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Abstract

Recent developments in neural networks have introduced a novel state-of-the-art technol�
ogy in human speech synthesis which dominates today’s consumer as well as research side
of text-to-speech systems. With increasing e�orts put into all aspects of the pipeline, the
past few years have seen the successful implementation of prosody control and transfer
into end-to-end speech synthesis systems with prominent results.

This work gives an introduction into the theory of expressive speech synthesis with
focus on a recent, specific synthesis method, and reports on the practical implementation
and evaluation of this method within an open source software framework. Exploring the
prosodic augmentation of a state-of-the-art neural speech synthesis system, this work
extends discussion and evaluation on two variables influencing the augmentation specific
to this method: the structural and variational capacities that control the amount of
expressiveness of the synthetic speech. Through replicating and modifying two subjective
evaluation tests introduced in the original method, this thesis outlines a direct and critical
assessment of the implemented method based on the prosodic transfer characteristics
and overall naturalness of synthesised speech samples.

O�ering the implemented method as open source code, this work aims to be a contri�
bution to the vast ecosystem of open source text-to-speech software to enable researchers
to experiment with and further develop expressive speech synthesis technologies.
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Zusammenfassung

Die jüngsten Entwicklungen auf dem Gebiet der neuronalen Netze haben eine neuartige,
hochmoderne Technologie für die menschliche Sprachsynthese eingeführt, die heute sowohl
die Verbraucher- als auch die Forschungsseite von Text-to-Speech-Systemen dominiert.
Mit zunehmenden Bemühungen um alle Aspekte der Pipeline wurde in den letzten
Jahren die Prosodiekontrolle und -übertragung in End-to-End-Sprachsynthesesysteme
mit herausragenden Ergebnissen implementiert.

Diese Arbeit gibt eine Einführung in die Theorie der expressiven Sprachsynthese mit
Fokus auf einer neueren, spezifischen Synthesemethode und berichtet über die praktische
Implementierung und Evaluierung dieser Methode innerhalb eines Open-Source-Softwa�
re-Frameworks. Diese Arbeit untersucht die prosodische Ergänzung eines hochmodernen
neuronalen Sprachsynthesesystems und erweitert die Diskussion und Evaluierung von
zwei Variablen, die die Erweiterung spezifisch für diese Methode beeinflussen: die struk�
turellen und variationalen Kapazitäten. Durch die Replikation und Modifikation von
zwei subjektiven Hörversuchen, die in der ursprünglichen Methode vorgestellt wurden,
stellt diese Arbeit eine direkte und kritische Bewertung der implementierten Methode
auf der Grundlage der prosodischen Übertragungseigenschaften und der allgemeinen
Natürlichkeit der synthetisierten Sprachproben dar.

Durch die Bereitstellung der implementierten Methode als Open-Source-Code soll diese
Arbeit einen Beitrag zu dem umfangreichen Ökosystem von Open-Source Text-to-Speech�
Software leisten, das es Forschern ermöglicht, zu experimentieren und aussagekräftige
Sprachsynthesetechnologien zu entwickeln.
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Chapter 1 Introduction 1

1 Introduction

The two foundational tools of communication between humans are written and verbal
communication. We have developed constructs of languages as instruments to carry out
these two di�erent ways of sharing information between us. Next to human-to-human
interactions, our society is more and more reliant on human-to-machine interaction.
With the arrival of personal computers, we developed new types of languages, techniques
and routines for human-machine interaction. The 1992 book from the New York based
Association for Computing Machinery defines human-computer interaction as

„... a discipline concerned with the design, evaluation and implementation
of interactive computing systems for human use and with the study of major
phenomena surrounding them."[11, p. 5]

The major tool behind these human-machine languages, however is still the fundamental
instrument of writing. Verbal communication with a machine is one of the most researched
topics in the human-computer interaction discipline, with focus on the two major areas
of speech recognition and speech synthesis [12]. The main goal of these technologies
is to achieve the level of communication between two humans in the context of a
human-machine scenario. Speech synthesis in the context of this work refers to the TTS
technology whereby the machine/computer is able to convert given text into audible
speech [12]. TTS solutions have been present since many years primarily for helping the
visually disabled [13], however development of these technologies have gained immense
attention since the arrival of personal assistants in smart phones and other devices.

This Master’s Thesis is a report and a contribution to current TTS research and
engineering topics about closing the gap in the level of communication between human�
to-human and human-to-machine interaction.

In order to define what is meant under the levels of communication, a framework for
assessing synthesised speech is required. Aida–Zade, Ardil and Sharifova in [14] introduce
two parameters, the naturalness of sounding and the intelligibility of speech as the two
criteria for a good speech synthesizer. While the naturalness of sounding can loosely
depend on how many generated sounds are close to natural human speech, intelligibility
can be defined as the easiness of artificial speech understanding. Existing and developing
technologies aim to improve on both of these characteristics.



2

Beginning in the mid 20th century, the three major generations of speech synthesis
systems were the parametric, concatenative, and unit-selection approaches [14]. Para�
metric synthesis uses a range of source-filter models to estimate human speech through
the resonant frequencies of the vocal tract called formants. Concatenative synthesis,
on the other hand produces speech by concatenating small, prerecorded units of speech
to construct an utterance [13], while unit-selection synthesis expands on this idea with
longer segments and the implementation of a cost function to regulate the model. With
the introduction of statistical parametric speech synthesis using Hidden Markov Models,
the early 2000s saw the application of a new state-of-the-art technique which defined the
ground for further speech synthesis research. While increasingly satisfying one of the
above mentioned criteria - intelligibility -, the audio produced by these systems often
sounds mu�ed and unnatural compared to human speech [4].

What defines the naturalness of sounding? Speech synthesis is an underdetermined
problem, meaning the same text input has an infinite number of reasonable spoken
realisations [8]. A system aiming to realistically reproduce human speech must implicitly
or explicitly impute many factors that are not given in a simple text input [6] so that
the intrinsic meaning expressed by how the utterance was spoken out can be coupled
with what the input text contained. Factors referring to how an utterance is spoken
out include the intonation, stress, rhythm and style of speech - collectively referred to
as prosody. The prosodically determined structure of an utterance - timing, amplitude
and fundamental frequency - are in line with the elementary attributes of sound itself
and thereby establish a varying dimension of information to be processed by the listener
[15]. This high-level dimension of meaning is what makes the determined problem of
turning text into intelligible speech an underdetermined challenge whereby the basic text
input to audio output scenario is augmented with a consideration for this meta-level
information not encoded in text.

When it comes to building controllable and custom prosody into the synthesis of speech
utterances, the systems detailed above are disabled by limitations: parametric speech
synthesis o�ers high customisation ability stemming from the number of parameters in
the signal flow, however, the results sound unnatural. The principle of concatenation
of speech segments, on the other hand seems more natural but allow the control of few
parameters [16]. In order to achieve close to human-like naturalness of sounding, these
clear limitations present strong motivation to implore di�erent modelling techniques.
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Recent developments in the DL subset of ML technologies have enabled a new frontier
of computer synthesised speech. ML enabled researchers and engineers to think and
work di�erently about the problem: now, with the emphasis shifting away from the
traditional systems detailed above, the focus lays on deep neural networks which feed on
great amounts of input data with which the machine learns a statistical representation
of the way the input speaker speaks and can reproduce speech utterances previously
unseen during training. With increasing investments in AI research and engineering
[17], these technologies have become the forefront of speech synthesis systems and the
active research by companies such as Google 1 enabled some breakthrough results in the
naturalness of sounding criteria [4]. A major di�erence to older technologies is the fact
that these newer systems work in an end-to-end fashion, meaning that a single text input
to the system yields a synthesised audio output. We refer collectively to these as TTS
systems.

An important limitation of these new systems, however is the global limitation of all
machine learning algorithms: data quality and availability [18]. The definition for data
accuracy and quality in the context of reproducing speech is an under-researched topic
in spite of the fact that some of these models utilising multi-speaker compatibility use up
to 320 hours of recorded speech material [8]. Availability for such large datasets is sparse,
with the exception of a few open source and free to use speech corpuses 2 that are not
always applicable to the specific case.

Older, signal processing and concatenation-based speech synthesis systems managed
to achieve satisfactory intelligibility, however with the arrival of new, data-based DL
approaches the question arises: Can machines speak to us in an emotionally conveying
way?

This Thesis details the work of assessing existing open source research of expressive
speech synthesis and of implementing a previously not publicly available state-of-the-art
expressive speech synthesis method3 into an open source code framework. Additionally,
this work also reports on the acquisition and cleaning of the same dataset used in the
original method. In order to evaluate the quality of the implementation, this work also
outlines the execution and results of a custom made remote listening test. To expand
on the existing synthesis method, the thesis and the corresponding listening test have
been adjusted to consider a previously not-so-discussed aspect of the implementation,
namely the influence of two specific parameters on the subjective evaluation of the model
performance.

1Tacotron: An end-to-end speech synthesis system by Google, last visited: 04.10.2020
google.github.io/tacotron/

2LJSpeech Dataset, last visited: 04.10.2020
keithito.com/LJ-Speech-Dataset/

3Capacitron: E�ective Use of Variational Embedding Capacity in Expressive end-to-end Speech Synthesis,
last visited: 04.10.2020
google.github.io/tacotron/publications/capacitron
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The main research questions can be formulated as follows:

• Can this implementation be evaluated for A) its prosodic transfer characteristics
and B) its naturalness and intelligibility via a listening test?

• How does varying structural and variational capacity impact the prosodic transfer
characteristics of the Capacitron method?

Beyond scientific research, the direct implication of this project is the openly available
implementation of a previously unavailable expressive end-to-end speech synthesis sys�
tem. The open source availability of such an expressive system for synthesised speech
applications would o�er an increased amount of information transferred through TTS ap�
plications today ranging from communication aids for the physically or visually impaired
to on-demand mass consumer products where the customer directly converses with a
device. Human-computer interfaces, conversational assistants as well as content narration
are all touchpoints where deterministic prosody would improve the user experience.
Moreover, there is increasing interest in the creation of recognisable custom voices for
brands and organisations where prosody is one of the major features of di�erentiation.
The open source nature of the development cycle and the implementation code will enable
future collaborators and researchers to use and improve the system, further contributing
to the expansive world of open source TTS software.

1.1 Thesis Structure

Chapter 1 introduced the main ideas and motivation behind this work and defined the
main research questions for the thesis. Chapter 2 o�ers a brief summary of the major
milestones of expressive TTS synthesis, including the methods relevant for this work.
Chapter 3 then presents the reader with the main theoretical framework behind the
Capacitron method - including the derivation and definition of the governing loss function
for the deep learning model -, and defines the structural and variational capacities
investigated in this work. Chapter 4 o�ers the technical report on the development
process, including the review on the acquisition and implementation of the dataset used
for the machine learning models. Then, Chapter 5 describes the design, execution, and
results of the subjective evaluation conducted for this work. This chapter also includes
the discussion of the results, including the presentation of processed data from the model
trainings to compare the subjective test results with the objective scalar values of certain
model parameters. While Chapter 6 briefly describes the open source contributions of
this Master’s Thesis, Chapter 7 concludes the report with a summary of the performed
work and includes the open questions and aspects left for further discussions about this
research topic.
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2 Expressive Text to Speech Synthesis

This chapter briefly introduces the current state-of-the-art of the two major pillars of the
proposed thesis: TTS and expressive TTS via prosody transfer.

2.1 Text To Speech

Modern models of text-to-speech conversion by computers are complex pipelines [19].
The two fundamental processes of text analysis and speech synthesis defined by [19] entail
that such system can often have

• a text front-end extracting various linguistic features,
• a duration model,
• an acoustic feature prediction model and
• a complex signal-processing-based vocoder [3].

With each section requiring broad expertise, laborious design and separate training where
errors may compound, such designs require substantial engineering e�orts [3]. In the
following, the three major developments in the past four years are detailed to introduce
the evolution of the current state-of-the-art technology.

2.1.1 WaveNet

The current wave of DL-based TTS systems can be strongly defined by the 2016 release
of the WaveNet neural network from the Google subsidiary Deep Mind research team
[1]. WaveNet is a generative, deep neural network model operating directly on the raw
audio waveform. Given waveform x = {x1, ..., xT }, its joint probability is factorised as a
product of conditional probabilities as

p(x) =
TŸ

t=1
p(xt|x1,...,xt≠1), (2.1)

where each audio sample xt is conditioned on the samples at all previous time steps. In
order to e�ciently model this probabilistic relationship, the authors applied a dilated
causal convolution depicted in Figure 2.1 to increase the network’s receptive field by
orders of magnitude, without greatly increasing computational cost [1].
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Figure 2.1: Visualisation of a stack of dilated causal convolutional layers[1]

At training time, the input sequences are real wave-forms recorded from human speakers,
while after training, the network is sampled to generate synthetic utterances [2]. Using
this model, the authors conducted mean opinion score (MOS) tests where the subjects
were asked to rate the naturalness of the stimulus in a five-point scale score (1: Bad, 2:
Poor, 3: Fair, 4: Good, 5: Excellent). The results of this test - depicted in Figure 2.2
- concluded that the technology produced significantly more natural speech utterances
than previous technologies and thereby became the new state-of-the-art.

Figure 2.2: Results of the WaveNet MOS test [2]

The two major limitations of this technology are the computing costs and that it still
requires conditioning on linguistic features from an existing TTS front-end.

Firstly, due to its sample-level autoregressive nature and the fact that raw audio data
is typically very high-dimensional (e.g. 24000 samples per second for audio sampled at
24kHz), the original WaveNet technology could not be implemented in any real time
synthesis scenario [20].

Secondly, within the pipeline for a TTS system detailed above, WaveNet only replaces
the vocoder and the acoustic model [3]. It is still not an over-arching solution that would
ideally only require a pair of <text, audio> for training, since it still requires linguistic
features, predicted log fundamental frequency (F0), and phoneme duration as inputs [4].
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Since the inception of the WaveNet technology in 2016 and 2017, multiple new studies
have been released [21] [20] that deal with speeding up the audio sample generation.
Using WaveNet-like designs, there are several systems that have reached real-time or
faster than real-time synthesis speeds with similar output audio quality [22] [23]. A
derivative of these vocoders is to date in production as Google’s leading TTS voice
o�ering 1.

2.1.2 Tacotron 1

Aiming for a solution that would require the least complexity in the training and inference
pipeline, the 2017 proposal from the Google research team introduced the first steps
towards and end-to-end TTS solution, named Tacotron [3]. The aim of this research was
to define an integrated end-to-end TTS system that can be trained on <text, audio>
pairs with minimal human annotation [3]. There are multiple advantages to such a
design:

• it alleviates the need for laborious feature engineering, which may involve heuristics
and brittle design choices,

• it more easily allows for rich conditioning on various attributes, such as speaker or
language, or high-level features like sentiment,

• a single model is more robust than a multi-stage model [3].

Figure 2.3: Tacotron 1 model architecture [3]

Figure 2.3 demonstrates this end-to-end fashion, where in inference time, the model
takes characters as input and outputs the corresponding raw linear-scale spectrogram,
which is then fed to the Gri�n-Lim reconstruction algorithm to synthesise speech [3].

1Google Cloud text-to-speech Service, last visited: 04.10.2020
cloud.google.com/text-to-speech
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The vocoder algorithm is not conditioned on the input data and therefore often produced
noisy results [3]. While the output audio from Tacotron 1 has not reached the MOS score
of that of WaveNet’s, the successful design of such a system paved the way for further
research into end-to-end TTS architectures.

2.1.3 Tacotron 2

The 2018 landmark paper from the same team introduced Tacotron 2, a truly end�
to-end TTS system where the last part of the pipeline (among other changes to the
sequence-to-sequence model) of converting a mel-scale spectrogram into raw audio has
been designed using a trainable WaveNet vocoder. This architecture is now a unified,
entirely neural approach to speech synthesis that combines the best of the previous ap�
proaches: a sequence-to-sequence Tacotron-style model that generates mel spectrograms,
followed by a modified WaveNet vocoder [4]. Figure 2.4 shows the entirely trainable
system design.

Figure 2.4: Tacotron 2 model architecture [4]

The MOS scores illustrated in Figure 2.5 show that the new state-of-the art in end-to-end
TTS synthesis has been achieved.

Figure 2.5: Tacotron 2 MOS [4]
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2.1.4 HiFi-GAN

The acoustic model used for this work to transform synthesised spectrograms into audio
files is the state-of-the-art High Fidelity Generative Adversarial Network (HiFi-GAN)
vocoder [24]. This modern model from late 2020 achieves both very e�cient and high-fi�
delity speech synthesis without being reliant on an autoregressive architecture.

„As speech audio consists of sinusoidal signals with various periods, modelling
the periodic patterns matters to generate realistic speech audio. Therefore, we
propose a discriminator which consists of small sub-discriminators, each of
which obtains only a specific periodic parts of raw waveforms. This architecture
is the very ground of our model successfully synthesizing realistic speech audio.
As we extract di�erent parts of audio for the discriminator, we also design a
module that places multiple residual blocks each of which observes patterns of
various lengths in parallel, and apply it to the generator." [24, p. 5]

While there are many di�erent models for spectrogram conversion, the choice for this
method has been made based on

• its availability in the used open source framework;
• its state-of-the-art naturalness and intelligibility score on MOS tests;
• its synthesis speed: human-quality speech audio is synthesised at speed of 3.7 MHz

on a single Nvidia V100 GPU [24].

2.1.5 Evolution of TTS

The introduction of modern TTS technologies thus far has been short and has only
concentrated on the landmark methods and models relevant for this work. Neural TTS
technologies have been thriving since 2016 and there is a large amount of research released
focusing on the di�erent aspects of the pipeline, with the quality of synthesised speech
steadily improving [5]. A comprehensive 2021 survey from the Microsoft TTS research
team summarised the many di�erent methods and models released since 2016, shown in
Figure 2.6. While this work is not aiming to contribute to the list of methods with a new
approach, it is, however aiming to contribute to the vast ecosystem of open source TTS
technologies by realising the first publicly available implementation of the Capacitron
model.



10

Figure 2.6: Evolution of neural TTS models [5]
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2.2 Prosody Transfer and the Reference Encoder

2.2.1 Learning the Latent Embedding Space of Prosody

The current generation of prosody control implementations in the Tacotron system
detailed above was established by the 2018 paper from the Google research team that
presented an extension to the base speech synthesis architecture that learns a latent
embedding space of prosody, derived from a reference acoustic representation containing
the desired prosody [6]. Similar to Tacotron 1, this paper first introduced the general
ideas of prosody transfer in an end-to-end TTS system, produced good results and laid
the foundations for further research. Figure 2.7 shows the architecture of the augmented
Tacotron system, where the autoregressive decoder is conditioned on the result of the
reference encoder, transcript encoder and speaker embedding via an attention module [6].

Using this deterministic reference encoder to project the reference speech into a learned
embedding space, this model enables prosody transfer between two speakers ("say it like
this"), but does not work for transfer between unrelated sentences nor does it preserve
the pitch range of the target speaker.

Figure 2.7: Tacotron architecture for prosody control [6]
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3 Capacitron

This chapter introduces the theoretical background for the Capacitron model, namely the
variational autoencoder neural network architecture as well as the concept of structural
and variational capacity, the two variables directly controlling the dimensionality and
extent of expressiveness. Then, bringing together these two concepts, the end of this
chapter introduces the governing equation for this thesis, the loss function used in the
neural network architecture as well as the definition for the two types of capacities
investigated in this work.

3.1 The Probabilistic Model - Variational Autoencoders

In his 1867 work, "Handbuch der physiologischen Optik", Hermann von Helmholtz defines a
term of perceptual psychology, the unconscious inference (unbewusster Schuss) to explain
various conscious, perceptual and cognitive phenomena by postulating inference-like
processes that operate over unconscious representational states [25]. As Helmholtz puts
it,

„the inferences that the perceptual system engage in ... are in general not
conscious, but rather unconscious. In their outcomes they are like inferences
insofar as we from the observed e�ect on our senses arrive at an idea of the
cause of this e�ect. This is so even though we always in fact only have direct
access to events at the nerves, that is, we sense the e�ects, never the external
objects." [26, p. 430]

Following this framework, we can view the human perceptual system as a statistical
inference engine whose function is to infer the probable causes of sensory input [27]. When
it comes to modelling such a system, however, a necessary condition for such a device
is the ability to learn how to perform these inferences without requiring a teacher to
label each sensory input vector with its underlying causes due to the high dimensionality
of the solution space. In the case of the human perception and production of speech,
the underdetermined nature of expressive speech o�ers an obvious candidate for the
modelling of this system using a Helmholtz architecture.
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In other terms, such representational learning models aim to „identify and disentangle
the underlying causal factors of the data, so that it becomes easier to understand the data,
to classify it, or to perform other unsupervised tasks" [28, p. 1]. For audio data (which
due to modern NN techniques is often transformed into image data), this often means
that we are interested in uncovering the “global structure” that captures the content of
an image and its “style” [29].

3.1.1 Limitations of Autoencoders

Heuristic (non-variational) autoencoders explicitly compress high dimensional data into
a smaller, latent dimension z using an encoder architecture, in our case parameterised by
a neural network. This compressed data is then decoded using a neural decoder network
that learns to reconstruct the latent, compressed vector into the original input during
training. The term reconstruction loss used in this work originates from looking at the
accumulated loss between the reconstructed output and the true input. A typical schema
for a basic autoencoder model is shown in Figure 3.1.

Figure 3.1: Schema of a typical autoencoder network architecture

A major limitation of autoencoders, however is that even with non-linear activation
functions along the network connections, the latent variable z produced by the network
is still a fixed vector. This means that during inference, a certain input to the model will
produce the same output every time the model is initialised with that input. In terms of
expressive TTS applications, this is an undesirable e�ect, since synthesising the same
sentence multiple times will produce the same prosody in the output audio.
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This type of set-up does not satisfy the requirement of naturalness stated earlier, since
this one-to-one mapping from text to audio is not in line with the underdetermined,
one-to-many nature of expressive speech, whereby some text has ultimately many di�erent
ways to be uttered [30].

3.1.2 Variational Extension to Autoencoders

The fundamental basis of the Helmholtz architecture is based on a recognition model used
to infer a probability distribution over the underlying causes from the sensory input, and a
separate learned generative model that is used to train the recognition model [27]. Modern
implementations in machine learning interpret this recognition-generation coupling using
a Bayesian probabilistic model, presented in the 2014 paper as the variational autoencoder
architecture from Kingma and Welling [31].

Instead of mapping an input to a fixed vector, the input data is compressed down onto
a probability distribution. In practice, this means using a parameterised neural network to
output values for the mean µ and standard deviation ‡ of a Gaussian normal distribution
q(z|x). The fixed vector bottleneck from the basic autoencoder is now replaced by two
separate vectors that we use to create a distribution. In order to capture the latent
embedding z from this architecture, we can sample from this parameterised distribution
after the input has been fed through the encoder. A schema for a simple VAE model is
shown in Figure 3.2

Figure 3.2: Schema of a typical variational autoencoder network architecture
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Given some dataset X = {x(i)}N
i=1 consisting of N i.i.d. samples of some continuous or

discreet variable x, we assume the data are generated by some random process, involving
an unobserved random variable z. This generative process originating from the latent
space can be split into two subprocesses:

1. a value z(i) is generated from some prior distribution p(z),
2. a value x(i) is generated from some conditional distribution, the likelihood p(x|z).

Given the prior belief that the probability density function of the latent variable is p(z)
and that the observations x have likelihood p(x|z), the true posterior distribution based
on Bayes’ Theorem is defined as

p(z|x) = p(x|z)
p(x) · p(z), (3.1)

with the evidence p(x) defined as the integral of the marginal likelihood

p(x) =
ˆ

p(z)p(x|z)dz. (3.2)

In order to calculate the integral introduced in Equation 3.2, we would have to
marginalise over all configurations of latent variables which would require exponential
time. By parameterising p(x) and p(z|x) with neural networks with non-linear layers
and parameters „, this integral becomes intractable. We have

p„(z|x) = p„(x|z)
p„(x) · p„(z),

p„(x) =
ˆ

p„(z)p„(x|z)dz,

(3.3)

the intractable true posterior density and true marginal likelihood respectively, pa�
rameterised by the neural network parameters „. For these cases of intractability, [31]
introduces a recognition model, an approximate posterior q◊(z|x) distribution to model
the true posterior p„(z|x). Here, the parameters ◊ are not computed from some closed�
form expectation, instead the authors introduce a method for learning the recognition
model parameters ◊ jointly with the generative model parameters „.

The unobserved variables z have an interpretation of a latent representation, or code -
this is why the recognition model q◊(z|x) can be referred to as a probabilistic encoder.
Given a data point x, the recognition model produces a distribution (e.g. a Gaussian)
over the possible values of the code z, from which the data point x could have been
generated. In turn, we can now refer to p„(x|z) as the probabilistic decoder, which, given
a code z, produces a distribution over the possible corresponding values of x.
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3.1.3 Variational Bound

The marginal likelihood of the data p„(X) is composed of a sum over the marginal
likelihoods of individual data points

log p„(x(1),...,x(N)) =
Nÿ

i=1
log p„(xi), (3.4)

which can be written as:

log p„(x(i)) = DKL(q◊(z|x(i))Îp„(z|x(i))) + L(„, ◊; x(i)), (3.5)

where the KL-divergence term on the RHS is defined as

DKL(qÎp) =
ˆ

q(z) log q(z)
p(z)dz, (3.6)

and is non-negative DKL(qÎp) Ø 0. Since this measure of discrepancy between the true
and approximate posteriors is non-negative and only zero if the distributions are equal,
we define the second term on the RHS of Equation 3.5 to be the variational lower bound
on the marginal likelihood of the data point x(i), L(„, ◊; x(i)). To put the lower bound
nature of this equation into perspective, we can rewrite Equation 3.5 as

log p„(x(i)) Ø L(„, ◊; x(i)) = Eq◊(z|x)[≠ log q◊(z|x) + log p„(x, z)], (3.7)

from which we have the explicit definition for the lower bound as

LELBO(„, ◊; x(i)) = E
q„(z|x(i))[≠ log p„(x(i)|z)] + DKL(q◊(z|x(i))Îp„(z)), (3.8)

where the first part of the RHS is the KL-divergence term between the approximate
posterior (probabilistic encoder) and the prior distributions and the second part is the
expected reconstruction error of the probabilistic decoder. The authors of [32] define
Equation 3.8 as the negative Evidence Lower BOund (ELBO) of the marginal likelihood
of the data, where the KL term acts as a regulariser on the expected reconstruction error
of the data. In variational models, the ELBO functions as the total loss for the model,
where the objective is to optimise Equation 3.8 w.r.t. the generative parameters „ and
variational parameters ◊.
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3.1.4 Reparameterisation Trick

As shown in Figure 3.2, the VAE model entails a sampling operation to produce the
latent embedding for further processing by the decoder. A practical problem with this
operation is that running backpropagation or gradient updates through a sampling node
is not possible due to the fact that we would want to compute gradients on a node
encompassing a random sampling operation.

To be able to run the gradients through the entire network and train everything
end-to-end, [31] introduces the reparameterisation trick. We look at the sampling
operation of the latent vector as a sum z = µ + ‡ · ‘, where µ and ‡ are learnable
constants of the model and ‘ is a fixed, stochastic sampling operation from a standard
normal distribution ‘ ≥ N (0,1). This way, we are only interested in updating gradients by
backpropagation on two learnable parameters and the source of randomness in the model
is reduced to a simple sampling operation from a fixed distribution without any trainable
weights. Figure 3.3 shows the sampling operation from the approximate posterior with
and without the the reparameterisation trick.

Figure 3.3: Sampling operation from the approximate posterior with and without the
reparameterisation trick [7]

3.2 Tacotron 1 and Capacitron VAE

In this Section, the VAE architecture detailed above is connected into the general frame of
TTS, with the parallels between Equation 3.8 and the basic Tacotron 1 decoder presented.
Additionally, the connection between the KL-term and the mutual information between
the data and the latent representation is explained, to give the reader the framework
of how the Capacitron VAE architecture works to encode prosodic information. At the
end of this Section, these pieces of information are compiled to define the governing loss
function for the Capacitron method.



18

3.2.1 Likelihood and the Tacotron Decoder

Existing sequence-to-sequence TTS models start by defining the teacher forced recon�
struction loss,

L (x, yT) © ≠ log p (x | yT) = Îf◊ (yT) ≠ xÎ1 + K, (3.9)

where x is an audio spectrogram, yT is the input text, K is a normalisation constant
and f◊(·) is a deterministic function that maps the text inputs to spectrogram predictions,
in our case modelled by a neural network. Teacher forcing implies that f◊(·) is dependent
on x<t when predicting spectrogram frame xt [8].

Heuristic (non-variational) end-to-end approaches to prosody and style transfer augment
Equation 3.9 with a deterministic reference encoder, ge(x)

LÕ (x, yT) © ≠ log p (x | yT, ge(x)) = Îf◊ (yT, ge(x)) ≠ xÎ1 + K, (3.10)

where the model’s general decoder takes into account a reference embedding produced
by the reference encoder, paramaterised by a separate neural network.

To make the connection to probabilistic models, we recognise that the absolute value
di�erence between the true and predicted spectrograms - known as the L1 loss - functions
as a stand in for the negative log likelihood minimisation process detailed in Section
3.1.3. When looking at the model optimisation from a probabilistic perspective, we aim
to perform maximum likelihood estimation on our input data x, given the transcript
yT . With this, we have made the connection between the VAE and TTS architectures in
terms of the LHS of Equation 3.15. We recognise, that the variational reconstruction
loss defined above is simply the loss of a standard Tacotron decoder extended with a
probabilistic input.

3.2.2 Mutual Information and the KL Term

Recent work [33] [34] [35] has shown that the KL term in Equation 3.8 provides an
upper bound on the mutual information between the data x and the latent embedding
z ≥ q(z|x) [8]. Firstly, we define the KL term averaged over the data distribution:

RAVG © Ex≥pD(x) [DKL(q(z|x)Îp(z))] ,

R © DKL(q(z|x)Îp(z)),
(3.11)

where R is the KL term in Equation 3.8.
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Next, we define the representational mutual information as

Iq(X; Z) ©
¨

pD(x)q(z|x) log q(z|x)
q(z) dxdz,

Iq(X; Z) © Ex≥pD(x) [DKL(q(z|x)Îq(z))] ,

(3.12)

where q(z) © Ex≥pD (x)q(z|x) is the aggregated posterior. Putting together Equation
3.11 and 3.12, we have

RAVG = Iq(X; Z) + DKL(q(z)Îp(z)), (3.13)

where DKL(q(z)Îp(z)) is the aggregate KL, a measure for the mismatch between the
aggregated posterior and the prior. From the non-negativity of the KL divergence and
from Equation 3.13 it follows:

Iq(X; Z) Æ RAVG. (3.14)

This derivation is expanded in Appendix B.

Controlling the KL Term

A desirable feature of VAEs is to be able to control the KL-term defined in Section
3.1.3. By manipulating the KL-term, one can control the upper bound on the mutual
information between the data x and the latent embedding z ≥ q(z|x) [35]. In terms
of modelling the latent space of the input audio’s prosody, the term’s manipulation
translates to the ability of specifically targeting how much of this mutual information
we want our model to incorporate into itself, giving us tight control over the prosodic
information content capacity.

Controlling this KL term has been attempted by various approaches. The beta-VAE
method [36] defines a varying weight on the KL-term, —, while other methods [35] [37]
penalise the KL-term’s deviation from a specific target value. Bringing together these
two approaches, the Capacitron method aims to find a way to smoothly optimise for
a specific bound on the embedding capacity, by adapting a Lagrange multiplier-based
optimisation approach from [38].
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3.2.3 Model Loss

The main model loss for the paper is bringing together these concepts from above, defining
a modified ELBO based on Equation 3.8:

min
◊

max
—Ø0

Ó
Ez≥q◊(z|x) [≠ log p◊ (x|z, yT)] + — (DKL (q◊(z|x.yT)Îp(z)) ≠ C)

Ô
, (3.15)

where ◊ are the model parameters.
The first term of Equation 3.15 is the expected reconstruction loss of the generative

model, where we use the basic Tacotron L1 decoder loss as a stand-in for the negative
log likelihood of a generated spectrogram x given latent embedding z and text yT .

The second term of Equation 3.15 is the augmented KL-term calculation between
the approximate posterior and the prior, including the automatically tuned Lagrange
multiplier-like constant — and the capacity limit C. We constrain — to be non-negative
by passing an unconstrained parameter through a softplus non-linearity, which makes
the capacity constraint a limit rather than a target [8]. To gain intuition about how this
double optimisation process is working, Appendix A o�ers a descriptive summary.

In previous works [39] [32], the approximate variational posterior has the form q(z|x).
which matches the form of the true posterior for a simple generative model p(x|z)p(z).
However, for the conditional generative model used in TTS, p(x|z,yT)p(z), it is missing
conditional dependencies present in the true posterior p(z|x, yT) [8].

Figure 3.4: Adding conditional dependencies to the variational posterior [8]

Figure 3.4 shows the visual representation of this concept. Shaded nodes indicate
observed variables. The true generative model is shown on the left. In the center, the
variational posterior missing conditional dependencies present in the true posterior is
shown. Lastly, on the right, the variational posterior that matches the form of the true
posterior is shown. In practice, this means that we inject extra information about the
text into the variational encoder architecture, to account for an extra conditional input
to this module.
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3.3 Capacity

In these heuristic models, the choice of architecture for the reference encoder defines the
transfer characteristics of the model, which o�ers a trade-o� between transfer precision
and generality. Setting the variational capacity of the reference encoder model high would
prioritise precision and are better suited for prosody transfer to similar text, while lower
capacity embeddings prioritise generality and are better suited for text-agnostic style
transfer [8]. In terms of the Capacitron method, we can distinguish between two types of
capacities in the model. One of the pillars of this work is to investigate the relationship
between these two capacities further than in the original method, to see how these two
variables influence certain aspects of model evaluations. In the following, these two types
of capacities are defined, while their influence on the subjective evaluation of the models
is discussed more in Chapter 5.

Variational Capacity

Also referred to as information capacity, the variational capacity is defined by the constant
C in Equation 3.15. This scalar value is the one directly influencing the bound on the
mutual information, by limiting the KL term to a desired value.

Structural Capacity

Simply put, the structural capacity of the VAE architecture can be easily adjusted by
changing the dimensionality of the latent embedding z. Setting this dimensionality forces
the reference encoder to translate the latent space onto a fixed tensor, whose size can be
manipulated to control how big the network’s variational embedding should be.

3.4 Practical Use of the VAE Architecture

The architecture detailed above gives us 3 di�erent possibilities to utilise the VAE
structure in terms of TTS synthesis inference.

3.4.1 Posterior Sampling

By sampling from the posterior distribution, we can use an arbitrary sample to create
a reference embedding from this sample that we feed to the model’s decoder together
with the text to synthesise. This gives us controllable prosody transfer from a reference
utterance onto a synthesised one. We have the choice to synthesise the same text as in
the reference (same text prosody transfer) or infer a text prompt di�erent to the one
spoken in the reference (inter text style transfer).
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3.4.2 Prior Sampling

By sampling from the prior distribution, we sample from the learned prosody space of
the model. Since the model has optimised the approximate posterior and prior to be in a
certain divergence (limited by the variational capacity) to each other, the deterministic
decoder has learned how to interpret samples from a standard Gaussian. Therefore, when
we randomly sample a latent embedding from this distribution, it will give us realistic
and true prosody, learned from the input data’s latent space. This means that by not
providing a reference to the Capacitron model, it will yield di�erent prosody every time
the synthesis is run on a prompt. This source of randomness and expressiveness is a great
contribution of this method, since vanilla Tacotron systems function in a deterministic
way, whereby a certain text prompt will always yield the same synthesised utterance.
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4 Development Method

This Chapter o�ers the full technical report on the development process, including the
hardware description; the review on the acquisition and implementation of the dataset
used for the models; the programming timeline as well as individual module descriptions
and finally the practical accounts of the model trainings.

4.1 Hardware

The main hardware used for the development and training of the models is a custom-built
PC sponsored by why do birds GmbH. Through rigorous research about the importance
of individual components, the computer has been built with the aim of training models
for high fidelity TTS synthesis. Synthesising speech with high frequency content means
being able to fit the training data at higher sampling rates into the computer’s GPU,
where most of the parallelised tensor operations are taking place. Moreover, a higher
capacity GPU also enables training faster because we can fit a higher batch size into one
training iteration step. For this reason, a larger than average VRAM capacity for the
GPU was chosen. Specifications for the most important components are listed in Table
4.1.

Hardware Type Specification

CPU AMD Threadripper 3.5 GHz, 12 Core

GPU Nvidia Titan RTX 24 GB VRAM

Memory Kingston DDR4 64 GB

Storage Samsung NVME SSD 1 TB

Table 4.1: Development and Training Hardware Specifications
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4.2 Dataset

4.2.1 Acquisition

The dataset used for the thesis project is a collection of high fidelity audio-books provided
by The Voice Factory and Lessac Technologies, Inc for the 2013 Blizzard speech synthesis
challenge [40]. The dataset includes approximately 300 hours of chapter-sized mp3 files
as well as approximately 19 hours of non-compressed wav files from a single speaker,
Catherine Byers. The dataset contains various audio books from many di�erent genres,
which makes it a great resource for expressive TTS research [8] [6] [41] due to the richness
of prosody in the audio files and its open license for research purposes.

4.2.2 Processing

Modern TTS model training processes work with short, utterance-length segmented audio
and corresponding text, where normally a sentence or a part of a sentence is counted as
one datapoint in the structure. The original Blizzard 2013 dataset’s high fidelity audio
samples were only split into chapters, so a segmentation task needed to be carried out in
order to split chapter-length audio files into shorter snippets. For this task, the open
source segmentation data from Nicolas Müller from the Fraunhofer Institute 1 has been
used, which splits the audio files of the chapters into short segments based on openly
available transcripts of the books. Using the Montreal Forced Aligner 2, the segmentation
split the sentences on longer pauses and removed leading and trailing silences.

During the development process, many di�erent trained models were producing faulty
speech, so as a cautionary measure about the accuracy of the segmented audio snippets,
a subjective evaluation of randomly sampled datapoints has been carried out. During
this process, 50 audio files have been randomly selected and subjectively compared with
the corresponding transcript. This process has been repeated 3 times. Results from this
subjective sampling process is summarised in Table 4.2.

Iteration Error Rate

1 0%

2 8%

3 10%

Table 4.2: Percentage of misaligned or incorrect audio-transcript data pairs from 3 iterations of
sampling 50 random utterances from the data

1github.com/mueller91/tts_alignments
2montreal-forced-aligner.readthedocs.io/en/latest/
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The results from this test prompted further processing and cleaning of the data to get
rid of misaligned and incorrect utterance-transcript pairs. For this purpose, all segmented
audio utterances were run through an open-source, pre-trained STT model3 to transcribe
all audio files to text. This text afterwards has been compared with the transcript from
the existing dataset and a similarity score has been assigned to each utterance. In order
to define the threshold similarity score - between the ground truth and synthesised text -
under which datapoints would be discarded, another subjective individual listening test
of randomly selected datapoints was carried out. This step resulted in discarding 10%
of the original segmented dataset, resulting in 93,074 training utterances totalling to 85
hours of high fidelity audio. Figure 4.1 shows the distribution of the dataset transcript
lengths, while Figure 4.2 shows the mean audio duration compared to the text length.

Figure 4.1: Distribution of utterance lengths in the final, untrimmed dataset

Figure 4.2: Mean audio duration in seconds vs. Text length

3github.com/coqui-ai/STT
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In order to be able to maximise the GPU’s VRAM capacity, the final training data
has also been trimmed using the max-seq-len flag in the data-processing pipeline to
exclude long utterances. Using 110 for this setting essentially excludes all utterances
with transcript character lengths higher than 110 - translating to an average audio
length of around 5 seconds. This trimming procedure speeds up the training process
because by zero-padding shorter utterances inside the batches of data including these
longer utterances, there is valuable VRAM capacity consumed that would result in
decreasing the batch size. By minimising the utterance length, less space is wasted on
long, zero-padded instances which in turn enables the use of a higher batch size, therefore
quicker and more e�cient training. The shorter training samples also do not degrade
inference synthesis quality, because the autoregressive attention mechanism is able to
infer longer utterances than what has been seen during training [41]. This operation
is also in line with the dataset processing used in [8]. After trimming, the e�ective
dataset contained 83,366 utterances, totalling to 71 hours at 24kHz sampling rate. Figure
4.3 shows the distribution of the text lengths from the final trimmed dataset. The
distribution resembles a normally distributed dataset which is a desirable attribute for
TTS synthesis [42].

Figure 4.3: Distribution of utterance lengths in the final, trimmed dataset

4.3 Programming

This sections details the software development process and methodology, including the
description of multiple attempts of implementing the Capacitron model in di�erent
environments.

4.3.1 Environment and Tools

Similarly to other fields in ML, there is a vibrant open source community around TTS
synthesis, with many researchers releasing code for their work and other students, industry
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members or enthusiasts implementing methods without o�cially released code. In order
to write the first open implementation of the Capacitron model, a fundamental base TTS
code repository needed to be found that includes the overall structure of the model, upon
which changes and new modules could be built. Specifically, repositories implementing
the base reference encoder architecture detailed in [6] and [43] were searched for.

At the time of development of this project, the two major ML frameworks used for GPU
accelerated deep learning are Tensorflow 4 and PyTorch 5. Both are open source libraries
utilising a powerful frontend python programming environment and a C++/CUDA
backend for computation. While Tensorflow version 1 utilises a static computational
graph (define and run) to compute the gradients of the DNN nodes, PyTorch uses a
dynamic graph (define by run) for this process resulting in a development process more
similar to vanilla python code and development practices.

Based on limited previous experience in the Tensorflow 1 framework as well as the
subjective evaluation of samples produced by the di�erent repositories, the decision has
been taken to start the development based o� of an open-source Tensorflow 1 repository
6 of the Global Style Tokens [43] implementation, which includes a modified version of the
fundamental autoregressive TTS Tacotron 1 model [3], including the principal reference
encoder.

Regarding implementation details and questions about the model, contact has been
made with the main author of the paper from Google, Eric Battenberg 7. Eric was kind
enough to answer emails and schedule calls to go through the theoretical background
and specific implementation details about the model. During one of these calls, he also
shed light on an essential implementation detail that wasn’t fully described in the paper
and what turned out to be a very important feature of the model that was omitted from
previous open source implementations of the reference encoder architecture. This aspect
of the model is detailed in the next section.

Due to increasing di�culties with the programming environment, inconsistencies in the
base repository as well as the lack of support and maintenance for the codebase, 10 weeks
into working with the mentioned Tensorflow 1 repository, the decision has been made to
pivot to a new implementation written in PyTorch 8. This repository is developed and
maintained by the former Mozilla AI team who recently established a new open source
software company, Coqui AI 9. The code base has a vibrant open source community
around it with many university researchers, commercial engineers and hobbyists among
the developers, some of whom directly and indirectly contributed to this project with
discussions and code reviews.

4Tensorflow.org/
5pytorch.org/
6github.com/syang1993/gst-tacotron
7github.com/ebattenberg
8github.com/coqui-ai/TTS
9coqui.ai
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The section below o�ers a comprehensive report on the chronological development
methodology for both attempts.

4.3.2 Methodology

Having decided on the initial code-base to implement the Capacitron method into, contact
has been made with the main author of the paper, Eric Battenberg from Google to clarify
questions and uncertainties about the implementation plans. Eric was kind enough to
go through the main theoretical principles that form the basis of the model for more
intuition about the system. Extending on some of the slightly vague notions in the paper,
he has explained certain modules’ contribution to the method in detail. These sessions
were very helpful in understanding the specific blocks that needed to be coded to make
the method work.

Before starting to code, a road-map of milestones have been defined, in order to
implement smaller parts of the model using agile development methodologies. The way
these milestones have been defined was by comparing the available code and the proposed
method to find refined features, building blocks and the logical infrastructure that were
not present in the base implementation. These milestones are briefly detailed in the next
section with the final PyTorch implementation attached in Appendix D.1.

Having implemented most of the modules into the Tensorflow 1 infrastructure mentioned
above, the first attempts at training the model were launched. These early attempts
mainly served the purpose of finding run time bugs in the newly implemented modules’
code. This turned out to be a lengthier process than expected because of the static
nature of Tensorflow 1. In order to check the required shapes of initialised tensors and
modules, the shapes of previous outputs needed to be propagated all the way to the entry
point of the code to evaluate these in the static graph. This motive was also generally
the case for debugging tensors and logic in the code after the models started to train
without them breaking down due to shape mismatches or other static bugs. The static
nature of the computation graph made it di�cult and timely to experiment in the code
and a significant amount time has been spent on trying to examine shapes, logic and
general behaviour.

Once these first di�culties have been tackled, the model was finally training without
breaking down due to static errors in the code. The next step in examining the behaviour
of the model was through the Tensorboard interface, a visualisation toolkit for ML model
trainings, where the developer can define parameters and plots to be printed onto a visual
console. This tool enables developers to see how di�erent variables in the model evolve
over time and provides a good visual representation of the performance of the model. An
early print of the console is show in Figure 4.4.
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Figure 4.4: Tensorboard print of an earlier model training

Figure 4.5: Tensorboard alignment plot print of an earlier model training

Another useful tool for examining TTS model performance is through the alignment
plots. Alignment plots show the performance of a sequence-to-sequence encoder-de�
coder network, in which the encoder learns to encode a variable-length sequence into a
fixed-length vector representation and the decoder learns to decode a given fixed-length
vector representation back into a variable-length sequence [44].
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„A potential issue with this encoder–decoder approach is that a neural network needs to
be able to compress all the necessary information of a source sentence into a fixed-length
vector. This may make it di�cult for the neural network to cope with long sentences,
especially those that are longer than the sentences in the training corpus" [45, p. 1] - this
limitation is aimed to be solved by attention, a separate model that searches for a set
of positions in a source sentence where the most relevant information is concentrated
to account for this information (so-called context vectors) when the model is predicting
new units in the output sequence [45]. While comprehensively discussing the topic of
attention mechanisms is beyond the scope of this work, it needs to be mentioned that
the attention mechanism is an essential part of modern NLP and TTS systems and the
alignment plots are a standard way of examining a model’s performance. An alignment
plot from an early training is seen in Figure 4.5 where the nonlinear lines show signs
of a not-so-well performing (attention) model. A perfect alignment plot between the
encoder and the decoder time-steps would be a diagonal line that would demonstrate a
one-to-one mapping between encoder input and decoder output.

Upon examining the variable values and alignment plots on the Tensorboard visualisa�
tions, it appeared that some essential parameters were significantly away from the ideal
values. These models naturally also produced very poor speech - the Tensorboard also
o�ers the playback of synthesised samples from certain model checkpoints. These samples
were also constantly monitored to try to evaluate whether the model is doing what
was intended. A factor that made the method experiments di�cult and slow was that
such TTS models need a significant time to train. While the Capacitron paper defined
300,000 steps with batch_size=256 for the fully trained models, an essential piece of
information was provided by Nicolas Müller from the Munich Institute of Technology:
after 20,000 steps, one should already hear and see if the model is producing the intended
speech. Naturally, synthesis and model stability significantly increases with more training,
however for the sake of experimentation, trial models were only trained until 20,000 steps
to save development time. On the above described on-site hardware, this translated to
around 8 hours for a single model to train to a point where it can be remotely decided if
the model failed or not.

Due to the black-box nature of ML and especially TTS - where large models with
millions of parameters and many layers of connections are aiming to produce speech -,
the debugging of the models was a slow and tedious process where often no improvements
were made for weeks. To ask for help and guidance, the Tensorboard values have been
sent to the original author of the paper. Eric replied back with helpful comments and even
commented on some pseudo-code that has been sent to him for sanity-checks. During
one of the discussions he has mentioned an important detail that wasn’t explicitly stated
in the paper, however was essential to get the model working. This part of the model is
detailed in the next section as Convolutional masking.
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After many failed attempts to get the model working, the decision has been made to
abandon the Tensorflow 1 implementation. The reasons for this decision were as follows:

• slow and ine�cient debugging and experimentation,
• poor implementation of the base model,
• lack of up-to-date libraries and technologies,
• lack of a more modern attention mechanism.

4.3.3 Implementation Modules

Most of these modules’ corresponding code implementation is found in Appendix D.1.
When not stated, the implementation is found as an attachment to this work and in the
open source repository 10.

Step dependent learning rate decay function

A training feature not present in the Coqui AI code-base was a step-dependent learning
rate decay function, where the engineer could hard-code learning rate values and the
corresponding training step change thresholds. This general training utility tool has been
implemented to replicate the decaying learning rate behaviour introduced in [8].

— initialisation

The Lagrange-like multiplier constant needed to be initialised in the Capacitron main
class shown in Appendix D.1.1 to equal to 1 at the beginning of training, after it has
passed through a softplus() nonlinear function.

Conditional text input

While the original authors of the Capacitron method experimented on models with or
without a conditional text dependency in the variational posterior, this work automatically
assumes the use of this conditional text input, since it greatly improved the synthesised
samples from these models. The module - shown in D.1.3 - takes a variable length tensor
of characters and maps them onto a fixed size text embedding that is later concatenated
to the output of the reference encoder.

10github.com/a-froghyar/Capacitron
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GMM attention

An important part of the model was the use of the appropriate attention mechanism as
mentioned in [8]. While earlier model training attempts tried to use a di�erent attention
module, it turned out that the Gaussian Mixture Model attention defined in [46] was
essential to get the model working. The Coqui TTS repository used for the base TTS
infrastructure had this module already built-in.

Reference encoder variations

While the Coqui TTS repository already included the reference encoder architecture
defined in Global Style Token Tacotron model [43], some variations to the module’s code
needed to be applied to make it applicable for the Capacitron method. The biggest
change here was to substitute the GRU() layer with a LSTM() layer and accordingly
change the output fetching routine to account for the di�erent outputs of the LSTM()
layer. The code for this module can be found in Appendix D.1.2.

Post reference encoder MLP

To produce the parameters of the diagonal Gaussian which we sample from to produce a
reference embedding during training, the output of the reference encoder (and the vector
describing the text) is passed through an MLP with 128 tanh hidden units. The module
is shown in Appendix D.1.3.

Prior and posterior distributions

Both simple distributions have been modelled with the simple MultivariateNormal
distribution object from PyTorch. While the prior is a fixed distribution with mean=0

and standard_deviation=1, the posterior’s parameters are learned parameters, as
shown in Appendix D.1.1.

Loss function and KL divergence

In order to prepare the proper values for the loss optimisation, a major change to the
standard Tacotron 1 loss function needed to be implemented. As described in Section
3.2 and in Equation 3.15, the standard l1 decoder loss functions as a stand-in for the
variational negative log likelihood term show in Equation 3.9. An important detail here is
that since we’re marginalising over all the latents sampled from the posterior distribution
to get the expected value of the negative log likelihood, the stand-in l1 loss is only valid
if the absolute value calculation also includes a summing operation.
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This way, the decoder loss on the LHS of Equation 3.15 will be in the appropriate
scale of values for the KL Divergence term on the RHS of the same equation in order to
optimise the prosody embedding space to a certain structural capacity limit. The code
for this module is shown in Appendix D.2.

Double optimisation

A major part of the implementation centred around the double optimisation routine
detailed in [8]. The loss function defined in Equation 3.15 was to be optimised by two
separate processes. The main ADAM optimiser is used for the all model parameters
excluding the single scalar parameter —, while a separate SGD optimiser is used only for
—. The way this double optimisation was carried out was by splitting the loss function
into two separate assignments which each only included the parameters that needed
to be minimised, utilising PyTorch’s .detach() method to detach parameters from
the automatic di�erentiation engine. The implementation of this routine is found in
Appendix D.2.

Gradient clipping

Similar to the previous implementation aspect, the repository’s handling of gradient
clipping also needed to be adjusted. Since gradient clipping was normally applied to all
parameters in the code-base, an explicit splitting of parameters to be clipped was defined.
This meant that on all but the parameter — were to be gradient clipping applied.

Convolutional masking

One of the decisive aspects of the implementation is a not explicitly mentioned feature of
the convolutional network inside the reference encoder. Vanilla convolutional networks
normally take an input and compress it down to some desired output using di�erent
values for the kernel_size and stride parameters that define the receptive field and
the sliding of the convolutional filters. These basic networks work with fixed input sizes -
usually static sized images - on which they perform the convolution steps to reduce and
compress the data.

A unique feature of working with speech data, is that the audio being fed to the
networks has varying length. Withing a training batch, these varying length single
samples are ordered in descending order so that similar length examples are following
each other, however the longest sample in the batch is always defining the ultimate size
of the input tensor withing a specific training step. Other, shorter samples are naturally
zero-padded to match the size of the longest sample, so that the input tensor has a
uniform shape.
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Inside the ReferenceEncoder module, this input tensor with the zero-padded
instances is passed through a stack of 6 convolutional layers, with 3x3 filters, 2x2 stride
and batch normalisation. The 6 layers have 32, 32, 64, 64, 128 and 128 filters respectively.

In order to demonstrate why this operation needs extra attention, Figure 4.7 shows a
simple 1D example of an input tensor with input_length=5. The convolution module
from PyTorch enables specifying additional zero padding on di�erent axes of the input
tensor, in this case, a zero padding of 2 is shown on the width dimension. This is to
ensure that the receptive field of the convolutional filter properly includes the information
on the edges of the input tensor. With filter_width=3 and stride=2, we see that
the filter takes 3 input values to convolve these values into a single output value. The
filter then slides 2 values along the width axis to include the next triplet of values and
so on. This singular convolution operation now compressed down the input tensor from
input_length=5 to output_length=4.

Figure 4.6: 1D convolution example with kernel_size=3, stride=2, padding=2 without
zero-padding from data loader batching

Now, the previous case clearly didn’t need to be treated any di�erently than normal
convolution operations - PyTorch has all the built-in helper functions and methods to
account for the data compression. In our special case of working with variable length
audio, however, Figure 4.7 shows where more consideration for this operation is needed.
In this case, the same valid_length example is in a di�erent batch, where it is no
longer the longest sample, so there is already some zero padding applied to the end of the
signal. In this specific case, the input is zero padded already from the data-feeder network
by two zero values. With the same convolution operation as described above, the output
of this convolution is no longer length 4, but 5. The last filter is applying convolution on
zero values, however because of the bias, these terms are not going to be zero after the
convolution step. Even if they are small, in our case of a stack of 6 such convolutions,
the amount of invalid information compounded essentially makes this convolutional net
unable to properly process the input data and to produce meaningful outputs during test
time. The solution for this problem is to calculate the valid_length of each instance in
the batch after a single convolution pass and to mask o� all invalid values before feeding
this output back into the next convolution. With this convolutional masking, the variable
length input audio is properly downsampled into a valid, compressed representation.
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Figure 4.7: 1D convolution example with kernel_size=3, stride=2, padding=2 with
zero padding from data loader batching

This implementation detail turned out be an essential aspect of the Capacitron method
- models trained without this convolutional masking completely failed to learn the latent
space of the input data and produced unintelligible audio during test time. While the
papers using this reference encoder architecture do not explicitly mention this trick, the
main author of the Capacitron method shared the importance of this feature during one
of our sessions.

4.4 Model Trainings

This section details the specific models trained for the model evaluations detailed in
the next chapter. As mentioned in the previous sections, the training of such TTS
models take a long time. The models from [8] have been trained 300,000 steps with
batch_size=256. Through iterative experimentation and optimisation, the locally
available hardware described in section 4.1 managed to start the training process with
the same batch_size, with the GPU’s memory capacity averaging to 98-99% during
training. However, with this set-up, a single training step averaged to ~1,85s, meaning
that a single fully fledged model training as described above would take around 6,5 days.
In total, 8 models were planned for the listening evaluation, which would total to around
52 days (excluding around 8 days spent on training the acoustic model detailed below)
of non-stop GPU time. Due to time constraints and simply the fact that running the
hardware on full capacity for such a long time is very expensive in terms of consumed
electricity resources, the decision has been made to split the model training processes
into two, with 6 models training only for 100,000 steps and 2 models training for 300,000
steps. The reasoning behind how the reduction of training steps has been carried out
is detailed below. This decision then halved the amount of time spent on training the
spectrogram models, totalling the GPU time to around 26 days. The additional training
time for the acoustic (vocoder) model is detailed below.
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Splitting the model trainings as well as the listening evaluation tests into two, the first
phase of trainings focused on the varied capacity models for assessing the influence of
varying structural and variational capacities on the prosody transfer performance of the
models. Afterwards, the second phase of trainings focused on models for the evaluation of
naturalness and quality. If not stated otherwise, all other model and training parameters
have been kept constant through all model trainings detailed below.

4.4.1 Varied Capacity Models

As described in Chapter 3 and Equation 3.15, the two fundamental ways of controlling
how the latent embedding is influencing the trained TTS models is by varying the
structural (embedding, EDim) and variational (informational, C) capacities. While [8]
explored many di�erent values for these two variables, upon listening to example samples
of their trained models11 as well as consulting the results section in the original paper,
the following values for the two capacities have been chosen to be investigated in this
work: C = [50,150,300] and EDim = [64,128]. These parameters then yield a grid of 6
models for training shown in Table 4.3

Model # C Value EDim Value

1 50 64

2 150 64

3 300 64

4 50 128

5 150 128

6 300 128

Table 4.3: Embedding and Variational Capacity Values for the Varied Capacity Model Trainings

Through continuous sample examination by the candidate and Dr Athanasios Lykartsis,
the prosodic content of the samples as well as the transfer capacities of these models have
been proven to be good enough to stop training at 100,000 steps. Since these models were
only going to be used to evaluate their prosody transfer characteristics and would not be
evaluated for their naturalness and quality, the decision to stop training at 100,000 steps
has been taken to save time and resources.

11google.github.io/tacotron/publications/capacitron
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4.4.2 Naturalness and Quality Models

In order to assess the naturalness and quality of the implemented Capacitron method,
two models have been chosen to be trained to the full 300,000 steps in accordance with
[8]. These models would then be used for a separate evaluation round, where there would
be no mixing of samples between short- and long-trained models.

Model # C Value EDim Value

1 150 128

2 300 128

Table 4.4: Embedding and Variational Capacity Values for the Naturalness and Quality Model
Trainings

Cloud Computing

In order to speed up the development process and to be able to train multiple models
in a parallel way, a request to the Audio Communication faculty has been made to rent
a cloud computing instance. Since the budget allocated for this project by the faculty
restricted the scope of instance type choices, a recommendation from the Coqui TTS
community has been taken up to rent an EC2 G412 instance from the cloud computing
service provider Amazon Web Services. This instance has been used to train Model # 2
in Table 4.4, with a batch_size=150 and 300,000 training steps.

4.4.3 Acoustic Model Training

In order to train the acoustic model that converts the synthesised spectrogram into an
audio file, many di�erent types of vocoders have been considered. While the choice of
vocoder does not influence the prosodic content of the synthesised utterances, it is an
essential part in making the synthetic voice appear more realistic and higher fidelity
to the listener. Thanks to the Coqui AI open source TTS community, there are many
di�erent vocoders available in their codebase that are ready to use and are in line with
the main infrastructure of their library. As previously mentioned in Chapter 2, the
choice for the HiFi-GAN vocoder has been made based on its fast inference time and
state-of-the-art quality characteristics.

12aws.amazon.com/ec2/instance-types/g4/, last visited: 04.10.2020
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The author of [47], Edresson Casanova13 is a PhD student at the University of São Paulo
in Brazil who is one of the mein contributors of the Coqui AI TTS library. Edresson
was kind enough to share an already pre-trained (350,000 steps in total based on a
di�erent dataset) HiFi-GAN vocoder model, that could be used as a base model for
further training and therefore saving time. Then, the method of model fine-tuning could
be started, whereby an already pre-trained model’s parameters could be reloaded and
further trained using a new dataset and new hyper parameters. Such "transfer learning"
is not uncommon for vocoder models, since these models usually need many hundreds of
thousands of steps to yield high fidelity and quality audio. An interesting aspect of this
fine-tuning process is the fact that the pre-trained model received has been trained on
a completely di�erent dataset with a lower sample-rate and di�erent audio parameters.
Despite of this, continuing and fine-tuning of the model was started with an additional
250,000 steps trained this time with the dataset used for this project and its corresponding
audio parameters.

Following the training process detailed in [47], after the first part of fine-tuning the
model, the training was interrupted. Using an already existing script in the Coqui
TTS library, one of the fully trained spectrogram models has been used to extract
synthesised and teacher-forced spectrograms to essentially create a new dataset for the
vocoder training. While previously the ground truth samples from the database have
been used for the fine-tuning training, [24] shows that extracting teacher-forced mel-scale
spectrograms from an already fully trained spectrogram model improves the quality of
the synthesised samples. With this newly extracted dataset, the training was resumed
and continued for another 330,000 steps, totalling 930,000 steps at batch_size=110
for the HiFi-GAN-FT (fine tuned HiFi-GAN [47]) vocoder used for all listening evaluation
tests.

13github.com/Edresson
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5 Model Evaluation

This chapter details the evaluation methods used for the trained models. It includes the
description of the custom-modified online testing tool as well as the description of the
participants and the results of the listening test. Additionally, data from the training
variables and scalar results are presented. At the end of the chapter, a section discussing
the results o�ers a report on the performance of the implemented models and reports
critical aspects for improvement.

5.1 Method

5.1.1 Listening Experiment Design

The aim of this work was to design two subjective tests to evaluate trained models based
on the proposed evaluation method in [8]. These included the following methods:

1. evaluation of transfer characteristics in form of an AXY-Discrimination test,
2. evaluation of speech naturalness and intelligibility in form of a MOS test.

AXY Discrimination Evaluation

Firstly introduced in [6], the AXY Discrimination test proposes a new subjective evalu�
ation method for prosody transfer applications, described by the authors as anchored
prosody side-by-side:

„A human rater is presented with three stimuli: a reference speech sample
(A), and two competing samples (X and Y) to evaluate. The rater is asked
to rate whether the prosody of X or Y is closer to that of the reference on a
7-point scale. The scale ranges from “X is much closer” to “Both are about
the same distance” to “Y is much closer”, and can naturally be mapped on the
integers from -3 to 3. Prior to collecting any ratings, we provide the raters
with 4 examples of prosodic attributes to evaluate (intonation, stress, speaking
rate, and pauses), and explicitly instruct the raters to ignore audio quality or
pronunciation di�erences." [6, p. 11]
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As described in Section 3.4, there are three ways one can utilise the VAE architecture
to infer from the models - same text prosody transfer (STT), inter text style transfer
(ITT) and prior sampling (Prior). The task explored in this part of the listening tests
was competing 6 models with each other in two parts - STT and ITT. While the authors
of the original Capacitron method explored many di�erent models’ transfer capabilities
compared to a non-prosodic baseline, they didn’t compete di�erent capacity models with
each other to explore how participants would rate the transfer characteristics between
Capacitron models with di�erent structural and variational capacities. The aim of this
comparison is to answer the research question stated in this work, namely to find out
to what extent does a limited variation in the embedding and variational capacities
influence the transfer characteristics of the implemented model. The 6 models listed in
Table 4.3 are competed against each other in a way that participants must decide which
synthesised utterance between two samples inferred from di�erent models is closer to a
ground truth reference. For the six models, this gives us

!6
2
"

= 15 competing tests. Since
we’re exploring STT and ITT synthesis types, this yields 30 tests in total presented to
participants in a random order.

Regarding the inter-text transfer tasks, the prompt to be synthesised was generated
randomly 1 and the length of each reference-synthesis text pair was chosen to be similar.
The decision to restrict the synthesis prompts’ lengths to be similar to the reference
was for the sake of attempting to capture an "even" transfer of prosody and because
the transfer characteristics often failed and produced undesirable artefacts with certain
models. This topic is further discussed in Section 5.3 below.

Mean Opinion Score (MOS) Evaluation

The MOS subjective evaluation method is generally regarded as the most reliable and
definitive way of assessing speech quality and naturalness [10]. Formerly known as the
absolute category rating, the MOS test became the standard evaluation method for TTS
research, providing a baseline scalar value for synthesis models to compare each other
with. In a standard MOS test, a participant is asked to rate audio files using a discrete
1-5 scale presented in Table 5.1. While the original description of each level of the scale
shown to participants applies to the distortion found in audio signals, MOS tests used for
the evaluation of synthetic speech change this information to a description of the speech
quality. The descriptions used for the evaluation tests conducted in this work are also
presented in Figure 5.1.

1randomwordgenerator.com/sentence.php
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Rating Quality Audio Distortion Speech Description

5 Excellent Imperceptible Completely natural speech

4 Good Just perceptible, but not annoying Mostly natural speech

3 Fair Perceptible and slightly annoying Equally natural and unnatural speech

2 Poor Annoying, but not objectionable Mostly unnatural speech

1 Bad Annoying and objectionable Completely unnatural speech

Table 5.1: MOS scores, original audio distortion hints from [10] and the description hints used
in this work

In order to capture a valid MOS evaluation of audio files, [10] defines the following
requirements:

• there are enough listening subjects of su�cient diversity to deliver statistically
significant results;

• experiments are conducted in a controlled environment with specific acoustic
characteristics and equipment;

• every subject receives the same instructions and stimuli.

In line with other TTS MOS evaluation methods [8] and the requirements listed above,
the original evaluation tests have been slightly altered to fit into the framework of this
thesis. The discreet 5-point scale has been switched to a discreet 100 point scale to
be in line with the remote testing solution described below, which does not alter the
statistical results of the tests [10]. The following sections detail how the other aspects
for the validity of the tests were fulfilled with focus on the remote testing solution and
participant diversity. A screenshot of the final experiment including the altercations
detailed above is shown in Appendix C.

To investigate how the models with di�erent variational capacity limits and their
corresponding synthesis types compare with each other, the MOS tests have been split
into two parts, whereby the first part compares constant type synthesis samples, and
the second part explores constant model samples. In the constant type tests, the ground
truth sample is compared with 2 samples of the same type (STT, ITT or Prior) from
the two models with di�erent C values. This is repeated twice for each type with
di�erent ground truth samples, yielding 6 tests in total. In the constant model tests,
the ground truth sample is compared with 3 samples (STT, ITT and Prior) from a
single model with a fixed C. This is repeated twice for each model, yielding 4 tests
in total. The final MOS test round consists of the same 10 tests for each participant,
who are presented with each test in a random order. The reason behind this split is
to investigate participants’ subjective evaluation of the utterances in di�erent contexts.
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By contesting same type synthesised utterances from di�erent models, participants are
encouraged to rate the di�erences between di�erent capacity models to gain insight how
the capacity limit influences naturalness. By contesting di�erent synthesis types from the
same models, participants can rate which synthesis type performs better on a naturalness
scale, shedding light on the performance of the di�erent inference types irrespective of
the capacity limit.

An important distinction from the evaluation method described in [8], is that in this
experiment, the participants were not given speech audio samples corresponding to the
di�erent values on the MOS-scale as audio hints. The candidate was not able to find
any specific set of five synthetic speech samples that were accepted by the wider research
community as standard references for the five-point MOS-scale. This referencing naturally
influences the listener, since without any anchors, participants have di�erent expectations.
The e�ect of this decision is further discussed in Section 5.3 below.

5.1.2 Remote Testing Solution

Due to the COVID-19 global pandemic, the evaluation of the models in the form of
a subjective listening test needed to be carried out remotely. Fellow students from
the Audio Technology Faculty at TU Berlin have sent out listening tests during this
time and through one of these tests, the webMUSHRA (MUltiple Stimuli with Hidden
Reference and Anchor) browser based experiment software was discovered [9]. Utilising
the web audio API 2, the open source tool enables researchers to conduct listening
experiments over the Internet, as so called web-based experiments, compliant with the
ITU-R Recommendation BS.1534 (MUSHRA) [9].

The webMUSHRA environment provided a working solution for the infrastructure of the
listening test, meaning it had built-in audio transfer event control, front-end navigation
and result saving capabilities. Still, for one of the two methods described above, a new
test needed to be implemented, because no existing test type in the code-base would
have su�ced to carry out the AXY discrimination test.

Newly Implemented AXY Pages

While the standard MUSHRA test was applicable for the MOS evaluation, in order to
recreate the evaluation template from [8] shown in Appendix C.1, a new front-end layout
and a slightly altered audio playback mechanism needed to be implemented.

A new instructions page show in Appendix C.4 was implemented to inform the partici�
pants about how the test works and what to pay attention to when rating. Afterwards,
the front-end for the actual test prompts was made as shown in Appendix C.5. A simple
change to the audio back-end was made to prevent the samples from looping.

2webaudio.github.io/web-audio-api/
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5.2 Participants

In order to gather participants for the two subjective evaluation tests, the candidate has
reached out to his personal and professional network through social media. Moreover,
the university faculty has also sent out two emails about the tests to the student and
sta� faculty members. In addition, the Coqui AI team has also shared the link for the
listening tests on their social media channels. When reaching out to these networks, it
was important to not only gather audio-savvy listeners with better trained ears, but to try
to cover a wide range of listeners who are not working or studying in the realm of audio.
While there was no data collected about this, the personal responses from participants
confirmed that the types of listener experiences varied. However, since the majority of
the channels who gathered participants for these tests are normally visited by individuals
interested in audio, it is assumed that listeners approached the tasks in a critical way
with more precise listening capabilities than individuals with average listening ability.

In order to get a basic demographic overview of the studies’ participants, after each
completed test, the participants were asked about their age and gender. The accumulated
responses to these questions are shown in Figures 5.1 and 5.2 for both test runs. While a
clear majority of participants were males in the age group 25-31, the studies were also
completed by a wide range of age groups and around a quarter of each run’s were not
male. The candidate and Dr Lykartsis deemed the data diverse enough not to prolong
the listening tests to gather more responses from other demographic groups. While the
AXY evaluation gathered 40 responses in total, the MOS evaluation saw 43 participants
completing the tests.

Figure 5.1: Demographic data for the AXY tests with 40 participants in total
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Figure 5.2: Demographic data for the MOS with 43 participants in total

5.3 Results and Discussion

Firstly, this section details the results of the objective and the subjective evaluation of the
models trained for the prosody transfer comparison tests. In line with [8], the scalar values
for the model loss is explored, followed by figures plotting the results of the subjective
listening evaluation. Then, results for the subjective evaluation of models trained for the
quality and naturalness tests are presented. The raw results for the subjective listening
tests in a table format is provided in Appendix E. While an interpretation of the plots
is provided first, the critical discussion of the results of individual categories is o�ered
following each figure.

5.3.1 AXY Objective Evaluation

Figure 5.3 shows the scalar value of Equation 3.15, the main loss function of the Capacitron
method after 100,000 training steps for the 6 separate models. This Figure demonstrates
how varying the structural and variational capacities translates to the model loss. The
reconstruction loss is the only objective evaluation result presented in this work, based
on the introduced metric in [8]. The values give a representation about how good the
model was able to reconstruct the target spectrogram. The lower the loss, the closer the
synthesised spectrogram was to the ground truth.
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Figure 5.3: Reconstruction loss vs. structural capacity (embedding dimensionality)

This work only studies 6 combinations of models with di�erent capacity combinations
(compared to the 15 variational models explored in [8]), however two of these models
with C = 300 have not been previously discussed. Generally confirming the results from
the original method, increasing the variational capacity C improves the reconstruction
error, whereby almost each model plotted with di�erent colours have lower error values
as C increases. Increasing structural capacity from EDim = 64 to EDim = 128, however
yielded slightly di�erent results than shown in previous work. The authors of [8] found
that after a certain embedding dimensionality, the reconstruction error of models with
values C = [10,50,150] flattens out, meaning that they observed that the loss value does
not improve anymore for EDim > 128.

While the models with the lowest variational capacity limit C did not improve dramat�
ically by increasing structural capacity (confirming previous results), the reconstruction
error greatly improved by allowing the prosody embeddings to have a higher dimension�
ality for the model with C = 150. On the contrary, a greater embedding dimensionality
actually slightly worsened the reconstruction error for the model with C = 300. This
result sheds light on the e�ects of these two values on the pure reconstruction nature of the
models, whereby a greater variational capacity limit translates to better reconstruction
up until a point where the embedding dimensionality is still small enough to balance out
this increased variational capacity limit.
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Examining purely the objective reconstruction of samples, a larger variational capacity
limit is used to target a larger upper bound on the representational mutual information
between the data and the latent space using the objective defined in Equation 3.15. Now,
this upper bound is designed to limit how much of the latent space is actually embedded
into the final model, and by su�ciently increasing this limit we wish to maximise the
influence of this embedding. The calculation for the KL divergence term in Equation 3.15
is averaged over the entire dataset and by setting a large variational capacity limit, the
neural network model responsible for modelling the prosody reference space is encouraged
to encode samples with prominent prosody content form this dataset. Depending on the
range of prosodic information in the dataset, the encoder may process samples with very
high prosodic content, which - in case of a very high limit on the KL term - may increase
the representational mutual information between the data and the latent space to an
extent that the encoder architecture not only learns how to encode such information, but
also encourages the embedding of this information from samples that would necessarily
not contain that much prosodic information. This point is further discussed below, based
on remarks from the subjective evaluation results.
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5.3.2 AXY Subjective Evaluation

In order to visualise the e�ects of di�erent structural and variational capacities, the
results of the listening tests are presented in the following way:

• holding the structural capacity EDim constant, AXY scores for three models with
di�erent variational capacity C are plotted against each other;

• holding the variational capacity C constant, AXY scores for the two models with
di�erent structural capacity EDim are plotted against each other.

In the first case of holding EDim constant, we get two plots, since this work has explored
two di�erent values [64, 128] for this variable. By plotting these two plots next to
each other, we can appreciate how changing only the structural capacity influences the
perceived prosody transfer capability. In the second case of holding C constant, we get
three plots for the three explored values [50, 150, 300]. Similarly, by having these
plots next to each other, we get a clearer picture of how changing the variational capacity
influences the perceived prosody transfer. This routine of data representation for the
STT models is then repeated again for the ITT results below.

Figures 5.4-5.7 show the plotted AXY scores of baseline models versus the corresponding
competing models. The competitors are the 6 models defined in Table 4.3. On each
plot, a single baseline model (the coloured points and lines corresponding to the models
described in the legend) is always competing against 5 other models. The score for the
same baseline-competing model has been set to 0.0. The subjective scores plotted on
the Y -axis correspond to the mean taken of each participants’ response to that specific
competition of models. Positive values mean that the participants found the baseline
model closer to the reference on the scale shown in Figure C.5, while negative values
mean the they found the competing model’s prosody to be perceptually closer to the
reference. The reader is advised to study the plots in a way that the negative scores
correspond to better prosody transfer characteristics perceived for the models shown on
the X-axis against the colour-coded models shown in the legend and vice versa.
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Same Text Prosody Transfer (STT)

(a) EDim = 64

(b) EDim = 128

Figure 5.4: AXY-STT scores for baseline models with constant structural capacity EDim
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Figure 5.4 shows results of the competition between baseline models with constant
structural capacity and all other models for the same text prosody transfer tasks. The
coloured lines on Figure 5.4a show models with di�erent variational capacities and
constant structural capacity EDim = 64. Note how these baseline models have lost almost
all competitions, since most of the points are in the negative Y -axis range. Most of
the models clearly didn’t have enough structural and/or variational capacity to be able
to encode enough of the latent space for the synthesised utterances to be close to the
reference. On the other hand, the competitors shown on the X-axis almost always won
the competitions. Note how the model with C = 50 lost every competition, and by
increasing C, the subjective evaluation values are getting larger. The C = 150 model
won three times, once against the worst model mentioned before and just about against
the C = 300 models. A significant result from this subplot is the very first point on the
green curve. The C = 300; EDim = 64 model performed considerably better than the
C = 50; EDim = 64 competitor which hints at the relationship of balance between the
two capacity values. The significant increase in variational capacity makes up for the
lack of structural capacity in the same text prosody transfer tasks.

Moving over to Figure 5.4b, all model parameters have been fixed as on the previous
plot except for increasing the structural capacity to EDim = 128. It is very apparent how
now a majority of the competitions have been won by the baseline models, since most of
the points on the curves are in the positive Y -axis range. Significant results from the
C = 50 and C = 150 models indicate that increasing the structural capacity was crucial
in the perceived evaluation of successful prosody transfer. The only model that has lost
multiple competitions is the C = 300 model, however this only happened against the
models with su�ciently big variational capacity C = 150.

On both figures it is apparent, that the competition between the C = 300; EDim = 64
and C = 300; EDim = 128 models was won by the model with lower structural capacity.
Referring back to the points described in the previous section, a possible explanation for
this is that by restricting the structural capacity to a smaller value while the model is
encoding samples with a very high limit on the mutual information between the data and
the latent space, the capacities of this model are balanced out and thereby yield better
prosody transfer.
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(a) C = 50

(b) C = 150

(c) C = 300

Figure 5.5: AXY-STT scores for baseline models with constant variational capacity C
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Figure 5.5 shows results of the competition between baseline models with constant
variational capacity and all other models for the same text prosody transfer tasks. It is
clear, that in almost all cases, the models with higher structural capacity outperformed the
ones with lower EDim values. Figures 5.5a and 5.5b emphasise the need for a su�ciently
high enough EDim for successful same-text prosody transfer.

Exploring the arguments detailed above from a di�erent perspective, Figure 5.5 shows
again, how high variational capacity is only desirable against models who do not have a
su�ciently high enough capacity of either structural or variational. When models are
trained with a balance between these two variables (be it by balancing out the large
variational capacity with low structural capacity), their prosody transfer capabilities
outperform those whose variational capacity is too high.

Based on these results it might su�ce to claim that it is possible to balance out the
high variational capacity model with lower structural capacity, however the practical
implication of inferring these models conflicts this claim. During the preparation of the
subjective evaluation tests, multiple rounds of synthesis needed to be carried out to be
able to cherry pick samples that could be used in the subjective evaluation tests. While
synthesis robustness and stability have many influencing factors (further discussed in
Subsection 5.3.3 below), models with EDim = 64 produced significantly less clean and
usable samples as models with EDim = 128. This observation highlights the fact that
a su�ciently high enough structural capacity is required for both prosody transfer and
synthesis stability.

On the other hand, inferring models with C = 300 often resulted in unnaturally intense
prosody, which led to undesirable audio artefacts and sometimes incomprehensible speech.
As mentioned in the previous section, by allowing the KL term in Equation 3.15 to grow
to a very high limit, the model is prone to produce unnaturally intense prosody that
in turn actually leads to poorer performance of exact prosody transfer. Depending on
the prosodic content in the dataset as well as the intended use, a too large C value
compromises the specific task of same-text prosody transfer. A balanced value for C

- which is firstly defined by the su�ciently large chosen value for EDim as well as the
perceived prosodic content in the used dataset - is essential for good performance in this
task.
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Inter Text Style Transfer (ITT)

(a) EDim = 64

(b) EDim = 128

Figure 5.6: AXY-ITT scores for baseline models with constant structural capacity EDim
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Figure 5.6 shows results of the competition between baseline models with constant
structural capacity and all other models for the inter text style transfer tasks. In general,
models with smaller structural capacity outperformed the ones with higher EDim, since
all values on Figure 5.6a are significantly higher on the Y -axis than on Figure 5.6b. This
observation is in-line with the generality aspect of low capacity models described in
[8] - low capacity models are better suited for text-agnostic style transfer. While the
e�ect of structural capacity is clear from these figures, it is not as straightforward to
draw conclusions from the e�ects of di�erent C values. However, it is clear that even
between the low structural capacity models, the C = 50; EDim = 64 model significantly
outperformed models with higher structural and variational capacity.

Figure 5.7 below further emphasises the fact the lower structural capacity models
in general performed better in this task. As seen before, the only model that notably
and consistently performed better than all others is the one with the lowest structural
and variational capacity. Notably, the C = 300; EDim = 64 in Figure 5.7c greatly
outperformed the C = 50; EDim = 128 model, which hints at the possible fact that a
small enough structural capacity was more relevant for successful style transfer for this
specific example.

While the results described above show that lower structural capacity models performed
better in the ITT task, the same practical limitation described in the previous section of
inferring models with not high enough structural capacity still stands: cherry-picking
good enough samples for the evaluation tests was a di�cult task because of the artefacts
produced by models with EDim = 64.
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(a) C = 50

(b) C = 150

(c) C = 300

Figure 5.7: AXY-ITT scores for baseline models with constant variational capacity C
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An important point to mention here is that the subjective evaluation of style transfer
between a reference and a synthesised utterance with arbitrary text is a di�cult task.
The perception of prosody in general is very much dependent on the text that is being
uttered, hence it is not possible to evaluate exact prosody transfer between utterances
with arbitrary text. For this reason, we regard this task as the evaluation of style
transfer from a reference utterance to custom text. Within this framework, the results
show a successful extent of style transfer for a limited text-agnostic domain: during
model inference, it became clear that the implementation struggles with synthesising an
utterance whose length di�ers from the reference. Especially for high capacity models -
where the latent embedding encourages the decoder to precisely reconstruct the prosody
of the reference -, the speed of the synthesised utterance was very dependent on the speed
of the reference and this often resulted in unnaturally quick or slow synthesised speech.

Further criticism of the evaluation method has also become apparent upon analysing
the results. While the ITT results plotted above compare the models themselves, the
synthesised utterances with arbitrary text and the corresponding references have been
di�erent for every single competition - a more meaningful way of comparing these models
would have been keeping the synthesised text prompts and prosody references for this
task constant. This way, the participants would have compared the same text prompt
synthesised with the same prosody reference. Ideally, designing the task like this would
have kept these variables with a strong influence on the rating constant, however this
task already included 15 individual tasks, so it would’ve quickly lead to listener fatigue
on the participants’ side to listen to the same utterances this many times. Moreover, as
described above, the synthesis of utterances was not always straightforward, due to the
artefacts produced by certain models. If these artefacts occurred for a single model, the
reference utterance or the text prompt would have to be changed for all other models
too. Moreover, it may also be di�cult to generalise the performance of the models based
on a single utterance using a single reference - as also discussed in this work, models
often yield inconsistent synthesis for di�erent text and reference inputs.

These aspects pose a challenging task for the evaluation of inter text style transfer
generally for TTS - perhaps a new method for the subjective evaluation of competing
models is needed to tackle the balance between keeping inference variables consistent, to
generalise the performance better and to avoid listener fatigue.
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5.3.3 MOS Subjective Evaluation

Constant Model

Figure 5.8: MOS scores for comparing constant models

Constant Synthesis Type

Figure 5.9: MOS scores for comparing constant synthesis types



Chapter 5 Model Evaluation 57

Figure 5.8 above shows mean opinion scores for the two trained models with di�erent
capacity limits, for a task where participants had to rate three di�erent utterance types
synthesised using a single model together with the ground truth. It is clear, that the
utterances synthesised using the same text as the prosody reference performed the best.
Sampling from the prior of the model to produce realistic prosody performed better than
samples from the ITT routine. While the samples were cherry-picked, ITT samples often
included undesirable artefacts due to text mismatches. In this task, the model with
C = 300 performed better for all synthesis types. Figure 5.9 shows the MOS scores for
the three di�erent synthesis types for the two models with di�erent variational capacity
values, where participants were presented with two utterances from two separate models
using a constant synthesis type. Contrary to the AXY tests’ results, the model with
C = 150 slightly outperformed the model with C = 300. Similarly, the STT synthesis
type outperformed the two other types.

The di�erence between results for the same models shown in the two figures above
demonstrate the fact that the quality and naturalness of the samples are very utterance
dependent - the same models produced worse results for di�erent utterances. While
it can be argued that by presenting participants in these two setups influences their
perceived measure of naturalness, the significant di�erence between the individual types
shows that the model produced unstable output. Furthermore, the MOS scores are
significantly worse than in [8] and there are multiple reasons for it. Firstly, the vocoder
trained for generating audio files from the synthesised spectrograms sometimes produced
metallic artefacts, even after 800,000 training steps. Other methods evaluating MOS
scores for TTS systems often train vocoders for millions of steps - this would have required
significantly more time and resources to complete for this work. Secondly, the attention
mechanism used for this project often yielded awkward results so using better modules
such as location-sensitive attention [41] would significantly improve the samples.

As mentioned in Section 5.1.1, the participants in this study were not presented
with reference anchors for the five levels of speech quality, despite the fact that the
original method’s experimental design described in [8] included five specific synthesised
speech samples corresponding to the quality levels described in Table 5.1. Showcasing
participants with such opinion anchors could have been beneficial for the ratings, however
no specific samples were found to be able to accurately represent the five levels.

The reason for the underperforming prior samples can be an e�ect of multiple things.
Firstly, as described in the previous section, models with a large C value often encoded
too much of the latent space, so that during inference, the samples contained unnaturally
intense prosody. This aspect naturally translates to sampling from the prior - while
the model is capable of decoding a random latent embedding into realistic prosody, this
decoding sometimes led to unnatural synthetic speech. Secondly, while the standard
normal distribution is a powerful tool, it also might be too simple to model the intrinsic
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prosody space. By using more powerful distributions that have more flexibility and can
scale better to high dimensional latent spaces, one could decrease the aggregate KL term
in Equation 3.13 to have a tighter bound on the mutual information term which would
lead to better prior samples. During the development of this project, attempts have been
made to substitute the prior and posterior distributions with more powerful modules
such as autoregressive and inverse autoregressive flows [48], however, as of writing this
report, no working implementation has been successfully realised yet.

A short summary about the outcomes of the model evaluation results is presented.

• The objective evaluation metric of the models improve by increasing both structural
and variational capacities up until a certain point where more variational capacity
no longer improves the reconstruction error.

• The subjective evaluation results of the STT task show that higher structural
capacity always improves prosody transfer, while a too high variational capacity
limit worsens the perceived transfer:

– the C = 150; EDim = 128 model outperformed all other models with compara�
bly more reliable synthesis stability.

• The subjective evaluation results of the ITT task demonstrate that generally lower
capacity models are more suitable for text agnostic style transfer:

– the C = 50; EDim = 64 model outperformed all other models but synthesis
stability is significantly worse and comparably less reliable due to the too
small structural capacity.

• The evaluation of the MOS tests showed that while the scores were on average not
as high as in [8], the STT synthesis type always outperformed all other inference
types.

• A modified AXY subjective evaluation method has been presented to compete
Capacitron models with each other, with the aim of investigating the influence of
structural and variational capacities on the perceived prosody transfer for both
same-text prosody transfer and inter-text style transfer tasks.

• A novel graphical representation of the gathered data has been provided to e�ectively
draw conclusions of the results.

• The objective and subjective evaluation results of the models’ prosody and style
transfer capabilities fittingly confirm the results presented in the original method
and thereby assert the successful implementation of the Capacitron method.
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6 Open Source Contributions

A major objective of this thesis was the release of a previously not publicly available
TTS method as open source code. As of writing, the model has not been merged into
the Coqui AI TTS library yet but there is an open Pull Request1 to merge the model
into the main library for use by the wider community.

During the development process and discussions with the Coqui AI team and contribu�
tors, some members have already successfully trained models using the implementation
of this thesis. Moreover, Edressen Casanova has contributed2 to the model by reorgan�
ising the modules in a way that the Capacitron VAE architecture could be used in a
modular way, paving completely new ways to explore prosody transfer, including its
implementation into the more powerful Tacotron 2 architecture.

With the Coqui AI TTS library gaining significant attention (currently 2.5k stars on
GitHub, previously 22k stars and over 500k downloads under Mozilla TTS and STT
libraries3), the implemented model will be available for a wide audience including other
students, researchers, commercial bodies and more.

In addition to the code, the public release of this thesis as well as the public discussions4

about implementation problems is hoped to serve as a helping tool for other novice
engineers aiming to contribute to open source TTS and ML technologies.

Releasing the custom-made AXY testing solution page is also planned in order to
enable researchers to conduct reference-prosody evaluation tests remotely within the
webMUSHRA framework.

1github.com/coqui-ai/TTS/pull/510
2github.com/a-froghyar/Capacitron/pull/6
3coqui.ai/
4github.com/coqui-ai/TTS/discussions/455
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7 Conclusion

The e�ort put into modern TTS technologies has been steadily rising since the introduction
of two landmark methods in 2016. The possibilities that deep neural network architectures
o�er today brought significant commercial and academic interest to the synthetic voice
topic in recent years. With the general quality of speech synthesis constantly increasing, a
natural area of interest has been the focus of many researchers: controllable and realistic
synthetic prosody. Controllable expressive speech synthesis is considered to be one of the
ultimate achievements to strive for with modern TTS technologies and recent research
methods have demonstrated state-of-the-art performance and results. The research teams
of the American internet and software corporate Google have released multiple scientific
methods that discuss new ways of achieving such a controllable speech synthesizer. While
the scholarly articles describing these methods are available with open-access, software
companies rarely release code implementations of their described methods, with usually
only a few impressive sound samples shared online for interested parties to listen to.

This Master’s Thesis investigated a specific method from Google that has achieved
state-of-the-art quality of prosody transfer between a reference utterance and synthetic
speech. Following a description of the motivation and theory behind the Capacitron
method, this work o�ered a detailed technical report on the realisation of this method
in code within an open-source software framework. Expanding on a specific aspect of
the original architecture, this work extended discussion on the capacity of the latent
embeddings that influence the models’ prosody transfer characteristics. In order to assess
the implemented method, this work detailed the design, conception and analysis of a
custom-made subjective evaluation routine. This routine partly expanded the subjective
evaluation introduced in the original method to gain more insight into how di�erent
components of the latent embedding capacity influence the subjective evaluation of
prosody transfer.

The technical development of this project has taken up the majority of time and
resources allocated for this work. The implementation of a new machine learning TTS
model into an existing open source infrastructure is a timely process, whereby continuous
experimentation and training needed to be carried out to monitor bugs and general
performance of the model. The translation of a method described in a scientific article
into executable code was a di�cult and timely task due to the black-box nature of
machine learning models as well as the fact that some specific details of the model were
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not fully described in the original article. Since a single model needed at least eight hours
to train to be able to decide if it is working or not, development was slow. However, with
the assistance of an active open source community as well as helpful discussions with the
original author of the article, the implementation could be successfully realised and the
planning of the subjective evaluation of the implementation could be started.

The first objective of this Thesis was to expand the discussion on the notion of the two
types of prosody embedding capacities, and their e�ect on the model’s prosody transfer
characteristics. While the original work has briefly discussed the e�ects of the structural
and variational capacities on the model performances, it did not extend this notion to the
subjective evaluation of these models. This work extends the discussion on the structural
and variational capacities by designing subjective evaluation tests where di�erent models
with di�erent capacity values competed against each other. While the number of models
is limited due to time and resource constraints, this work still investigated the competition
between six models with di�erent capacity values. The second objective of this work was
the evaluation of the implemented models on the industry-standard MOS scale, to gain
insight into how the implementation performs in terms of speech naturalness and quality.
Lastly, the final objective of this Master’s Thesis was to release the code implementation
of a previously not publicly available state-of-the-art expressive speech synthesis method
within an open-source framework.

The most successful part of this project in terms of the subjective results is the prosody
transfer from a reference utterance onto synthetic speech using the same text (STT).
Within this frame, valuable insights have been gained into how the balance between the
structural and variational capacities influence the transfer capabilities of the models.
For both synthesis stability and perceived transfer, a su�ciently high enough structural
capacity is essential. Models with higher structural capacity significantly outperformed
others in terms of the subjective evaluation, and the collection of samples from the models
was also much easier, since the synthesised utterances showed significantly more stability
and less artefacts than the ones inferred from models with lower structural capacity. In
terms of the variational capacities of the models, a conclusion from this work is that the
value needs to be set in line with the prosodic content of the dataset. Too high values
for the variational capacity often over-intensified the prosodic content of the synthesised
utterances, which led to these models losing the prosody similarity contest against models
with smaller variational capacity. Further research and experimentation needs to be
carried out here, whereby one could estimate the average prosodic content capacity of the
dataset by e.g. analysing the fundamental frequency and amplitude contours of individual
utterances. This way, it could be estimated what the maximum value for the variational
capacity could be without risking encoding too much of the latent space that results in
unnatural prosody in inference time. While balancing out high variational capacity with
low structural capacity often helped these models perform better in the competitions, it
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is practically not a solution due to increased amount of artefacts and instabilities during
inference for models with not su�ciently high enough structural capacity.

Regarding the evaluation of the models for the inter text style transfer (ITT) tasks,
the Thesis confirmed that lower capacity models are better suited for text-agnostic
style transfer. However, drawing a clear conclusion from this part of the project is a
di�cult feat, because of the nature of the underlying task: the subjective evaluation of
style transfer between utterances with di�erent text is not straightforward and greatly
text and utterance dependent. A universal evaluation system for text-agnostic style
transfer needs to be proposed to be able to reliable evaluate and compete models with
di�erent capacities. This work used di�erent synthesis text and reference audio for each
competition in this task because using a single reference and the same text prompt for
each competition was not possible due to inference inconsistencies and artefacts. However,
even in the case of managing to use the same text and same reference, listener fatigue
needs to be taken into consideration. Additionally, the implementation also struggled
with length-agnostic transfer especially for high variational capacity models.

The subjective evaluation of the naturalness and quality of the models realised through
this work performed worse than in the original method. TTS is a very resource intensive
subject, and the notion of "the more the better" certainly applies to model trainings,
especially when it comes to the vocoder model converting spectrograms to audio. While
more training would definitely improve results, one of the major factors a�ecting model
stability is the attention mechanism. While an extended discussion on the attention
module is out of the scope of this work, a more powerful attention mechanism would
certainly improve synthesis stability. Attempts have been made to use a more improved
attention module from the Coqui TTS library, however there were unforeseen bugs
originating from that implementation and fixing those bugs was outside of the time and
resource scope of this project. Future work needs to be put into improving the attention
mechanism to improve general stability and thereby the quality of the synthesised
utterances. Further topics of interest about this specific model include the substitution of
the prior and posterior distributions with more flexible distributions that can generalise
to and map the latent space more e�ectively.

Despite the limitations and shortcomings of the implemented model compared to the
released audio samples from Google, the successful realisation of the Capacitron method
within an open-source framework is a welcome addition to the publicly available libraries
of TTS technologies.
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A Double Optimisation Intuition

Intuition for the double optimisation problem of equation 3.15.

Fixed set of model parameters ◊ and DKL > C:

• DKL > C implies that the term on the right is positive, so the maximiser w.r.t. —

is pushing — (only —) up.
• This larger — gets fixed, so the other optimiser for the whole model now sees a

positive, large number on the RHS.
• Now, with this — fixed, this minimising optimisation needs to drive DKL down, in

order to make the term on the RHS smaller.

Fixed set of model parameters ◊ and DKL < C:

• DKL < C implies that the term on the right is negative, so the maximiser w.r.t. —

is pushing — down.
• This small — gets fixed, so the main model ADAM optimiser sees a small negative

number on the RHS.
• In order to make this even smaller, the optimiser is driving down the whole equation,

however it is seeing the whole equation as one, including the decoder term.
• By minimising the decoder loss, the KL term increases: the decoder loss is an L1

loss between synthesised spectrogram and input spectrogram. The synthesised
spectrogram is conditioned on the output of the reference encoder, whose output
is actually a sample from the distribution z ≥ q(z|x)). The more the model
parameters ◊ are trained, the better outputs the approximate posterior will output,
because the model encourages the encoder network to encode useful information
into this sampled vector from the distribution. Better outputs from approximate
posterior means higher mutual information between the input data’s distribution
and the approximated latent distribution I(X, Z). Appendix B shows, that RAV G

(which is just the KL term in Equation 3.15 averaged over the data) is actually a
higher bound on the mutual information I(X, Z).
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The better the model gets (i.e. the smaller the decoder loss), the higher the mutual
information between the real posterior distribution and the approximate posterior dis�
tribution will be. This in turn means that the upper bound on the mutual Information
increases, which means that the DKL term in equation 3.15 increases.

A negative RHS in equation 3.15 just encourages the model to learn more about the
input data and this in turn actually increases the KL term up until a capacity C, whereby
this positive-negative relationship oscillates the KL term around the capacity limit.

If DKL is increasing because the model is learning more and better, it means that it
will increase to a point where DKL > C, and this in turn then starts the whole process
described above again.
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B Derivations

Derivations from [8] and [35] of the bounding nature of the KL term on mutual information.

Definitions

R ©
ˆ

q(z|x) log q(z|x)
p(z) dz, (KL term)

RAVG ©
¨

pD(x)q(z|x) log q(z|x)
p(z) dxdz, (Average KL term)

Iq(X; Z) ©
¨

pD(x)q(z|x) log q(z|x)
q(z) dxdz (Representational mutual information)

q(z) ©
ˆ

pD(x)q(z|x)dx (Aggregated posterior)

KL non-negativity

ˆ
q(x) log q(x)

p(x)dx Ø 0

=∆
ˆ

q(x) log q(x) Ø
ˆ

q(x) log p(x)dx
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Mutual information is upper bounded by the average KL

We have

Iq(X; Z) ©
¨

pD(x)q(z|x) log q(z|x)
q(z) dxdz

=
¨

pD(x)q(z|x) log q(z|x)dxdz ≠
¨

pD(x)q(z|x) log q(z)dxdz

=
¨

pD(x)q(z|x) log q(z|x)dxdz ≠
ˆ

q(z) log q(z)dz

Æ
¨

pD(x)q(z|x) log q(z|x)dxdz ≠
ˆ

q(z) log p(z)dz

=
¨

pD(x)q(z|x) log q(z|x)dxdz ≠
¨

pD(x)q(z|x) log p(z)dxdz

=
¨

pD(x)q(z|x) log q(z|x)
p(z) dxdz

© RAVG

=∆Iq(X; Z) Æ RAVG,

where the inequality follows from the KL non-negativity.
The di�erence between the average KL and the mutual information is the aggregate

KL:

RAVG ≠ Iq(X; Z) =
¨

pD(x)q(z|x) log q(z)
p(z)dxdz

=
ˆ

q(z) log q(z)
p(z)dz

= DKL(q(z)Îp(z)) (AggregateKL)



72

C Listening Tests

C.1 Evaluation Templates from the Capacitron Method

Figure C.1: Evaluation templates from the original Capacitron paper for the AXY reference
tests [8]. These templates were used as blueprints for the custom made online
listening evaluation used in this work.
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Figure C.2: Evaluation templates from the original Capacitron paper for the MOS naturalness
tests [8].
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C.2 Recreated Evaluation Template Screenshots from the
custom-made webMUSHRA Interface

Figure C.3: Screenshot of the welcome page of the custom made listening test using the
webMUSHRA [9] framework.

Figure C.4: Screenshot of the AXY Instructions Page presented to the listeners in the first
round of listening tests.
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Figure C.5: Screenshot of one of the AXY Test Pages presented to participants.

Figure C.6: Screenshot of the MOS Instructions Page presented to the listeners in the second
round of listening tests.
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Figure C.7: Screenshot of one of the MOS Test Pages presented to participants.
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D Code

D.1 Capacitron Layer

D.1.1 Main Class

1 class CapacitronVAE(nn.Module):
2 def __init__(self,

3 num_mel,

4 capacitron_embedding_dim,

5 encoder_output_dim=256,

6 reference_encoder_out_dim=128,

7 speaker_embedding_dim=None,

8 text_summary_embedding_dim=None):

9 super().__init__()

10 self.prior_distribution = MVN(torch.zeros(capacitron_embedding_dim),

torch.eye(capacitron_embedding_dim))Òæ

11 self.approximate_posterior_distribution = None

12 self.encoder = ReferenceEncoder(num_mel,

out_dim=reference_encoder_out_dim)Òæ

13

14 self.beta =

torch.nn.Parameter(torch.log(torch.exp(torch.Tensor([1.0])) -

1), requires_grad=True)

Òæ

Òæ

15 mlp_input_dimension = reference_encoder_out_dim

16

17 if text_summary_embedding_dim is not None:

18 self.text_summary_net = TextSummary(text_summary_embedding_dim,

encoder_output_dim=encoder_output_dim)Òæ

19 mlp_input_dimension += text_summary_embedding_dim

20 if speaker_embedding_dim is not None:

21 mlp_input_dimension += speaker_embedding_dim

22 self.post_encoder_mlp = PostEncoderMLP(mlp_input_dimension,

capacitron_embedding_dim)Òæ

23 def forward(self, reference_mel_info=None, text_info=None,

speaker_embedding=None):Òæ

24 # Use reference

25 if reference_mel_info is not None:

26 reference_mels = reference_mel_info[0] # [batch_size,

num_frames, num_mels]Òæ
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27 mel_lengths = reference_mel_info[1] # [batch_size]

28 enc_out = self.encoder(reference_mels, mel_lengths)

29

30 # concat speaker_embedding and/or text summary embedding

31 if text_info is not None:

32 text_inputs = text_info[0] # [batch_size, num_characters,

num_embedding]Òæ

33 input_lengths = text_info[1]

34 text_summary_out = self.text_summary_net(text_inputs,

input_lengths).to(reference_mels.device)Òæ

35 enc_out = torch.cat([enc_out, text_summary_out], dim=-1)

36 if speaker_embedding is not None:

37 enc_out = torch.cat([enc_out, speaker_embedding], dim=-1)

38

39 # Feed the output of the ref encoder and information about

text/speaker intoÒæ

40 # an MLP to produce the parameteres for the approximate poterior

distributionsÒæ

41 mu, sigma = self.post_encoder_mlp(enc_out)

42 # convert to cpu because prior_distribution was created on cpu

43 mu = mu.cpu()

44 sigma = sigma.cpu()

45

46 # Sample from the posterior: z ~ q(z|x)

47 self.approximate_posterior_distribution = MVN(mu,

torch.diag_embed(sigma))Òæ

48 VAE_embedding =

self.approximate_posterior_distribution.rsample()Òæ

49 # Infer from the model, bypasses encoding

50 else:
51 # Sample from the prior: z ~ p(z)

52 VAE_embedding = self.prior_distribution.sample().unsqueeze(0)

53

54 # reshape to [batch_size, 1, capacitron_embedding_dim]

55 return VAE_embedding.unsqueeze(1),

self.approximate_posterior_distribution,

self.prior_distribution, self.beta

Òæ

Òæ
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D.1.2 Reference Encoder

1 class ReferenceEncoder(nn.Module):
2 """NN module creating a fixed size prosody embedding from a spectrogram.

3 inputs: mel spectrograms [batch_size, num_spec_frames, num_mel]

4 outputs: [batch_size, embedding_dim]

5 """

6

7 def __init__(self, num_mel, out_dim):

8

9 super().__init__()

10 self.num_mel = num_mel

11 filters = [1] + [32, 32, 64, 64, 128, 128]

12 num_layers = len(filters) - 1

13 convs = [

14 nn.Conv2d(

15 in_channels=filters[i],

16 out_channels=filters[i + 1],

17 kernel_size=(3, 3),

18 stride=(2, 2),

19 padding=(2, 2)) for i in range(num_layers)

20 ]

21 self.convs = nn.ModuleList(convs)

22 self.training = False

23 self.bns = nn.ModuleList([

24 nn.BatchNorm2d(num_features=filter_size)

25 for filter_size in filters[1:]

26 ])

27

28 post_conv_height = self.calculate_post_conv_height(

29 num_mel, 3, 2, 2, num_layers)

30 self.recurrence = nn.LSTM(

31 input_size=filters[-1] * post_conv_height,

32 hidden_size=out_dim,

33 batch_first=True,

34 bidirectional=False)

35

36 def forward(self, inputs, input_lengths):

37 batch_size = inputs.size(0)

38 x = inputs.view(batch_size, 1, -1, self.num_mel) # [batch_size,

num_channels==1, num_frames, num_mel]Òæ

39 valid_lengths = input_lengths.float() # [batch_size]

40 for conv, bn in zip(self.convs, self.bns):

41 x = conv(x)

42 x = bn(x)

43 x = F.relu(x)

44
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45 # Create the post conv width mask based on the valid lengths of

the output of the convolution.Òæ

46 # The valid lengths for the output of a convolution on varying

length inputs isÒæ

47 # ceil(input_length/stride) + 1 for stride=3 and padding=2

48 # For example (kernel_size=3, stride=2, padding=2):

49 # 0 0 x x x x x 0 0 -> Input = 5, 0 is zero padding, x is valid

values coming from padding=2 in conv2dÒæ

50 # _____

51 # x _____

52 # x _____

53 # x ____

54 # x

55 # x x x x -> Output valid length = 4

56 # Since every example in te batch is zero padded and therefore

have separate valid_lengths,Òæ

57 # we need to mask off all the values AFTER the valid length for

each example in the batch.Òæ

58 # Otherwise, the convolutions create noise and a lot of not real

informationÒæ

59 valid_lengths = (valid_lengths/2).float()

60 valid_lengths = torch.ceil(valid_lengths).to(dtype=torch.int64)

+ 1 # 2 is stride -- size: [batch_size]Òæ

61 post_conv_max_width = x.size(2)

62

63 mask = torch.arange(post_conv_max_width)

64 .to(inputs.device)

65 .expand(len(valid_lengths), post_conv_max_width) <

valid_lengths.unsqueeze(1)Òæ

66 mask = mask.expand(1, 1, -1, -1).transpose(2, 0).transpose(-1,

2) # [batch_size, 1, post_conv_max_width, 1]Òæ

67 x = x*mask

68

69 x = x.transpose(1, 2)

70 # x: 4D tensor [batch_size, post_conv_width,

71 # num_channels==128, post_conv_height]

72

73 post_conv_width = x.size(1)

74 x = x.contiguous().view(batch_size, post_conv_width, -1)

75 # x: 3D tensor [batch_size, post_conv_width,

76 # num_channels*post_conv_height]

77

78 # Routine for fetching the last valid output of a dynamic LSTM with

varying input lengths and paddingÒæ

79 post_conv_input_lengths = valid_lengths

80 packed_seqs = nn.utils.rnn.pack_padded_sequence(x,

post_conv_input_lengths.tolist(), batch_first=True,

enforce_sorted=False) # dynamic rnn sequence padding

Òæ

Òæ



Chapter D Code 81

81 self.recurrence.flatten_parameters()

82 _, (ht, _) = self.recurrence(packed_seqs)

83 last_output = ht[-1]

84

85 return last_output.to(inputs.device) # [B, 128]

86

87 @staticmethod
88 def calculate_post_conv_height(height, kernel_size, stride, pad,

89 n_convs):

90 """Height of spec after n convolutions with fixed

kernel/stride/pad."""Òæ

91 for _ in range(n_convs):

92 height = (height - kernel_size + 2 * pad) // stride + 1

93 return height
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D.1.3 Utility Classes

1 class TextSummary(nn.Module):
2 def __init__(self, embedding_dim, encoder_output_dim):

3 super().__init__()

4 self.lstm = nn.LSTM(encoder_output_dim, # text embedding dimension

from the text encoderÒæ

5 embedding_dim, # fixed length output summary the

lstm creates from the inputÒæ

6 batch_first=True,

7 bidirectional=False)

8

9 def forward(self, inputs, input_lengths):

10 # Routine for fetching the last valid output of a dynamic LSTM with

varying input lengths and paddingÒæ

11 packed_seqs = nn.utils.rnn.pack_padded_sequence(inputs,

input_lengths.tolist(), batch_first=True, enforce_sorted=False)

# dynamic rnn sequence padding

Òæ

Òæ

12 self.lstm.flatten_parameters()

13 _, (ht, _) = self.lstm(packed_seqs)

14 last_output = ht[-1]

15 return last_output

16

17 class PostEncoderMLP(nn.Module):
18 def __init__(self, input_size, hidden_size):

19 super().__init__()

20 self.hidden_size = hidden_size

21 modules = [

22 nn.Linear(input_size, hidden_size), # Hidden Layer

23 nn.Tanh(),

24 nn.Linear(hidden_size, hidden_size * 2)] # Output layer twice

the size for mean and varianceÒæ

25 self.net = nn.Sequential(*modules)

26 self.softplus = nn.Softplus()

27

28 def forward(self, _input):

29 mlp_output = self.net(_input)

30 # The mean parameter is unconstrained

31 mu = mlp_output[:, :self.hidden_size]

32 # The standard deviation must be positive. Parameterise with a

softplusÒæ

33 sigma = self.softplus(mlp_output[:, self.hidden_size:])

34 return mu, sigma
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D.2 Double Optimisation

1 class CapacitronLoss(torch.nn.Module):
2

3 def __init__(self, c, stopnet_pos_weight=10, ga_sigma=0.4):

4 super(CapacitronLoss, self).__init__()

5 self.stopnet_pos_weight = stopnet_pos_weight

6 self.decoder_alpha = c.decoder_loss_alpha

7 self.postnet_alpha = c.postnet_loss_alpha

8 self.config = c

9

10 # Main Capacitron loss

11 self.criterion = nn.L1Loss(reduction='sum')

12 self.postnet_criterion = nn.L1Loss()

13 # stopnet loss

14 self.criterion_st = BCELossMasked(

15 pos_weight=torch.tensor(stopnet_pos_weight)) if c.stopnet else
NoneÒæ

16

17

18 def forward(self, postnet_output, decoder_output, mel_input,

linear_input,Òæ

19 stopnet_output, stopnet_target, output_lens,

decoder_b_output,Òæ

20 alignments, alignment_lens, alignments_backwards,

input_lens,Òæ

21 capacity, posterior_distribution, prior_distribution, beta):

22

23 # decoder outputs linear or mel spectrograms for Tacotron

24 postnet_target = linear_input if self.config.model.lower() in
["tacotron"] else mel_inputÒæ

25

26 return_dict = {}

27

28 # decoder and postnet losses

29 if self.decoder_alpha > 0:

30 decoder_loss = self.criterion(decoder_output, mel_input) /

decoder_output.size(0)Òæ

31 if self.postnet_alpha > 0:

32 postnet_loss = self.postnet_criterion(postnet_output,

postnet_target) #/ postnet_output.size(0)Òæ

33

34 # KL divergence term between the posterior and the prior

35 kl_term =

torch.mean(torch.distributions.kl_divergence(posterior_distribution,

prior_distribution))

Òæ

Òæ

36



84

37 # VAE Loss: We use the l1 decoder loss as a stand-in for the

negative log likelihood,Òæ

38 # summed over all dimensions and normalised by the batch size

39 negative_log_likelihood = self.decoder_alpha * decoder_loss

40

41 # pass beta through softplus

42 beta = torch.nn.functional.softplus(beta)

43

44 # This is the term going to the main ADAM optimiser, we detach beta

becauseÒæ

45 # beta is optimised by a separate, SGD optimiser below

46 reconstruction_loss = negative_log_likelihood + beta.detach() *
(kl_term - capacity)Òæ

47

48 # This is the term to purely optimise beta and to pass into the SGD

49 beta_loss = torch.negative(beta) * (kl_term - capacity).detach()

50

51 return_dict['decoder_loss'] = decoder_loss

52 return_dict['postnet_loss'] = postnet_loss

53 return_dict['reconstruction_loss'] = reconstruction_loss

54 return_dict['beta_loss'] = beta_loss

55 return_dict['kl_term'] = kl_term

56 return_dict['capacitron_beta'] = beta

57

58 # Expand loss

59 loss = reconstruction_loss + self.postnet_alpha * postnet_loss

60

61 # Stopnet loss

62 stop_loss = self.criterion_st(

63 stopnet_output, stopnet_target,

64 output_lens) if self.config.stopnet else torch.zeros(1)

65 if not self.config.separate_stopnet and self.config.stopnet:

66 loss += stop_loss

67

68 return_dict['stopnet_loss'] = stop_loss

69

70 return_dict['loss'] = loss

71

72 # check if any loss is NaN

73 for key, loss in return_dict.items():

74 if torch.isnan(loss):

75 raise RuntimeError(f" [!] NaN loss with {key}.")

76 return return_dict
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E Subjective Evaluation Raw Results

E.0.1 AXY Tests

Same Text Prosody Transfer (STT)

Baseline/Competing Model C=50;E=64 C=50;E=128
C=50-E=64 - 1.625

C=50-E=128 -1.625 -
C=150-E=64 -0.625 0.4625

C=150-E=128 -1.425 -0.05
C=300-E=64 -1.3 0.087

C=300-E=128 -1.55 -0.475

(a) C = 50

Baseline/Competing Model C=150;E=64 C=150;E=128
C=50-E=64 0.625 1.425

C=50-E=128 -0.4625 0.05
C=150-E=64 - 1.425

C=150-E=128 -1.425 -
C=300-E=64 0.05 0.925

C=300-E=128 0.525 0.9

(b) C = 150

Baseline/Competing Model C=300;E=64 C=300;E=128
C=50-E=64 1.3 1.55

C=50-E=128 -0.087 0.475
C=150-E=64 -0.05 -0.525

C=150-E=128 -0.925 -0.9
C=300-E=64 - -0.475

C=300-E=128 0.475 -

(c) C = 300

Table E.1: Mean scores for the STT-AXY-evaluation of models with di�erent variational
capacity C
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Inter Text Style Transfer (ITT)

Baseline/Competing Model C=50;E=64 C=50;E=128
C=50-E=64 - -0.975

C=50-E=128 0.975 -
C=150-E=64 -0.2 -0.525

C=150-E=128 1.2 -0.15
C=300-E=64 1.275 -0.975

C=300-E=128 0.85 0.425

(a) C = 50

Baseline/Competing Model C=150;E=64 C=150;E=128
C=50-E=64 0.2 -1.2

C=50-E=128 0.525 0.15
C=150-E=64 - -0.575

C=150-E=128 0.575 -
C=300-E=64 -0.375 0.05

C=300-E=128 0.05 -0.275

(b) C = 150

Baseline/Competing Model C=300;E=64 C=300;E=128
C=50-E=64 -1.275 -0.85

C=50-E=128 0.975 -0.425
C=150-E=64 0.375 -0.05

C=150-E=128 -0.05 0.275
C=300-E=64 - -0.5

C=300-E=128 0.5 -

(c) C = 300

Table E.2: Mean scores for the ITT-AXY-evaluation of models with di�erent variational
capacity C
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E.0.2 MOS Tests

Constant Synthesis Type

Synthesis Type Ground Truth C=150 C=300

STT 4.4198 3.0930 3.2791

ITT 4.4744 1.9977 2.5587

Prior 4.6907 2.3825 2.6645

Table E.3: MOS naturalness scores for constant synthesis type comparison tests between models
with C = 150 and C = 300

Constant Model

Model Ground Truth STT ITT Prior

C=150 4.5692 2.7965 2.6506 2.5971

C=300 4.4064 2.6389 2.4634 2.6500

Table E.4: MOS naturalness scores for constant model type comparison tests between models
with C = 150 and C = 300




