Block 2 Dense Block 3

N M θ N M θ N M θ total

30M 5 8 0.75 15 8 0.75 30 12 0.775 65

9M 5 9 0.5 15 9 0.5 30 9 0.5 65

3M 4 9 0.425 10 9 0.425 20 9 0.425 49

Table A.2.: Hyperparameter settings for each densely-connected block. N: Number of
layer per block, M: Number of filters per layer, θ: Downs-sampling factor at
the end of each block.

Drum Bass Other Vocal

1.49 2.51 1.0 1.49

Table A.3.: Sample weights for each source instrument in the M-U-Net.

87

B. Ablation Study Results

All Drums Bass Other Vocals
SI. SDR SI. SDR SI. SDR SI. SDR SI. SDR

Std. 0.05 0.05 0.09 0.06 0.13 0.15 0.07 0.08 0.14 0.01

Table B.1.: The standard deviations of the SI- and SDR values calculated over five differ-
ent training’s with the proposed model with harmonic feature map extensions
(5h+3d).

All Drums Bass Other Vocals
Harmonics SI. SDR SI. SDR SI. SDR SI. SDR SI. SDR

U 0 2.96 4.29 4.04 4.65 2.16 3.61 2.17 3.31 3.91 5.13

U 3 3.31 4.54 4.36 4.84 2.49 4.00 2.34 3.54 4.72 5.51
U 5 3.23 4.51 4.60 5.17 2.75 4.14 2.37 3.52 4.51 5.41
U 9 3.23 4.41 4.29 4.74 2.62 3.95 2.26 3.45 4.05 5.37

U 5 + 1s 3.17 4.47 4.65 5.25 2.82 4.06 2.41 3.55 4.16 5.26
U 5 + 3s 3.21 4.56 4.28 4.96 2.20 3.81 2.33 3.69 4.65 5.43
U 9 + 5s 3.22 4.51 4.21 4.81 2.97 4.12 2.27 3.42 4.29 5.24

U 3 + 3d 3.35 4.56 4.67 5.13 2.71 3.91 2.30 3.63 4.68 4.68
U 5 + 3d 3.35 4.59 4.34 5.03 2.76 4.12 2.38 3.72 4.73 5.40
U 9 + 5d 3.34 4.59 4.27 4.86 2.65 4.22 2.22 3.58 4.78 5.59

S 0 2.45 3.94 3.58 4.56 2.13 3.51 1.66 3.17 2.53 4.39
S 5h+3d 2.83 4.26 4.39 4.81 2.49 3.97 1.76 3.29 3.50 4.77

Table B.2.: The median of Si-SDR and SDR for different harmonic extensions (s = sub-
harmonics, d = dense-harmonics) with the proposed U-Net (U), as well as
the on average best harmonic extension added to the original Spleeter archi-
tecture.

88

B. Ablation Study Results

All Drums Bass Other Vocals
Augmentation SI. SDR SI. SDR SI. SDR SI. SDR SI. SDR

0% 3.35 4.59 4.34 5.03 2.76 4.12 2.38 3.72 4.73 5.40

25% 3.71 4.71 4.54 4.89 3.22 4.35 2.59 3.86 4.76 5.76

50% 3.62 4.71 4.72 5.26 2.89 4.27 2.59 3.98 5.03 5.94

25% + 25% 4.27 5.15 5.29 5.56 3.50 4.54 2.73 4.12 5.71 6.03

Table B.3.: The median of SI-SDR and SDR for the proposed U-Net (5h+3d) trained
with 25% and 50% interleaved augmented mixtures, as well as extra inter-
leaved randomly generated mixtures (25%+25%). The number of total seen
datapoints stays fixed at 3200 per epoch.

All Drums Bass Other Vocals
Model SI. SDR SI. SDR SI. SDR SI. SDR SI. SDR

Normal 30M 4.27 5.15 5.29 5.56 3.50 4.54 2.73 4.12 5.71 6.03

Normal 9M 3.80 4.92 5.19 5.43 3.08 4.21 2.63 4.04 5.23 5.88

Normal 3M 3.88 4.85 5.18 5.29 3.39 4.41 2.32 3.83 5.12 5.80

Dense 30M 3.97 5.06 5.43 5.55 3.70 4.67 2.62 3.96 5.36 5.86

Dense 9M 4.06 4.98 5.28 5.47 3.14 4.53 2.75 4.26 5.68 6.08

Dense 3M 4.00 4.98 5.32 5.38 3.53 4.46 2.64 4.19 5.47 5.89

Table B.4.: Median of SI-SDR and SDR for the proposed U-Net (5h+3d) and the
densely-connected U-Net trained on the augmented dataset. The results of
GRU- and Dense-extensions are compared to the standard proposed U-Net.
The GRU is trained on different time lengths.

All Drums Bass Other Vocals
Methode SI. SDR SI. SDR SI. SDR SI. SDR SI. SDR

MWF 4.84 5.78 6.48 6.64 4.22 5.33 3.49 4.78 6.74 6.85

PA (K = 0) 4.94 5.76 6.20 6.50 4.36 5.66 3.43 4.68 6.76 6.82
PA (K = 3) 5.00 5.86 6.75 6.94 4.41 5.63 3.45 4.70 6.86 6.86
PA (K = 7) 5.08 5.83 7.08 6.96 4.47 5.63 3.40 4.78 7.03 6.88

Table B.5.: Median of SI-SDR and SDR for the PA-Net trained with different amounts
of encoded similarity phrases K.

89

