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Abstract

Recently, many contributions in the field of singing voice analysis and synthesis utilized
the advancements in machine learning to propose powerful models capable of synthesizing
fully phonetic singing voice samples. However, while these advancements in machine
learning can be used to solve various complex problems, they have yet to reach the
robustness and computational efficiency of traditional signal processing methods. This
thesis tries to utilize the advantages of both domains and proposes a signing voice analysis
and synthesis method combining traditional signal processing with machine learning and
optimization.

The proposed method is based on a simple but robust voice synthesis method which
models the glottal source using an LF-𝑅𝑑 wavetable oscillator and the vocal tract with
a pole-zero filter bank. To control said synthesis method, a neural network is trained
to predict the required synthesis parameters from a freely controllable pitch trajectory.
Thus, central to the analysis is the estimation of said parameters from a source sample
so that the network can be trained in a supervised context. This is achieved with a novel
synthesis model parameter estimation method which implements the synthesis model as
part of a gradient descent optimizer, tasked to minimize the reconstruction error between
the source sample and its resynthesis.

The proposed singing voice analysis and synthesis method was evaluated in an empirical
study consisting of two experiments. In the first experiment, participants were asked
to rate the perceived audio quality between a reference stimuli and multiple alterations
thereof reconstructed using the different subcomponents of the proposed method. Both
a Friedman test with post hoc Wilcoxon signed rank test and a linear mixed model
confirmed that the synthesis model parameter estimation ℰ produces the largest drop in
audio quality, indicating that the method still leaves room for improvements. Additionally,
the mixed model suggests that the perceived audio quality of the synthesized sample
depends on the pitch range present in the source audio sample, the singers gender and the
vowel. In a second experiment, participants were asked to rate the relative presence of
four timbre qualities, namely naturalness, breathiness, brightness and roughness, between
a reference stimuli and its reconstruction. A Wilcoxon signed rank test confirmed that
participants perceived the reference stimuli to sound significantly more natural, breathier
and brighter while a weaker but still statistically significant effect was found for roughness.
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Zusammenfassung

In den letzten Jahren haben viele wissenschaftliche Veröffentlichungen in dem Gebiet
der Sprachsynthese die Fortschritte im Bereich des maschinellen Lernens genutzt, um
leistungsstarke Modelle zu entwickeln, die in der Lage sind, vollständig phonetischen
Gesang zu synthetisieren. Während Methoden des maschinellen Lernens zur Lösung
verschiedener komplexer Probleme verwendet werden können, erreichen sie häufig noch
nicht die Robustheit und Effizienz der traditionellen Signalverarbeitung. Aus diesem
Grund untersucht diese Arbeit eine Methode zur Analyse und Synthese gesungener
Vokale, die die traditionelle Signalverarbeitung mit maschinellem Lernen kombiniert.

Die vorgeschlagene Methode basiert auf einer einfachen, aber robusten Methode für die
Synthese von Vokalen, die die in den Stimmenbändern entstehende Grundschwingung mit
einem Wavetable-Oszillator und den Vokaltrakt mit einer seriellen Filterbank modelliert.
Zur Steuerung dieser Synthesemethode wird ein neuronales Netz trainiert, das aus einer
frei steuerbaren Tonhöhenkurve die erforderlichen Syntheseparameter bestimmt. Im
Mittelpunkt der Analyse steht die Schätzung dieser Parameter aus einem Audiosample.
Dazu wird das Synthesemodell mittels automatischer Differenzierung als Teil einer gradi­
entenbasierten Optimierung implementiert, dessen Ziel es ist, den Rekonstruktionsfehler
zwischen dem Audiosample und seiner Resynthese zu minimieren.

Die vorgeschlagene Methode zur Analyse und Synthese gesungener Vokale wurde in einer
empirischen Studie evaluiert. In einem ersten Experiment wurden die Teilnehmer gebeten,
die wahrgenommene Audioqualität zwischen einem Referenzstimulus und mehreren mit
der Methode rekonstruierten Varianten zu bewerten. Die Auswertung bestätigte, dass
die Parameterschätzung des Synthesemodells für den größten Verlust an Audioqual­
ität verantwortlich ist. Zudem legt die Auswertung nahe, dass die wahrgenommene
Audioqualität des synthetisierten Samples vom Tonhöhenbereich, dem Geschlecht des
Sängers und dem Vokal abhängt. In einem zweiten Experiment wurden die Teilnehmer
gebeten, die Präsenz von vier Klangfarbenqualitäten, nämlich Naturalness, Breathiness,
Brightness und Roughness, zwischen einem Referenzstimulus und seiner Rekonstruktion
zu bewerten. Die Auswertung bestätigte, dass die Teilnehmer die Referenzstimuli als
signifikant natürlicher, atmungsreicher, heller und, in einem geringeren Maße, auch rauer
empfanden.
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1 Introduction and Motivation

The human voice is omnipresent in our day-to-day life and the focus of research efforts
across multiple scientific fields, including linguistics and literature, music, performing
arts, biology, medicine, signal processing, telecommunication and many more. This thesis
focuses on one specific role of our voice; its role as a musical instrument. With the growing
popularity of machine learning in the field of sound synthesis, we have seen an influx of
realistic singing voice and text-to-speech models. However, while virtual real-time capable
emulations of natural instruments such as pianos, violins or guitars are already widely
used in music making, emulations of the human voice are rare and mostly still researched
within the scientific community. That is even though playable choirs exist since the 60s in
form of the sample-based Mellotron. Arguably, the multilayered complexity of the human
voice is at fault for why modern emulations are still a rather rare occurrence. Unlike
most acoustic instruments, the voice isn’t solely conveying auditory impressions which
are characterized mainly by temporal and spectral properties. Instead, it also relays
semantics through the spoken language and, in addition, may convey speaker identity,
regional and socioeconomic background and the speakers emotional and biological state
[1]. Because of that, it seems reasonable that speech and voice perception follows a
different, more complex psycho-acoustical model than the perception of most natural
instruments. This poses a challenging problem for the synthesis of virtual voices at least
for the synthesis of semantic phrases as is the case for text-to-speech applications.

The production and perception of sounds is studied in phonetics, a research field of
linguistics. Articulatory phonetics specifically deals with the sounds that are produced
through articulation of the voice production physiology. Manners of articulation include
vowels and consonants such as stops, fricatives, affricates and approximants [2, p. 18].
Vowels usually are produced by an open vocal tract while consonants are produced by
partial to complete obstruction of the vocal tract for instance via the lips or tongue.
Phonology deals with the organization of these units of sounds, referred to as phonemes.
The structure of words and their internal components is studied in morphology while
syntax covers the structure of phrases and sentences. Finally, the literal meaning of
language is the topic of semantics. An overview of the research fields in linguistics is
shown in Table 1.1.

Chapter 1. Introduction and Motivation
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• What synthesis method is capable of convincingly reproduce the human voice while
maintaining real-time capabilities?

• How can digital signal processing (DSP) and machine learning be combined for
voice analysis and synthesis?

• How can such a synthesis model be parameterized from audio samples to capture
vowel and the singers voice qualities?

• What methods can be used to evaluate the perceived quality and shortcomings of
the analysis and synthesis method?

As a main contribution of this thesis, a novel analysis-by-synthesis parameter estimation
method is presented. The method uses a harmonic spectral representation of the target
signal and estimates synthesis parameters by minimizing a reconstruction error between
the target signal and the synthesized signal.

1.1.1 Thesis Scope

The proposed method is intended to synthesize audio from control parameter such as
pitch and intensity. It is important to distinguish between these intermediate level control
parameters and high-level parameters. For a vocal performance, a musical score would
usually be used to describe text, melody, timing and expression. This description is
then interpreted by the singer to create a performance. The performance itself may
best be described by the phonetic articulation and timing, pitch and intensity. These
variables more directly describe the sound that the vocal physiology produces (Figure
1.2). One example that illustrates this distinction between high level and intermediate
level parameters is pitch. A musical score may describe the pitch of individual notes and
whether or not vibrato should be used to sing them. It is up to the singer to interpret
the score and produce the single pitch trajectory of the performance that captures both
note pitch and vibrato.

In voice synthesis, these two tasks may be referred to as parameter modeling and synthesis.
Parameter modeling derives intermediate level parameters such as pitch and intensity
from high level inputs such as a musical score as discussed for instance in [3, 4]. During
synthesis, these intermediate parameters may be converted to low level coefficients which
directly drive the synthesis engine. This thesis focuses on the synthesis from intermediate
level control parameters, specifically pitch.

1.1.2 Application Cases

The proposed method could see application in the music software industry. The method
could be used to develop software emulations of the human voice production similar to
existing emulations of natural instruments such as acoustic guitars or pianos. During
development, the method could be used to generate virtual singer models that capture
vowel and voice qualities of the analysed source sample. The user could then chose

Chapter 1. Introduction and Motivation Research Goal and Questions
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2.1.2 Vocal Tract

Glottis Lips5cm 10cm 15cm0cm

Distance from Glottis

Figure 2.3: A schematic depiction of the vocal tract area function (top) and corresponding tube
model consisting of 7 segments (bottom).

The vocal tract acts as a resonator, dampening or amplifying certain frequencies of the
glottal flow produced by the vibrating vocal folds. It consists of the larynx, oral cavity
and nasal cavity and the connecting pharynx. [5, p. 51] The vocal tract can be modeled
as a tube or a series of coupled tube segments, closed at the glottis and open at the lips
[7] (Figure 2.3). The tube segments diameter is determined by the cross section area
along the vocal tract. For simplicity, the vocal tract is often assumed to be straight and
the nasal cavity is ignored. Three exemplary vocal tract area functions for the vowels [a],
[i] and [u] are shown in Figure 2.4.

0
10
20
30

0 2 3 41
Frequency in kHz

20
10
0

10

0 2 3 41

0
10
20

10

0 2 3 41
301020

Distance from Glottis (cm)
0 5 10 15 20

2
A

re
a 

(c
m

)

4

2

2

4

0

0 5 10 15 20
4

2

2

4

0

0 5 10 15 20
4

2

2

4

0

A
m

pl
itu

de
 (

dB
)

[i] [a] [u]

40 2030

Figure 2.4: Vocal tract area functions for three vowels ([i], [a], [u]) with corresponding vocal
tract transfer function [8].
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In its most simple form, a tube consisting of a single segment, the model predicts equally
spaced poles in the transfer functions. With a length of 𝑙 = 14 cm for a female adult,
and a speed of sound of 𝑐 = 345 m/s in the slightly humid air of the vocal tract, the
first resonant frequency is predicted at 𝑓1 = 𝑐/(4𝑙) ≈ 600 Hz with following poles at
𝑓2 = 1800 Hz, 𝑓3 = 3000 Hz, 𝑓𝑘 = 𝑓1(2𝑘 − 1) Hz. For adult males, the poles are generally
positioned slightly lower at 500 Hz, 1500 Hz and 2500 Hz respectively due to a slightly
longer vocal tract. By adjusting the vocal tract shape, for instance by moving jaw,
tongue, lips or larynx, the pole frequencies can be changed to form vowels. These poles
are often referred to as formants. However, in some instances, poles move sufficiently
close to each other to form one single perceived formant, as is the case for the so called
singers formant. In this thesis, these terms are generally used interchangeably. The first
two or three formants generally are sufficient to identify a spoken or sung vowel [9] while
higher formants mostly contribute to the voice timbre or voice quality.

The nasal cavity is connected to the pharynx through the opening at the velum or
soft palate. In nasalization, the velum is opened to couple the nasal cavity with the
remaining vocal tract. This coupling drastically increases the complexity of the vocal
tract shape with the inclusion of multiple 3-port junctions at the velum and the nostrils
and the addition of the paranasal sinuses. This coupling introduces additional poles and
zeros, referred to as anti-formants, in the vocal tracts frequency response as discussed
in [7, 10]. It is very common to assume that singers don’t couple the nasal cavity and
such, especially early vocal tract models only considered the main poles created between
glottis and lips.

2.1.3 Lip and Nostril Radiation

Finally, the vocal tract waves radiate out through the lips or nostrils. At the lips, this
radiation can be modeled with an vibrating piston set in a baffle representing the singers
head. This baffle may be approximated as being either infinite or spherical [7, 11]. A
common model for the radiation filter 𝐻𝐿 at the lips is a simple differentiator [11, 12]
with

𝐻𝐿(𝑤) = 𝑖𝜔 (2.1)

2.1.4 Source-Filter Theory

The source-filter theory, originally proposed in [7], separates the voice production in two
linear systems, modeling the glottal flow and vocal tract including lip radiation. The
voice spectrum 𝑌 (𝜔) is a product of the glottal flow, modeled by the glottal source 𝑆(𝜔),
and the vocal tract, represented by the filter 𝑉 (𝜔) [7, p. 19]. In addition, the lip radiation
can be modeled as its own system 𝐿(𝜔).

𝑌 (𝜔) = 𝑆(𝜔)𝑉 (𝜔)𝐿(𝜔) (2.2)
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This model can further be extended to include aspiration noise 𝑁(𝜔) which is assumed to
be produced at the glottis and thus filtered by the vocal tract. Finally, it is convenient to
separate the effects of the source in two systems, one representing a purely flat harmonic
impulse train 𝐻𝑓0(𝜔) with fundamental 𝑓0 and one modeling the glottal magnitude and
phase spectrum 𝐺(𝜔). This separates the source components into an deterministic part
𝐺(𝜔)𝐻𝑓0(𝜔) and a non-deterministic part 𝑁(𝜔). The extended model thus is defined as
follows [11].

𝑌 (𝜔) =
(︁
𝐺(𝜔)𝐻𝑓0(𝜔) + 𝑁(𝜔)

)︁
𝑉 (𝜔)𝐿(𝜔) (2.3)

The source-filter model is regarded a significant contribution to the understanding of
the human voice. While it’s widely used and build upon, some drawbacks have to be
mentioned. On a perceptual level, it was found that certain timbre or voice quality
aspects can’t be contributed unambiguously to source or filter [13]. This hints towards
a reoccurring issue in singing voice synthesis. As Equation 2.2 suggests, variations in
the voice spectrum 𝑌 (𝜔) may be contributed either to source, filter or radiation. Thus,
assumptions have to be made on the specifics of the individual systems in order to
separate them. This poses the main challenge in source-filter separation in voice analysis.
Moreover, the source-filter model assumes a linear separation of vocal folds and the vocal
tract. However, it was found that nonlinear interactions between vocal folds and vocal
tract exist [14, 15]. These interactions can be mostly explained by the larynx, which
gradually matches the high impedance at the glottis with the lower impedance throughout
the vocal tract. This effect can be compared to that of horns in brass instruments.

2.2 Synthesis Models

Voice synthesis models were introduced as early as 1939 with the proposal of the original
Vocoder [16]. The presented model consists of an analysis stage that extracts pitch and
spectral information from an electric speech signal and a synthesis stage that recreates
said signal with an oscillator filtered by a filter bank. While not being mentioned by name,
the Vocoder thus implements the source-filter theory which was formally introduced
20 years later by Gunnar Fant [7]. An alternative to the source-filter model is spectral
modeling synthesis (SMS) [17]. In SMS, the signal is not separated in source and filter
but is instead decomposed in a deterministic component and a stochastic component.
The deterministic part consists of 𝑅 quasi-sinusoidals with amplitude 𝐴𝑟(𝑡) and phase
trajectories 𝜃𝑟(𝑡) while the stochastic component models the residual 𝑒(𝑡) between the
original signal 𝑠(𝑡) and the deterministic part.

𝑠(𝑡) =
𝑅∑︁

𝑟=1
𝐴𝑟(𝑡) cos(𝜃𝑟(𝑡)) + 𝑒(𝑡) (2.4)
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By estimating amplitudes and phases of sinusoidal signal components, the residual signal
can be calculated by subtracting the deterministic component from the original signal.
During synthesis, the stochastic component is synthesized from a white noise signal
filtered with an impulse response estimated from 𝑒(𝑡). While SMS can be used in various
application cases, source-filter models and vocoders are more commonly seen in voice
synthesis due to their ability to closely mimic the separation of voice qualities in pitch
and intensity (source) and vowel and timbre (filter). For this reason, this section focuses
on the description of glottal source and vocal tract models.

2.2.1 Source Models

Various source models have been proposed that approximate the deterministic part
𝐺(𝜔)𝐻𝑓0(𝜔) of the glottal flow [18, 19, 12, 20]. A comprehensive review and comparison
of these models can be found in [11]. Three of these, LF [12], LF-𝑅𝑑 [20], and CALM
[21] are discussed in more detail bellow.

Liljencrants-Fant (LF)

The LF model was introduced in [12] and uses four timing parameter 𝑡𝑝, 𝑡𝑒, 𝑇𝑎 and 𝑡𝑐

with glottal flow period 𝑇0 to describe the glottal flow and glottal flow derivative in the
time domain. A representation in the spectral domain is presented in [22, 23]. As was
described in Section 2.1.1, the vocal folds don’t close instantaneously. An improvement of
the LF model over previous models was the introduction of a return phase that models the
gradual closing of the vocal folds. The start of the return phase, is referred to as glottal
closure instance and modeled by 𝑡𝑒. Return phase length and decay are represented by
𝑡𝑐 and 𝑇𝑎 respectively. The time of highest glottal flow is marked by 𝑡𝑝.

te

tc

tp

Ta

t0

Figure 2.5: Parameters of the LF-model [12]

Figure 2.5 shows the LF model glottal pulse (dashed line) and its derivative (solid line)
for parameters 𝑡𝑝 = 0.4, 𝑡𝑒 = 0.6, 𝑡𝑐 = 1, 𝑇𝑎 = 0.08. A wider range of LF glottal pulses is
shown in Figure 2.6.
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Figure 2.6: Three LF glottal flow (continuous) and derivative (dashed) curve with various
values for 𝑡𝑝, 𝑡𝑒, and 𝑇𝑎 with fixed 𝑡𝑐 = 𝑇0 = 1.

The LF-model defines the glottal pulse derivative piece-wise as follows

𝑔𝐿𝐹 (𝑡) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝐸0𝑒𝛼𝑡 sin(𝑡/𝑡𝑝) 0 < 𝑡 < 𝑡𝑒

−1
𝜖𝑡𝑎

(︁
𝑒−𝜖(𝑡−𝑡𝑒) − 𝑒−𝜖(𝑡𝑐−𝑡𝑒)

)︁
𝑡𝑒 < 𝑡 < 𝑡𝑐

0 𝑡𝑐 < 𝑡

The variables 𝛼, 𝜖 and 𝐸0 are defined implicitly [12] and need to be determined using
numerical methods or approximations. By defining the pulse derivative, the LF model
directly includes the lip radiation model 𝐿(𝑠) = 𝑖𝜔 which is assumed to be static.

LF-𝑅𝑑

In [20], Fant revisited the LF model and proposed the LF-𝑅𝑑 model with the intention
of covering a high voice quality range with a single parameter. 𝑅𝑑 is used to define the
LF parameters 𝑡𝑝, 𝑡𝑒 and 𝑇𝑎, with 𝑡𝑐 = 𝑇0 = 1. The conversion is given as follows.

𝑅𝑎𝑝 = (−1 + 4.8𝑅𝑑)/100
𝑅𝑘𝑝 = (22.4 + 11.8𝑅𝑑)/100
𝑅𝑔𝑝 = 1/(4((0.11𝑅𝑑/(1/2 + 1.2𝑅𝑘𝑝)) − 𝑅𝑎𝑝)/𝑅𝑘𝑝)

(2.5)

𝑡𝑝 = 1
2𝑅𝑔𝑝

𝑡𝑒 = 𝑡𝑝(𝑅𝑘𝑝 + 1)
𝑇𝑎 = 𝑅𝑎𝑝

(2.6)

The LF-𝑅𝑑 model is defined for a range of 0.3 ≤ 𝑅𝑑 ≤ 2.7, the time domain glottal pulse
derivative and associated magnitude spectra of the first 40 harmonics can be seen in
Figure 2.7. 𝑅𝑑 simultaneously controls the timing of glottal closure instance 𝑡𝑒 and the
general spectral tilt which correlates with short 𝑇𝑎 and 𝑡𝑒 − 𝑡𝑝. Notably, the spectral peak
shifts away from the fundamental at high 𝑅𝑑 values to the second and third harmonic at
low values. Additionally, ripples in the magnitude spectrum can be observed especially
for 𝑅𝑑 > 2.
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Figure 2.7: LF-𝑅𝑑 pulse derivative and associated spectra for the first 40 harmonics for
𝑅𝑑 = 0.3, 𝑅𝑑 = 1.2 and 𝑅𝑑 = 2.7 from left to right.

Causal-Anticausal Linear Model (CALM)

The causal-anticausal linear model (CALM) describes the glottal pulse as a system
consisting of a real pole and a complex conjugate anti-causal pole pair [21]. Considering,
that the glottal pulse derivative is excited by an impulse, the return phase 𝑡 > 𝑡𝑒 of
the LF model can be described as a truncated impulse response of a first order pole,
an exponential decay. Likewise, the open phase 𝑡 < 𝑡𝑒 can be described as a truncated
impulse response of a anti-causal complex pole pair [21]. This leads to an approximation
of the glottal flow derivative spectrum as consisting of an 2nd order band-pass associated
with the open phase and mostly determined by the open quotient and a 1st order low-pass
filter associated with the return phase, mostly controlled by 𝑇𝑎 in the LF model. The
band-pass produces what is commonly referred to as the glottal formant at frequency
𝐹𝑔 [21] and determines the spectral peak that can be observed between the first three
harmonics in Figure 2.7. Additionally, the causal real pole of the return phase can directly
be approximated as an additional -6 dB per octave low-pass drop that is usually found at
higher frequencies 𝐹𝑐 and, in combination with the glottal formant, produces an overall
spectral slope of -12 dB per octave above 𝑓 > 𝐹𝑐 .

2.2.2 Filter Models

Over the years, many models for the vocal tract filter response have been presented. In
[7], Fant proposes the use of all-pole infinite impulse response (IIR) filters. An all-pole
filter consists only of poles with coefficients 𝑎𝑘 in the form

𝐻(𝑧) = 1
𝐾∑︀

𝑘=0
𝑎𝑘𝑧−𝑘

(2.7)
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or alternatively, pole radius 𝑟𝑛, pole phase 𝜔𝑘 = 2𝜋𝑓𝑘/𝑓𝑠 and gain 𝑔 with

𝐻(𝑧) = 𝑔
1

𝐾∏︀
𝑘=1

(𝑧 − 𝑟𝑘𝑒𝑖𝜔𝑘)
(2.8)

As discussed in Section 2.1, nasal coupling introduces additional poles and zeros, the
latter can’t be modeled with an all-pole filter. Moreover, interaction effects between
vocal tract and vocal folds [14] might require the use of a more flexible approach to
approximate nonlinearities that affect the vocal tract transfer function. For these reasons,
pole-zero filters might be used instead of all-pole filters. In product form, the transfer
function of a pole-zero IIR filter is given by

𝐻(𝑧) = 𝑔

𝐽∏︀
𝑗=1

(𝑧 − 𝑞𝑗)

𝐾∏︀
𝑘=1

(𝑧 − 𝑝𝑘)
(2.9)

with poles 𝑝𝑘, zeros 𝑞𝑗 and gain 𝑔. Pole-zero filters can be implemented in various
structures. To prevent instability issues due to numerical precision limitations, it is
advisable to implement a high order IIR filter in a series of second order sections.
To further improve computational efficiency, serial filter banks can be converted to an
equivalent parallel filter bank to utilize the performance of modern computer architectures,
which utilize parallel processing for instance using single instruction, multiple data
(SIMD).

AR, ARX and ARMA

In voice synthesis and analysis, the term autoregressive (AR) is often used to describe
processes that are modeled with an all-pole filter as follows [24]

𝑦[𝑛] =
𝐾∑︁

𝑘=1
𝑎𝑘𝑦[𝑛 − 𝑘] + 𝜎𝜀[𝑛] (2.10)

with gain 𝜎 and white Gaussian noise 𝜀[𝑛]. In extension, autoregressive with exogenous
input (ARX) describes an autoregressive process with additional deterministic input 𝜇[𝑛]
[24] with

𝑦[𝑛] =
𝐾∑︁

𝑘=1
𝑎𝑘𝑦[𝑛 − 𝑘] + 𝜇[𝑛] + 𝜎𝜀[𝑛] (2.11)

Finally, pole-zero filters are represented in this family of models by the autoregressive­
moving-average (ARMA) model [25], with
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[31] to incorporate nasal coupling. A two-dimensional waveguide model has been proposed
in [32]. An alternative to the waveguide approach is the Chain-Matrix model [33, 34].
Chain matrices can be used to calculate the Laplace domain impedance transfer function
of a vocal tract tube model. By sampling the frequency response, a discrete impulse re­
sponse can be calculated to model a the vocal tract as a finite impulse response (FIR) filter.

2.3 Source-Filter Analysis

From Equation 2.3, it is clear that inverse filtering can be used to separate source and
filter once one of them is known. With a vocal tract filter estimate 𝑉 (𝜔) and lip radiation
filter 𝐿(𝜔), the source spectrum 𝑆(𝜔) = 𝐺(𝜔)𝐻𝑓0(𝜔) + 𝑁(𝜔) can be extracted by inverse
filtering as follows [11, p. 57]

𝑆(𝜔) = 𝑌 (𝜔)
𝑉 (𝜔)𝐿(𝜔) (2.13)

This method is referred to as glottal inverse filtering (GIF). A similar approach can be
taken when the vocal tract is to be estimated from a known source spectrum. However,
due to the harmonic structure of the source spectrum and the presence of noise, inverse
filtering by 𝑆(𝜔) is impractical. Instead, spectral envelope estimation methods can be
used. The vocal tract transfer function can be approximated with

𝑉 (𝜔) = ℰ
(︂

𝑌 (𝜔)
𝐺(𝜔)𝐿(𝜔)

)︂
(2.14)

where ℰ estimates the spectral envelope of a harmonic or otherwise complex spectrum
[11, p. 59] which will be discussed in section 2.3.1. In this case, the stochastic component
𝑁(𝜔) is neglected and the harmonic impulse train 𝐻𝑓0(𝜔) usually has little impact on
the spectral envelope estimation and thus can be ignored as well.

In practice, the separation of source and filter poses a challenging problem mainly for
two reasons. First, without assumptions on the specifics of source 𝑆(𝜔) and filter 𝑉 (𝜔),
no unique separation of source and filter can be achieved through inverse filtering. To
address this, various models for both source and filter have been proposed to describe
both magnitude and phase of source and filter. Additional assumptions can be made, for
instance about the temporal variations of source or filter parameters. Secondly, due to
the harmonic structure and the presence of noise in the signal, reliable estimations of the
vocal tract can only be made at the frequencies which are "sampled" by the harmonics
of the glottal source. This introduces an issue of undersampling especially with high
fundamental frequencies. For instance, with a fundamental of 𝑓0 = 500 Hz, the frequency
band up to 2 kHz is only sampled by four harmonics even though this frequency range is
critical to estimate frequency and resonance of both the first two vocal tract formants
and the glottal formant.
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Let 𝐴𝑖[𝑘] be the logarithmic absolute representation of smeared spectrum at iteration 𝑖

with 𝐴0[𝑘] = 𝑙𝑜𝑔(|𝑋[𝑘]|). Iteratively, 𝐴𝑖[𝑘] is updated as follows

𝐴𝑖[𝑘] = max (𝐴0[𝑘], 𝒞(𝐴𝑖−1[𝑘])) (2.18)

where 𝒞 is a cepstral smoothing operation performed by liftering in the cepstral domain
(analogous to filtering in the spectral domain) and defined as follows

𝒞(𝐴𝑖[𝑘]) = ℱ
{︁

𝑊 [𝑛]ℱ−1 {𝐴𝑖[𝑘]}
}︁

(2.19)

with cepstral low-pass filter 𝑊 [𝑛]. After an abort criteria is reached, for instance after
max |𝐴𝑖[𝑛]−𝐴𝑖−1[𝑛]| falls bellow a predefined threshold, the smeared magnitude spectrum
𝐶[𝑘] of 𝑋[𝑘] can be obtained by 𝐶[𝑘] = 𝑒𝐴𝑖[𝑛].

In true envelope (TE) [38, 37, 39], the described spectral smearing is combined with
LPC by estimating the all-pole coefficients of the smeared magnitude spectrum 𝐶[𝑘]. An
advantage of TE is the ability to precisely control the smearing bandwidth according
to the signal to be analysed. Additionally, the method prevents overfitting of harmonic
peaks through poles as can often be observed with LPC. An example of 40th order LPC
and TE estimations for a vowel [o] of a female singer at roughly 540 Hz is shown in Figure
2.9. Noteworthy is the absence of harmonic overfitting of the first two harmonics with
TE.

In [40], an alternative approach for estimating the spectral envelope over multiple audio
frames was proposed. One common issue in spectral envelope estimation is that the
envelope can only be estimated reliably at harmonic peaks. Especially with relatively
high harmonic frequencies, this results in a low resolution of the spectral envelope. One
method to circumvent this low resolution is to observe the signal over multiple frames
during pitch modulation such as vibrato. As discussed in [40], for a sung vowel at 200 Hz
with a vibrato ranging ± 50 cents, half a semitone, a continuous sampling of the spectral
envelope over one vibrato period can be achieved from approximately 3.3 kHz upwards.
However, this approach assumes that, over one vibrato period, neither the excitation
signal nor the filter changes. Early tests with the dataset used in this thesis showed that
this assumption rarely held true to a degree that multi-frame envelope estimation could
be utilized.

2.3.2 Iterative Adaptive Inverse Filtering

The Iterative Adaptive Inverse Filtering (IAIF) [41] family of estimation methods, in­
cluding the recent contributions iterative optimal preemphasis-IAIF (IOP-IAIF) [42]
and glottal flow model-IAIF (GFM-IAIF) [43], are based on assumptions about spectral
characteristics of source and filter to perform a separation and joint estimation of both.
Summaries and comparisons of all three methods can be found in [44] and [45]. All
three models assume, that the spectral tilt in speech signals is produced mainly by the
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• The fundamental assumption of IAIF-based methods, that the vocal tract does not
include any spectral tilt, seems unrealistic. This is suggested in many publications,
especially from the physical modeling domain, which describe the various effects of
energy loss and damping that can be observed in the vocal tract [46, 30, 47, 48].

2.3.3 Analysis-by-Synthesis

Analysis-by-Synthesis refers to the use of optimization methods to estimate synthesis
parameters for both vocal tract and source by minimizing a reconstruction loss. While
these methods have been around since the 1960s [49], they recently grew in popularity
due to advances in global optimization and machine learning [50, 51, 52] . While the
specifics of the method vary with the used synthesis model, optimization method and
reconstruction loss, the principle stays similar. With frame based methods, a target
spectrum 𝑌𝑛(𝜔) at frame 𝑛 is to be reconstructed with a synthesis method 𝒮 from
parameters 𝜃𝑛 with

𝑌𝑛(𝜔) = 𝒮(𝜃𝑛,𝜔) (2.20)

where 𝑌𝑛(𝜔) is the reconstruction of 𝑌𝑛(𝜔). With the reconstruction error
𝐿
(︁
𝑌𝑛(𝜔), 𝑌𝑛(𝜔)

)︁
, the optimization can be described as

arg min
𝜃𝑛

𝐿
(︁
𝑌𝑛(𝜔), 𝑌𝑛(𝜔)

)︁
) (2.21)

The previously proposed analysis-by-synthesis methods differ mainly in three aspects.
The first is the choice of synthesis model 𝒮. Within source-filter models, filters can be
based on all-pole (ARX) models [53, 54], pole-zero (ARMA / ARMAX) models [55],
Kelly-Lochbaum based tube models [30] or chain matrices [34, 56]. The glottal source can
be approximated using the four-parameter LF model [57, 54], the Rosenberg-Klatt model
[58], or any other deterministic glottal flow model such as LF-Rd. The second choice
is regarding the optimization methods. To name a few, methods have been proposed
based on differential evolution [57], quasi-Newton methods [34], state-space methods
and Kalman filtering [58, 53], particle filtering [59, 60, 56], automatic differentiation [52]
and various custom optimization schemes. Finally, a choice has to be made about the
reconstruction loss 𝐿 which calculates the distance between the target spectrum and its
reconstruction. The loss could be calculated in time domain or spectral domain with or
without consideration of the phase component or in the cepstral domain. Additionally,
methods could optimize audio frames individually or considering temporal dependencies
either by restricting or punishing variations in parameter trajectories or by choosing
optimization approaches that implicitly consider temporal dependencies.
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2.3.4 Minimum Phase Assumption

In order to fully utilize the models for glottal flow and vocal tract, one can incorporate
phase observations into source filter estimation methods. As described in the CALM
model in Section 2.2.1, the glottal pulse can be approximated by an anti-causal complex
conjugate pole pair in the open phase and a causal real pole in the return phase. While
models for the vocal tract generally predict a minimum-phase system, the anti-causal pole
pair in the glottal flow introduces a maximum-phase component [11]. This is especially
helpful for the distinction between glottal formant from vocal tract formants as they
both appear as second order poles in the magnitude spectrum. Under this mixed-phase
assumption, phase-based source-filter estimation methods separate the speech spectrum
in a minimum-phase system representing the vocal tract and a maximum-phase system
representing the glottal pulse [11].

2.4 Machine Learning in Voice Synthesis

In recent years, various methods for voice synthesis using machine learning methods
have been proposed. Specific attention is given to WaveNet [61] and differentiable digital
signal processing (DDSP) [52]. Other notable methods for machine-learning-based voice
synthesis include WGANSing [62], WaveRNN [63] and a convolutional neural network
approach presented in [64].

2.4.1 WaveNet

x[n]x[n-1]x[n-2]

y[n]y[n-1]y[n-2]

Output

Input

x[n-7]

y[n-7]

Figure 2.11: The structure of the fully convolution, dilated WaveNet [61]. Every node in the
output sequence 𝑦[𝑛] depends on input samples 𝑥[𝑛] to 𝑥[𝑛 − 2𝑂 − 1] where 𝑂 is
the number of hidden layers in the network. [61]

In 2016, WaveNet was presented as a method to generate raw audio using dilated fully
convolutional neural networks as shown in Figure 2.11 [61]. A benefit of the proposed
structure is that, depending on the order 𝑂 of the network, every output node is connected
to every input node up to 2𝑂 samples in the past by exactly one path. This structure
reduces the complexity of the network compared to other convolutional structures. The
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FIR filters. As these methods are differentiable, they can be implemented as part of a
neural network while allowing loss errors to propagate back to the estimated synthesis
parameters during training. This approach has two advantages. First, DSP methods like
oscillators and linear filters are well understood and can be monitored and controlled
easily, unlike neural networks which often are considered black boxes. Second, DSP
methods can be implemented computationally efficiently on various platforms.

For voice synthesis, one drawback of the presented method is the lack of a support for
IIR filters. As already discussed, IIR filters are often used in voice synthesis due to
their ability to efficiently model the physical behavior of the vocal tract. While IIR
filters can be implemented as part of neural networks, their use drastically increases the
networks complexity and thus decreases training performance. This is caused by the
theoretically infinite impulse response length characterizing IIR filters which produce
large backpropagation trees in neural networks. Very recently, the lack of IIR support in
DDSP was addressed in [66] with the presentation of a method for including IIR filter
inside deep-learning networks. Additionally, a method for equalizer parameter estimation
using neural networks was presented in [67]. Even though both papers share similarities
with the method presented in this thesis, they were published after development of the
proposed method was already concluded.

2.5 Automatic Differentiation

Automatic differentiation or automatic gradient computation refers to the use of APIs or
other code to automatically calculate symbolic derivatives. For instance, TensorFlow’s
automatic gradient computation can be used to calculate derivatives 𝛿𝑦/𝛿𝑥 for some
function 𝑦 = 𝑓(𝑥) where 𝑓(𝑥) might include a series of complex arithmetic operations [68].
Let’s consider an exemplary pole-zero filter parameterized with gain 𝑔, poles p = (𝑝𝑗)
and zeros q = (𝑞𝑗). The filters frequency response at complex frequencies 𝑧 = 𝑒𝑖2𝜋𝑓/𝑓𝑠 is
given with

𝑉 (𝑧) = 𝑔
𝐽∏︁

𝑗=1

(𝑧 − 𝑞𝑗)(𝑧 − 𝑞𝑗)
(𝑧 − 𝑝𝑗)(𝑧 − 𝑝𝑗) (2.23)

where poles and zeros are further separated into radii rp and rq as well as frequencies fp

and fq with

𝑝 = 𝑟𝑝𝑒𝑖2𝜋𝑓𝑝/𝑓𝑠 , 𝑞 = 𝑟𝑞𝑒𝑖2𝜋𝑓𝑞/𝑓𝑠 (2.24)

with sample rate 𝑓𝑠. The filters frequency response can be calculated in TensorFlow as
follows
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def response(z, p, q, g):

# frequency response numerator and denominator

H_num = (z - q) * (z - tf.math.conj(q))

H_den = (z - p) * (z - tf.math.conj(p))

# calculate transfer function

V = g * tf.reduce_prod(H_num / H_den, 1)

where p, q, g and z correspond to p, q, 𝑔 and 𝑧. This function first calculates the nomina­
tor H_num and denominator H_den of the frequency response for each complex conjugate
pole and zero pair and afterwards calculates the product itself with tf.reduce_prod

before applying the gain factor. By implementing the function using TensorFlow’s type
system, automatic differentiation can be used to calculate derivatives, for instance 𝛿𝑉/𝛿𝑔,
𝛿𝑉/𝛿rp, 𝛿𝑉/𝛿fp and so on.

In the example above, the symbolic derivatives may be calculated using the function
tf.gradients(). Let’s assume automatic differentiation is used to update 𝑔, rp, rq, fp

and fq so that 𝑉 approximates some target frequency response 𝑉𝑡𝑎𝑟𝑔𝑒𝑡. Using TensorFlow,
a gradient descent scheme might then be implemented as follows.

while it < it_max:

// calculate poles and zeros from real parameters

p = r_p * tf.exp(tf.complex(0., 2 * np.pi * f_p / f_s))

q = r_q * tf.exp(tf.complex(0., 2 * np.pi * f_q / f_s))

// calculate V

V = response(z, p, q, g)

// calculate loss, e.g. mean squared error

L = loss(V, V_target)

// gradient calculating for all optimized parameters

dL_drp = tf.gradients(L, r_p)

dL_drq = tf.gradients(L, r_q)

dL_dfp = tf.gradients(L, f_p)

dL_dfq = tf.gradients(L, f_q)

dL_dg = tf.gradients(L, g)

// update all real parameters

r_p -= learning_rate * dL_drp

r_q -= learning_rate * dL_drq

f_p -= learning_rate * dL_dfp

f_q -= learning_rate * dL_dfq

g -= learning_rate * dL_dg

The use of automatic differentiation drastically simplifies optimization problems for which
calculating the symbolic derivative is not trivial. It is used to incorporate DSP methods
in neural networks in DDSP [52] and it is used in this work to solve multiple optimization
problems.
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2.6 B-Spline Modeling

This section gives a brief overview of B-splines as they are used in the method proposed
in this thesis. B-splines are commonly used for parameter regression or curve fitting.
B-splines are piecewise polynomial basis functions described by their order 𝑜 and knot
sequence 𝑠 [69; 70, p. 34]. In this thesis, 𝑜 = 1, 𝑜 = 2 and 𝑜 = 3 are used to refer to
constant, linear and quadratic basis functions respectively. 𝐿 basis functions 𝑏𝑙(𝑡) can be
linearly combined to form a smooth curve 𝑢(𝑡) with

𝑢(𝑡) =
𝐿∑︁

𝑙=1
𝑐𝑙𝑏𝑙(𝑡) (2.25)

with coefficients 𝑐𝑙 determining the amplitude of each basis function.
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Figure 2.13: A 3rd order B-spline curve consisting of 7 basis function 𝑏𝑙(𝑡), 1 ≤ 𝑙 ≤ 7 (dotted)
to form a smooth spline 𝑢(𝑡) (solid). The lower graph shows a curve with
coefficients 𝑐𝑙 = 1. The upper graph shows some exemplary curve with different 𝑐𝑙

for every basis function.

Figure 2.13 shows two B-spline curves 𝑢(𝑡) with their associated basis functions 𝑏𝑙(𝑡).
The lower graph shows a curve with 𝑐𝑙 = 1, in which case the linear combination 𝑢(𝑡) = 1.
The graph above shows an example with individually adjusted weights and the resulting
curve. Given a B-spline with 𝐿 coefficients c = 𝑐𝑙 ∈ R𝐿×1 and matrix representing 𝐿

discrete basis functions with 𝑀 samples B ∈ R𝑀×𝐿, a discrete B-spline u = 𝑢𝑚 ∈ R𝑀×1

can be calculated with

Bc = u (2.26)

B-spline modeling can be used to upsample signals. When 𝑀/𝐿 ∈ 𝒩 , 𝑀/𝐿 > 1 the
basis functions 𝑏𝑙 acts as an interpolation filter kernel at least for the inner section of the
spline where the basis functions 𝑏𝑙 are identical. In the example shown in Figure 2.13,
this is the case for the basis functions 𝑏3 to 𝑏5.
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harmonic partials O ∈ C𝐾×𝑀 representing magnitude and phase for 𝐾 harmonics and
𝑀 frames.

Both pitch f0 and harmonic partials O are then used to estimate synthesis parameters
X = (𝜒𝑚) ∈ C2+2𝐽×𝑀 for 𝑀 frames by fitting the synthesis model to the previously
extracted harmonic partials. This task is referred to as synthesis model parameter
estimation ℰ . An exact description of 𝜒 will be given in Section 3.2.

The parameter predictor network 𝒫 links analysis and synthesis. During analysis, the
predictor is trained to reconstruct the previously estimated synthesis parameters X from
pitch trajectory f0 and thus capturing vocal characteristics of the source audio sample in
dependency of pitch.

In order to resynthesize the source audio sample 𝑦[𝑛], the predictor network 𝒫 is used to
reconstruct synthesis parameters X̂ = (𝜒̂𝑚) from pitch trajectory f0 extracted during
analysis before they are used with the synthesis model 𝒮 to synthesize the audio sample
𝑦[𝑛].

A more likely application case would be to synthesize new audio signals in real-time,
in which case the predictor network would be used to generate synthesis parameters
from a freely controllable pitch signal, indicated in Figure 3.2 with (f0

*). The synthesis
parameters are then again used with the synthesis model 𝒮. The synthesis model directly
produces continuous time-domain signals in audio rate with no latency. Its parameters
can be updated either in audio-rate or, to reduce the computational load, in regular
intervals in which case the synthesis parameters should be interpolated between updates
to prevent artifacts.
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The real modulo operation mod wraps 𝑡 between 0 and 1 and is defined as

𝑎 mod 𝑏 = 𝑎 − 𝑏⌊𝑎/𝑏⌋ (3.8)

By offsetting the time 𝑡 with the glottal closure instance 𝑡𝑒 as done in Equation 3.6, the
main glottal flow discontinuity at 𝑡𝑒 is shifted to a fixed position at 𝑡 = 0 or 𝜙 = 0. This is
done to reduce aliasing artifacts during interpolation as changing 𝑅𝑑 will no longer change
the position of the discontinuity. For comparison, the wavetable without this adjustment
is shown in Figure 3.5 (b). As can be seen, the position of the main discontinuity varies
drastically especially for low 𝑅𝑑 values. This improvement has drastically improved the
audio quality of the synthesis during 𝑅𝑑 parameter fluctuations and allows for more rapid
parameter changes without audible artifacts.

0 10.5 0 10.5

R = 2.7 d

R = 0.3 d

tt

(a) (b)

Figure 3.5: Figure (a) shows a glottal pulse derivatives as stored in W. Figure (b) shows a
wavetable 𝑔𝑅𝑑

(𝑡) without 𝑡𝑒-offset. (𝑀𝑅𝑑
= 10. The glottal flow graphs are offset

vertically for readability.)

The harmonic oscillation is produced by a phase generator, that determines the phase 𝜙

at which to read from the wavetable. The generator’s phase 𝜙 is one of the state variables
which make up the current state 𝜃𝑛 of the synthesis method. With the fundamental 𝑓0

and sampling rate 𝑓𝑠, the phase is updated per sample as follows

𝜙[𝑛] =
(︂2𝜋𝑓0

𝑓𝑠
+ 𝜙[𝑛 − 1]

)︂
mod (2𝜋) (3.9)

again, where (𝜙 mod 2𝜋) wraps 𝜙 to 0 ≤ 𝜙 < 2𝜋. During synthesis, the phase is updated
according to the current pitch 𝑓0. Afterwards, both 𝜙 and 𝑅𝑑 are used to calculate the
corresponding indices 𝑚𝜙 and 𝑚𝑅𝑑

as defined in Equation 3.7. Afterwards, the fractional
positions determining the sub-sample position for the wavetable lookup are calculated
with

𝑘𝜙 =
(︀
𝑀𝜙 𝜙/2𝜋

)︀
− 𝑚𝜙

𝑘𝑅𝑑
=
(︀
𝑀𝑅𝑑

(𝑅𝑑 − 0.3)/(2.7 − 0.3)
)︀

− 𝑚𝑅𝑑

(3.10)
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The wavetable output 𝑠𝑤𝑡[𝑛] can be calculated by bi-linear interpolation with

𝑠𝑤𝑡[𝑛] = (1 − 𝑘𝜙)
(︁
(1 − 𝑘𝑅𝑑

)𝑤𝑚𝜙,𝑚𝑅𝑑
+ 𝑘𝑅𝑑

𝑤𝑚𝜙,𝑚𝑅𝑑
+1
)︁

+ 𝑘𝜙

(︁
(1 − 𝑘𝑅𝑑

)𝑤𝑚𝜙+1,𝑚𝑅𝑑
+ 𝑘𝑅𝑑

𝑤𝑚𝜙+1,𝑚𝑅𝑑
+1
)︁

(3.11)

Finally, the source signal is calculated from the wavetable output and gain factor
𝑔 = 10𝑔𝑑𝐵/20 with

𝑠[𝑛] = 𝑔𝑠𝑤𝑡[𝑛] (3.12)

3.2.2 Vocal Tract Model 𝑉 (𝑧)
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Figure 3.6: The magnitude frequency response of an exemplary vocal tract filter 𝑉 (𝑧) (solid
line) consisting of 5 second order sections (dotted lines). The first three formants
are marked with 𝐹1 to 𝐹3.

In early experiments with the VocalSet dataset [73], it was noticed that the vowel spectra
rarely follow ideal all-pole frequency responses. For that reason, it was decided to use
pole-zero filters to model the vocal tract [25]. A pole-zero filter with sufficiently high order
is flexible enough to model a wide range of vocal tract transfer functions to a sufficient
accuracy. The filter is parameterized with equal length list of 𝐽 complex conjugate poles
p = (𝑝𝑗) and 𝐽 complex conjugate zeros q = (𝑞𝑗) with

p = (𝑝𝑗) ∈ C𝐽

q = (𝑞𝑗) ∈ C𝐽
(3.13)

The transfer function 𝑉 (𝑧) extends these poles and zeros with their respective complex
conjugates 𝑝𝑗 and 𝑞𝑗 and is defined as follows
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𝑉 (𝑧) = 𝑌 (𝑧)
𝑆(𝑧) =

𝐽∏︁
𝑗=1

(𝑧 − 𝑞𝑗)(𝑧 − 𝑞𝑗)
(𝑧 − 𝑝𝑗)(𝑧 − 𝑝𝑗) (3.14)

As a result, the proposed filter model is limited to produce even order IIR filters with
complex pole or zero pairs and can’t contain single real poles or zeros. The filter is
implemented as a series of 𝐽 second order sections in transposed direct form II given with

𝑎0𝑗 𝑦𝑗 [𝑛] = 𝑏0𝑗 𝑥𝑗 [𝑛] + 𝑠1𝑗 [𝑛 − 1]

𝑠1𝑗 [𝑛] = 𝑏1𝑗 𝑥𝑗 [𝑛] + 𝑠2𝑗 [𝑛 − 1] − 𝑎1𝑗 𝑦𝑗 [𝑛]

𝑠2𝑗 [𝑛] = 𝑏2𝑗 𝑥𝑗 [𝑛] − 𝑎2𝑗 𝑦𝑗 [𝑛] (3.15)

where coefficients 𝑏 and 𝑎 can be obtained from pole and zero pairs 𝑝𝑗 and 𝑞𝑗 with

𝑏0𝑗 + 𝑏1𝑗𝑧−1 + 𝑏2𝑗𝑧−2

𝑎0𝑗 + 𝑎1𝑗𝑧−1 + 𝑎2𝑗𝑧−2 =
(𝑧 − 𝑞𝑗)(𝑧 − 𝑞𝑗)
(𝑧 − 𝑝𝑗)(𝑧 − 𝑝𝑗) (3.16)

The filters are concatenated in series with 𝑥𝑗+1[𝑛] = 𝑦𝑗 with output and 𝑦[𝑛] = 𝑦𝐽 [𝑛] and
input 𝑥1[𝑛] = 𝑠[𝑛]. The state of the 𝑗th section is stored in two variables s1 = (𝑠1𝑗) ∈ R𝐽

and s2 = (𝑠2𝑗) ∈ R𝐽 . In practice, a value of 𝐽 = 10 was chosen as a good compromise
between quality and complexity. An exemplary vocal tract frequency response with 𝐽 = 5
is shown in Figure 3.6.

3.2.3 Summary

The synthesis model proposed in this thesis is based on the source-filter theory and is
implemented using basic DSP methods in the time domain. The glottal source and lip
radiation are modeled using a two-dimensional wavetable oscillator with parameters 𝑓0

and 𝑅𝑑. The vocal tract is represented by a filter bank consisting of 𝐽 second order
sections in series.

In its current form, the synthesis model uses two parameter, 𝑅𝑑 and 𝑔𝑑𝐵, to control
the glottal source while most of it’s flexibility stems from the pole-zero model used for
the vocal tract which is parameterized with 𝐽 poles and zeros. This produces some
discrepancy in terms of flexibility or degrees of freedom between glottal source and vocal
tract which affects how the model can be fitted to audio samples.

Modeling the glottal source with a two-parameter model, one controlling the glottal
formant and the other controlling the spectral tilt, might produce better results as it
allows the source to model a wider variety of real glottal flow signals.

The filter model is parameterized with 𝐽 complex poles p and zeros q, for which the
conjugate pairs are added during synthesis. While this approach allows makes the
synthesis model in its current form very flexible, it also produces some redundancy. For
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instance, two sets of parameters 𝜒 could produce identical signals when the orders of
otherwise identical poles and zeros in the filter bank are scrambled. In addition, there
exists no clear association between poles and zeros in the filter model and formants and
anti-formants in the targeted vocal tract transfer function. The formants and antiformants
produced by the vocal tract depend on it’s articulation. This negatively impacts the
models ability to morph between two parameter sets.

Ideally, when interpolating between two parameter sets of a vocal tract model, the
interpolated poles and zeros should follow the formants and anti-formants of the as­
sociated morphs between two vocal tract articulations. This can be accomplished by
some tube-based physical models. With the proposed vocal tract model however, this
interpolation behavior can’t be guaranteed. Instead, it is likely that a direct interpolation
between two parameter sets p1, q1, and p2, q2, even after ordering the individual poles
and zeros by frequency, produces unconvincing results and noticeable spectral artifacts.

To improve this characteristic of the proposed vocal tract model, one would need to
take inspiration from the existing physical models which are often parameterized using
a representation of the vocal tract articulation instead of parameterizing the frequency
response it produces.

Finally, in order to improve the computational efficiency, the vocal tract filter might be
implemented as a parallel filter bank instead of a serial filter bank. Parallel filter banks
can take advantage from modern computer CPUs, which allow second order sections to
be processed simultaneously in groups of 4 or 8 using SIMD operations. However, it
should be tested whether or not this performance gain outweighs the additional overhead
that comes from calculating the coefficients for a equivalent parallel filter bank from the
filter poles p and zeros q.
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3.3 Harmonic Analysis 𝒜

A custom harmonic analysis method 𝒜 was developed that jointly estimates pitch
f0 = (𝑓0𝑚) ∈ R𝑀 and harmonic partials O from audio frames Y.

O, f0 = 𝒜{Y} (3.17)

The complex harmonic partial 𝑜𝑘,𝑚 represent magnitude and phase of the 𝑘-th partial at
frequency 𝑘𝑓0 in frame 𝑚. The first 1 ≤ 𝑘 ≤ 𝐾 partials of the harmonic signal for 𝑀

frames are stored in O with

O =

⎡⎢⎢⎣
𝑜1,1 . . . 𝑜1,𝑀

...
...

𝑜𝐾,1 . . . 𝑜𝐾,𝑀

⎤⎥⎥⎦ = (𝑜𝑘,𝑚) ∈ C𝐾×𝑀 (3.18)

The audio frames are stored in Y with 𝑀 frames of lengths 𝑁𝐵 each with

Y =

⎡⎢⎢⎣
𝑦0,1 . . . 𝑦0,𝑀

...
...

𝑦𝑁𝐵−1,1 . . . 𝑦𝑁𝐵−1,𝑀

⎤⎥⎥⎦ = (𝑦𝑛,𝑚) ∈ R𝑁𝐵×𝑀 (3.19)

This section describes the approach to estimate pitch and harmonic partials for any audio
sample 𝑥[𝑛] though in practice, the method would analyze the audio frames simultaneously.
Given an audio frame 𝑥[𝑛], one can separate the frame into a deterministic component
𝑥̂[𝑛] and a residual component 𝑟[𝑛] as is discussed in [74].

𝑥[𝑛] = 𝑥̂[𝑛] + 𝑟[𝑛] (3.20)

The harmonic analysis methods proposed here is based on the assumption that, for
voiced speech and sung vowels, most energy within one audio frame 𝑥[𝑛] is stored in the
harmonic signal component 𝑥̂[𝑛]. By minimizing the difference between 𝑥[𝑛] and 𝑥̂[𝑛],
one can estimate the pitch 𝑓0, pitch slope 𝐷 and harmonic partials (𝑜𝑘). Here, the pitch
slope is defined as the constant change of pitch over time with 𝐷 = 100 corresponding to
a change of 100 Hz per second. The estimation of pitch 𝑓0, pitch slope 𝐷 to minimize
the loss 𝐿 between 𝑥[𝑛] and 𝑥̂[𝑛] for a single frame poses an optimization problem with

arg min
𝑓0, 𝐷

𝐿(𝑥[𝑛], 𝑥̂[𝑛]) (3.21)

Afterwards, the harmonic partials (𝑜𝑘) = [𝑜1, . . . 𝑜𝐾 ] can be derived from 𝑥[𝑛], 𝑓0 and
𝐷. This optimization problem is solved for 𝑀 frames simultaneously using a gradient
descent method, an overview of which is shown in figure 3.7.

Chapter 3. Method Harmonic Analysis 𝒜





Singing Voice Synthesis for Real-Time Applications 36

20

M
ag

ni
tu

de
 (

dB
) 0

-20

-40

-60

Frequency (kHz)
0 0.2 0.4 0.6 0.8 1 21.2 1.4 1.6 1.8

-80

Figure 3.8: Magnitude spectrum of a vowel 𝑎 reconstructed from extracted harmonic partials
with original pitch 𝑓0 = 505 Hz with fixed pitch slope 𝐷 = 0 Hz/s (gray) and
𝐷 = 823 Hz/s (black).

With the quadratic phase term, the 𝑘th partial 𝑜𝑘 can be extracted from frame 𝑥[𝑛] with

𝑜𝑘 = 1
𝑁𝐵

𝑁𝐵−1∑︁
𝑛=0

𝑤[𝑛]𝑥[𝑛]𝑒−𝑖𝜙𝑘[𝑛] (3.24)

where 𝑤[𝑛] is the Hann window function. From this, the harmonic reconstruction 𝑥̂[𝑛] of
frame 𝑥[𝑛] can be calculated with

𝑥̂[𝑛] =
𝐾∑︁

𝑘=1

(︁
𝑒𝑖𝜙𝑘[𝑛]𝑜𝑘 + 𝑒−𝑖𝜙𝑘[𝑛]𝑜𝑘

)︁
(3.25)

3.3.2 Joint Optimization

Based on the previously described harmonic reconstruction method, an optimization
method can be used to minimize the loss 𝐿, the root-mean-squared difference between
the original frame 𝑥[𝑛] and the harmonic reconstruction 𝑥̂[𝑛] with

𝐿 =

⎯⎸⎸⎷ 1
𝑁𝐵

𝑁𝐵−1∑︁
𝑛=0

(𝑤[𝑛]𝑥̂[𝑛] − 𝑤[𝑛]𝑥[𝑛])2 (3.26)

again where 𝑤[𝑛] is the Hann window function. In practice, a first estimation for 𝑓0

and 𝐷 used to compute 𝑥̂[𝑛] is necessary, after which a gradient descent method [75] is
sufficient to minimize 𝐿. The gradient descent method iteratively calculates the loss and
updates the estimates for 𝑓0 and 𝐷 at iteration 𝑖 with

𝑓0,𝑖+1 = 𝑓0,𝑖 − 𝑟𝑓0
𝛿𝐿𝑖

𝛿𝑓0,𝑖
, 𝐷𝑖+1 = 𝐷𝑖 − 𝑟𝐷

𝛿𝐿𝑖

𝛿𝐷𝑖
(3.27)
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where 𝑟𝑓0,𝑖 and 𝑟𝐷,𝑖 are learning rates for parameters 𝑓0 and 𝐷 which decrease exponen­
tially with every iteration with

𝑟𝑓0,𝑖 = 𝑐𝑟 𝑟𝑓0,𝑖−1, 𝑟𝐷,𝑖 = 𝑐𝑟 𝑟𝐷,𝑖−1 (3.28)

where 𝑐𝑟 < 1. For an initial estimate of 𝑓0,𝑖=0, the CREPE pitch estimator [76] is used
while the initial pitch slope is set to 𝐷𝑖=0 = 0. An exemplary estimate for both pitch and
pitch slope estimate as well as the original CREPE pitch estimate is shown in Figure 3.9.
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Figure 3.9: This Figure shows the pitch estimate (solid black) and CREPE pitch estimate
(dashed gray) as well as the pitch slope estimate (dotted gray) over a duration of
one second.

The gradient descent optimization was implemented using TensorFlow [68] with the help
of automatic differentiation. All operations shown in Figure 3.7 are implemented within
TensorFlow’s type system so that symbolic derivatives 𝛿𝐿/𝛿𝑓0 and 𝛿𝐿/𝛿𝐷 can easily
be calculated. In addition, the optimization is performed simultaneously for a batch of
𝑀𝐵 < 𝑀 frames to take advantage of parallelization capabilities on modern GPUs. In
this work, a NVIDIA GeForce RTX 2080 Super was used to simultaneously estimate pitch
and pitch slope in batches of 𝑀𝐵 = 4096 frames over 600 gradient descent iterations.

3.3.3 Summary

In summary, the harmonic analysis method is based on the assumption that most energy
within one frame 𝑥[𝑛] is stored in the harmonic signal component 𝑥̂[𝑛]. To separate the
harmonic component from the remaining residual 𝑟[𝑛] and simultaneously estimating
both pitch 𝑓0 and pitch slope 𝐷, a gradient descent optimization method is used to
minimize the root-mean-squared difference between original frame 𝑥[𝑛] and harmonic
reconstruction 𝑥̂[𝑛]. With estimated pitch and pitch slope, the harmonic partials (𝑜𝑘)
can be calculated by complex division following Equation 3.22. The approach requires

Chapter 3. Method Harmonic Analysis 𝒜



Singing Voice Synthesis for Real-Time Applications 38

an initial estimate for both pitch and pitch slope of a frame which is supplied by the
CREPE pitch estimator [76]. An exemplary frequency and magnitude estimation for the
first few harmonics of a spectrum is shown in figure 3.10. As can be seen, the magnitude
of the estimated partials diverge slightly from the underlying magnitude peak of the
analyzed spectrum due to the energy bleeding to neighboring bins as discussed above.
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Figure 3.10: This figure shows the estimated frequency and magnitude of the first few
harmonics (crosses) together with the original spectrum.

One advantage of the proposed method is its ability to model pitch within one frame as
a linear function over time instead of a constant. This practically removes the impact
of linear pitch modulation from the estimation of the harmonic partials and drastically
simplifies the following analysis steps. This approach could also easily be extended with
a quadratic term to allow for more complex pitch trajectories to be modeled within a
frame.

A downside of the method has to do with the base assumption that harmonic partials
are located at perfect multiples of the fundamental frequency, 𝑓𝑘 = 𝑘𝑓0. It was noticed
that the assumption does not hold true in practice. Especially high frequencies diverge
from their ideal harmonic frequency under modulation. This might be explained by
the frequency specific phase delay of the vocal tract or by physical properties of the
vocal folds vibration. Furthermore, the proposed overtone extraction method fails in the
presence of vocal jitter or shimmer, in which case the glottal source can’t be considered
harmonic.

Chapter 3. Method Harmonic Analysis 𝒜



Singing Voice Synthesis for Real-Time Applications 39

3.4 Synthesis Model Parameter Estimation ℰ

To estimate synthesis parameters X from harmonic partials O and pitch f0, the synthesis
model parameter estimation method ℰ is used. Goal of the method is to find a set of
synthesis parameters X with which the previously extracted harmonic partial trajectories
O can be best approximated using the synthesis model 𝒮. The method is outlined as
follows

X = ℰ{O, 𝑓0,𝑚} (3.29)

This task poses an optimization problem, in which the synthesis parameters X have to
be optimized to minimize the loss 𝐿, described as the difference between the previously
estimated harmonic partials O and the partials Ô synthesized from X.

arg min
C

𝐿 (3.30)

where parameters X are derived from C as will be described in Section 3.4.2. Note that
in practice, the loss 𝐿 takes additional factors into consideration as will be discussed in
Section 3.4.4. A gradient descent optimizer is used to solve this problem.

As described in Section 3.3, the harmonic partials O = (𝑜𝑘,𝑚) define magnitude and
phase of 𝐾 harmonics for 𝑀 frames. The synthesis parameter matrix X = (𝜒𝑚) describes
the synthesis parameter set for 𝑀 frames with

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑅𝑑1 . . . 𝑅𝑑𝑀

𝑔𝑑𝐵1 . . . 𝑔𝑑𝐵𝑀

𝑝1,1 . . . 𝑝1,𝑀

...
...

𝑝𝐽,1 . . . 𝑝𝐽,𝑀

𝑞1,1 . . . 𝑞1,𝑀

...
...

𝑞𝐽,1 . . . 𝑞𝐽,𝑀

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎣
Rd

gdB

P
Q

⎤⎥⎥⎥⎥⎥⎦ = (𝜒𝑚) ∈ C2+2𝐽×𝑀 (3.31)

with

Rd = (𝑅𝑑𝑚) ∈ R1×𝑀

gdB = (𝑔𝑑𝐵𝑚) ∈ R1×𝑀

P = (𝑝𝑗,𝑚) ∈ C𝐽×𝑀

Q = (𝑞𝑗,𝑚) ∈ C𝐽×𝑀

(3.32)

As described in Section 3.2, the synthesis parameter set consists of two parameters, 𝑅𝑑

and 𝑔𝑑𝐵, modeling the glottal source and 2𝐽 parameters, p and q modeling the vocal
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U =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Rd
*

gdB
*

Fp
*

Rp
*

Fq
*

Rq
*

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R2+4𝐽×𝑀 (3.34)

where Fp
* = (𝑓𝑝

*
𝑗,𝑚) ∈ R𝐽×𝑀 describes pole frequencies and Rp

* = (𝑟𝑝
*
𝑗,𝑚) ∈ R𝐽×𝑀

describes pole radii for 𝑀 frames and 𝐽 poles. Similarly, Fq
* and Rq

* describe zero
frequency and radii. Here, the notation 𝑥* is used to describe a nonlinearly scaled
representation of which 𝑥 is derived with a function 𝑥 = 𝑓(𝑥*). Parameters in U are
scaled and pole frequencies and radii combined to derive X.

B-Spline Modeling

The optimized parameter representation C uses a resolution of 𝑇 frames per parameter
which is upscaled to a resolution of 𝑀 frames per parameter used in U and X. In
practice, a ratio of 𝑀 = 10𝑇 was found to be suitable for this application case. With
a hopsize of 𝑁𝐻 = 64 samples at a sample rate of 𝑓𝑠 = 44100 kHz used in O, X and
U, this corresponds to a resolution of approximately 44100/(10 · 64) ≈ 68.9 frames per
second to model parameter trajectories in C. For upscaling, B-Spline modeling is used
to interpolate each parameter trajectory. For this, every parameter trajectory in C is
treated as a vector of B-spline coefficients with which a spline is calculated using Equation
2.26 with a pre-calculated table for the basis functions B. For the basis splines are of
order 𝑜 = 3 (quadratic) and the B-spline is defined with the knot sequence

s = (𝑠𝑡) = [0, 0, 0, 1, 2, . . . , 𝑇−5, 𝑇−4, 𝑇−3, 𝑇−3, 𝑇−3] (3.35)

where the 𝑡th basis function is defined using the sequence 𝑠𝑡 . . . 𝑠𝑡 + 3. Since the matrix
B is calculated in advance, B-spline modeling only requires one matrix multiplication for
every parameter to upsample the 𝑇 -value representation in C to an 𝑀 -value parameter
trajectory in U.

Parameter Conversion and Nonlinear Scaling

Parameter trajectories are converted or scaled nonlinearly to linearize their perceptive
impact on the output and balance their parameter ranges for the gradient descent
optimization. Additionally, scaling is done to restrict parameter to stable ranges especially
for poles and zeros which might otherwise produce unstable filter responses. These
conversions are performed to obtain the parameters in X (see Equation 3.31) from U
(see Equation 3.34). For 𝑅𝑑 and 𝑔𝑑𝐵 the relations are given with
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𝑅𝑑 = (2.7 − 0.3) sig(𝑅𝑑
*) + 0.3

𝑔𝑑𝐵 = 100𝑔𝑑𝐵
* − 100

(3.36)

Where sig(𝑥) = 1/(1+𝑒−𝑥) describes the sigmoid function. Pole and zeros are represented
with a pair of real numbers 𝑟𝑝

* and 𝑓𝑝
* or 𝑟𝑞

* and 𝑓𝑞
* controlling pole radius and frequency

or zero radius and frequency respectively. This representation using two real numbers has
to be converted to a representation using one complex number. For poles, the complex
pole position is given with

𝑝 = 𝑟𝑝𝑒𝑖2𝜋𝑓𝑝/𝑓𝑠

𝑓𝑝 = 8000 sig(𝑓*
𝑝 )

𝑟𝑝 = 1 − 10−90 sig(𝑟*
𝑝)/20

(3.37)

The equivalent is used to calculate complex zero positions 𝑞 from 𝑓*
𝑞 and 𝑟*

𝑞 .

𝑞 = 𝑟𝑞𝑒𝑖2𝜋𝑓𝑞/𝑓𝑠

𝑓𝑞 = 8000 sig(𝑓*
𝑞 )

𝑟𝑞 = 1 − 10−90 sig(𝑟*
𝑞 )/20

(3.38)

3.4.3 Synthesis

One challenge in implementing IIR filters as part of a fully differentiable optimization
network is the dependency between time-domain output samples and filter coefficients.
As the impulse response of IIR filters is theoretically infinite, filter coefficients at time
𝑛0 will affect every output sample at 𝑛 ≥ 𝑛0. While this doesn’t render the use
of IIR filters in neural networks or optimization algorithms impossible, it drastically
increases their computational complexity. In order to incorporate IIR filters efficiently,
the proposed synthesis model parameter estimation method approximates the synthesis in
the spectral-domain. Per frame, the method calculates the harmonic partials of the glottal
source and applies the gain and vocal tract filter response by complex multiplication.
The synthesis model can be expressed in the spectral domain with

𝑜𝑘 = 𝐺(𝜔𝑘) 𝑔 𝑉 (𝜔𝑘) 𝑒𝑖𝜎𝑘 (3.39)

with glottal source spectrum 𝐺(𝜔𝑘), gain 𝑔 = 10𝑔𝑑𝐵/20, vocal tract filter response 𝑉 (𝜔𝑘)
and phase offset 𝜎𝑘 at 𝜔𝑘 = 2𝜋𝑓𝑘 with 𝑓𝑘 = 𝑘𝑓0 for 1 ≤ 𝑘 ≤ 𝐾. There are two observations
which can be made about the vocal tract filter that allows this approximation to be
sufficiently accurate for the described method. Firstly, a vocal tract filter response is
generally assumed to be minimum phase [11] and experiments as part of this thesis have
suggested, that the vocal tract related impulse response decays rather quickly within a
few periods of the glottal source. Secondly, the vocal tract articulation generally only
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varies slowly over time, especially when restricted to vowels. To remove the impact of
phase, the differentiable synthesis model is expressed in decibel magnitude with

𝑜𝑑𝐵,𝑘 = 20 log10 |𝐺 (𝜔𝑘) | + 𝑔𝑑𝐵 + 20 log10 |𝑉 (𝜔𝑘) | (3.40)

The glottal source 𝐺(𝜔𝑘) is based on the spectral representation of the LF model described
in [22] and implemented in [23]. The vocal tract transfer function is calculated in the
z-domain as described in Equation 3.14 which allows for en efficient implementation using
TensorFlow’s automatic differentiation application programming interface (API).

3.4.4 Optimization Loss

The optimization method minimizes two additive losses. The first loss 𝐿𝑑𝐵 represents the
decibel magnitude difference between observed harmonics O𝑑𝐵 and synthesized harmonics
Ô𝑑𝐵. The second loss 𝐿𝑇 acts as a regularization loss and penalizes temporal overfitting
of the parameters C. The combined loss 𝐿 is given by

𝐿 = 𝐿𝑑𝐵 + 𝐿𝑇 (3.41)

Decibel Magnitude Loss 𝐿𝑑𝐵

The decibel magnitude loss can best be described as a mean squared error loss with
weighting of the harmonic partials. The loss is given with

𝐿𝑑𝐵 = 1
𝑀𝐾

𝐾∑︁
𝑘

𝑀∑︁
𝑚

(𝑤𝑘,𝑚 (20 log10(𝑜𝑘,𝑚) − 20 log10(𝑜𝑘,𝑚)))2 (3.42)

where 𝑜𝑘,𝑚 and 𝑜𝑘,𝑚 represents the original and synthesized harmonic partials respectively
and 𝑤𝑘,𝑚 represents the weighting matrix intended to emphasize low frequencies over
high frequencies. The weighting matrix was designed as a low-pass filter with variable
cutoff and order. The low-pass filter is designed in the Laplace domain with

𝐻𝑤(𝑠) =
(︃

1
1 + 𝑠

2𝜋𝑓𝑐

)︃𝑜

(3.43)

with order 𝑜 and cutoff 𝑓𝑐. From there, the weights are calculated from the absolute
weighting filter response at the harmonic frequencies 𝑠 = 𝑖2𝜋𝑘𝑓0,𝑚 and normalized with
the average weighting over all harmonics.

𝑤𝑘,𝑚 = |𝐻𝑤(𝑓𝑘,𝑚)|
1
𝐾

𝐾∑︀
𝑘

|𝐻𝑤(𝑓𝑘,𝑚)|
(3.44)
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Temporal Regularization Loss 𝐿𝑇

It is expected that the proposed synthesis model isn’t capable of reproducing every
characteristic of the human voice such as nonlinear behaviors, aspiration noise or nonlinear
interactions between glottal oscillation and the vocal tract. For that reason, optimizing
synthesis parameters to reduce the magnitude loss 𝐿𝑑𝐵 for every frame may easily produce
overfitted results. For example, without the inclusion of the temporal regularization term,
the vocal tract parameters p and q were often fitted to track the harmonic peaks of the
partials instead of the hidden vocal tract frequency response. Even though the proposed
method restricts temporal fluctuations to some degree by optimizing a undersampeled
representation C from which X is derived using upscaling as discussed in Section 3.4.2,
further measures were necessary to prevent this kind of temporal overfitting. It was
decided to include a form of temporal regularization loss 𝐿𝑇 to the loss term which
penalizes high temporal fluctuations of parameters. The regularization loss is calculated
from C by highpass filtering parameter trajectories over all frames using convolution

𝑐𝐻𝑃 (𝑟,𝑡) =
+4∑︁

𝑛=−4
𝑐[𝑟,𝑡 − 𝑛] · 𝑏𝑛 (3.45)

with C𝐻𝑃 = (𝑐𝐻𝑃 [𝑟,𝑡]) ∈ R2+2𝐽,𝑇 . Here, the subscripts are put into square brackets for
better readability, i.e 𝑐[𝑟,𝑡] = 𝑐𝑟,𝑡. In Equation 3.45, the last valid values are used at the
edges with 𝑐 [𝑟, (𝑡 − 𝑛) < 1] = 𝑐[𝑟,1] and 𝑐 [𝑟, (𝑡 + 𝑛) > 𝑇 ] = 𝑐[𝑟,𝑇 ]. The filter kernel 𝑏𝑛 is
symmetric around 𝑛 = 0 with −4 ≤ 𝑛 ≤ 4 and is derived from

𝑏−4 + 𝑏−3𝑧−1 . . . 𝑏3𝑧−7 + 𝑏4𝑧−8 = (−0.25 + 0.5𝑧 − 0.25𝑧2)4 (3.46)

The derived filter coefficients are shown in Figure 3.14.
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Figure 3.14: Filter coefficients for the temporal regularization loss filter.

From the highpass filtered matrix C𝐻𝑃 , the mean square over all 𝑇 frames is calculated
to determine the temporal loss 𝐿𝑇,𝑟 for the 𝑟th parameter.
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𝐿𝑇,𝑟 = 1
𝑇

𝑇∑︁
𝑡=1

𝑐𝐻𝑃 [𝑟,𝑡]2 (3.47)

Finally, the total temporal loss term 𝐿𝑇 is calculated by summing the weighted parame­
ter-specific temporal losses 𝐿𝑇,𝑟 with

𝐿𝑇 =
2+4𝐽∑︁
𝑟=1

𝑤𝑟𝐿𝑇,𝑟 (3.48)

where (𝑤𝑟) ∈ R2+4𝐽 is introduced as a vector of weighting variables to adjust the impact
of the specific parameters on the temporal regularization loss 𝐿𝑇 . With this weighting
variable, temporal fluctuations of different parameters can be penalized more or less.

For parameters which are constant over all frames, the mean square of the highpassed
parameter trajectory and thus the parameter-specific temporal loss 𝐿𝑇,𝑟 would be zero
and thus no additional loss would be added to the loss term. The stronger the fluctuation
between frames, indicated by more high frequency content in the parameter trajectory,
the bigger the additional loss 𝐿𝑇,𝑟. Figure 3.15 shows two hypothetical parameter
trajectories and their highpassed and squared highpassed versions. The lower trajectory
approximately contains half the bandwidth of the upper trajectory and thus produces a
lower 𝐿𝑇,𝑟. In practice, a higher weight for vocal tract parameters were used, following
the assumption that the vocal tract articulation and thus the formant and anti-formant
frequencies and resonances change rather slowly compared to to the parameters 𝑅𝑑 and
𝑔𝑑𝐵 which mainly describe the glottal flow intensity.
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Figure 3.15: Two parameter trajectories (𝑐(𝑟,𝑡)) and their high-passed versions 𝑐𝐻𝑃 (𝑟,𝑡) as well
as squared highpass trajectory 𝑐𝐻𝑃 (𝑟,𝑡)2. The upper parameter trajectory includes
more high frequency fluctuations compared to the lower and thus would produce a
larger regularization loss 𝐿𝑇,𝑟.
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3.4.5 Optimization and Implementation

The optimization network described above is implemented using the TensorFlow Keras
API. The Adam [77] optimizer is used which implements a form of gradient descent
optimization. During testing, it was noticed that lower values for the loss 𝐿 could be
achieved by first optimizing using a higher loss weights 𝑤𝑟 for the temporal regularization
loss 𝐿𝑇 for pole and zero parameters before reducing the weight. This can be described as
first finding a general minimum for which the pole and zero frequencies and magnitudes
appear static for the duration of the source audio sample before allowing the optimizer
to adjust pole and zero frequencies and magnitudes more freely to fit subtle variations in
the vocal tract articulation once the temporal regularization loss weights 𝑤𝑟 is reduced.
The implementation supports the use of GPU devices. On a NVIDIA GeForce RTX 2080,
the optimization takes around 20 minutes to estimate the parameters of a 10 second
audio source samples with 𝑀 = 7730 frames, 𝐾 = 40 harmonic partials and 𝐽 = 10 poles
and zeros.

3.4.6 Summary

The proposed synthesis model parameter estimation method implements the synthesis
model as part of gradient descent optimizer. Synthesis parameters are thus estimated
by minimizing the difference between synthesized harmonic partials Ô and with the
harmonic analysis estimated partials O. In addition, a temporal regularization loss term
is included in the loss calculation to prevent temporal overfitting especially of the poles
and zeros by penalizing high fluctuations in the parameter trajectories.
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Figure 3.16: This graph shows the magnitude spectrum of the source sample (grey) together
with the reconstruction (solid black), consisting of glottal source spectrum
(dashed), vocal tract spectrum (dotted) and gain. The source audio sample
belongs to a female singer, singing the vowel [o] at 380 Hz.

Figure 3.16 shows the magnitude spectrum of a single frame together with the recon­
structed spectral envelope of glottal source model, vocal tract model and their combination.
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Subjective tests have shown that the approach is capable of estimating parameter trajec­
tories that closely predict the harmonic partials of the source sample. More importantly,
by restricting temporal fluctuations of parameters using the temporal regularization loss
term, the method tends to naturally find feasible solutions for the vocal tract filter even
though the filter model is very flexible and not specifically tailored to model a vocal tract.
However, after using the method to analyze various audio samples in the dataset, a list
of shortcomings were noticed.

The biggest problem that this method had to solve is the separation of source and filter.
The method tends to make estimation errors below 2 kHz. As discussed in Chapter 2,
only few harmonics are present in this frequency range, which leads to what could be
considered a lack of information. In contrast, multiple variables have a drastic impact on
the harmonic partials in this frequency range, mainly the first few vocal tract formants
and anti-formants and the glottal formant. As a result, the parameter estimation method
tends to not clearly separate the effect of glottal source and vocal tract, for instance by
modulating the source parameter 𝑅𝑑 to reproduce the first vocal tract formant. There
are various possible solutions to address this issue. First, as discussed in 2.2.1, the
spectral description of the anti-causal glottal formant differs from a causal vocal tract
formant mainly in phase. For that reason, ignoring phase in the loss term 𝐿𝑑𝐵 might
discard additional information which could be useful to distinguish between vocal tract
formant and glottal formant. On the same subject, another possible issue might be the
simplified glottal source model that, in practice, approximates the two main qualities,
glottal formant and spectral tilt, with only one parameter. Thus, changing to a two or
three parameter glottal flow model might improve estimation results. Finally, in order to
improve the vocal tract formant, restrictions of pole and zero frequencies and resonance
might be derived from the tube model of the vocal tract in order to prevent unlikely
estimations of the vocal tract transfer function.
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p̂ = rp𝑒𝑖𝜔p q̂ = rp𝑒𝑖𝜔q

𝜔p = 𝜋 sig(𝜔*
p) 𝜔q = 𝜋 sig(𝜔*

q)

rp = 1 − 10−80 sig(rp*)/20 rq = 1 − 10−80 sig(rq*)/20 (3.50)

This scaling also prevents poles and zeros from moving outside of the unit circle thus
preventing in stable filters. Additionally, the scaling limits the pole and zero phase to
0 < 𝜔 < 𝜋.

Fully Connected Layers

The first three dense layers shape the output to a size of 8, 32 and 62 nodes respectively
and use the softplus activation function 𝑓(𝑥), the derivative of which 𝑓 ′(𝑥) is equal to
the sigmoid activation function with

𝑓(𝑥) = ln(1 + 𝑒𝑥)

𝑓 ′(𝑥) = 1
1 + 𝑒−𝑥

(3.51)

The last dense layer shapes the output to 2 + 4𝐽 nodes and uses the identity function.
The specific configuration of the proposed neural networks was obtained from subjective
tests with various numbers and sizes of dense layers and different activation functions.

3.5.2 Loss

As the network has multiple outputs, two scalars 𝑅𝑑 and 𝑔𝑑𝐵 and two complex vectors p
and q, parameter-specific loss terms were used with the overall loss 𝐿 being defined as

𝐿 = 𝑤𝑅𝑑
𝐿𝑅𝑑

+ 𝑤𝑔𝑑𝐵
𝐿𝑔𝑑𝐵

+
𝐽∑︁

𝑗=1
(𝑤𝜔𝐿arg(𝑝𝑗) + 𝑤𝑟𝐿|𝑝𝑗 |)

+
𝐽∑︁

𝑗=1
(𝑤𝜔𝐿arg(𝑞𝑗) + 𝑤𝑟𝐿|𝑞𝑗 |)

(3.52)

The loss for the complex poles p and zeros q is calculated separately for their phases
arg(𝑝𝑗), arg(𝑞𝑗) and magnitudes |𝑝𝑗 |, |𝑞𝑗 |. The impact of each parameter can be adjusted
by scaling the associated weighting variables, 𝑤𝑅𝑑

for 𝑅𝑑, 𝑤𝑔 for 𝑔𝑑𝐵 and 𝑤𝜔 for the
phases of all poles and zeros as well as 𝑤𝑟 for the magnitudes (or radii) of all poles
and zeros. For 𝑔𝑑𝐵, 𝑅𝑑 and pole and zero phases, the loss is calculated using the mean
squared error (MSE) with

MSE(𝑥, 𝑥̂) = 1
𝑀

𝑀∑︁
𝑚

(𝑥 − 𝑥̂)2 (3.53)
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where 𝑀 represents the number of frames over which the squared error is averaged. the
losses 𝐿𝑅𝑑

, 𝐿𝑔𝑑𝐵
, 𝐿arg(𝑝𝑗) and 𝐿arg(𝑞𝑗) are given with

𝐿𝑅𝑑
= MSE(𝑅𝑑, 𝑅𝑑)

𝐿𝑔𝑑𝐵
= MSE(𝑔𝑑𝐵, ^𝑔𝑑𝐵)

𝐿arg(𝑝𝑗) = MSE(arg(𝑝𝑗), arg(𝑝𝑗))
𝐿arg(𝑞𝑗) = MSE(arg(𝑞𝑗), arg(𝑞𝑗))

(3.54)

Notably, the phases of the poles and zeros are restricted to a range of 0 to 𝜋 in the
post-scaling layer. For that reason, the mean squared error is sufficient to calculate the
phase error. The pole and zero magnitudes |𝑝𝑗 |, |𝑞𝑗 | are first converted to a decibel range
so that the calculated error roughly corresponds to the perceived difference between
two filters with different pole or zero radii. The conversion is based on the frequency
response of a single zero filter evaluated at the angle of the zero. For a complex zero 𝑐,
the response for such a filter is given with

𝐻(𝑧) = 1 − 𝑐𝑧−1

𝐻(𝑒𝑖 arg(𝑐)) = 1 − |𝑐|𝑒𝑖 arg(𝑐)

𝑒𝑖 arg(𝑐)

𝐻(𝑒𝑖 arg(𝑐)) = 1 − |𝑐|

20 log10(𝐻(𝑒𝑖 arg(𝑐))) = 20 log10(1 − |𝑐|)

(3.55)

Notably, the decibel magnitude response for the corresponding single pole filter is simply
the inverse of the single zero filter. Thus the loss for the pole and zero magnitudes |𝑝𝑗 |,
|𝑞𝑗 | is given with

𝐿|𝑝𝑗 | = MSE(20 log10(1 − |𝑝𝑗 |), 20 log10(1 − |𝑝𝑗 |))
𝐿|𝑞𝑗 | = MSE(20 log10(1 − |𝑞𝑗 |), 20 log10(1 − |𝑞𝑗 |))

(3.56)

3.5.3 Implementation and Training

The prediction network is trained with 𝑀 frames with input f0 and output X obtained
from the harmonic analysis and synthesis model parameter estimation respectively. The
network was implemented using the TensorFlow Keras API [68]. The optimization
algorithm Adam [77] was used for training. As the data originated from a sequence
and consecutive frames can’t be assumed to be independent, no validation tests were
performed and instead, the network was trained and tested with the full sequences.

3.5.4 Summary

The proposed predictor 𝒫 bridges the gap between control parameter pitch 𝑓0 and
synthesis parameters 𝜒. The network consists of four fully connected layers with softplus
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activation function and pre- and post-scaling layers. The latter is used to restrict
parameters to stable ranges which is especially important for the parameters 𝑅𝑑, poles p
and zeros q. The network was implemented and trained using TensorFlows Keras API.

The regression problem for which the network is used for poses a challenge, as the input
f0 and output X originate from one sequence and thus, frames 𝑚 can’t be considered in­
dependent observations. A more sophisticated network would train to predict parameters
for multiple singers and vowels and use recurrent or convolutional neural networks to
capture temporal dependencies within the sequences. However, as discussed in Section
3.2.3, two estimated synthesis parameter sets may not be interpolated and still produce
an convincing vocal tract frequency response. For this reason, training on estimated
synthesis parameters from multiple source samples isn’t straight forward and would
require a revised synthesis model or parameter estimation method ℰ .
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4 Evaluation

Goal of the evaluation was to get a better understanding of the proposed method. As
previously described, the proposed singing voice synthesis method consists of multiple
successive components, namely, harmonic analysis 𝒜, synthesis model parameter estima­
tion ℰ , predictor network 𝒫 and synthesis 𝒮. Each component depends on the previous.
To obtain a better understanding on how the method performs, it is crucial to assess how
these component perform relatively to another. Furthermore, early subjective tests with
the proposed method suggested that the quality of synthesized audio samples depends
strongly on the kind of source audio sample used in the analysis. Effects were noticed
for instance for the gender of the singer from the source audio sample or the sung vowel.
Finally, as the proposed singing voice method focuses on some aspects such as the vocal
tract filter while neglecting others like aspiration noise, it is assumed that the proposed
method does well in per serving some timbre qualities from the source sample while
being unable to preserve other qualities. From these ideas, the evaluation was intended
to answer three core research question.

1. Which component of the proposed method outlined in section 3.1 hat the biggest
impact in terms of perceived audio quality of synthesized audio samples?

2. How do different source audio samples such as samples from singers of different
genders or different sung vowels, affect the performance in terms of overall perceived
audio quality?

3. How well are timbre qualities such as breathiness or roughness preserved by the
proposed method when resynthesizing samples?

To answer the first and second question, a multi stimulus with hidden reference and anchor
(MUSHRA) test was conducted. In this experiment, participants were asked to rate the
perceived quality of different variants of the same source audio sample, referred to as
conditions. In addition to a reference sample and an anchor sample, these conditions were
reconstructions of the reference generated at various stages of the proposed multi-stage
method as will be described in Section 4.1. Using the results from the MUSHRA test,
one can evaluate differences in perceived quality between these conditions to assess which
component of the proposed method is responsible for the biggest loss of sound quality.
Furthermore, by taking additional independent variables such as the gender of the singer
or the sung vowel into account, one can evaluate the impact of these variables on how
well the proposed method preserves sound quality in the reconstruction.
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To answer the third question, a pairwise comparison listening test was conducted in
which participants were asked to rate the perceived difference between two stimuli in
regards to four timbre qualities; naturalness, breathiness, brightness and roughness. The
two stimuli were a reference sample and it’s reconstruction using the proposed singing
voice synthesis method.

It should be noted that, since both experiments aim to evaluate the perceived quality
difference between some reference sample and various reconstructions of it, one aspect
that wasn’t taken into account in this evaluation is the ability of the proposed method to
produce new audio samples from a trained predictor network and a new pitch trajectory.
There are two reasons why this aspect was neglected in the evaluation. First, since the
predictor 𝒫 predicts synthesis parameters from a single control parameter, namely pitch,
it is assumed that predicting synthesis parameters using a pitch trajectory not used
during training shouldn’t introduce significant artifacts. Listening tests like MUSHRA
are intended to be used with different conditions of one reference sample. When the
intention is to compare two uncorrelated audio samples, for instance two synthesized
samples using the same trained predictor but different pitch trajectories, a different
experiment design would have been necessary.

4.1 Dataset and Stimuli Generation

The VocalSet dataset [73] was used to generate the stimuli for the evaluation. VocalSet
consists of a large set of singing excerpts including scales, arpeggios and individual notes
of five vowels in different keys. In total, 9 female and 11 male singers were asked to
sing in each of these contexts, using a variety of vocal techniques. A breakdown of the
different combinations of contexts, vocal techniques and vowels is shown in Table 4.1.

Context Technique Vowel

Long Tones Vibrato, Straight, Forte, Pianissimo,
Trill, Trillo, Inhaled, Messa di voce

a, e, i, o, uArpeggios,
Scales

Straight, Belt, Breathy, Fast Forte,
Fast Piano, Slow Forte, Slow Piano,
Vibrato, Vocal Fry, Lip Trill

Table 4.1: A breakdown of the different contexts, vocal techniques and vowels in the VocalSet.

From this dataset, a subset of 30 samples was chosen to be included in the two
experiments. During experimentation with the dataset and the proposed method, it
was noticed that the method performs well with source audio samples consisting of a
single vowel, covering a wide range of pitches, sung in legato. For this reason, it was
decided to use audio samples from the scales context sung in slow forte as these audio
samples included no breaks between the individual notes forming the scales. Three
vowels, a, i and o, were chosen to be included to reduce the overall number of audio
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where 𝑤[𝑛] is the Hann window of length 𝑁𝐵. The factor 2𝑁𝐻/𝑁𝐵 adjusts the amplitude
to compensate for the overlap of frames and the applied Hann window. The 𝑚th audio
frame 𝑥̂𝑚[𝑛] was reconstructed using Equation 3.25.

Both 𝐶𝐸 and 𝐶𝑃 were reconstructed form the reference sample 𝐶𝑅 using a set of synthesis
parameters and the synthesis method 𝒮 described in Section 3.2. The condition 𝐶𝐸 is
generated from the estimated parameters X and pitch f0 (both a product of the synthesis
model parameter estimation ℰ described in Section 3.4) using the synthesis method 𝒮.
Again, a frame size of 𝑁𝐵 = 2048 and hop size of 𝑁𝐻 = 64 were used for the synthesis
model parameter estimation. Parameters X were linearly interpolated to upsample the
parameter trajectory from a frame rate with 𝑁𝐻 = 64 to the audio rate necessary for the
synthesis method 𝒮.

For 𝐶𝑃 , the predictor 𝒫 was trained using f0 and estimated synthesis parameters X.
Afterwards, the predictor was used to generate X̂ from the same pitch trajectory f0.
Afterwards, the predicted synthesis parameters were used to produce the condition 𝐶𝑃 .

For the first experiment, an anchor condition 𝐶𝐴 is used in accordance with the ITU-R
BS.1534-3 recommendation for MUSHRA tests. The anchor can be obtained by low
pass filtering the reference condition. For that, the 3.5 kHz lowpass filter implementation
from webMSURHA [78] is used. The filter coefficients are calculated as a windowed sinc
impulse with

𝑏[𝑛] = 𝑤𝛼[𝑛] sin(2𝜋(𝑓𝑐/𝑓𝑠)(𝑛 − 0.5𝑁 + 0.5))
(𝑛 − 0.5𝑁 + 0.5)𝜋 (4.2)

with 0 ≤ 𝑛 < 𝑁 , 𝑁 = 192, cutoff frequency 𝑓𝑐 = 3750 Hz and sample rate 𝑓𝑠 = 44100 Hz.
For the window 𝑤𝛼[𝑛], a Kaiser window is used with 𝛼 = 1.0345. The filters frequency
response is shown in figure Figure 4.2.
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Figure 4.2: The frequency response of the anchor condition filter as implemented in
webMUSHRA [78] The targeted cutoff frequency 𝑓𝑐 is marked with a dotted line.
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4.2 Experiment 1

The goal of the first experiment, a MUSHRA test [79], was to evaluate, which component
of the proposed method for singing voice synthesis has the biggest impact on the
perceived audio quality of the synthesized samples. In order to answer this question,
3 synthesized samples corresponding to 3 different components of the method were
presented together with the reference stimuli and the anchor. As every component of the
proposed method builds on top of the previous, is is hypothesized that these conditions
are rated significantly different from another with the rating 𝑅(𝐶) of condition 𝐶 being
ordered 𝑅(𝐶𝑅) > 𝑅(𝐶𝐻) > 𝑅(𝐶𝐸) > 𝑅(𝐶𝑃 ). Further statements can then be made
about the impact of the singers gender 𝐺 ∈ {𝐺𝐹 , 𝐺𝑀 } for female and male singers and
the sung vowel 𝑉 ∈ {𝑉𝐴, 𝑉𝑂, 𝑉𝐼} for vowels a, i and o on the perceived quality.

4.2.1 Method

Participants

At the end of the online survey, participants were asked to fill out a short questionnaire
to collect demographic information of the participants. In total, 33 subjects participated
in the experiment, 6 of which stated that they identified as female, 26 identified as male
and 1 person gave no information about their gender. Participants’ ages ranged from 22
to 60 (M = 30.94, SD=9.10). At least 21 of the participants were students at TU Berlin.
Other participants came from authors workplace or from the authors family and circle of
friends.

Stimuli

The experiment consisted of a total of 30 tests, each presenting a set of 5 unlabeled stimuli
together with a labeled reference. As described in Section 4.1, reference stimuli were
taken from the VocalSet dataset [73]. The selected subset of reference stimuli included a
total of 30 samples containing scales from 5 singers of 2 genders, singing 3 vowels. The 5
unlabeled stimuli presented in each test included the conditions 𝐶𝐻 , 𝐶𝐸 , 𝐶𝑃 , an anchor
𝐶𝐴 and a hidden reference 𝐶𝑅 and were displayed in random order.

Procedure

The experiment was conducted as an online survey using the webMUSHRA API [78].
After going through a welcoming page detailing the length and structure of the two
experiments, participants were first introduced to the MUSHRA experiment. Participants
were advised to use headphones for the experiment and use a desktop or laptop computer
with the Google Chrome web browser in cases of technical difficulties. The participants
were instructed as follows.
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Test Wilcoxon T Wilcoxon Z p (𝛼 = 0.05)
𝐶𝑅 - 𝐶𝐻 3.3 · 105 18.79 < 0.001
𝐶𝑅 - 𝐶𝐸 4.5 · 105 25.08 < 0.001
𝐶𝑅 - 𝐶𝑃 4.6 · 105 25.72 < 0.001
𝐶𝑅 - 𝐶𝐴 4.7 · 105 25.78 < 0.001
𝐶𝐻 - 𝐶𝐸 4.1 · 105 20.71 < 0.001
𝐶𝐻 - 𝐶𝑃 4.2 · 105 22.57 < 0.001
𝐶𝐻 - 𝐶𝐴 4.4 · 105 22.65 < 0.001
𝐶𝐸 - 𝐶𝑃 2.7 · 105 7.87 < 0.001
𝐶𝐸 - 𝐶𝐴 2.9 · 105 6.29 < 0.001
𝐶𝑃 - 𝐶𝐴 2.4 · 105 0.46 0.64

Table 4.3: Results of the post hoc Wilcoxon signed-rank test.

Mixed Model

A mixed model was trained on the data from experiment 1 to acquire insight into
how the singers gender 𝐺 and the sung vowel 𝑉 affect the performance of the proposed
method. Mixed models or mixed effects models are used to test the impact of independent
variables of an dependent variable and pose an alternative to ANOVA tests especially for
non-normally distributed data. The term mixed effects refers to the use of fixed effects
and random effects. Fixed effects are primarily used to model observed effects such as
the singers gender or vowel. Random effects instead model sources of random levels such
as the subjects preference in rating stimuli [85]. A mixed model is mainly defined by it’s
Wilkinson notation describing which variables are included either as fixed or random
effects and by the levels of each effect. Once fitted to the data, the fixed effects can be
further analyzed to draw conclusions about their impact on the dependent variable

The model used to fit the data from the MUSHRA experiment includes fixed effect
variables condition 𝐶 ∈ {𝐶𝑅, 𝐶𝐻 , 𝐶𝐸 , 𝐶𝑃 , 𝐶𝐴}, gender 𝐺 ∈ {𝐺𝐹 , 𝐺𝑀 } for female and
male singers and vowel 𝑉 ∈ {𝑉𝐴, 𝑉𝑂, 𝑉𝐼} for vowels a, i and o as well as the a random
effect variable 𝐼𝐼𝐷 ∈ N, 1 ≤ 𝐼𝐼𝐷 ≤ 33 for the 33 participants. The model’s Wilkinson
notation is given with

𝑅 ∼ 1 + 𝐶 + 𝐺 + 𝑉 + 𝐶:𝑉 + 𝐶:𝐺 + 𝑉 :𝐺 + 𝐺:𝐶:𝑉 + (1|𝐼𝐼𝐷) (4.3)

The model includes the main fixed effects 𝐶, 𝐺 and 𝑉 as well as the 2-way in­
teraction effects 𝐶:𝐺, 𝐶:𝑉 , 𝐺:𝑉 and 3-way effects 𝐶:𝐺:𝑉 . Interaction effects con­
sist of all possible commentary levels of their component variables. For instance,
the 2-way interaction between vowel 𝑉 and gender 𝐺 would consist of 𝐶 : 𝐺 =
{𝑉𝐴𝐺𝐹 , 𝑉𝐼𝐺𝐹 , 𝑉𝑂𝐺𝐹 , 𝑉𝐴𝐺𝑀 , 𝑉𝐼𝐺𝑀 , 𝑉𝑂𝐺𝑀 }. In addition, the model includes the
random effect 𝐼|𝐼𝐼𝐷 and the fixed intercept (denoted as 1 in the Wilkinson notation)
which is best described as a constant offset for the dependent variable 𝑅. The mixed
effects model was generated with the statistics software Jamovi [86, 87] using the linear
model library GAMLj [88]. An overview is given in Table 4.4.
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Info
Estimate Linear mixed model fit by Restricted Maximum Likelihood
Call 𝑅 ∼ 1 + 𝐶 + 𝑉 + 𝐺 + 𝐶:𝑉 + 𝐶:𝐺 + 𝑉 :𝐺 + 𝐺:𝑉 :𝐶 + (1|𝐼𝐼𝐷)
AIC 43325.002
BIC 43472.936
LogLikelihood -21600.354
R-squared Marginal 0.383
R-squared Conditional 0.542

Table 4.4: General information on the mixed model as reported by GAMLj.

Fixed Effects An omnibus test was conducted to determine the significance of all fixed
effects. A significant test suggests that, for a fixed effect, at least two of its groups are
significantly different. The test confirmed, that between 𝐶, 𝑉 and 𝐺, all fixed main
effects, 2-way and 3-way effects were significant as shown in Table 4.5. For variables 𝐶 and
𝐺, simple coding was chosen with reference levels 𝐶𝑅 and 𝐺𝐹 respectively. For variable
𝑉 , deviation coding was chosen. In total, the model consists of 8 main effect parameters
including the intercept, 14 2-way effect parameters and 8 3-way effect parameters, 30
fixed effects parameters in total as can be seen in Table 4.6. Notably, not all fixed effect
parameters are significant (𝑝 ≥ 0.05).

Effect F Num df Den df p (𝛼 = 0.05)
Condition 967.24 4 4888 < 0.001
Vowel 4.64 2 4888 0.010
Gender 14.40 1 4888 < 0.001
Condition * Vowel 3.51 8 4888 < 0.001
Condition * Gender 33.72 4 4888 < 0.001
Vowel * Gender 13.99 2 4888 < 0.001
Condition * Vowel * Gender 6.88 8 4888 < 0.001

Table 4.5: Mixed model omnibus test results with F-score, degrees of freedom (Num df), degrees
of freedom denominator (Den df), and p-value (p) as reported by GAMLj.

Table 4.6: Fixed effects parameter estimates of the mixed model. (𝛼 = 0.05)

Effect Estimate SE df t p
(Intercept) 59.531 1.959 32.0 30.396 < 0.001
𝐶𝐻 - 𝐶𝑅 -15.759 0.851 4888.0 -18.523 < 0.001
𝐶𝐸 - 𝐶𝑅 -36.639 0.851 4888.0 -43.066 < 0.001
𝐶𝑃 - 𝐶𝑅 -41.607 0.851 4888.0 -48.905 < 0.001
𝐶𝐴 - 𝐶𝑅 -42.458 0.851 4888.0 -49.905 < 0.001
𝑉𝐼 - ( 𝑉𝐴, 𝑉𝐼 , 𝑉𝑂 ) 0.578 0.380 4888.0 1.520 0.129
𝑉𝑂 - ( 𝑉𝐴, 𝑉𝐼 , 𝑉𝑂 ) -1.159 0.380 4888.0 -3.047 0.002
𝐺𝑀 - 𝐺𝐹 -2.040 0.538 4888.0 -3.791 < 0.001
𝐶𝐻 - 𝐶𝑅 * 𝑉𝐼 - ( 𝑉𝐴, 𝑉𝐼 , 𝑉𝑂 ) 0.995 1.203 4888.0 0.827 0.408
𝐶𝐸 - 𝐶𝑅 * 𝑉𝐼 - ( 𝑉𝐴, 𝑉𝐼 , 𝑉𝑂 ) 1.497 1.203 4888.0 1.244 0.213
𝐶𝑃 - 𝐶𝑅 * 𝑉𝐼 - ( 𝑉𝐴, 𝑉𝐼 , 𝑉𝑂 ) 3.228 1.203 4888.0 2.683 0.007
𝐶𝐴 - 𝐶𝑅 * 𝑉𝐼 - ( 𝑉𝐴, 𝑉𝐼 , 𝑉𝑂 ) -2.121 1.203 4888.0 -1.763 0.078
𝐶𝐻 - 𝐶𝑅 * 𝑉𝑂 - ( 𝑉𝐴, 𝑉𝐼 , 𝑉𝑂 ) -1.963 1.203 4888.0 -1.631 0.103
𝐶𝐸 - 𝐶𝑅 * 𝑉𝑂 - ( 𝑉𝐴, 𝑉𝐼 , 𝑉𝑂 ) -2.818 1.203 4888.0 -2.342 0.019
𝐶𝑃 - 𝐶𝑅 * 𝑉𝑂 - ( 𝑉𝐴, 𝑉𝐼 , 𝑉𝑂 ) -2.978 1.203 4888.0 -2.475 0.013
𝐶𝐴 - 𝐶𝑅 * 𝑉𝑂 - ( 𝑉𝐴, 𝑉𝐼 , 𝑉𝑂 ) 1.094 1.203 4888.0 0.909 0.363
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Table 4.7 Continued: Post Hoc comparison results for fixed effects (extract). p-values are
Bonferroni corrected. For full list see Appendix 5.

Comparison Difference SE t df p (𝛼 = 0.05)
𝐶𝑅 𝑉𝐴 - 𝐶𝑅 𝑉𝑂 -0.2061 1.47 -0.1398 4888 1.000
𝐶𝐻 𝑉𝐼 - 𝐶𝐻 𝑉𝑂 2.6424 1.47 1.7932 4888 1.000
𝐶𝐻 𝑉𝐴 - 𝐶𝐻 𝑉𝐼 0.0818 1.47 0.0555 4888 1.000
𝐶𝐻 𝑉𝐴 - 𝐶𝐻 𝑉𝑂 2.7242 1.47 1.8487 4888 1.000
𝐶𝐸 𝑉𝐼 - 𝐶𝐸 𝑉𝑂 4.0000 1.47 2.7145 4888 0.699
𝐶𝐸 𝑉𝐴 - 𝐶𝐸 𝑉𝐼 -0.0667 1.47 -0.0452 4888 1.000
𝐶𝐸 𝑉𝐴 - 𝐶𝐸 𝑉𝑂 3.9333 1.47 2.6692 4888 0.801
𝐶𝑃 𝑉𝐼 - 𝐶𝑃 𝑉𝑂 5.8909 1.47 3.9977 4888 0.007
𝐶𝑃 𝑉𝐴 - 𝐶𝑃 𝑉𝐼 -3.3697 1.47 -2.2867 4888 1.000
𝐶𝑃 𝑉𝐴 - 𝐶𝑃 𝑉𝑂 2.5212 1.47 1.7109 4888 1.000
𝐶𝐴 𝑉𝐼 - 𝐶𝐴 𝑉𝑂 -3.5303 1.47 -2.3957 4888 1.000
𝐶𝐴 𝑉𝐴 - 𝐶𝐴 𝑉𝐼 3.2576 1.47 2.2107 4888 1.000
𝐶𝐴 𝑉𝐴 - 𝐶𝐴 𝑉𝑂 -0.2727 1.47 -0.1851 4888 1.000
𝐶𝐻 𝐺𝐹 - 𝐶𝐻 𝐺𝑀 -2.190 1.20 -1.820 4888 1.000
𝐶𝑃 𝐺𝐹 - 𝐶𝑃 𝐺𝑀 9.382 1.20 7.798 4888 < 0.001
𝐶𝑅 𝐺𝐹 - 𝐶𝑅 𝐺𝑀 1.651 1.20 1.372 4888 1.000
𝐶𝐴 𝐺𝐹 - 𝐶𝐴 𝐺𝑀 -7.055 1.20 -5.863 4888 < 0.001
𝐶𝐸 𝐺𝐹 - 𝐶𝐸 𝐺𝑀 8.412 1.20 6.992 4888 < 0.001

𝐶𝑅 𝑉𝐴 𝐺𝐹 - 𝐶𝑅 𝑉𝐴 𝐺𝑀 1.1576 2.08 0.5555 4888 1.000
𝐶𝑅 𝑉𝐼 𝐺𝐹 - 𝐶𝑅 𝑉𝐼 𝐺𝑀 3.0485 2.08 1.4628 4888 1.000
𝐶𝑅 𝑉𝑂 𝐺𝐹 - 𝐶𝑅 𝑉𝑂 𝐺𝑀 0.7455 2.08 0.3577 4888 1.000
𝐶𝐻 𝑉𝐴 𝐺𝐹 - 𝐶𝐻 𝑉𝐴 𝐺𝑀 -6.2788 2.08 -3.0129 4888 1.000
𝐶𝐻 𝑉𝐼 𝐺𝐹 - 𝐶𝐻 𝑉𝐼 𝐺𝑀 5.5212 2.08 2.6494 4888 1.000
𝐶𝐻 𝑉𝑂 𝐺𝐹 - 𝐶𝐻 𝑉𝑂 𝐺𝑀 -5.8121 2.08 -2.7890 4888 1.000
𝐶𝐸 𝑉𝐴 𝐺𝐹 - 𝐶𝐸 𝑉𝐴 𝐺𝑀 1.2970 2.08 0.6224 4888 1.000
𝐶𝐸 𝑉𝐼 𝐺𝐹 - 𝐶𝐸 𝑉𝐼 𝐺𝑀 10.2182 2.08 4.9033 4888 < 0.001
𝐶𝑃 𝑉𝐼 𝐺𝐹 - 𝐶𝑃 𝑉𝐼 𝐺𝑀 9.8061 2.08 4.7055 4888 0.001

𝐶𝐸 𝑉𝑂 𝐺𝐹 - 𝐶𝐸 𝑉𝑂 𝐺𝑀 13.7212 2.08 6.5842 4888 < 0.001
𝐶𝑃 𝑉𝐴 𝐺𝐹 - 𝐶𝑃 𝑉𝐴 𝐺𝑀 -0.1576 2.08 -0.0756 4888 1.000
𝐶𝑃 𝑉𝑂 𝐺𝐹 - 𝐶𝑃 𝑉𝑂 𝐺𝑀 18.4970 2.08 8.8759 4888 < 0.001

𝐶𝐴 𝑉𝐴 𝐺𝐹 - 𝐶𝐴 𝑉𝐴 𝐺𝑀 -5.8727 2.08 -2.8181 4888 1.000
𝐶𝐴 𝑉𝐼 𝐺𝐹 - 𝐶𝐴 𝑉𝐼 𝐺𝑀 -9.8424 2.08 -4.7230 4888 0.001
𝐶𝐴 𝑉𝑂 𝐺𝐹 - 𝐶𝐴 𝑉𝑂 𝐺𝑀 -5.4485 2.08 -2.6145 4888 1.000

4.2.3 Discussion

Goal of experiment 1 was to determine which component of the proposed multi-stage
singing voice synthesis has a high impact on the perceived quality of synthesized samples
and how different source samples affect the performance of the proposed method. To
answer this question, a MUSHRA test was conducted with 33 participants. Five conditions
were generated for 30 source samples each, taken from the dataset VocalSet [73]. In
addition to the source sample, labeled as condition 𝐶𝑅, conditions included a harmonic
reconstruction 𝐶𝐻 , a resynthesis from estimated parameters 𝐶𝐸 , a resynthesis from
predicted parameters 𝐶𝑃 and a anchor stimuli 𝐶𝐴. After a brief introduction, participants
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were asked to comparatively rate the quality of these five conditions in 30 MUSHRA
trials. The results were analyzed using the Friedman test with post hoc Wilcoxon
signed-rank test and a mixed model. The hypothesis, that the quality ratings are ordered
𝑅(𝐶𝑅) > 𝑅(𝐶𝐻) > 𝑅(𝐶𝐸) > 𝑅(𝐶𝑃 ), could be confirmed both with the Friedman test
and the mixed model. Additional conclusions can be made from the individual ratings of
each condition. As can be seen in Table 4.7, the difference between conditions 𝐶𝐻 and
𝐶𝑅 is minor, hinting that the harmonic model of the reference signal does not degrade
the perceived audio quality much. The biggest difference can be seen between 𝐶𝐻 and
𝐶𝐸 . This suggests that currently, synthesis model parameter estimation produces the
largest drop in terms of perceived audio quality. While the difference between 𝐶𝑃 and
𝐶𝐸 was significant in both the Friedman test and the mixed model Post Hoc test, it’s
substantially smaller compared to that between 𝐶𝐸 and 𝐶𝐻 , hinting that the training
and subsequent prediction of parameters using the predictor network 𝒫 currently does
not produce a large degradation of the audio quality.

From the mixed model, further statements can be made about the models performance
for specific vowels or genders. In both experiments conducted as part of this thesis, only 5
female and 5 male singers were included. For this reason, some caution needs to be taken
especially when drawing conclusion about 2-way and 3-way interactions. Post Hoc tests
were done for all main, 2-way and 3-way effects. The results for post hoc comparisons
discussed in this section can be found in Table 4.7. Starting with conditions 𝐶𝑅 and 𝐶𝐻 ,
no significant 2-way differences could be found, meaning that ratings for 𝐶𝑅 or 𝐶𝐻 are
not significantly different between genders or vowels. For the anchor condition 𝐶𝐴, a
significant difference was found between the two genders where a higher rating was found
for male singers. This is likely a result of the difference in pitch range between male
and female singers as female singers sung one octave higher than male singers. Because
of this, more partials were cut off by the fixed lowpass filter used to create the anchor
stimuli.

Some significant differences could be found between the ratings for female and male
singers both for 𝐶𝐸 and 𝐶𝑃 where the quality rating for female singers was higher than
that for male singers. From the 3-way post hoc tests, it can be taken that this difference
varies between vowels where no significant difference can be observed for vowel 𝑉 = 𝑉𝐴

while the largest difference can be observed for vowel 𝑉 = 𝑉𝑂. It is important to note
that these differences can be contributed to differences in voice qualities such as formant
frequencies or to differences in the pitch range present in the samples as female singers
sung one octave higher than male singers. Because of this and the apparent differences
of this effect between vowels, it is hard to make assumptions about why the proposed
synthesis model parameter estimation performs better for female singers, especially for
the vowels i and o. A likely explanation might be that the synthesis model parameter
estimation performs better for samples with higher pitches and the resulting lower density
of harmonic partials. Another explanation might be that on average, formant frequencies
for females are slightly higher for those of male singers as the vocal tract is usually
shorter.
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The first two research questions discussed at the start of this chapter can be answered as
follows.

1. Which component of the proposed method outlined in section 3.1 hat the biggest
impact in terms of perceived audio quality of synthesized samples? It is strongly suggested
by the results of this experiment, that synthesis model parameter estimation ℰ produces
the biggest drop in perceived quality followed by the harmonic analysis 𝒜. The smallest
impact was observed for the parameter predictor 𝒫.

2. How do different source samples such as samples from singers of different genders or
different sung vowels, affect the performance in terms of overall perceived audio quality?
The singers gender seems to affect the perceived audio quality of the synthesized sample
strongly. A notable difference in quality of resynthesized samples (𝐶𝑃 ) was found between
male and female singers. Separated by vowels, this effect is insignificant for the vowel a,
but significant for the vowels i and o. Averaged over both genders, the vowel however
has no impact on the perceived quality of the resynthesized sample with the exception of
a small significant difference between vowels i and o for 𝐶𝑃 .

4.3 Experiment 2

The goal of the second experiment, a pair-wise timbre comparison test, was to evaluate
the question, how the proposed method affects different timbre qualities. In order to
answer the question, participants were asked to rate the relative presence of four timbre
qualities, breathiness, roughness, brightness and naturalness, between two stimuli A and
B, one being the hidden reference 𝐶𝑅 and one being the resynthesized stimuli 𝐶𝑃 as
described in Section 4.1. A bipolar rating scale was used which measured the relative
presence of these qualities between the two stimuli.

With this, it was possible to evaluate how well the proposed method preserves certain
timbre qualities. A neutral rating would suggest that the proposed method preserves the
tested timbre qualities well for the tested stimuli pair assuming that the specific quality
was noticeably present in the reference sample. Any other rating would suggest that the
method either emphasizes or de-emphasizes certain timbre qualities.

The four tested qualities, breathiness, roughness, brightness and naturalness, were selected
mainly for two reasons. First, it was assumed that there is a common understanding
among participants of these terms. As discussed in [89], the interpretation of semantics
descriptors for acoustic qualities can vary across different languages and cultures. Second,
the qualities are assumed to likely be affected by the proposed methods. Roughness and
Breathiness both are commonly used to describe voice qualities [90, 91] while naturalness
and brightness are widely used in the field of timbre semantics. A comprehensive
discussion on that topic can be found in [89]. In the study, the following definitions were
used for the timbre qualities.
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• Naturalness: A voice sounds natural when it’s in perceived accordance with the
listeners expectation of the human voice.

• Breathiness: A breathy voice is characterized by an open sound with low intensity
and audible noise, similar to a whispery voice.

• Brightness: Bright sounds are characterized by an emphasis on high frequency
components as opposed to low frequency components.

• Roughness: A rough voice is characterized by an irregularity oscillation which
can be perceived as scratchy and intense and can be considered opposite of a soft
voice.

4.3.1 Method

Participants

At the end of the online survey, participants were asked to fill out a short questionnaire to
collect demographic information of the participants. In total, 32 subjects participated in
the second experiment, 11 of which stated that they identified as female and 21 identified
as male. Participants’ ages ranged from 21 to 60 (M = 30.63, SD=9.11). At least 17 of
the participants were students at TU Berlin. Other participants came from the authors
workplace or from the authors family and circle of friends.

Stimuli

The experiment consisted of a total of 30 tests, each presenting a pair of stimuli. As
described in Section 4.1, stimuli were taken from the VocalSet dataset [73]. The selected
subset included a total of 30 samples including sung scales from 5 singers of 2 genders,
singing 3 vowels. In this experiment, one of the two stimuli was the hidden reference
(condition 𝐶𝑅) taken directly from the VocalSet while the other stimulus was reconstructed
from said reference using the proposed method (𝐶𝑃 ). Stimuli were randomly labeled A
or B.

Procedure

The second experiment was conducted as an online survey using the webMUSHRA
API [78]. The API was modified to allow for a custom trial page design . After going
through a general welcoming page detailing the length and structure of the two conducted
experiments, participants were first introduced to the second experiment. Participants
were advised to use headphones for the experiment and use a desktop or laptop machine
with the Google Chrome online browser in cases of technical difficulties. The participants
were instructed as follows.
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4.3.3 Discussion

The second experiment was conducted to investigate how well the proposed singing voice
synthesis method preserves timbre qualities present in source samples when resynthesizing
these. After a brief introduction, 32 participants were asked to rate the relative natu­
ralness, breathiness, brightness and roughness between two stimuli for 30 stimuli pairs.
The pairs included an unlabeled reference stimulus, taken from the VocalSet dataset [73],
and its reconstruction using the proposed method. The results were analyzed using the
Wilcoxon signed-rank test.

For all four tested voice qualities, naturalness, breathiness, brightness and roughness, the
Wilcoxon signed-rank test returned significant results with strong deviations from a neutral
rating for naturalness, brightness and breathiness and a small but significant deviation
for roughness. Four all four timbre qualities, the ratings shifted towards the reference
stimulus, suggesting that participants felt that the reference signal sounded more natural,
breathy, bright or rough respectively. Interestingly, the ratings for roughness showed the
largest standard deviation and the smallest effect. In addition, some participants gave
verbal feedback that roughness was hard to rate. There are various possible explanations
for why the rating of roughness shows such a large standard deviation. For instance, the
selected reference samples might not have included samples with a noticeably rough voice.
Alternatively, the proposed singing voice synthesis method preserved the roughness and
such there was no noticeable difference between reference and synthesized stimulus in
terms of roughness. Finally, participants might have had issues associating the term
roughness with some audible expectation and such couldn’t consistently rate it.

The third research questions introduced at the start of this chapter can be answered as
follows.

3. How well are timbre qualities such as breathiness or roughness preserved by the
proposed method when resynthesizing samples? In general, a significant loss in naturalness,
breathiness and brightness could be confirmed when comparing a reference stimulus with
it reconstruction. Additional studies are likely necessary to obtain a more comprehensive
understanding on how the method affects different timbres.
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The synthesis on the other hand prioritizes computational efficiency and robustness to
support real-time application cases. The synthesis model is based on well known DSP
methods such as second order section filters and wavetable oscillators not only because
of their computational efficiency but also because of their stability and robustness. The
predictor 𝒫 , the link between analysis and synthesis, is implemented as a neural network
which can also be implemented very efficiently. Thus, while only a prototype of the
proposed synthesis was implemented, a real-time capable implementation, comparable to
commercial software synthesizer in terms of computational efficiency, is straightforward.
Such a real-time implementation would not only support desktop of laptop systems but
also mobile or embedded devices.

To evaluate the performance of the proposed method especially in terms of perceived
quality of synthesized audio samples, an empirical study consisting of two experiments
was conducted. Goal of the first experiment was to evaluate what impact each component
of the proposed analysis method has on the audio quality and to determine how different
source samples, such as samples from different singer genders or different vowels, affect
the audio quality. In this experiment, 33 participants rated the perceived quality of fives
stimuli, three of which corresponding to different components of the multi-stage analysis,
in 30 MUSHRA tests. The results from this experiment suggests that the synthesis model
parameter estimation ℰ currently produces the largest drop in terms of perceived audio
quality. This effect was found to be less significant for female singers.

In a second experiment, participants were ask to rate the presence of four timbre qualities,
naturalness, breathiness, brightness and roughness, between a reference sample and its
resynthesis using the proposed method. Results showed that the 32 participants noticed
a significant difference between the two stimuli for all four timbre qualities.

Multiple conclusions can be drawn from the evaluation. Firstly, to improve the overall
performance in terms of sound quality, attention should be given to the synthesis model
parameter estimation as it currently has the biggest impact on perceived audio quality.
Secondly, additional work is necessary to determine how the pitch range present in the
source audio samples affects the sound quality. As of now, it is expected that the proposed
method performs better for source material containing higher pitches. Finally, the impact,
including interaction effects, of vowel and gender on the methods performance should be
evaluate in more detail as the first experiment suggests that the sound quality depends
on both the vowel and gender.

The results from the first experiments confirmed existing suspicions about the performance
of the proposed method. A difference in perceived audio quality between the reference
sample and its harmonic reconstruction using harmonic analysis 𝒜 can likely be explained
by the lack of inharmonic signal components such as aspiration noise or glottal jitter.
These vocal qualities are neglected by the proposed method. While the synthesis could
be adapted to model both aspiration noise and various kinds of aperiodic behavior of the
glottal source, estimating these kinds of effects from a source audio sample would require
substantial changes to the synthesis parameter estimation.
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Improving the synthesis parameter estimation poses a more challenging problem. An
initial intention of this thesis was to propose a model that would allow for morphing
or blending between singer models or vowels during synthesis. As the design and
development of the synthesis model parameter estimation required considerably more
effort then expected, and the proposed filter model doesn’t directly support interpolation
between parameter sets as discussed in Section 3.2.3, this goal could not be achieved.
In order to adjust the method to allow for morphing capabilities, the vocal tract filter
model would need to be revised to achieve a closer correlation between filter parameters
and vocal tract articulation or formant position.

In subjective listening tests, it was noticed that the optimization approach used in ℰ
repeatedly was not able to successfully separate the effects of glottal source and vocal
tract filter, especially in the lower frequency region bellow 2 kHz. This is likely explained
by the flexibility of the synthesis model and the nature of the interaction between glottal
source and vocal tract. As discussed in Section , separating a voice signal into glottal
source and vocal tract filter poses a challenging issue mainly because, unless the filter
model is specifically tailored to only reproduce vocal tract frequency responses, multiple
possible separations of source and filter may explain an observed frequency spectrum. To
combat this issue, the parameter estimation method ℰ restricts temporal fluctuations of
the vocal tract parameters. However, even with this restriction, the parameter estimation
at times produced unrealistic vocal tract parameterizations. For instance, the vocal tract
was often found to fit poles to individual harmonic partials instead of the underlying,
hidden, vocal tract formants. It is assumed that the high model complexity or flexibility
of the vocal tract model is likely one of the main problems of the proposed method in its
current form.

One solution to this problem is to reduce the flexibility of the vocal tract model to prevent
it from producing unrealistic frequency responses. For instance, a more sophisticated vocal
tract model could take inspiration from the Kelly-Lochbaum model or the Chain-Matrix
model. A second approach would require the phase components of the observed harmonic
partials to be included in the parameter estimation.

In contrast to the vocal tract model, the one parameter glottal flow model used in this
work is assumed to be to restrictive. As described in Section 2.2.1, the glottal source
may best be described by the position and magnitude of the glottal formant in the lower
frequencies and the overall spectral slope of the glottal pulse spectrum. Thus, a two
parameter glottal source model may represent a good compromise.

There are various possible future projects which can build on the findings of this work.
As mentioned above, different alternative vocal tract and glottal source models may
be tested in conjunction with the proposed analysis method to hopefully improve the
robustness of the synthesis parameter estimation. Furthermore, a second attempt could
be made to design a neural network, which practically would incorporate the estimation
of synthesis parameter as part of the predictor network 𝒫. Such a network could then
be trained on multiple singers simultaneously and include additional control parameters
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Appendix A
Mixed Model Post Hoc Test Results

Comparison Difference SE t df p𝑏𝑜𝑛𝑓𝑒𝑟𝑟𝑜𝑛𝑖

𝐶𝐻 - 𝐶𝑃 25.848 0.851 30.382 4888 < 0.001
𝐶𝐻 - 𝐶𝐴 26.699 0.851 31.382 4888 < 0.001
𝐶𝐻 - 𝐶𝐸 20.881 0.851 24.543 4888 < 0.001
𝐶𝑃 - 𝐶𝐴 0.851 0.851 1.000 4888 1.000
𝐶𝑅 - 𝐶𝐻 15.759 0.851 18.523 4888 < 0.001
𝐶𝑅 - 𝐶𝑃 41.607 0.851 48.905 4888 < 0.001
𝐶𝑅 - 𝐶𝐴 42.458 0.851 49.905 4888 < 0.001
𝐶𝑅 - 𝐶𝐸 36.639 0.851 43.066 4888 < 0.001
𝐶𝐸 - 𝐶𝑃 4.968 0.851 5.839 4888 < 0.001
𝐶𝐸 - 𝐶𝐴 5.818 0.851 6.839 4888 < 0.001
𝑉𝐼 - 𝑉𝑂 1.73758 0.659 2.63667 4888 0.025
𝑉𝐴 - 𝑉𝐼 0.00242 0.659 0.00368 4888 1.000
𝑉𝐴 - 𝑉𝑂 1.74000 0.659 2.64035 4888 0.025
𝐺𝐹 - 𝐺𝑀 2.04 0.538 3.79 4888 < 0.001

Table A.1: Post hoc comparisons for main effects.

Comparison Difference SE t df p𝑏𝑜𝑛𝑓𝑒𝑟𝑟𝑜𝑛𝑖

𝑉𝐼 𝐺𝑀 - 𝑉𝑂 𝐺𝑀 2.033 0.932 2.181 4888 0.438
𝑉𝐼 𝐺𝐹 - 𝑉𝐼 𝐺𝑀 3.750 0.932 4.024 4888 < 0.001
𝑉𝐼 𝐺𝐹 - 𝑉𝑂 𝐺𝑀 5.783 0.932 6.205 4888 < 0.001
𝑉𝐼 𝐺𝐹 - 𝑉𝑂 𝐺𝐹 1.442 0.932 1.548 4888 1.000
𝑉𝐼 𝐺𝐹 - 𝑉𝐴 𝐺𝑀 0.887 0.932 0.952 4888 1.000
𝑉𝑂 𝐺𝐹 - 𝑉𝐼 𝐺𝑀 2.308 0.932 2.476 4888 0.200
𝑉𝑂 𝐺𝐹 - 𝑉𝑂 𝐺𝑀 4.341 0.932 4.657 4888 < 0.001
𝑉𝑂 𝐺𝐹 - 𝑉𝐴 𝐺𝑀 -0.555 0.932 -0.596 4888 1.000
𝑉𝐴 𝐺𝑀 - 𝑉𝐼 𝐺𝑀 2.863 0.932 3.072 4888 0.032
𝑉𝐴 𝐺𝑀 - 𝑉𝑂 𝐺𝑀 4.896 0.932 5.253 4888 < 0.001
𝑉𝐴 𝐺𝐹 - 𝑉𝐼 𝐺𝑀 0.892 0.932 0.957 4888 1.000
𝑉𝐴 𝐺𝐹 - 𝑉𝐼 𝐺𝐹 -2.858 0.932 -3.067 4888 0.033
𝑉𝐴 𝐺𝐹 - 𝑉𝑂 𝐺𝑀 2.925 0.932 3.138 4888 0.026
𝑉𝐴 𝐺𝐹 - 𝑉𝑂 𝐺𝐹 -1.416 0.932 -1.519 4888 1.000
𝑉𝐴 𝐺𝐹 - 𝑉𝐴 𝐺𝑀 -1.971 0.932 -2.115 4888 0.517

Table A.2: Post hoc comparisons for Vowel * Gender
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Table A.3: Post hoc comparisons for Condition * Vowel

Comparison Difference SE t df p𝑏𝑜𝑛𝑓𝑒𝑟𝑟𝑜𝑛𝑖

𝐶𝐻 𝑉𝐼 - 𝐶𝐻 𝑉𝑂 2.6424 1.47 1.7932 4888 1.000
𝐶𝐻 𝑉𝐼 - 𝐶𝑃 𝑉𝐼 23.6152 1.47 16.0257 4888 < 0.001
𝐶𝐻 𝑉𝐼 - 𝐶𝑃 𝑉𝑂 29.5061 1.47 20.0234 4888 < 0.001
𝐶𝐻 𝑉𝐼 - 𝐶𝑅 𝑉𝑂 -15.0788 1.47 -10.2328 4888 < 0.001
𝐶𝐻 𝑉𝐼 - 𝐶𝐴 𝑉𝐼 29.8152 1.47 20.2332 4888 < 0.001
𝐶𝐻 𝑉𝐼 - 𝐶𝐴 𝑉𝑂 26.2848 1.47 17.8374 4888 < 0.001
𝐶𝐻 𝑉𝐼 - 𝐶𝐸 𝑉𝐼 20.3788 1.47 13.8295 4888 < 0.001
𝐶𝐻 𝑉𝐼 - 𝐶𝐸 𝑉𝑂 24.3788 1.47 16.5439 4888 < 0.001
𝐶𝐻 𝑉𝑂 - 𝐶𝑃 𝑉𝑂 26.8636 1.47 18.2302 4888 < 0.001
𝐶𝐻 𝑉𝑂 - 𝐶𝐴 𝑉𝑂 23.6424 1.47 16.0442 4888 < 0.001
𝐶𝐻 𝑉𝑂 - 𝐶𝐸 𝑉𝑂 21.7364 1.47 14.7507 4888 < 0.001
𝐶𝐻 𝑉𝐴 - 𝐶𝐻 𝑉𝐼 0.0818 1.47 0.0555 4888 1.000
𝐶𝐻 𝑉𝐴 - 𝐶𝐻 𝑉𝑂 2.7242 1.47 1.8487 4888 1.000
𝐶𝐻 𝑉𝐴 - 𝐶𝑃 𝑉𝐼 23.6970 1.47 16.0812 4888 < 0.001
𝐶𝐻 𝑉𝐴 - 𝐶𝑃 𝑉𝑂 29.5879 1.47 20.0789 4888 < 0.001
𝐶𝐻 𝑉𝐴 - 𝐶𝑃 𝑉𝐴 27.0667 1.47 18.3680 4888 < 0.001
𝐶𝐻 𝑉𝐴 - 𝐶𝑅 𝑉𝐼 -14.6818 1.47 -9.9634 4888 < 0.001
𝐶𝐻 𝑉𝐴 - 𝐶𝑅 𝑉𝑂 -14.9970 1.47 -10.1772 4888 < 0.001
𝐶𝐻 𝑉𝐴 - 𝐶𝐴 𝑉𝐼 29.8970 1.47 20.2887 4888 < 0.001
𝐶𝐻 𝑉𝐴 - 𝐶𝐴 𝑉𝑂 26.3667 1.47 17.8930 4888 < 0.001
𝐶𝐻 𝑉𝐴 - 𝐶𝐴 𝑉𝐴 26.6394 1.47 18.0780 4888 < 0.001
𝐶𝐻 𝑉𝐴 - 𝐶𝐸 𝑉𝐼 20.4606 1.47 13.8850 4888 < 0.001
𝐶𝐻 𝑉𝐴 - 𝐶𝐸 𝑉𝑂 24.4606 1.47 16.5995 4888 < 0.001
𝐶𝐻 𝑉𝐴 - 𝐶𝐸 𝑉𝐴 20.5273 1.47 13.9302 4888 < 0.001
𝐶𝑃 𝑉𝐼 - 𝐶𝐻 𝑉𝑂 -20.9727 1.47 -14.2325 4888 < 0.001
𝐶𝑃 𝑉𝐼 - 𝐶𝑃 𝑉𝑂 5.8909 1.47 3.9977 4888 0.007
𝐶𝑃 𝑉𝐼 - 𝐶𝑅 𝑉𝑂 -38.6939 1.47 -26.2585 4888 < 0.001
𝐶𝑃 𝑉𝐼 - 𝐶𝐴 𝑉𝐼 6.2000 1.47 4.2074 4888 0.003
𝐶𝑃 𝑉𝐼 - 𝐶𝐴 𝑉𝑂 2.6697 1.47 1.8117 4888 1.000
𝐶𝑃 𝑉𝐼 - 𝐶𝐸 𝑉𝑂 0.7636 1.47 0.5182 4888 1.000
𝐶𝑃 𝑉𝑂 - 𝐶𝐴 𝑉𝑂 -3.2212 1.47 -2.1860 4888 1.000
𝐶𝑃 𝑉𝐴 - 𝐶𝐻 𝑉𝐼 -26.9848 1.47 -18.3125 4888 < 0.001
𝐶𝑃 𝑉𝐴 - 𝐶𝐻 𝑉𝑂 -24.3424 1.47 -16.5193 4888 < 0.001
𝐶𝑃 𝑉𝐴 - 𝐶𝑃 𝑉𝐼 -3.3697 1.47 -2.2867 4888 1.000
𝐶𝑃 𝑉𝐴 - 𝐶𝑃 𝑉𝑂 2.5212 1.47 1.7109 4888 1.000
𝐶𝑃 𝑉𝐴 - 𝐶𝑅 𝑉𝐼 -41.7485 1.47 -28.3314 4888 < 0.001
𝐶𝑃 𝑉𝐴 - 𝐶𝑅 𝑉𝑂 -42.0636 1.47 -28.5452 4888 < 0.001
𝐶𝑃 𝑉𝐴 - 𝐶𝐴 𝑉𝐼 2.8303 1.47 1.9207 4888 1.000
𝐶𝑃 𝑉𝐴 - 𝐶𝐴 𝑉𝑂 -0.7000 1.47 -0.4750 4888 1.000
𝐶𝑃 𝑉𝐴 - 𝐶𝐴 𝑉𝐴 -0.4273 1.47 -0.2900 4888 1.000
𝐶𝑃 𝑉𝐴 - 𝐶𝐸 𝑉𝐼 -6.6061 1.47 -4.4830 4888 < 0.001
𝐶𝑃 𝑉𝐴 - 𝐶𝐸 𝑉𝑂 -2.6061 1.47 -1.7685 4888 1.000
𝐶𝑅 𝑉𝐼 - 𝐶𝐻 𝑉𝐼 14.7636 1.47 10.0189 4888 < 0.001
𝐶𝑅 𝑉𝐼 - 𝐶𝐻 𝑉𝑂 17.4061 1.47 11.8121 4888 < 0.001
𝐶𝑅 𝑉𝐼 - 𝐶𝑃 𝑉𝐼 38.3788 1.47 26.0446 4888 < 0.001
𝐶𝑅 𝑉𝐼 - 𝐶𝑃 𝑉𝑂 44.2697 1.47 30.0423 4888 < 0.001
𝐶𝑅 𝑉𝐼 - 𝐶𝑅 𝑉𝑂 -0.3152 1.47 -0.2139 4888 1.000
𝐶𝑅 𝑉𝐼 - 𝐶𝐴 𝑉𝐼 44.5788 1.47 30.2521 4888 < 0.001
𝐶𝑅 𝑉𝐼 - 𝐶𝐴 𝑉𝑂 41.0485 1.47 27.8563 4888 < 0.001
𝐶𝑅 𝑉𝐼 - 𝐶𝐸 𝑉𝐼 35.1424 1.47 23.8484 4888 < 0.001
𝐶𝑅 𝑉𝐼 - 𝐶𝐸 𝑉𝑂 39.1424 1.47 26.5628 4888 < 0.001
𝐶𝑅 𝑉𝑂 - 𝐶𝐻 𝑉𝑂 17.7212 1.47 12.0260 4888 < 0.001
𝐶𝑅 𝑉𝑂 - 𝐶𝑃 𝑉𝑂 44.5848 1.47 30.2562 4888 < 0.001
𝐶𝑅 𝑉𝑂 - 𝐶𝐴 𝑉𝑂 41.3636 1.47 28.0702 4888 < 0.001
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Table A.3 Continued: Post Hoc Comparisons - Condition * Vowel

Comparison Difference SE t df p𝑏𝑜𝑛𝑓𝑒𝑟𝑟𝑜𝑛𝑖

𝐶𝑅 𝑉𝑂 - 𝐶𝐸 𝑉𝑂 39.4576 1.47 26.7767 4888 < 0.001
𝐶𝑅 𝑉𝐴 - 𝐶𝐻 𝑉𝐼 14.8727 1.47 10.0929 4888 < 0.001
𝐶𝑅 𝑉𝐴 - 𝐶𝐻 𝑉𝑂 17.5152 1.47 11.8861 4888 < 0.001
𝐶𝑅 𝑉𝐴 - 𝐶𝐻 𝑉𝐴 14.7909 1.47 10.0374 4888 < 0.001
𝐶𝑅 𝑉𝐴 - 𝐶𝑃 𝑉𝐼 38.4879 1.47 26.1187 4888 < 0.001
𝐶𝑅 𝑉𝐴 - 𝐶𝑃 𝑉𝑂 44.3788 1.47 30.1163 4888 < 0.001
𝐶𝑅 𝑉𝐴 - 𝐶𝑃 𝑉𝐴 41.8576 1.47 28.4054 4888 < 0.001
𝐶𝑅 𝑉𝐴 - 𝐶𝑅 𝑉𝐼 0.1091 1.47 0.0740 4888 1.000
𝐶𝑅 𝑉𝐴 - 𝐶𝑅 𝑉𝑂 -0.2061 1.47 -0.1398 4888 1.000
𝐶𝑅 𝑉𝐴 - 𝐶𝐴 𝑉𝐼 44.6879 1.47 30.3261 4888 < 0.001
𝐶𝑅 𝑉𝐴 - 𝐶𝐴 𝑉𝑂 41.1576 1.47 27.9304 4888 < 0.001
𝐶𝑅 𝑉𝐴 - 𝐶𝐴 𝑉𝐴 41.4303 1.47 28.1154 4888 < 0.001
𝐶𝑅 𝑉𝐴 - 𝐶𝐸 𝑉𝐼 35.2515 1.47 23.9224 4888 < 0.001
𝐶𝑅 𝑉𝐴 - 𝐶𝐸 𝑉𝑂 39.2515 1.47 26.6369 4888 < 0.001
𝐶𝑅 𝑉𝐴 - 𝐶𝐸 𝑉𝐴 35.3182 1.47 23.9676 4888 < 0.001
𝐶𝐴 𝑉𝐼 - 𝐶𝐻 𝑉𝑂 -27.1727 1.47 -18.4400 4888 < 0.001
𝐶𝐴 𝑉𝐼 - 𝐶𝑃 𝑉𝑂 -0.3091 1.47 -0.2098 4888 1.000
𝐶𝐴 𝑉𝐼 - 𝐶𝑅 𝑉𝑂 -44.8939 1.47 -30.4659 4888 < 0.001
𝐶𝐴 𝑉𝐼 - 𝐶𝐴 𝑉𝑂 -3.5303 1.47 -2.3957 4888 1.000
𝐶𝐴 𝑉𝐼 - 𝐶𝐸 𝑉𝑂 -5.4364 1.47 -3.6892 4888 0.024
𝐶𝐴 𝑉𝐴 - 𝐶𝐻 𝑉𝐼 -26.5576 1.47 -18.0225 4888 < 0.001
𝐶𝐴 𝑉𝐴 - 𝐶𝐻 𝑉𝑂 -23.9152 1.47 -16.2293 4888 < 0.001
𝐶𝐴 𝑉𝐴 - 𝐶𝑃 𝑉𝐼 -2.9424 1.47 -1.9968 4888 1.000
𝐶𝐴 𝑉𝐴 - 𝐶𝑃 𝑉𝑂 2.9485 1.47 2.0009 4888 1.000
𝐶𝐴 𝑉𝐴 - 𝐶𝑅 𝑉𝐼 -41.3212 1.47 -28.0414 4888 < 0.001
𝐶𝐴 𝑉𝐴 - 𝐶𝑅 𝑉𝑂 -41.6364 1.47 -28.2553 4888 < 0.001
𝐶𝐴 𝑉𝐴 - 𝐶𝐴 𝑉𝐼 3.2576 1.47 2.2107 4888 1.000
𝐶𝐴 𝑉𝐴 - 𝐶𝐴 𝑉𝑂 -0.2727 1.47 -0.1851 4888 1.000
𝐶𝐴 𝑉𝐴 - 𝐶𝐸 𝑉𝐼 -6.1788 1.47 -4.1931 4888 0.003
𝐶𝐴 𝑉𝐴 - 𝐶𝐸 𝑉𝑂 -2.1788 1.47 -1.4786 4888 1.000
𝐶𝐸 𝑉𝐼 - 𝐶𝐻 𝑉𝑂 -17.7364 1.47 -12.0363 4888 < 0.001
𝐶𝐸 𝑉𝐼 - 𝐶𝑃 𝑉𝐼 3.2364 1.47 2.1963 4888 1.000
𝐶𝐸 𝑉𝐼 - 𝐶𝑃 𝑉𝑂 9.1273 1.47 6.1940 4888 < 0.001
𝐶𝐸 𝑉𝐼 - 𝐶𝑅 𝑉𝑂 -35.4576 1.47 -24.0622 4888 < 0.001
𝐶𝐸 𝑉𝐼 - 𝐶𝐴 𝑉𝐼 9.4364 1.47 6.4037 4888 < 0.001
𝐶𝐸 𝑉𝐼 - 𝐶𝐴 𝑉𝑂 5.9061 1.47 4.0080 4888 0.007
𝐶𝐸 𝑉𝐼 - 𝐶𝐸 𝑉𝑂 4.0000 1.47 2.7145 4888 0.699
𝐶𝐸 𝑉𝑂 - 𝐶𝑃 𝑉𝑂 5.1273 1.47 3.4795 4888 0.053
𝐶𝐸 𝑉𝑂 - 𝐶𝐴 𝑉𝑂 1.9061 1.47 1.2935 4888 1.000
𝐶𝐸 𝑉𝐴 - 𝐶𝐻 𝑉𝐼 -20.4455 1.47 -13.8747 4888 < 0.001
𝐶𝐸 𝑉𝐴 - 𝐶𝐻 𝑉𝑂 -17.8030 1.47 -12.0815 4888 < 0.001
𝐶𝐸 𝑉𝐴 - 𝐶𝑃 𝑉𝐼 3.1697 1.47 2.1510 4888 1.000
𝐶𝐸 𝑉𝐴 - 𝐶𝑃 𝑉𝑂 9.0606 1.47 6.1487 4888 < 0.001
𝐶𝐸 𝑉𝐴 - 𝐶𝑃 𝑉𝐴 6.5394 1.47 4.4378 4888 < 0.001
𝐶𝐸 𝑉𝐴 - 𝐶𝑅 𝑉𝐼 -35.2091 1.47 -23.8936 4888 < 0.001
𝐶𝐸 𝑉𝐴 - 𝐶𝑅 𝑉𝑂 -35.5242 1.47 -24.1075 4888 < 0.001
𝐶𝐸 𝑉𝐴 - 𝐶𝐴 𝑉𝐼 9.3697 1.47 6.3585 4888 < 0.001
𝐶𝐸 𝑉𝐴 - 𝐶𝐴 𝑉𝑂 5.8394 1.47 3.9627 4888 0.008
𝐶𝐸 𝑉𝐴 - 𝐶𝐴 𝑉𝐴 6.1121 1.47 4.1478 4888 0.004
𝐶𝐸 𝑉𝐴 - 𝐶𝐸 𝑉𝐼 -0.0667 1.47 -0.0452 4888 1.000
𝐶𝐸 𝑉𝐴 - 𝐶𝐸 𝑉𝑂 3.9333 1.47 2.6692 4888 0.801
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Table A.4: Post hoc comparisons for Condition * Gender

Comparison Difference SE t df p𝑏𝑜𝑛𝑓𝑒𝑟𝑟𝑜𝑛𝑖

𝐶𝐻 𝐺𝑀 - 𝐶𝑃 𝐺𝑀 31.634 1.20 26.292 4888 < 0.001
𝐶𝐻 𝐺𝑀 - 𝐶𝐴 𝐺𝑀 24.267 1.20 20.169 4888 < 0.001
𝐶𝐻 𝐺𝑀 - 𝐶𝐸 𝐺𝑀 26.182 1.20 21.761 4888 < 0.001
𝐶𝐻 𝐺𝐹 - 𝐶𝐻 𝐺𝑀 -2.190 1.20 -1.820 4888 1.000
𝐶𝐻 𝐺𝐹 - 𝐶𝑃 𝐺𝑀 29.444 1.20 24.472 4888 < 0.001
𝐶𝐻 𝐺𝐹 - 𝐶𝑃 𝐺𝐹 20.063 1.20 16.675 4888 < 0.001
𝐶𝐻 𝐺𝐹 - 𝐶𝑅 𝐺𝑀 -16.028 1.20 -13.322 4888 < 0.001
𝐶𝐻 𝐺𝐹 - 𝐶𝐴 𝐺𝑀 22.077 1.20 18.349 4888 < 0.001
𝐶𝐻 𝐺𝐹 - 𝐶𝐴 𝐺𝐹 29.131 1.20 24.212 4888 < 0.001
𝐶𝐻 𝐺𝐹 - 𝐶𝐸 𝐺𝑀 23.992 1.20 19.941 4888 < 0.001
𝐶𝐻 𝐺𝐹 - 𝐶𝐸 𝐺𝐹 15.580 1.20 12.949 4888 < 0.001
𝐶𝑃 𝐺𝑀 - 𝐶𝐴 𝐺𝑀 -7.368 1.20 -6.124 4888 < 0.001
𝐶𝑃 𝐺𝐹 - 𝐶𝐻 𝐺𝑀 -22.253 1.20 -18.495 4888 < 0.001
𝐶𝑃 𝐺𝐹 - 𝐶𝑃 𝐺𝑀 9.382 1.20 7.798 4888 < 0.001
𝐶𝑃 𝐺𝐹 - 𝐶𝑅 𝐺𝑀 -36.091 1.20 -29.996 4888 < 0.001
𝐶𝑃 𝐺𝐹 - 𝐶𝐴 𝐺𝑀 2.014 1.20 1.674 4888 1.000
𝐶𝑃 𝐺𝐹 - 𝐶𝐴 𝐺𝐹 9.069 1.20 7.537 4888 < 0.001
𝐶𝑃 𝐺𝐹 - 𝐶𝐸 𝐺𝑀 3.929 1.20 3.266 4888 0.049
𝐶𝑅 𝐺𝑀 - 𝐶𝐻 𝐺𝑀 13.838 1.20 11.502 4888 < 0.001
𝐶𝑅 𝐺𝑀 - 𝐶𝑃 𝐺𝑀 45.473 1.20 37.794 4888 < 0.001
𝐶𝑅 𝐺𝑀 - 𝐶𝐴 𝐺𝑀 38.105 1.20 31.671 4888 < 0.001
𝐶𝑅 𝐺𝑀 - 𝐶𝐸 𝐺𝑀 40.020 1.20 33.262 4888 < 0.001
𝐶𝑅 𝐺𝐹 - 𝐶𝐻 𝐺𝑀 15.489 1.20 12.873 4888 < 0.001
𝐶𝑅 𝐺𝐹 - 𝐶𝐻 𝐺𝐹 17.679 1.20 14.693 4888 < 0.001
𝐶𝑅 𝐺𝐹 - 𝐶𝑃 𝐺𝑀 47.123 1.20 39.166 4888 < 0.001
𝐶𝑅 𝐺𝐹 - 𝐶𝑃 𝐺𝐹 37.741 1.20 31.368 4888 < 0.001
𝐶𝑅 𝐺𝐹 - 𝐶𝑅 𝐺𝑀 1.651 1.20 1.372 4888 1.000
𝐶𝑅 𝐺𝐹 - 𝐶𝐴 𝐺𝑀 39.756 1.20 33.042 4888 < 0.001
𝐶𝑅 𝐺𝐹 - 𝐶𝐴 𝐺𝐹 46.810 1.20 38.906 4888 < 0.001
𝐶𝑅 𝐺𝐹 - 𝐶𝐸 𝐺𝑀 41.671 1.20 34.634 4888 < 0.001
𝐶𝑅 𝐺𝐹 - 𝐶𝐸 𝐺𝐹 33.259 1.20 27.642 4888 < 0.001
𝐶𝐴 𝐺𝐹 - 𝐶𝐻 𝐺𝑀 -31.321 1.20 -26.032 4888 < 0.001
𝐶𝐴 𝐺𝐹 - 𝐶𝑃 𝐺𝑀 0.313 1.20 0.260 4888 1.000
𝐶𝐴 𝐺𝐹 - 𝐶𝑅 𝐺𝑀 -45.160 1.20 -37.534 4888 < 0.001
𝐶𝐴 𝐺𝐹 - 𝐶𝐴 𝐺𝑀 -7.055 1.20 -5.863 4888 < 0.001
𝐶𝐴 𝐺𝐹 - 𝐶𝐸 𝐺𝑀 -5.139 1.20 -4.272 4888 < 0.001
𝐶𝐸 𝐺𝑀 - 𝐶𝑃 𝐺𝑀 5.453 1.20 4.532 4888 < 0.001
𝐶𝐸 𝐺𝑀 - 𝐶𝐴 𝐺𝑀 -1.915 1.20 -1.592 4888 1.000
𝐶𝐸 𝐺𝐹 - 𝐶𝐻 𝐺𝑀 -17.770 1.20 -14.769 4888 < 0.001
𝐶𝐸 𝐺𝐹 - 𝐶𝑃 𝐺𝑀 13.865 1.20 11.523 4888 < 0.001
𝐶𝐸 𝐺𝐹 - 𝐶𝑃 𝐺𝐹 4.483 1.20 3.726 4888 0.009
𝐶𝐸 𝐺𝐹 - 𝐶𝑅 𝐺𝑀 -31.608 1.20 -26.271 4888 < 0.001
𝐶𝐸 𝐺𝐹 - 𝐶𝐴 𝐺𝑀 6.497 1.20 5.400 4888 < 0.001
𝐶𝐸 𝐺𝐹 - 𝐶𝐴 𝐺𝐹 13.552 1.20 11.263 4888 < 0.001
𝐶𝐸 𝐺𝐹 - 𝐶𝐸 𝐺𝑀 8.412 1.20 6.992 4888 < 0.001

Table A.5: Post hoc comparisons for Gender * Vowel * Condition

Comparison Difference SE t df p𝑏𝑜𝑛𝑓𝑒𝑟𝑟𝑜𝑛𝑖

𝐺𝑀 𝑉𝐼 𝐶𝐻 - 𝐺𝑀 𝑉𝐼 𝐶𝑃 25.7576 2.08 12.3600 4888 < 0.001
𝐺𝑀 𝑉𝐼 𝐶𝐻 - 𝐺𝑀 𝑉𝐼 𝐶𝐴 22.1333 2.08 10.6208 4888 < 0.001
𝐺𝑀 𝑉𝐼 𝐶𝐻 - 𝐺𝑀 𝑉𝐼 𝐶𝐸 22.7273 2.08 10.9058 4888 < 0.001
𝐺𝑀 𝑉𝐼 𝐶𝐻 - 𝐺𝑀 𝑉𝑂 𝐶𝐻 -3.0242 2.08 -1.4512 4888 1.000
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Table A.5 Continued: Post Hoc Comparisons - Gender * Vowel * Condition

Comparison Difference SE t df p𝑏𝑜𝑛𝑓𝑒𝑟𝑟𝑜𝑛𝑖

𝐺𝑀 𝑉𝐼 𝐶𝐻 - 𝐺𝑀 𝑉𝑂 𝐶𝑃 35.9939 2.08 17.2719 4888 < 0.001
𝐺𝑀 𝑉𝐼 𝐶𝐻 - 𝐺𝑀 𝑉𝑂 𝐶𝐴 20.8000 2.08 9.9810 4888 < 0.001
𝐺𝑀 𝑉𝐼 𝐶𝐻 - 𝐺𝑀 𝑉𝑂 𝐶𝐸 28.4788 2.08 13.6657 4888 < 0.001
𝐺𝑀 𝑉𝐼 𝐶𝐻 - 𝐺𝑀 𝑉𝐴 𝐶𝑃 24.1455 2.08 11.5864 4888 < 0.001
𝐺𝑀 𝑉𝐼 𝐶𝐻 - 𝐺𝑀 𝑉𝐴 𝐶𝐴 20.8606 2.08 10.0101 4888 < 0.001
𝐺𝑀 𝑉𝐼 𝐶𝐻 - 𝐺𝑀 𝑉𝐴 𝐶𝐸 18.3333 2.08 8.7974 4888 < 0.001
𝐺𝑀 𝑉𝐼 𝐶𝐻 - 𝐺𝐹 𝑉𝐼 𝐶𝑃 15.9515 2.08 7.6544 4888 < 0.001
𝐺𝑀 𝑉𝐼 𝐶𝐻 - 𝐺𝐹 𝑉𝐼 𝐶𝐴 31.9758 2.08 15.3438 4888 < 0.001
𝐺𝑀 𝑉𝐼 𝐶𝐻 - 𝐺𝐹 𝑉𝐼 𝐶𝐸 12.5091 2.08 6.0026 4888 < 0.001
𝐺𝑀 𝑉𝐼 𝐶𝐻 - 𝐺𝐹 𝑉𝑂 𝐶𝐻 2.7879 2.08 1.3378 4888 1.000
𝐺𝑀 𝑉𝐼 𝐶𝐻 - 𝐺𝐹 𝑉𝑂 𝐶𝑃 17.4970 2.08 8.3960 4888 < 0.001
𝐺𝑀 𝑉𝐼 𝐶𝐻 - 𝐺𝐹 𝑉𝑂 𝐶𝐴 26.2485 2.08 12.5955 4888 < 0.001
𝐺𝑀 𝑉𝐼 𝐶𝐻 - 𝐺𝐹 𝑉𝑂 𝐶𝐸 14.7576 2.08 7.0815 4888 < 0.001
𝐺𝑀 𝑉𝐼 𝐶𝐻 - 𝐺𝐹 𝑉𝐴 𝐶𝑃 24.3030 2.08 11.6620 4888 < 0.001
𝐺𝑀 𝑉𝐼 𝐶𝐻 - 𝐺𝐹 𝑉𝐴 𝐶𝐴 26.7333 2.08 12.8282 4888 < 0.001
𝐺𝑀 𝑉𝐼 𝐶𝐻 - 𝐺𝐹 𝑉𝐴 𝐶𝐸 17.0364 2.08 8.1750 4888 < 0.001
𝐺𝑀 𝑉𝐼 𝐶𝑃 - 𝐺𝑀 𝑉𝐼 𝐶𝐴 -3.6242 2.08 -1.7391 4888 1.000
𝐺𝑀 𝑉𝐼 𝐶𝑃 - 𝐺𝑀 𝑉𝑂 𝐶𝑃 10.2364 2.08 4.9120 4888 < 0.001
𝐺𝑀 𝑉𝐼 𝐶𝑃 - 𝐺𝑀 𝑉𝑂 𝐶𝐴 -4.9576 2.08 -2.3789 4888 1.000
𝐺𝑀 𝑉𝐼 𝐶𝑃 - 𝐺𝑀 𝑉𝐴 𝐶𝐴 -4.8970 2.08 -2.3498 4888 1.000
𝐺𝑀 𝑉𝐼 𝐶𝑃 - 𝐺𝐹 𝑉𝐼 𝐶𝐴 6.2182 2.08 2.9838 4888 1.000
𝐺𝑀 𝑉𝐼 𝐶𝑃 - 𝐺𝐹 𝑉𝑂 𝐶𝑃 -8.2606 2.08 -3.9639 4888 0.033
𝐺𝑀 𝑉𝐼 𝐶𝑃 - 𝐺𝐹 𝑉𝑂 𝐶𝐴 0.4909 2.08 0.2356 4888 1.000
𝐺𝑀 𝑉𝐼 𝐶𝑃 - 𝐺𝐹 𝑉𝐴 𝐶𝐴 0.9758 2.08 0.4682 4888 1.000
𝐺𝑀 𝑉𝐼 𝐶𝑅 - 𝐺𝑀 𝑉𝐼 𝐶𝐻 16.0000 2.08 7.6777 4888 < 0.001
𝐺𝑀 𝑉𝐼 𝐶𝑅 - 𝐺𝑀 𝑉𝐼 𝐶𝑃 41.7576 2.08 20.0377 4888 < 0.001
𝐺𝑀 𝑉𝐼 𝐶𝑅 - 𝐺𝑀 𝑉𝐼 𝐶𝐴 38.1333 2.08 18.2985 4888 < 0.001
𝐺𝑀 𝑉𝐼 𝐶𝑅 - 𝐺𝑀 𝑉𝐼 𝐶𝐸 38.7273 2.08 18.5836 4888 < 0.001
𝐺𝑀 𝑉𝐼 𝐶𝑅 - 𝐺𝑀 𝑉𝑂 𝐶𝐻 12.9758 2.08 6.2265 4888 < 0.001
𝐺𝑀 𝑉𝐼 𝐶𝑅 - 𝐺𝑀 𝑉𝑂 𝐶𝑃 51.9939 2.08 24.9497 4888 < 0.001
𝐺𝑀 𝑉𝐼 𝐶𝑅 - 𝐺𝑀 𝑉𝑂 𝐶𝑅 -1.4667 2.08 -0.7038 4888 1.000
𝐺𝑀 𝑉𝐼 𝐶𝑅 - 𝐺𝑀 𝑉𝑂 𝐶𝐴 36.8000 2.08 17.6587 4888 < 0.001
𝐺𝑀 𝑉𝐼 𝐶𝑅 - 𝐺𝑀 𝑉𝑂 𝐶𝐸 44.4788 2.08 21.3435 4888 < 0.001
𝐺𝑀 𝑉𝐼 𝐶𝑅 - 𝐺𝑀 𝑉𝐴 𝐶𝐻 10.0182 2.08 4.8073 4888 < 0.001
𝐺𝑀 𝑉𝐼 𝐶𝑅 - 𝐺𝑀 𝑉𝐴 𝐶𝑃 40.1455 2.08 19.2641 4888 < 0.001
𝐺𝑀 𝑉𝐼 𝐶𝑅 - 𝐺𝑀 𝑉𝐴 𝐶𝐴 36.8606 2.08 17.6878 4888 < 0.001
𝐺𝑀 𝑉𝐼 𝐶𝑅 - 𝐺𝑀 𝑉𝐴 𝐶𝐸 34.3333 2.08 16.4751 4888 < 0.001
𝐺𝑀 𝑉𝐼 𝐶𝑅 - 𝐺𝐹 𝑉𝐼 𝐶𝐻 10.4788 2.08 5.0283 4888 < 0.001
𝐺𝑀 𝑉𝐼 𝐶𝑅 - 𝐺𝐹 𝑉𝐼 𝐶𝑃 31.9515 2.08 15.3322 4888 < 0.001
𝐺𝑀 𝑉𝐼 𝐶𝑅 - 𝐺𝐹 𝑉𝐼 𝐶𝐴 47.9758 2.08 23.0215 4888 < 0.001
𝐺𝑀 𝑉𝐼 𝐶𝑅 - 𝐺𝐹 𝑉𝐼 𝐶𝐸 28.5091 2.08 13.6803 4888 < 0.001
𝐺𝑀 𝑉𝐼 𝐶𝑅 - 𝐺𝐹 𝑉𝑂 𝐶𝐻 18.7879 2.08 9.0155 4888 < 0.001
𝐺𝑀 𝑉𝐼 𝐶𝑅 - 𝐺𝐹 𝑉𝑂 𝐶𝑃 33.4970 2.08 16.0738 4888 < 0.001
𝐺𝑀 𝑉𝐼 𝐶𝑅 - 𝐺𝐹 𝑉𝑂 𝐶𝑅 -2.2121 2.08 -1.0615 4888 1.000
𝐺𝑀 𝑉𝐼 𝐶𝑅 - 𝐺𝐹 𝑉𝑂 𝐶𝐴 42.2485 2.08 20.2732 4888 < 0.001
𝐺𝑀 𝑉𝐼 𝐶𝑅 - 𝐺𝐹 𝑉𝑂 𝐶𝐸 30.7576 2.08 14.7592 4888 < 0.001
𝐺𝑀 𝑉𝐼 𝐶𝑅 - 𝐺𝐹 𝑉𝐴 𝐶𝐻 16.2970 2.08 7.8202 4888 < 0.001
𝐺𝑀 𝑉𝐼 𝐶𝑅 - 𝐺𝐹 𝑉𝐴 𝐶𝑃 40.3030 2.08 19.3397 4888 < 0.001
𝐺𝑀 𝑉𝐼 𝐶𝑅 - 𝐺𝐹 𝑉𝐴 𝐶𝐴 42.7333 2.08 20.5059 4888 < 0.001
𝐺𝑀 𝑉𝐼 𝐶𝑅 - 𝐺𝐹 𝑉𝐴 𝐶𝐸 33.0364 2.08 15.8527 4888 < 0.001
𝐺𝑀 𝑉𝐼 𝐶𝐴 - 𝐺𝑀 𝑉𝑂 𝐶𝐴 -1.3333 2.08 -0.6398 4888 1.000
𝐺𝑀 𝑉𝐼 𝐶𝐴 - 𝐺𝐹 𝑉𝑂 𝐶𝐴 4.1152 2.08 1.9747 4888 1.000
𝐺𝑀 𝑉𝐼 𝐶𝐸 - 𝐺𝑀 𝑉𝐼 𝐶𝑃 3.0303 2.08 1.4541 4888 1.000
𝐺𝑀 𝑉𝐼 𝐶𝐸 - 𝐺𝑀 𝑉𝐼 𝐶𝐴 -0.5939 2.08 -0.2850 4888 1.000
𝐺𝑀 𝑉𝐼 𝐶𝐸 - 𝐺𝑀 𝑉𝑂 𝐶𝑃 13.2667 2.08 6.3661 4888 < 0.001
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Table A.5 Continued: Post Hoc Comparisons - Gender * Vowel * Condition

Comparison Difference SE t df p𝑏𝑜𝑛𝑓𝑒𝑟𝑟𝑜𝑛𝑖

𝐺𝑀 𝑉𝐼 𝐶𝐸 - 𝐺𝑀 𝑉𝑂 𝐶𝐴 -1.9273 2.08 -0.9248 4888 1.000
𝐺𝑀 𝑉𝐼 𝐶𝐸 - 𝐺𝑀 𝑉𝑂 𝐶𝐸 5.7515 2.08 2.7599 4888 1.000
𝐺𝑀 𝑉𝐼 𝐶𝐸 - 𝐺𝑀 𝑉𝐴 𝐶𝑃 1.4182 2.08 0.6805 4888 1.000
𝐺𝑀 𝑉𝐼 𝐶𝐸 - 𝐺𝑀 𝑉𝐴 𝐶𝐴 -1.8667 2.08 -0.8957 4888 1.000
𝐺𝑀 𝑉𝐼 𝐶𝐸 - 𝐺𝐹 𝑉𝐼 𝐶𝑃 -6.7758 2.08 -3.2514 4888 0.503
𝐺𝑀 𝑉𝐼 𝐶𝐸 - 𝐺𝐹 𝑉𝐼 𝐶𝐴 9.2485 2.08 4.4380 4888 0.004
𝐺𝑀 𝑉𝐼 𝐶𝐸 - 𝐺𝐹 𝑉𝑂 𝐶𝑃 -5.2303 2.08 -2.5098 4888 1.000
𝐺𝑀 𝑉𝐼 𝐶𝐸 - 𝐺𝐹 𝑉𝑂 𝐶𝐴 3.5212 2.08 1.6897 4888 1.000
𝐺𝑀 𝑉𝐼 𝐶𝐸 - 𝐺𝐹 𝑉𝑂 𝐶𝐸 -7.9697 2.08 -3.8243 4888 0.058
𝐺𝑀 𝑉𝐼 𝐶𝐸 - 𝐺𝐹 𝑉𝐴 𝐶𝑃 1.5758 2.08 0.7561 4888 1.000
𝐺𝑀 𝑉𝐼 𝐶𝐸 - 𝐺𝐹 𝑉𝐴 𝐶𝐴 4.0061 2.08 1.9223 4888 1.000
𝐺𝑀 𝑉𝑂 𝐶𝐻 - 𝐺𝑀 𝑉𝐼 𝐶𝑃 28.7818 2.08 13.8112 4888 < 0.001
𝐺𝑀 𝑉𝑂 𝐶𝐻 - 𝐺𝑀 𝑉𝐼 𝐶𝐴 25.1576 2.08 12.0720 4888 < 0.001
𝐺𝑀 𝑉𝑂 𝐶𝐻 - 𝐺𝑀 𝑉𝐼 𝐶𝐸 25.7515 2.08 12.3570 4888 < 0.001
𝐺𝑀 𝑉𝑂 𝐶𝐻 - 𝐺𝑀 𝑉𝑂 𝐶𝑃 39.0182 2.08 18.7231 4888 < 0.001
𝐺𝑀 𝑉𝑂 𝐶𝐻 - 𝐺𝑀 𝑉𝑂 𝐶𝐴 23.8242 2.08 11.4322 4888 < 0.001
𝐺𝑀 𝑉𝑂 𝐶𝐻 - 𝐺𝑀 𝑉𝑂 𝐶𝐸 31.5030 2.08 15.1170 4888 < 0.001
𝐺𝑀 𝑉𝑂 𝐶𝐻 - 𝐺𝑀 𝑉𝐴 𝐶𝑃 27.1697 2.08 13.0376 4888 < 0.001
𝐺𝑀 𝑉𝑂 𝐶𝐻 - 𝐺𝑀 𝑉𝐴 𝐶𝐴 23.8848 2.08 11.4613 4888 < 0.001
𝐺𝑀 𝑉𝑂 𝐶𝐻 - 𝐺𝑀 𝑉𝐴 𝐶𝐸 21.3576 2.08 10.2486 4888 < 0.001
𝐺𝑀 𝑉𝑂 𝐶𝐻 - 𝐺𝐹 𝑉𝐼 𝐶𝑃 18.9758 2.08 9.1057 4888 < 0.001
𝐺𝑀 𝑉𝑂 𝐶𝐻 - 𝐺𝐹 𝑉𝐼 𝐶𝐴 35.0000 2.08 16.7950 4888 < 0.001
𝐺𝑀 𝑉𝑂 𝐶𝐻 - 𝐺𝐹 𝑉𝐼 𝐶𝐸 15.5333 2.08 7.4538 4888 < 0.001
𝐺𝑀 𝑉𝑂 𝐶𝐻 - 𝐺𝐹 𝑉𝑂 𝐶𝑃 20.5212 2.08 9.8472 4888 < 0.001
𝐺𝑀 𝑉𝑂 𝐶𝐻 - 𝐺𝐹 𝑉𝑂 𝐶𝐴 29.2727 2.08 14.0467 4888 < 0.001
𝐺𝑀 𝑉𝑂 𝐶𝐻 - 𝐺𝐹 𝑉𝑂 𝐶𝐸 17.7818 2.08 8.5327 4888 < 0.001
𝐺𝑀 𝑉𝑂 𝐶𝐻 - 𝐺𝐹 𝑉𝐴 𝐶𝑃 27.3273 2.08 13.1132 4888 < 0.001
𝐺𝑀 𝑉𝑂 𝐶𝐻 - 𝐺𝐹 𝑉𝐴 𝐶𝐴 29.7576 2.08 14.2794 4888 < 0.001
𝐺𝑀 𝑉𝑂 𝐶𝐻 - 𝐺𝐹 𝑉𝐴 𝐶𝐸 20.0606 2.08 9.6262 4888 < 0.001
𝐺𝑀 𝑉𝑂 𝐶𝑃 - 𝐺𝑀 𝑉𝐼 𝐶𝐴 -13.8606 2.08 -6.6511 4888 < 0.001
𝐺𝑀 𝑉𝑂 𝐶𝑃 - 𝐺𝑀 𝑉𝑂 𝐶𝐴 -15.1939 2.08 -7.2909 4888 < 0.001
𝐺𝑀 𝑉𝑂 𝐶𝑃 - 𝐺𝑀 𝑉𝐴 𝐶𝐴 -15.1333 2.08 -7.2618 4888 < 0.001
𝐺𝑀 𝑉𝑂 𝐶𝑃 - 𝐺𝐹 𝑉𝐼 𝐶𝐴 -4.0182 2.08 -1.9282 4888 1.000
𝐺𝑀 𝑉𝑂 𝐶𝑃 - 𝐺𝐹 𝑉𝑂 𝐶𝐴 -9.7455 2.08 -4.6764 4888 0.001
𝐺𝑀 𝑉𝑂 𝐶𝑃 - 𝐺𝐹 𝑉𝐴 𝐶𝐴 -9.2606 2.08 -4.4438 4888 0.004
𝐺𝑀 𝑉𝑂 𝐶𝑅 - 𝐺𝑀 𝑉𝐼 𝐶𝐻 17.4667 2.08 8.3815 4888 < 0.001
𝐺𝑀 𝑉𝑂 𝐶𝑅 - 𝐺𝑀 𝑉𝐼 𝐶𝑃 43.2242 2.08 20.7415 4888 < 0.001
𝐺𝑀 𝑉𝑂 𝐶𝑅 - 𝐺𝑀 𝑉𝐼 𝐶𝐴 39.6000 2.08 19.0023 4888 < 0.001
𝐺𝑀 𝑉𝑂 𝐶𝑅 - 𝐺𝑀 𝑉𝐼 𝐶𝐸 40.1939 2.08 19.2873 4888 < 0.001
𝐺𝑀 𝑉𝑂 𝐶𝑅 - 𝐺𝑀 𝑉𝑂 𝐶𝐻 14.4424 2.08 6.9303 4888 < 0.001
𝐺𝑀 𝑉𝑂 𝐶𝑅 - 𝐺𝑀 𝑉𝑂 𝐶𝑃 53.4606 2.08 25.6534 4888 < 0.001
𝐺𝑀 𝑉𝑂 𝐶𝑅 - 𝐺𝑀 𝑉𝑂 𝐶𝐴 38.2667 2.08 18.3625 4888 < 0.001
𝐺𝑀 𝑉𝑂 𝐶𝑅 - 𝐺𝑀 𝑉𝑂 𝐶𝐸 45.9455 2.08 22.0472 4888 < 0.001
𝐺𝑀 𝑉𝑂 𝐶𝑅 - 𝐺𝑀 𝑉𝐴 𝐶𝐻 11.4848 2.08 5.5111 4888 < 0.001
𝐺𝑀 𝑉𝑂 𝐶𝑅 - 𝐺𝑀 𝑉𝐴 𝐶𝑃 41.6121 2.08 19.9679 4888 < 0.001
𝐺𝑀 𝑉𝑂 𝐶𝑅 - 𝐺𝑀 𝑉𝐴 𝐶𝐴 38.3273 2.08 18.3916 4888 < 0.001
𝐺𝑀 𝑉𝑂 𝐶𝑅 - 𝐺𝑀 𝑉𝐴 𝐶𝐸 35.8000 2.08 17.1789 4888 < 0.001
𝐺𝑀 𝑉𝑂 𝐶𝑅 - 𝐺𝐹 𝑉𝐼 𝐶𝐻 11.9455 2.08 5.7321 4888 < 0.001
𝐺𝑀 𝑉𝑂 𝐶𝑅 - 𝐺𝐹 𝑉𝐼 𝐶𝑃 33.4182 2.08 16.0359 4888 < 0.001
𝐺𝑀 𝑉𝑂 𝐶𝑅 - 𝐺𝐹 𝑉𝐼 𝐶𝐴 49.4424 2.08 23.7253 4888 < 0.001
𝐺𝑀 𝑉𝑂 𝐶𝑅 - 𝐺𝐹 𝑉𝐼 𝐶𝐸 29.9758 2.08 14.3841 4888 < 0.001
𝐺𝑀 𝑉𝑂 𝐶𝑅 - 𝐺𝐹 𝑉𝑂 𝐶𝐻 20.2545 2.08 9.7193 4888 < 0.001
𝐺𝑀 𝑉𝑂 𝐶𝑅 - 𝐺𝐹 𝑉𝑂 𝐶𝑃 34.9636 2.08 16.7775 4888 < 0.001
𝐺𝑀 𝑉𝑂 𝐶𝑅 - 𝐺𝐹 𝑉𝑂 𝐶𝐴 43.7152 2.08 20.9770 4888 < 0.001
𝐺𝑀 𝑉𝑂 𝐶𝑅 - 𝐺𝐹 𝑉𝑂 𝐶𝐸 32.2242 2.08 15.4630 4888 < 0.001
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Table A.5 Continued: Post Hoc Comparisons - Gender * Vowel * Condition

Comparison Difference SE t df p𝑏𝑜𝑛𝑓𝑒𝑟𝑟𝑜𝑛𝑖

𝐺𝑀 𝑉𝑂 𝐶𝑅 - 𝐺𝐹 𝑉𝐴 𝐶𝐻 17.7636 2.08 8.5240 4888 < 0.001
𝐺𝑀 𝑉𝑂 𝐶𝑅 - 𝐺𝐹 𝑉𝐴 𝐶𝑃 41.7697 2.08 20.0435 4888 < 0.001
𝐺𝑀 𝑉𝑂 𝐶𝑅 - 𝐺𝐹 𝑉𝐴 𝐶𝐴 44.2000 2.08 21.2097 4888 < 0.001
𝐺𝑀 𝑉𝑂 𝐶𝑅 - 𝐺𝐹 𝑉𝐴 𝐶𝐸 34.5030 2.08 16.5565 4888 < 0.001
𝐺𝑀 𝑉𝑂 𝐶𝐸 - 𝐺𝑀 𝑉𝐼 𝐶𝑃 -2.7212 2.08 -1.3058 4888 1.000
𝐺𝑀 𝑉𝑂 𝐶𝐸 - 𝐺𝑀 𝑉𝐼 𝐶𝐴 -6.3455 2.08 -3.0449 4888 1.000
𝐺𝑀 𝑉𝑂 𝐶𝐸 - 𝐺𝑀 𝑉𝑂 𝐶𝑃 7.5152 2.08 3.6062 4888 0.137
𝐺𝑀 𝑉𝑂 𝐶𝐸 - 𝐺𝑀 𝑉𝑂 𝐶𝐴 -7.6788 2.08 -3.6847 4888 0.101
𝐺𝑀 𝑉𝑂 𝐶𝐸 - 𝐺𝑀 𝑉𝐴 𝐶𝑃 -4.3333 2.08 -2.0794 4888 1.000
𝐺𝑀 𝑉𝑂 𝐶𝐸 - 𝐺𝑀 𝑉𝐴 𝐶𝐴 -7.6182 2.08 -3.6556 4888 0.113
𝐺𝑀 𝑉𝑂 𝐶𝐸 - 𝐺𝐹 𝑉𝐼 𝐶𝑃 -12.5273 2.08 -6.0113 4888 < 0.001
𝐺𝑀 𝑉𝑂 𝐶𝐸 - 𝐺𝐹 𝑉𝐼 𝐶𝐴 3.4970 2.08 1.6780 4888 1.000
𝐺𝑀 𝑉𝑂 𝐶𝐸 - 𝐺𝐹 𝑉𝑂 𝐶𝑃 -10.9818 2.08 -5.2697 4888 < 0.001
𝐺𝑀 𝑉𝑂 𝐶𝐸 - 𝐺𝐹 𝑉𝑂 𝐶𝐴 -2.2303 2.08 -1.0702 4888 1.000
𝐺𝑀 𝑉𝑂 𝐶𝐸 - 𝐺𝐹 𝑉𝐴 𝐶𝑃 -4.1758 2.08 -2.0038 4888 1.000
𝐺𝑀 𝑉𝑂 𝐶𝐸 - 𝐺𝐹 𝑉𝐴 𝐶𝐴 -1.7455 2.08 -0.8376 4888 1.000
𝐺𝑀 𝑉𝐴 𝐶𝐻 - 𝐺𝑀 𝑉𝐼 𝐶𝐻 5.9818 2.08 2.8704 4888 1.000
𝐺𝑀 𝑉𝐴 𝐶𝐻 - 𝐺𝑀 𝑉𝐼 𝐶𝑃 31.7394 2.08 15.2304 4888 < 0.001
𝐺𝑀 𝑉𝐴 𝐶𝐻 - 𝐺𝑀 𝑉𝐼 𝐶𝐴 28.1152 2.08 13.4913 4888 < 0.001
𝐺𝑀 𝑉𝐴 𝐶𝐻 - 𝐺𝑀 𝑉𝐼 𝐶𝐸 28.7091 2.08 13.7763 4888 < 0.001
𝐺𝑀 𝑉𝐴 𝐶𝐻 - 𝐺𝑀 𝑉𝑂 𝐶𝐻 2.9576 2.08 1.4192 4888 1.000
𝐺𝑀 𝑉𝐴 𝐶𝐻 - 𝐺𝑀 𝑉𝑂 𝐶𝑃 41.9758 2.08 20.1424 4888 < 0.001
𝐺𝑀 𝑉𝐴 𝐶𝐻 - 𝐺𝑀 𝑉𝑂 𝐶𝐴 26.7818 2.08 12.8514 4888 < 0.001
𝐺𝑀 𝑉𝐴 𝐶𝐻 - 𝐺𝑀 𝑉𝑂 𝐶𝐸 34.4606 2.08 16.5362 4888 < 0.001
𝐺𝑀 𝑉𝐴 𝐶𝐻 - 𝐺𝑀 𝑉𝐴 𝐶𝑃 30.1273 2.08 14.4568 4888 < 0.001
𝐺𝑀 𝑉𝐴 𝐶𝐻 - 𝐺𝑀 𝑉𝐴 𝐶𝐴 26.8424 2.08 12.8805 4888 < 0.001
𝐺𝑀 𝑉𝐴 𝐶𝐻 - 𝐺𝑀 𝑉𝐴 𝐶𝐸 24.3152 2.08 11.6678 4888 < 0.001
𝐺𝑀 𝑉𝐴 𝐶𝐻 - 𝐺𝐹 𝑉𝐼 𝐶𝐻 0.4606 2.08 0.2210 4888 1.000
𝐺𝑀 𝑉𝐴 𝐶𝐻 - 𝐺𝐹 𝑉𝐼 𝐶𝑃 21.9333 2.08 10.5249 4888 < 0.001
𝐺𝑀 𝑉𝐴 𝐶𝐻 - 𝐺𝐹 𝑉𝐼 𝐶𝐴 37.9576 2.08 18.2142 4888 < 0.001
𝐺𝑀 𝑉𝐴 𝐶𝐻 - 𝐺𝐹 𝑉𝐼 𝐶𝐸 18.4909 2.08 8.8730 4888 < 0.001
𝐺𝑀 𝑉𝐴 𝐶𝐻 - 𝐺𝐹 𝑉𝑂 𝐶𝐻 8.7697 2.08 4.2082 4888 0.011
𝐺𝑀 𝑉𝐴 𝐶𝐻 - 𝐺𝐹 𝑉𝑂 𝐶𝑃 23.4788 2.08 11.2665 4888 < 0.001
𝐺𝑀 𝑉𝐴 𝐶𝐻 - 𝐺𝐹 𝑉𝑂 𝐶𝐴 32.2303 2.08 15.4659 4888 < 0.001
𝐺𝑀 𝑉𝐴 𝐶𝐻 - 𝐺𝐹 𝑉𝑂 𝐶𝐸 20.7394 2.08 9.9519 4888 < 0.001
𝐺𝑀 𝑉𝐴 𝐶𝐻 - 𝐺𝐹 𝑉𝐴 𝐶𝑃 30.2848 2.08 14.5324 4888 < 0.001
𝐺𝑀 𝑉𝐴 𝐶𝐻 - 𝐺𝐹 𝑉𝐴 𝐶𝐴 32.7152 2.08 15.6986 4888 < 0.001
𝐺𝑀 𝑉𝐴 𝐶𝐻 - 𝐺𝐹 𝑉𝐴 𝐶𝐸 23.0182 2.08 11.0454 4888 < 0.001
𝐺𝑀 𝑉𝐴 𝐶𝑃 - 𝐺𝑀 𝑉𝐼 𝐶𝑃 1.6121 2.08 0.7736 4888 1.000
𝐺𝑀 𝑉𝐴 𝐶𝑃 - 𝐺𝑀 𝑉𝐼 𝐶𝐴 -2.0121 2.08 -0.9655 4888 1.000
𝐺𝑀 𝑉𝐴 𝐶𝑃 - 𝐺𝑀 𝑉𝑂 𝐶𝑃 11.8485 2.08 5.6856 4888 < 0.001
𝐺𝑀 𝑉𝐴 𝐶𝑃 - 𝐺𝑀 𝑉𝑂 𝐶𝐴 -3.3455 2.08 -1.6053 4888 1.000
𝐺𝑀 𝑉𝐴 𝐶𝑃 - 𝐺𝑀 𝑉𝐴 𝐶𝐴 -3.2848 2.08 -1.5763 4888 1.000
𝐺𝑀 𝑉𝐴 𝐶𝑃 - 𝐺𝐹 𝑉𝐼 𝐶𝑃 -8.1939 2.08 -3.9319 4888 0.037
𝐺𝑀 𝑉𝐴 𝐶𝑃 - 𝐺𝐹 𝑉𝐼 𝐶𝐴 7.8303 2.08 3.7574 4888 0.076
𝐺𝑀 𝑉𝐴 𝐶𝑃 - 𝐺𝐹 𝑉𝑂 𝐶𝑃 -6.6485 2.08 -3.1903 4888 0.622
𝐺𝑀 𝑉𝐴 𝐶𝑃 - 𝐺𝐹 𝑉𝑂 𝐶𝐴 2.1030 2.08 1.0092 4888 1.000
𝐺𝑀 𝑉𝐴 𝐶𝑃 - 𝐺𝐹 𝑉𝐴 𝐶𝐴 2.5879 2.08 1.2418 4888 1.000
𝐺𝑀 𝑉𝐴 𝐶𝑅 - 𝐺𝑀 𝑉𝐼 𝐶𝐻 17.0545 2.08 8.1837 4888 < 0.001
𝐺𝑀 𝑉𝐴 𝐶𝑅 - 𝐺𝑀 𝑉𝐼 𝐶𝑃 42.8121 2.08 20.5437 4888 < 0.001
𝐺𝑀 𝑉𝐴 𝐶𝑅 - 𝐺𝑀 𝑉𝐼 𝐶𝑅 1.0545 2.08 0.5060 4888 1.000
𝐺𝑀 𝑉𝐴 𝐶𝑅 - 𝐺𝑀 𝑉𝐼 𝐶𝐴 39.1879 2.08 18.8046 4888 < 0.001
𝐺𝑀 𝑉𝐴 𝐶𝑅 - 𝐺𝑀 𝑉𝐼 𝐶𝐸 39.7818 2.08 19.0896 4888 < 0.001
𝐺𝑀 𝑉𝐴 𝐶𝑅 - 𝐺𝑀 𝑉𝑂 𝐶𝐻 14.0303 2.08 6.7325 4888 < 0.001
𝐺𝑀 𝑉𝐴 𝐶𝑅 - 𝐺𝑀 𝑉𝑂 𝐶𝑃 53.0485 2.08 25.4557 4888 < 0.001
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Table A.5 Continued: Post Hoc Comparisons - Gender * Vowel * Condition

Comparison Difference SE t df p𝑏𝑜𝑛𝑓𝑒𝑟𝑟𝑜𝑛𝑖

𝐺𝑀 𝑉𝐴 𝐶𝑅 - 𝐺𝑀 𝑉𝑂 𝐶𝑅 -0.4121 2.08 -0.1978 4888 1.000
𝐺𝑀 𝑉𝐴 𝐶𝑅 - 𝐺𝑀 𝑉𝑂 𝐶𝐴 37.8545 2.08 18.1648 4888 < 0.001
𝐺𝑀 𝑉𝐴 𝐶𝑅 - 𝐺𝑀 𝑉𝑂 𝐶𝐸 45.5333 2.08 21.8495 4888 < 0.001
𝐺𝑀 𝑉𝐴 𝐶𝑅 - 𝐺𝑀 𝑉𝐴 𝐶𝐻 11.0727 2.08 5.3133 4888 < 0.001
𝐺𝑀 𝑉𝐴 𝐶𝑅 - 𝐺𝑀 𝑉𝐴 𝐶𝑃 41.2000 2.08 19.7701 4888 < 0.001
𝐺𝑀 𝑉𝐴 𝐶𝑅 - 𝐺𝑀 𝑉𝐴 𝐶𝐴 37.9152 2.08 18.1939 4888 < 0.001
𝐺𝑀 𝑉𝐴 𝐶𝑅 - 𝐺𝑀 𝑉𝐴 𝐶𝐸 35.3879 2.08 16.9811 4888 < 0.001
𝐺𝑀 𝑉𝐴 𝐶𝑅 - 𝐺𝐹 𝑉𝐼 𝐶𝐻 11.5333 2.08 5.5344 4888 < 0.001
𝐺𝑀 𝑉𝐴 𝐶𝑅 - 𝐺𝐹 𝑉𝐼 𝐶𝑃 33.0061 2.08 15.8382 4888 < 0.001
𝐺𝑀 𝑉𝐴 𝐶𝑅 - 𝐺𝐹 𝑉𝐼 𝐶𝑅 -1.9939 2.08 -0.9568 4888 1.000
𝐺𝑀 𝑉𝐴 𝐶𝑅 - 𝐺𝐹 𝑉𝐼 𝐶𝐴 49.0303 2.08 23.5275 4888 < 0.001
𝐺𝑀 𝑉𝐴 𝐶𝑅 - 𝐺𝐹 𝑉𝐼 𝐶𝐸 29.5636 2.08 14.1863 4888 < 0.001
𝐺𝑀 𝑉𝐴 𝐶𝑅 - 𝐺𝐹 𝑉𝑂 𝐶𝐻 19.8424 2.08 9.5215 4888 < 0.001
𝐺𝑀 𝑉𝐴 𝐶𝑅 - 𝐺𝐹 𝑉𝑂 𝐶𝑃 34.5515 2.08 16.5798 4888 < 0.001
𝐺𝑀 𝑉𝐴 𝐶𝑅 - 𝐺𝐹 𝑉𝑂 𝐶𝑅 -1.1576 2.08 -0.5555 4888 1.000
𝐺𝑀 𝑉𝐴 𝐶𝑅 - 𝐺𝐹 𝑉𝑂 𝐶𝐴 43.3030 2.08 20.7793 4888 < 0.001
𝐺𝑀 𝑉𝐴 𝐶𝑅 - 𝐺𝐹 𝑉𝑂 𝐶𝐸 31.8121 2.08 15.2653 4888 < 0.001
𝐺𝑀 𝑉𝐴 𝐶𝑅 - 𝐺𝐹 𝑉𝐴 𝐶𝐻 17.3515 2.08 8.3262 4888 < 0.001
𝐺𝑀 𝑉𝐴 𝐶𝑅 - 𝐺𝐹 𝑉𝐴 𝐶𝑃 41.3576 2.08 19.8457 4888 < 0.001
𝐺𝑀 𝑉𝐴 𝐶𝑅 - 𝐺𝐹 𝑉𝐴 𝐶𝐴 43.7879 2.08 21.0119 4888 < 0.001
𝐺𝑀 𝑉𝐴 𝐶𝑅 - 𝐺𝐹 𝑉𝐴 𝐶𝐸 34.0909 2.08 16.3588 4888 < 0.001
𝐺𝑀 𝑉𝐴 𝐶𝐴 - 𝐺𝑀 𝑉𝐼 𝐶𝐴 1.2727 2.08 0.6107 4888 1.000
𝐺𝑀 𝑉𝐴 𝐶𝐴 - 𝐺𝑀 𝑉𝑂 𝐶𝐴 -0.0606 2.08 -0.0291 4888 1.000
𝐺𝑀 𝑉𝐴 𝐶𝐴 - 𝐺𝐹 𝑉𝐼 𝐶𝐴 11.1152 2.08 5.3337 4888 < 0.001
𝐺𝑀 𝑉𝐴 𝐶𝐴 - 𝐺𝐹 𝑉𝑂 𝐶𝐴 5.3879 2.08 2.5854 4888 1.000
𝐺𝑀 𝑉𝐴 𝐶𝐸 - 𝐺𝑀 𝑉𝐼 𝐶𝑃 7.4242 2.08 3.5626 4888 0.161
𝐺𝑀 𝑉𝐴 𝐶𝐸 - 𝐺𝑀 𝑉𝐼 𝐶𝐴 3.8000 2.08 1.8235 4888 1.000
𝐺𝑀 𝑉𝐴 𝐶𝐸 - 𝐺𝑀 𝑉𝐼 𝐶𝐸 4.3939 2.08 2.1085 4888 1.000
𝐺𝑀 𝑉𝐴 𝐶𝐸 - 𝐺𝑀 𝑉𝑂 𝐶𝑃 17.6606 2.08 8.4746 4888 < 0.001
𝐺𝑀 𝑉𝐴 𝐶𝐸 - 𝐺𝑀 𝑉𝑂 𝐶𝐴 2.4667 2.08 1.1836 4888 1.000
𝐺𝑀 𝑉𝐴 𝐶𝐸 - 𝐺𝑀 𝑉𝑂 𝐶𝐸 10.1455 2.08 4.8684 4888 < 0.001
𝐺𝑀 𝑉𝐴 𝐶𝐸 - 𝐺𝑀 𝑉𝐴 𝐶𝑃 5.8121 2.08 2.7890 4888 1.000
𝐺𝑀 𝑉𝐴 𝐶𝐸 - 𝐺𝑀 𝑉𝐴 𝐶𝐴 2.5273 2.08 1.2127 4888 1.000
𝐺𝑀 𝑉𝐴 𝐶𝐸 - 𝐺𝐹 𝑉𝐼 𝐶𝑃 -2.3818 2.08 -1.1429 4888 1.000
𝐺𝑀 𝑉𝐴 𝐶𝐸 - 𝐺𝐹 𝑉𝐼 𝐶𝐴 13.6424 2.08 6.5464 4888 < 0.001
𝐺𝑀 𝑉𝐴 𝐶𝐸 - 𝐺𝐹 𝑉𝐼 𝐶𝐸 -5.8242 2.08 -2.7948 4888 1.000
𝐺𝑀 𝑉𝐴 𝐶𝐸 - 𝐺𝐹 𝑉𝑂 𝐶𝑃 -0.8364 2.08 -0.4013 4888 1.000
𝐺𝑀 𝑉𝐴 𝐶𝐸 - 𝐺𝐹 𝑉𝑂 𝐶𝐴 7.9152 2.08 3.7981 4888 0.064
𝐺𝑀 𝑉𝐴 𝐶𝐸 - 𝐺𝐹 𝑉𝑂 𝐶𝐸 -3.5758 2.08 -1.7159 4888 1.000
𝐺𝑀 𝑉𝐴 𝐶𝐸 - 𝐺𝐹 𝑉𝐴 𝐶𝑃 5.9697 2.08 2.8646 4888 1.000
𝐺𝑀 𝑉𝐴 𝐶𝐸 - 𝐺𝐹 𝑉𝐴 𝐶𝐴 8.4000 2.08 4.0308 4888 0.025
𝐺𝐹 𝑉𝐼 𝐶𝐻 - 𝐺𝑀 𝑉𝐼 𝐶𝐻 5.5212 2.08 2.6494 4888 1.000
𝐺𝐹 𝑉𝐼 𝐶𝐻 - 𝐺𝑀 𝑉𝐼 𝐶𝑃 31.2788 2.08 15.0093 4888 < 0.001
𝐺𝐹 𝑉𝐼 𝐶𝐻 - 𝐺𝑀 𝑉𝐼 𝐶𝐴 27.6545 2.08 13.2702 4888 < 0.001
𝐺𝐹 𝑉𝐼 𝐶𝐻 - 𝐺𝑀 𝑉𝐼 𝐶𝐸 28.2485 2.08 13.5552 4888 < 0.001
𝐺𝐹 𝑉𝐼 𝐶𝐻 - 𝐺𝑀 𝑉𝑂 𝐶𝐻 2.4970 2.08 1.1982 4888 1.000
𝐺𝐹 𝑉𝐼 𝐶𝐻 - 𝐺𝑀 𝑉𝑂 𝐶𝑃 41.5152 2.08 19.9213 4888 < 0.001
𝐺𝐹 𝑉𝐼 𝐶𝐻 - 𝐺𝑀 𝑉𝑂 𝐶𝐴 26.3212 2.08 12.6304 4888 < 0.001
𝐺𝐹 𝑉𝐼 𝐶𝐻 - 𝐺𝑀 𝑉𝑂 𝐶𝐸 34.0000 2.08 16.3151 4888 < 0.001
𝐺𝐹 𝑉𝐼 𝐶𝐻 - 𝐺𝑀 𝑉𝐴 𝐶𝑃 29.6667 2.08 14.2358 4888 < 0.001
𝐺𝐹 𝑉𝐼 𝐶𝐻 - 𝐺𝑀 𝑉𝐴 𝐶𝐴 26.3818 2.08 12.6595 4888 < 0.001
𝐺𝐹 𝑉𝐼 𝐶𝐻 - 𝐺𝑀 𝑉𝐴 𝐶𝐸 23.8545 2.08 11.4468 4888 < 0.001
𝐺𝐹 𝑉𝐼 𝐶𝐻 - 𝐺𝐹 𝑉𝐼 𝐶𝑃 21.4727 2.08 10.3038 4888 < 0.001
𝐺𝐹 𝑉𝐼 𝐶𝐻 - 𝐺𝐹 𝑉𝐼 𝐶𝐴 37.4970 2.08 17.9932 4888 < 0.001
𝐺𝐹 𝑉𝐼 𝐶𝐻 - 𝐺𝐹 𝑉𝐼 𝐶𝐸 18.0303 2.08 8.6520 4888 < 0.001
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Table A.5 Continued: Post Hoc Comparisons - Gender * Vowel * Condition

Comparison Difference SE t df p𝑏𝑜𝑛𝑓𝑒𝑟𝑟𝑜𝑛𝑖

𝐺𝐹 𝑉𝐼 𝐶𝐻 - 𝐺𝐹 𝑉𝑂 𝐶𝐻 8.3091 2.08 3.9872 4888 0.030
𝐺𝐹 𝑉𝐼 𝐶𝐻 - 𝐺𝐹 𝑉𝑂 𝐶𝑃 23.0182 2.08 11.0454 4888 < 0.001
𝐺𝐹 𝑉𝐼 𝐶𝐻 - 𝐺𝐹 𝑉𝑂 𝐶𝐴 31.7697 2.08 15.2449 4888 < 0.001
𝐺𝐹 𝑉𝐼 𝐶𝐻 - 𝐺𝐹 𝑉𝑂 𝐶𝐸 20.2788 2.08 9.7309 4888 < 0.001
𝐺𝐹 𝑉𝐼 𝐶𝐻 - 𝐺𝐹 𝑉𝐴 𝐶𝑃 29.8242 2.08 14.3114 4888 < 0.001
𝐺𝐹 𝑉𝐼 𝐶𝐻 - 𝐺𝐹 𝑉𝐴 𝐶𝐴 32.2545 2.08 15.4776 4888 < 0.001
𝐺𝐹 𝑉𝐼 𝐶𝐻 - 𝐺𝐹 𝑉𝐴 𝐶𝐸 22.5576 2.08 10.8244 4888 < 0.001
𝐺𝐹 𝑉𝐼 𝐶𝑃 - 𝐺𝑀 𝑉𝐼 𝐶𝑃 9.8061 2.08 4.7055 4888 0.001
𝐺𝐹 𝑉𝐼 𝐶𝑃 - 𝐺𝑀 𝑉𝐼 𝐶𝐴 6.1818 2.08 2.9664 4888 1.000
𝐺𝐹 𝑉𝐼 𝐶𝑃 - 𝐺𝑀 𝑉𝑂 𝐶𝑃 20.0424 2.08 9.6175 4888 < 0.001
𝐺𝐹 𝑉𝐼 𝐶𝑃 - 𝐺𝑀 𝑉𝑂 𝐶𝐴 4.8485 2.08 2.3266 4888 1.000
𝐺𝐹 𝑉𝐼 𝐶𝑃 - 𝐺𝑀 𝑉𝐴 𝐶𝐴 4.9091 2.08 2.3557 4888 1.000
𝐺𝐹 𝑉𝐼 𝐶𝑃 - 𝐺𝐹 𝑉𝐼 𝐶𝐴 16.0242 2.08 7.6893 4888 < 0.001
𝐺𝐹 𝑉𝐼 𝐶𝑃 - 𝐺𝐹 𝑉𝑂 𝐶𝑃 1.5455 2.08 0.7416 4888 1.000
𝐺𝐹 𝑉𝐼 𝐶𝑃 - 𝐺𝐹 𝑉𝑂 𝐶𝐴 10.2970 2.08 4.9411 4888 < 0.001
𝐺𝐹 𝑉𝐼 𝐶𝑃 - 𝐺𝐹 𝑉𝐴 𝐶𝐴 10.7818 2.08 5.1737 4888 < 0.001
𝐺𝐹 𝑉𝐼 𝐶𝑅 - 𝐺𝑀 𝑉𝐼 𝐶𝐻 19.0485 2.08 9.1405 4888 < 0.001
𝐺𝐹 𝑉𝐼 𝐶𝑅 - 𝐺𝑀 𝑉𝐼 𝐶𝑃 44.8061 2.08 21.5005 4888 < 0.001
𝐺𝐹 𝑉𝐼 𝐶𝑅 - 𝐺𝑀 𝑉𝐼 𝐶𝑅 3.0485 2.08 1.4628 4888 1.000
𝐺𝐹 𝑉𝐼 𝐶𝑅 - 𝐺𝑀 𝑉𝐼 𝐶𝐴 41.1818 2.08 19.7614 4888 < 0.001
𝐺𝐹 𝑉𝐼 𝐶𝑅 - 𝐺𝑀 𝑉𝐼 𝐶𝐸 41.7758 2.08 20.0464 4888 < 0.001
𝐺𝐹 𝑉𝐼 𝐶𝑅 - 𝐺𝑀 𝑉𝑂 𝐶𝐻 16.0242 2.08 7.6893 4888 < 0.001
𝐺𝐹 𝑉𝐼 𝐶𝑅 - 𝐺𝑀 𝑉𝑂 𝐶𝑃 55.0424 2.08 26.4125 4888 < 0.001
𝐺𝐹 𝑉𝐼 𝐶𝑅 - 𝐺𝑀 𝑉𝑂 𝐶𝑅 1.5818 2.08 0.7590 4888 1.000
𝐺𝐹 𝑉𝐼 𝐶𝑅 - 𝐺𝑀 𝑉𝑂 𝐶𝐴 39.8485 2.08 19.1216 4888 < 0.001
𝐺𝐹 𝑉𝐼 𝐶𝑅 - 𝐺𝑀 𝑉𝑂 𝐶𝐸 47.5273 2.08 22.8063 4888 < 0.001
𝐺𝐹 𝑉𝐼 𝐶𝑅 - 𝐺𝑀 𝑉𝐴 𝐶𝐻 13.0667 2.08 6.2701 4888 < 0.001
𝐺𝐹 𝑉𝐼 𝐶𝑅 - 𝐺𝑀 𝑉𝐴 𝐶𝑃 43.1939 2.08 20.7269 4888 < 0.001
𝐺𝐹 𝑉𝐼 𝐶𝑅 - 𝐺𝑀 𝑉𝐴 𝐶𝐴 39.9091 2.08 19.1507 4888 < 0.001
𝐺𝐹 𝑉𝐼 𝐶𝑅 - 𝐺𝑀 𝑉𝐴 𝐶𝐸 37.3818 2.08 17.9379 4888 < 0.001
𝐺𝐹 𝑉𝐼 𝐶𝑅 - 𝐺𝐹 𝑉𝐼 𝐶𝐻 13.5273 2.08 6.4912 4888 < 0.001
𝐺𝐹 𝑉𝐼 𝐶𝑅 - 𝐺𝐹 𝑉𝐼 𝐶𝑃 35.0000 2.08 16.7950 4888 < 0.001
𝐺𝐹 𝑉𝐼 𝐶𝑅 - 𝐺𝐹 𝑉𝐼 𝐶𝐴 51.0242 2.08 24.4843 4888 < 0.001
𝐺𝐹 𝑉𝐼 𝐶𝑅 - 𝐺𝐹 𝑉𝐼 𝐶𝐸 31.5576 2.08 15.1431 4888 < 0.001
𝐺𝐹 𝑉𝐼 𝐶𝑅 - 𝐺𝐹 𝑉𝑂 𝐶𝐻 21.8364 2.08 10.4783 4888 < 0.001
𝐺𝐹 𝑉𝐼 𝐶𝑅 - 𝐺𝐹 𝑉𝑂 𝐶𝑃 36.5455 2.08 17.5366 4888 < 0.001
𝐺𝐹 𝑉𝐼 𝐶𝑅 - 𝐺𝐹 𝑉𝑂 𝐶𝑅 0.8364 2.08 0.4013 4888 1.000
𝐺𝐹 𝑉𝐼 𝐶𝑅 - 𝐺𝐹 𝑉𝑂 𝐶𝐴 45.2970 2.08 21.7361 4888 < 0.001
𝐺𝐹 𝑉𝐼 𝐶𝑅 - 𝐺𝐹 𝑉𝑂 𝐶𝐸 33.8061 2.08 16.2221 4888 < 0.001
𝐺𝐹 𝑉𝐼 𝐶𝑅 - 𝐺𝐹 𝑉𝐴 𝐶𝐻 19.3455 2.08 9.2831 4888 < 0.001
𝐺𝐹 𝑉𝐼 𝐶𝑅 - 𝐺𝐹 𝑉𝐴 𝐶𝑃 43.3515 2.08 20.8025 4888 < 0.001
𝐺𝐹 𝑉𝐼 𝐶𝑅 - 𝐺𝐹 𝑉𝐴 𝐶𝐴 45.7818 2.08 21.9687 4888 < 0.001
𝐺𝐹 𝑉𝐼 𝐶𝑅 - 𝐺𝐹 𝑉𝐴 𝐶𝐸 36.0848 2.08 17.3156 4888 < 0.001
𝐺𝐹 𝑉𝐼 𝐶𝐴 - 𝐺𝑀 𝑉𝐼 𝐶𝐴 -9.8424 2.08 -4.7230 4888 0.001
𝐺𝐹 𝑉𝐼 𝐶𝐴 - 𝐺𝑀 𝑉𝑂 𝐶𝐴 -11.1758 2.08 -5.3628 4888 < 0.001
𝐺𝐹 𝑉𝐼 𝐶𝐴 - 𝐺𝐹 𝑉𝑂 𝐶𝐴 -5.7273 2.08 -2.7483 4888 1.000
𝐺𝐹 𝑉𝐼 𝐶𝐸 - 𝐺𝑀 𝑉𝐼 𝐶𝑃 13.2485 2.08 6.3574 4888 < 0.001
𝐺𝐹 𝑉𝐼 𝐶𝐸 - 𝐺𝑀 𝑉𝐼 𝐶𝐴 9.6242 2.08 4.6183 4888 0.002
𝐺𝐹 𝑉𝐼 𝐶𝐸 - 𝐺𝑀 𝑉𝐼 𝐶𝐸 10.2182 2.08 4.9033 4888 < 0.001
𝐺𝐹 𝑉𝐼 𝐶𝐸 - 𝐺𝑀 𝑉𝑂 𝐶𝑃 23.4848 2.08 11.2694 4888 < 0.001
𝐺𝐹 𝑉𝐼 𝐶𝐸 - 𝐺𝑀 𝑉𝑂 𝐶𝐴 8.2909 2.08 3.9785 4888 0.031
𝐺𝐹 𝑉𝐼 𝐶𝐸 - 𝐺𝑀 𝑉𝑂 𝐶𝐸 15.9697 2.08 7.6632 4888 < 0.001
𝐺𝐹 𝑉𝐼 𝐶𝐸 - 𝐺𝑀 𝑉𝐴 𝐶𝑃 11.6364 2.08 5.5838 4888 < 0.001
𝐺𝐹 𝑉𝐼 𝐶𝐸 - 𝐺𝑀 𝑉𝐴 𝐶𝐴 8.3515 2.08 4.0075 4888 0.027
𝐺𝐹 𝑉𝐼 𝐶𝐸 - 𝐺𝐹 𝑉𝐼 𝐶𝑃 3.4424 2.08 1.6519 4888 1.000
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Table A.5 Continued: Post Hoc Comparisons - Gender * Vowel * Condition

Comparison Difference SE t df p𝑏𝑜𝑛𝑓𝑒𝑟𝑟𝑜𝑛𝑖

𝐺𝐹 𝑉𝐼 𝐶𝐸 - 𝐺𝐹 𝑉𝐼 𝐶𝐴 19.4667 2.08 9.3412 4888 < 0.001
𝐺𝐹 𝑉𝐼 𝐶𝐸 - 𝐺𝐹 𝑉𝑂 𝐶𝑃 4.9879 2.08 2.3935 4888 1.000
𝐺𝐹 𝑉𝐼 𝐶𝐸 - 𝐺𝐹 𝑉𝑂 𝐶𝐴 13.7394 2.08 6.5929 4888 < 0.001
𝐺𝐹 𝑉𝐼 𝐶𝐸 - 𝐺𝐹 𝑉𝑂 𝐶𝐸 2.2485 2.08 1.0790 4888 1.000
𝐺𝐹 𝑉𝐼 𝐶𝐸 - 𝐺𝐹 𝑉𝐴 𝐶𝑃 11.7939 2.08 5.6594 4888 < 0.001
𝐺𝐹 𝑉𝐼 𝐶𝐸 - 𝐺𝐹 𝑉𝐴 𝐶𝐴 14.2242 2.08 6.8256 4888 < 0.001
𝐺𝐹 𝑉𝑂 𝐶𝐻 - 𝐺𝑀 𝑉𝐼 𝐶𝑃 22.9697 2.08 11.0222 4888 < 0.001
𝐺𝐹 𝑉𝑂 𝐶𝐻 - 𝐺𝑀 𝑉𝐼 𝐶𝐴 19.3455 2.08 9.2831 4888 < 0.001
𝐺𝐹 𝑉𝑂 𝐶𝐻 - 𝐺𝑀 𝑉𝐼 𝐶𝐸 19.9394 2.08 9.5681 4888 < 0.001
𝐺𝐹 𝑉𝑂 𝐶𝐻 - 𝐺𝑀 𝑉𝑂 𝐶𝐻 -5.8121 2.08 -2.7890 4888 1.000
𝐺𝐹 𝑉𝑂 𝐶𝐻 - 𝐺𝑀 𝑉𝑂 𝐶𝑃 33.2061 2.08 15.9342 4888 < 0.001
𝐺𝐹 𝑉𝑂 𝐶𝐻 - 𝐺𝑀 𝑉𝑂 𝐶𝐴 18.0121 2.08 8.6432 4888 < 0.001
𝐺𝐹 𝑉𝑂 𝐶𝐻 - 𝐺𝑀 𝑉𝑂 𝐶𝐸 25.6909 2.08 12.3280 4888 < 0.001
𝐺𝐹 𝑉𝑂 𝐶𝐻 - 𝐺𝑀 𝑉𝐴 𝐶𝑃 21.3576 2.08 10.2486 4888 < 0.001
𝐺𝐹 𝑉𝑂 𝐶𝐻 - 𝐺𝑀 𝑉𝐴 𝐶𝐴 18.0727 2.08 8.6723 4888 < 0.001
𝐺𝐹 𝑉𝑂 𝐶𝐻 - 𝐺𝑀 𝑉𝐴 𝐶𝐸 15.5455 2.08 7.4596 4888 < 0.001
𝐺𝐹 𝑉𝑂 𝐶𝐻 - 𝐺𝐹 𝑉𝐼 𝐶𝑃 13.1636 2.08 6.3167 4888 < 0.001
𝐺𝐹 𝑉𝑂 𝐶𝐻 - 𝐺𝐹 𝑉𝐼 𝐶𝐴 29.1879 2.08 14.0060 4888 < 0.001
𝐺𝐹 𝑉𝑂 𝐶𝐻 - 𝐺𝐹 𝑉𝐼 𝐶𝐸 9.7212 2.08 4.6648 4888 0.001
𝐺𝐹 𝑉𝑂 𝐶𝐻 - 𝐺𝐹 𝑉𝑂 𝐶𝑃 14.7091 2.08 7.0583 4888 < 0.001
𝐺𝐹 𝑉𝑂 𝐶𝐻 - 𝐺𝐹 𝑉𝑂 𝐶𝐴 23.4606 2.08 11.2577 4888 < 0.001
𝐺𝐹 𝑉𝑂 𝐶𝐻 - 𝐺𝐹 𝑉𝑂 𝐶𝐸 11.9697 2.08 5.7437 4888 < 0.001
𝐺𝐹 𝑉𝑂 𝐶𝐻 - 𝐺𝐹 𝑉𝐴 𝐶𝑃 21.5152 2.08 10.3242 4888 < 0.001
𝐺𝐹 𝑉𝑂 𝐶𝐻 - 𝐺𝐹 𝑉𝐴 𝐶𝐴 23.9455 2.08 11.4904 4888 < 0.001
𝐺𝐹 𝑉𝑂 𝐶𝐻 - 𝐺𝐹 𝑉𝐴 𝐶𝐸 14.2485 2.08 6.8372 4888 < 0.001
𝐺𝐹 𝑉𝑂 𝐶𝑃 - 𝐺𝑀 𝑉𝐼 𝐶𝐴 4.6364 2.08 2.2248 4888 1.000
𝐺𝐹 𝑉𝑂 𝐶𝑃 - 𝐺𝑀 𝑉𝑂 𝐶𝑃 18.4970 2.08 8.8759 4888 < 0.001
𝐺𝐹 𝑉𝑂 𝐶𝑃 - 𝐺𝑀 𝑉𝑂 𝐶𝐴 3.3030 2.08 1.5850 4888 1.000
𝐺𝐹 𝑉𝑂 𝐶𝑃 - 𝐺𝑀 𝑉𝐴 𝐶𝐴 3.3636 2.08 1.6141 4888 1.000
𝐺𝐹 𝑉𝑂 𝐶𝑃 - 𝐺𝐹 𝑉𝐼 𝐶𝐴 14.4788 2.08 6.9477 4888 < 0.001
𝐺𝐹 𝑉𝑂 𝐶𝑃 - 𝐺𝐹 𝑉𝑂 𝐶𝐴 8.7515 2.08 4.1995 4888 0.012
𝐺𝐹 𝑉𝑂 𝐶𝑃 - 𝐺𝐹 𝑉𝐴 𝐶𝐴 9.2364 2.08 4.4321 4888 0.004
𝐺𝐹 𝑉𝑂 𝐶𝑅 - 𝐺𝑀 𝑉𝐼 𝐶𝐻 18.2121 2.08 8.7392 4888 < 0.001
𝐺𝐹 𝑉𝑂 𝐶𝑅 - 𝐺𝑀 𝑉𝐼 𝐶𝑃 43.9697 2.08 21.0992 4888 < 0.001
𝐺𝐹 𝑉𝑂 𝐶𝑅 - 𝐺𝑀 𝑉𝐼 𝐶𝐴 40.3455 2.08 19.3601 4888 < 0.001
𝐺𝐹 𝑉𝑂 𝐶𝑅 - 𝐺𝑀 𝑉𝐼 𝐶𝐸 40.9394 2.08 19.6451 4888 < 0.001
𝐺𝐹 𝑉𝑂 𝐶𝑅 - 𝐺𝑀 𝑉𝑂 𝐶𝐻 15.1879 2.08 7.2880 4888 < 0.001
𝐺𝐹 𝑉𝑂 𝐶𝑅 - 𝐺𝑀 𝑉𝑂 𝐶𝑃 54.2061 2.08 26.0112 4888 < 0.001
𝐺𝐹 𝑉𝑂 𝐶𝑅 - 𝐺𝑀 𝑉𝑂 𝐶𝑅 0.7455 2.08 0.3577 4888 1.000
𝐺𝐹 𝑉𝑂 𝐶𝑅 - 𝐺𝑀 𝑉𝑂 𝐶𝐴 39.0121 2.08 18.7202 4888 < 0.001
𝐺𝐹 𝑉𝑂 𝐶𝑅 - 𝐺𝑀 𝑉𝑂 𝐶𝐸 46.6909 2.08 22.4050 4888 < 0.001
𝐺𝐹 𝑉𝑂 𝐶𝑅 - 𝐺𝑀 𝑉𝐴 𝐶𝐻 12.2303 2.08 5.8688 4888 < 0.001
𝐺𝐹 𝑉𝑂 𝐶𝑅 - 𝐺𝑀 𝑉𝐴 𝐶𝑃 42.3576 2.08 20.3256 4888 < 0.001
𝐺𝐹 𝑉𝑂 𝐶𝑅 - 𝐺𝑀 𝑉𝐴 𝐶𝐴 39.0727 2.08 18.7493 4888 < 0.001
𝐺𝐹 𝑉𝑂 𝐶𝑅 - 𝐺𝑀 𝑉𝐴 𝐶𝐸 36.5455 2.08 17.5366 4888 < 0.001
𝐺𝐹 𝑉𝑂 𝐶𝑅 - 𝐺𝐹 𝑉𝐼 𝐶𝐻 12.6909 2.08 6.0898 4888 < 0.001
𝐺𝐹 𝑉𝑂 𝐶𝑅 - 𝐺𝐹 𝑉𝐼 𝐶𝑃 34.1636 2.08 16.3937 4888 < 0.001
𝐺𝐹 𝑉𝑂 𝐶𝑅 - 𝐺𝐹 𝑉𝐼 𝐶𝐴 50.1879 2.08 24.0830 4888 < 0.001
𝐺𝐹 𝑉𝑂 𝐶𝑅 - 𝐺𝐹 𝑉𝐼 𝐶𝐸 30.7212 2.08 14.7418 4888 < 0.001
𝐺𝐹 𝑉𝑂 𝐶𝑅 - 𝐺𝐹 𝑉𝑂 𝐶𝐻 21.0000 2.08 10.0770 4888 < 0.001
𝐺𝐹 𝑉𝑂 𝐶𝑅 - 𝐺𝐹 𝑉𝑂 𝐶𝑃 35.7091 2.08 17.1353 4888 < 0.001
𝐺𝐹 𝑉𝑂 𝐶𝑅 - 𝐺𝐹 𝑉𝑂 𝐶𝐴 44.4606 2.08 21.3347 4888 < 0.001
𝐺𝐹 𝑉𝑂 𝐶𝑅 - 𝐺𝐹 𝑉𝑂 𝐶𝐸 32.9697 2.08 15.8207 4888 < 0.001
𝐺𝐹 𝑉𝑂 𝐶𝑅 - 𝐺𝐹 𝑉𝐴 𝐶𝐻 18.5091 2.08 8.8817 4888 < 0.001
𝐺𝐹 𝑉𝑂 𝐶𝑅 - 𝐺𝐹 𝑉𝐴 𝐶𝑃 42.5152 2.08 20.4012 4888 < 0.001
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Table A.5 Continued: Post Hoc Comparisons - Gender * Vowel * Condition

Comparison Difference SE t df p𝑏𝑜𝑛𝑓𝑒𝑟𝑟𝑜𝑛𝑖

𝐺𝐹 𝑉𝑂 𝐶𝑅 - 𝐺𝐹 𝑉𝐴 𝐶𝐴 44.9455 2.08 21.5674 4888 < 0.001
𝐺𝐹 𝑉𝑂 𝐶𝑅 - 𝐺𝐹 𝑉𝐴 𝐶𝐸 35.2485 2.08 16.9142 4888 < 0.001
𝐺𝐹 𝑉𝑂 𝐶𝐴 - 𝐺𝑀 𝑉𝑂 𝐶𝐴 -5.4485 2.08 -2.6145 4888 1.000
𝐺𝐹 𝑉𝑂 𝐶𝐸 - 𝐺𝑀 𝑉𝐼 𝐶𝑃 11.0000 2.08 5.2784 4888 < 0.001
𝐺𝐹 𝑉𝑂 𝐶𝐸 - 𝐺𝑀 𝑉𝐼 𝐶𝐴 7.3758 2.08 3.5393 4888 0.176
𝐺𝐹 𝑉𝑂 𝐶𝐸 - 𝐺𝑀 𝑉𝑂 𝐶𝑃 21.2364 2.08 10.1904 4888 < 0.001
𝐺𝐹 𝑉𝑂 𝐶𝐸 - 𝐺𝑀 𝑉𝑂 𝐶𝐴 6.0424 2.08 2.8995 4888 1.000
𝐺𝐹 𝑉𝑂 𝐶𝐸 - 𝐺𝑀 𝑉𝑂 𝐶𝐸 13.7212 2.08 6.5842 4888 < 0.001
𝐺𝐹 𝑉𝑂 𝐶𝐸 - 𝐺𝑀 𝑉𝐴 𝐶𝑃 9.3879 2.08 4.5048 4888 0.003
𝐺𝐹 𝑉𝑂 𝐶𝐸 - 𝐺𝑀 𝑉𝐴 𝐶𝐴 6.1030 2.08 2.9286 4888 1.000
𝐺𝐹 𝑉𝑂 𝐶𝐸 - 𝐺𝐹 𝑉𝐼 𝐶𝑃 1.1939 2.08 0.5729 4888 1.000
𝐺𝐹 𝑉𝑂 𝐶𝐸 - 𝐺𝐹 𝑉𝐼 𝐶𝐴 17.2182 2.08 8.2623 4888 < 0.001
𝐺𝐹 𝑉𝑂 𝐶𝐸 - 𝐺𝐹 𝑉𝑂 𝐶𝑃 2.7394 2.08 1.3145 4888 1.000
𝐺𝐹 𝑉𝑂 𝐶𝐸 - 𝐺𝐹 𝑉𝑂 𝐶𝐴 11.4909 2.08 5.5140 4888 < 0.001
𝐺𝐹 𝑉𝑂 𝐶𝐸 - 𝐺𝐹 𝑉𝐴 𝐶𝑃 9.5455 2.08 4.5805 4888 0.002
𝐺𝐹 𝑉𝑂 𝐶𝐸 - 𝐺𝐹 𝑉𝐴 𝐶𝐴 11.9758 2.08 5.7467 4888 < 0.001
𝐺𝐹 𝑉𝐴 𝐶𝐻 - 𝐺𝑀 𝑉𝐼 𝐶𝐻 -0.2970 2.08 -0.1425 4888 1.000
𝐺𝐹 𝑉𝐴 𝐶𝐻 - 𝐺𝑀 𝑉𝐼 𝐶𝑃 25.4606 2.08 12.2175 4888 < 0.001
𝐺𝐹 𝑉𝐴 𝐶𝐻 - 𝐺𝑀 𝑉𝐼 𝐶𝐴 21.8364 2.08 10.4783 4888 < 0.001
𝐺𝐹 𝑉𝐴 𝐶𝐻 - 𝐺𝑀 𝑉𝐼 𝐶𝐸 22.4303 2.08 10.7633 4888 < 0.001
𝐺𝐹 𝑉𝐴 𝐶𝐻 - 𝐺𝑀 𝑉𝑂 𝐶𝐻 -3.3212 2.08 -1.5937 4888 1.000
𝐺𝐹 𝑉𝐴 𝐶𝐻 - 𝐺𝑀 𝑉𝑂 𝐶𝑃 35.6970 2.08 17.1294 4888 < 0.001
𝐺𝐹 𝑉𝐴 𝐶𝐻 - 𝐺𝑀 𝑉𝑂 𝐶𝐴 20.5030 2.08 9.8385 4888 < 0.001
𝐺𝐹 𝑉𝐴 𝐶𝐻 - 𝐺𝑀 𝑉𝑂 𝐶𝐸 28.1818 2.08 13.5232 4888 < 0.001
𝐺𝐹 𝑉𝐴 𝐶𝐻 - 𝐺𝑀 𝑉𝐴 𝐶𝐻 -6.2788 2.08 -3.0129 4888 1.000
𝐺𝐹 𝑉𝐴 𝐶𝐻 - 𝐺𝑀 𝑉𝐴 𝐶𝑃 23.8485 2.08 11.4439 4888 < 0.001
𝐺𝐹 𝑉𝐴 𝐶𝐻 - 𝐺𝑀 𝑉𝐴 𝐶𝐴 20.5636 2.08 9.8676 4888 < 0.001
𝐺𝐹 𝑉𝐴 𝐶𝐻 - 𝐺𝑀 𝑉𝐴 𝐶𝐸 18.0364 2.08 8.6549 4888 < 0.001
𝐺𝐹 𝑉𝐴 𝐶𝐻 - 𝐺𝐹 𝑉𝐼 𝐶𝐻 -5.8182 2.08 -2.7919 4888 1.000
𝐺𝐹 𝑉𝐴 𝐶𝐻 - 𝐺𝐹 𝑉𝐼 𝐶𝑃 15.6545 2.08 7.5119 4888 < 0.001
𝐺𝐹 𝑉𝐴 𝐶𝐻 - 𝐺𝐹 𝑉𝐼 𝐶𝐴 31.6788 2.08 15.2013 4888 < 0.001
𝐺𝐹 𝑉𝐴 𝐶𝐻 - 𝐺𝐹 𝑉𝐼 𝐶𝐸 12.2121 2.08 5.8601 4888 < 0.001
𝐺𝐹 𝑉𝐴 𝐶𝐻 - 𝐺𝐹 𝑉𝑂 𝐶𝐻 2.4909 2.08 1.1953 4888 1.000
𝐺𝐹 𝑉𝐴 𝐶𝐻 - 𝐺𝐹 𝑉𝑂 𝐶𝑃 17.2000 2.08 8.2535 4888 < 0.001
𝐺𝐹 𝑉𝐴 𝐶𝐻 - 𝐺𝐹 𝑉𝑂 𝐶𝐴 25.9515 2.08 12.4530 4888 < 0.001
𝐺𝐹 𝑉𝐴 𝐶𝐻 - 𝐺𝐹 𝑉𝑂 𝐶𝐸 14.4606 2.08 6.9390 4888 < 0.001
𝐺𝐹 𝑉𝐴 𝐶𝐻 - 𝐺𝐹 𝑉𝐴 𝐶𝑃 24.0061 2.08 11.5195 4888 < 0.001
𝐺𝐹 𝑉𝐴 𝐶𝐻 - 𝐺𝐹 𝑉𝐴 𝐶𝐴 26.4364 2.08 12.6857 4888 < 0.001
𝐺𝐹 𝑉𝐴 𝐶𝐻 - 𝐺𝐹 𝑉𝐴 𝐶𝐸 16.7394 2.08 8.0325 4888 < 0.001
𝐺𝐹 𝑉𝐴 𝐶𝑃 - 𝐺𝑀 𝑉𝐼 𝐶𝑃 1.4545 2.08 0.6980 4888 1.000
𝐺𝐹 𝑉𝐴 𝐶𝑃 - 𝐺𝑀 𝑉𝐼 𝐶𝐴 -2.1697 2.08 -1.0411 4888 1.000
𝐺𝐹 𝑉𝐴 𝐶𝑃 - 𝐺𝑀 𝑉𝑂 𝐶𝑃 11.6909 2.08 5.6100 4888 < 0.001
𝐺𝐹 𝑉𝐴 𝐶𝑃 - 𝐺𝑀 𝑉𝑂 𝐶𝐴 -3.5030 2.08 -1.6810 4888 1.000
𝐺𝐹 𝑉𝐴 𝐶𝑃 - 𝐺𝑀 𝑉𝐴 𝐶𝑃 -0.1576 2.08 -0.0756 4888 1.000
𝐺𝐹 𝑉𝐴 𝐶𝑃 - 𝐺𝑀 𝑉𝐴 𝐶𝐴 -3.4424 2.08 -1.6519 4888 1.000
𝐺𝐹 𝑉𝐴 𝐶𝑃 - 𝐺𝐹 𝑉𝐼 𝐶𝑃 -8.3515 2.08 -4.0075 4888 0.027
𝐺𝐹 𝑉𝐴 𝐶𝑃 - 𝐺𝐹 𝑉𝐼 𝐶𝐴 7.6727 2.08 3.6818 4888 0.102
𝐺𝐹 𝑉𝐴 𝐶𝑃 - 𝐺𝐹 𝑉𝑂 𝐶𝑃 -6.8061 2.08 -3.2659 4888 0.478
𝐺𝐹 𝑉𝐴 𝐶𝑃 - 𝐺𝐹 𝑉𝑂 𝐶𝐴 1.9455 2.08 0.9335 4888 1.000
𝐺𝐹 𝑉𝐴 𝐶𝑃 - 𝐺𝐹 𝑉𝐴 𝐶𝐴 2.4303 2.08 1.1662 4888 1.000
𝐺𝐹 𝑉𝐴 𝐶𝑅 - 𝐺𝑀 𝑉𝐼 𝐶𝐻 18.2121 2.08 8.7392 4888 < 0.001
𝐺𝐹 𝑉𝐴 𝐶𝑅 - 𝐺𝑀 𝑉𝐼 𝐶𝑃 43.9697 2.08 21.0992 4888 < 0.001
𝐺𝐹 𝑉𝐴 𝐶𝑅 - 𝐺𝑀 𝑉𝐼 𝐶𝑅 2.2121 2.08 1.0615 4888 1.000
𝐺𝐹 𝑉𝐴 𝐶𝑅 - 𝐺𝑀 𝑉𝐼 𝐶𝐴 40.3455 2.08 19.3601 4888 < 0.001
𝐺𝐹 𝑉𝐴 𝐶𝑅 - 𝐺𝑀 𝑉𝐼 𝐶𝐸 40.9394 2.08 19.6451 4888 < 0.001
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Table A.5 Continued: Post Hoc Comparisons - Gender * Vowel * Condition

Comparison Difference SE t df p𝑏𝑜𝑛𝑓𝑒𝑟𝑟𝑜𝑛𝑖

𝐺𝐹 𝑉𝐴 𝐶𝑅 - 𝐺𝑀 𝑉𝑂 𝐶𝐻 15.1879 2.08 7.2880 4888 < 0.001
𝐺𝐹 𝑉𝐴 𝐶𝑅 - 𝐺𝑀 𝑉𝑂 𝐶𝑃 54.2061 2.08 26.0112 4888 < 0.001
𝐺𝐹 𝑉𝐴 𝐶𝑅 - 𝐺𝑀 𝑉𝑂 𝐶𝑅 0.7455 2.08 0.3577 4888 1.000
𝐺𝐹 𝑉𝐴 𝐶𝑅 - 𝐺𝑀 𝑉𝑂 𝐶𝐴 39.0121 2.08 18.7202 4888 < 0.001
𝐺𝐹 𝑉𝐴 𝐶𝑅 - 𝐺𝑀 𝑉𝑂 𝐶𝐸 46.6909 2.08 22.4050 4888 < 0.001
𝐺𝐹 𝑉𝐴 𝐶𝑅 - 𝐺𝑀 𝑉𝐴 𝐶𝐻 12.2303 2.08 5.8688 4888 < 0.001
𝐺𝐹 𝑉𝐴 𝐶𝑅 - 𝐺𝑀 𝑉𝐴 𝐶𝑃 42.3576 2.08 20.3256 4888 < 0.001
𝐺𝐹 𝑉𝐴 𝐶𝑅 - 𝐺𝑀 𝑉𝐴 𝐶𝑅 1.1576 2.08 0.5555 4888 1.000
𝐺𝐹 𝑉𝐴 𝐶𝑅 - 𝐺𝑀 𝑉𝐴 𝐶𝐴 39.0727 2.08 18.7493 4888 < 0.001
𝐺𝐹 𝑉𝐴 𝐶𝑅 - 𝐺𝑀 𝑉𝐴 𝐶𝐸 36.5455 2.08 17.5366 4888 < 0.001
𝐺𝐹 𝑉𝐴 𝐶𝑅 - 𝐺𝐹 𝑉𝐼 𝐶𝐻 12.6909 2.08 6.0898 4888 < 0.001
𝐺𝐹 𝑉𝐴 𝐶𝑅 - 𝐺𝐹 𝑉𝐼 𝐶𝑃 34.1636 2.08 16.3937 4888 < 0.001
𝐺𝐹 𝑉𝐴 𝐶𝑅 - 𝐺𝐹 𝑉𝐼 𝐶𝑅 -0.8364 2.08 -0.4013 4888 1.000
𝐺𝐹 𝑉𝐴 𝐶𝑅 - 𝐺𝐹 𝑉𝐼 𝐶𝐴 50.1879 2.08 24.0830 4888 < 0.001
𝐺𝐹 𝑉𝐴 𝐶𝑅 - 𝐺𝐹 𝑉𝐼 𝐶𝐸 30.7212 2.08 14.7418 4888 < 0.001
𝐺𝐹 𝑉𝐴 𝐶𝑅 - 𝐺𝐹 𝑉𝑂 𝐶𝐻 21.0000 2.08 10.0770 4888 < 0.001
𝐺𝐹 𝑉𝐴 𝐶𝑅 - 𝐺𝐹 𝑉𝑂 𝐶𝑃 35.7091 2.08 17.1353 4888 < 0.001
𝐺𝐹 𝑉𝐴 𝐶𝑅 - 𝐺𝐹 𝑉𝑂 𝐶𝑅 1.56e-14 2.08 7.48e-15 4888 1.000
𝐺𝐹 𝑉𝐴 𝐶𝑅 - 𝐺𝐹 𝑉𝑂 𝐶𝐴 44.4606 2.08 21.3347 4888 < 0.001
𝐺𝐹 𝑉𝐴 𝐶𝑅 - 𝐺𝐹 𝑉𝑂 𝐶𝐸 32.9697 2.08 15.8207 4888 < 0.001
𝐺𝐹 𝑉𝐴 𝐶𝑅 - 𝐺𝐹 𝑉𝐴 𝐶𝐻 18.5091 2.08 8.8817 4888 < 0.001
𝐺𝐹 𝑉𝐴 𝐶𝑅 - 𝐺𝐹 𝑉𝐴 𝐶𝑃 42.5152 2.08 20.4012 4888 < 0.001
𝐺𝐹 𝑉𝐴 𝐶𝑅 - 𝐺𝐹 𝑉𝐴 𝐶𝐴 44.9455 2.08 21.5674 4888 < 0.001
𝐺𝐹 𝑉𝐴 𝐶𝑅 - 𝐺𝐹 𝑉𝐴 𝐶𝐸 35.2485 2.08 16.9142 4888 < 0.001
𝐺𝐹 𝑉𝐴 𝐶𝐴 - 𝐺𝑀 𝑉𝐼 𝐶𝐴 -4.6000 2.08 -2.2073 4888 1.000
𝐺𝐹 𝑉𝐴 𝐶𝐴 - 𝐺𝑀 𝑉𝑂 𝐶𝐴 -5.9333 2.08 -2.8472 4888 1.000
𝐺𝐹 𝑉𝐴 𝐶𝐴 - 𝐺𝑀 𝑉𝐴 𝐶𝐴 -5.8727 2.08 -2.8181 4888 1.000
𝐺𝐹 𝑉𝐴 𝐶𝐴 - 𝐺𝐹 𝑉𝐼 𝐶𝐴 5.2424 2.08 2.5156 4888 1.000
𝐺𝐹 𝑉𝐴 𝐶𝐴 - 𝐺𝐹 𝑉𝑂 𝐶𝐴 -0.4848 2.08 -0.2327 4888 1.000
𝐺𝐹 𝑉𝐴 𝐶𝐸 - 𝐺𝑀 𝑉𝐼 𝐶𝑃 8.7212 2.08 4.1849 4888 0.013
𝐺𝐹 𝑉𝐴 𝐶𝐸 - 𝐺𝑀 𝑉𝐼 𝐶𝐴 5.0970 2.08 2.4458 4888 1.000
𝐺𝐹 𝑉𝐴 𝐶𝐸 - 𝐺𝑀 𝑉𝐼 𝐶𝐸 5.6909 2.08 2.7308 4888 1.000
𝐺𝐹 𝑉𝐴 𝐶𝐸 - 𝐺𝑀 𝑉𝑂 𝐶𝑃 18.9576 2.08 9.0969 4888 < 0.001
𝐺𝐹 𝑉𝐴 𝐶𝐸 - 𝐺𝑀 𝑉𝑂 𝐶𝐴 3.7636 2.08 1.8060 4888 1.000
𝐺𝐹 𝑉𝐴 𝐶𝐸 - 𝐺𝑀 𝑉𝑂 𝐶𝐸 11.4424 2.08 5.4907 4888 < 0.001
𝐺𝐹 𝑉𝐴 𝐶𝐸 - 𝐺𝑀 𝑉𝐴 𝐶𝑃 7.1091 2.08 3.4113 4888 0.283
𝐺𝐹 𝑉𝐴 𝐶𝐸 - 𝐺𝑀 𝑉𝐴 𝐶𝐴 3.8242 2.08 1.8351 4888 1.000
𝐺𝐹 𝑉𝐴 𝐶𝐸 - 𝐺𝑀 𝑉𝐴 𝐶𝐸 1.2970 2.08 0.6224 4888 1.000
𝐺𝐹 𝑉𝐴 𝐶𝐸 - 𝐺𝐹 𝑉𝐼 𝐶𝑃 -1.0848 2.08 -0.5206 4888 1.000
𝐺𝐹 𝑉𝐴 𝐶𝐸 - 𝐺𝐹 𝑉𝐼 𝐶𝐴 14.9394 2.08 7.1688 4888 < 0.001
𝐺𝐹 𝑉𝐴 𝐶𝐸 - 𝐺𝐹 𝑉𝐼 𝐶𝐸 -4.5273 2.08 -2.1724 4888 1.000
𝐺𝐹 𝑉𝐴 𝐶𝐸 - 𝐺𝐹 𝑉𝑂 𝐶𝑃 0.4606 2.08 0.2210 4888 1.000
𝐺𝐹 𝑉𝐴 𝐶𝐸 - 𝐺𝐹 𝑉𝑂 𝐶𝐴 9.2121 2.08 4.4205 4888 0.004
𝐺𝐹 𝑉𝐴 𝐶𝐸 - 𝐺𝐹 𝑉𝑂 𝐶𝐸 -2.2788 2.08 -1.0935 4888 1.000
𝐺𝐹 𝑉𝐴 𝐶𝐸 - 𝐺𝐹 𝑉𝐴 𝐶𝑃 7.2667 2.08 3.4870 4888 0.214
𝐺𝐹 𝑉𝐴 𝐶𝐸 - 𝐺𝐹 𝑉𝐴 𝐶𝐴 9.6970 2.08 4.6532 4888 0.001
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