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Abstract

Deep neural networks outperform conventional machine learning techniques on

music information retrieval (MIR) tasks, but require larger datasets for the train-

ing. The availability of large dataset though, especially in the music domain,

is very rare. Moreover, the available datasets are of a low quality. Recent re-

search tried to face this problem by transferring knowledge and sharing trainable

model parameters for multiple datasets and related tasks. Transfer learning en-

ables tasks to benefit from systems trained on large datasets. If the tasks share

similar low-level representations, features extracted from those system can help

new, related tasks. Another method is multitask learning. When training jointly

multiple similar tasks, shared feature representations can benefit from the avail-

ability of additional data. Simultaneously, with both approaches, the capacity of

deep learning networks is reduced facilitating them to detect useful features even

with small available data.

This master’s thesis expands on these approaches of transfer learning and mul-

titask learning, which proved to be beneficial when working with smaller datasets.

For the purposes of this thesis, a new, relatively small dataset including songs

associated with tags for DJ application was manually created from scratch. A sys-

tem trained on automatic song tagging using a large dataset served as the source

task for transfer learning. The applicability of the system for various music clas-

sification tasks was evaluated. Training in singletask as well as various multitask

settings, this work reveals advantages and limitations of solving different classifi-

cation tasks in a multitask setting. Following current studies in computer vision, a



novel approach of combining transfer with multitask learning was used to classify

the songs on multiple label categories. With adding data augmentation methods

and increasing the data sample size, the impact of transfer and multitask learning

on the performances of the networks was put into a wider context, additionally

indicating the required size of training data to achieve satisfying results. This

research is expected to enable challenging tagging tasks to be solved when only a

relatively small amount of data is available due to high creation costs or difficulties

in the annotation.
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Zusammenfassung

Neuronale Netze übertreffen herkömmliche Techniken des maschinellen Ler-

nens bei MIR-Aufgaben (Music Information Retrieval), erfordern jedoch größere

Datensätze für das Training. Die Verfügbarkeit großer Datenmengen, insbeson-

dere im Musikbereich, ist jedoch sehr selten. Darüber hinaus sind die verfügbaren

Datensätze von geringer Qualität. Forschungen haben versucht, diesem Problem

entgegenzutreten, indem sie Wissen übertragen und trainierbare Modellparam-

eter für mehrere Datensätze und verwandte Aufgaben gemeinsam nutzen. Mit

Transfer Learning können Klassifizierungsprobleme von Systemen profitieren, die

auf großen Datenmengen trainiert sind. Wenn diese Probleme ähnliche Merkmale

auf niedriger Ebene aufweisen, können aus diesen Systemen extrahierte Merk-

male beim Lösen neuer Aufgaben helfen. Eine andere Methode ist das Multitask

Learning. Wenn mehrere ähnliche Aufgaben gemeinsam trainiert werden, können

gemeinsam genutzte Feature-Darstellungen von der Verfügbarkeit zusätzlicher Daten

profitieren. Gleichzeitig wird bei beiden Ansätzen die Kapazität von Deep-Learning-

Netzwerken verringert, sodass sie auch bei kleinen verfügbaren Daten nützliche

Funktionen erkennen können.

Diese Masterarbeit erweitert diese Ansätze des Transfer- und Multitask-Lernens,

die sich bei der Arbeit mit kleineren Datensätzen als vorteilhaft erwiesen haben.

Für die Zwecke dieser Arbeit wurde ein neuer, relativ kleiner Datensatz mit Songs,

die mit Tags für DJ-Anwendungen verknüpft sind, von Grund auf neu erstellt.

Ein System, das auf das automatische Taggen von Songs unter Verwendung eines

großen Datensatzes trainiert wurde, wurde für das Transfer Learning benutzt.

Die Anwendbarkeit des Systems für verschiedene Musikklassifizierungsaufgaben

wurde bewertet. Beim Training in Singletask- sowie verschiedenen Multitask-



Umgebungen wurden die Vor- und Nachteile verschiedener Klassifizierungsauf-

gaben in einer Multitask-Umgebung aufgezeigt. Inspiriert von aktuellen Stu-

dien im Feld der Bildklasifizierung wurde ein neuartiger Ansatz zur Kombination

von Transfer mit Multitask Learning verwendet, um die Songs in mehrere Label-

Kategorien einzuteilen. Mit dem Hinzufügen von Datenaugmentierungsmethoden

und dem damit verbundenen Erhöhen des Datensatzes wurde der Einfluss von

Transfer und Multitask-Lernen auf die Leistung der Netzwerke in einen breit-

eren Kontext gestellt und zusätzlich die erforderliche Größe der Trainingsdaten

angegeben, um zufriedenstellende Ergebnisse zu erzielen. Es wird erwartet, dass

diese Forschung die Lösung herausfordernder Tagging-Aufgaben ermöglicht, wenn

aufgrund von Schwierigkeiten bei der Erstellung nur eine relativ kleine Datenmenge

verfügbar ist.
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1 Introduction

Music information retrieval (MIR) gained its popularity from the digitization of

music which resulted in a wide access to music itself. Along with machine learning

algorithms, MIR allows music streaming platforms such as Spotify1 or Youtube2 to

catalogue music, create playlists, or provide appropriate recommendations. Tzane-

takis et al. [2] use audio feature engineering coupled with conventional machine

learning techniques, requiring hand-designed features for music genre classification,

which is a common task in MIR. Since the genre is only one semantic category

to describe a song, more recently a lot of research has been invested in automatic

tagging of music. Auto-tagging tasks use large datasets created with social tag-

ging. These datasets include tags related not only to the genre but also mood,

instrumentation, era, and more and therefore provide richer descriptions of songs.

However, the complexity of music in general as well as the multilabel problem

nature of auto-tagging in contrast to genre classification as a singlelabel prob-

lem makes the use of conventional machine learning extremely challenging. In

singlelabel classifications the classes are mutually exclusive. Whereas for multil-

abel problems one data sample can be associated to multiple labels increasing the

number of cases exponentially in comparison to singlelabel problems [3]. In re-

cent years, deep learning, especially convolutional neural networks (CNN), clearly

outperformed conventional machine learning approaches [3] [4] and became very

1https://www.spotify.com
2https://www.youtube.com



1 Introduction

popular for MIR tasks. Since deep models need a lot of training data, large

datasets, like the Million Song Dataset (MSD) [5] or MagnaTagATune [6], are

used for auto-tagging tasks. MSD is the biggest available dataset of metadata for

one million popular songs. Linked to social tags from Last.Fm3, MSD provides

tags for around five-hundred thousand songs [7].

However, since large datasets like MSD mostly consist of user-generated tags, they

are unstructured and noisy, have no constrained vocabulary, and therefore highly

correlated tags as well as missing labels. Datasets with annotations by music ex-

pert annotators are more reliable and provide an overall higher quality. Due to the

high costs of creation, datasets with professional annotations are rare and either

relatively small or specific to one task. An example of this is the extended ball-

room dataset for ballroom dance genre classification that includes 4180 samples

[8]. Nonetheless there are approaches to create large and high-quality datasets

by extracting groups of tags from large datasets coming from social tagging with

analysis of tag similarity and verification of the data with additional datasets [9]

[10]. To face the problem of missing large and qualitative datasets a different ap-

proach is recently gaining popularity: Transfer learning.

Using transfer learning, a model is created that learns low dimensional repre-

sentations on a source task and use the trained features as input for other related

tasks. In deep neural networks, the features in the first layers are more generic

whereas the later layers become specific to the task. Since similar tasks share low-

level features, the advantage of transfer learning gives the possibility to train these

first layers on related tasks with large available datasets. By using the learned fea-

tures as the input for a target task, the last specific layers are then fine-tuned via

3https://www.last.fm

2



the data generated by the target task [11]. Similar to transfer learning, multitask

learning can improve performances with learning simultaneously a jointly shared

space between different but related tasks by transferring knowledge [12]. Multi-

task learning allows tasks with small available data (e.g., data that is difficult to

annotate) to make use of available data of related tasks for the training process.

In theory, both approaches have the potential to increase performances when only

small datasets are available, since the amount of training data to adjust parame-

ters in deep networks will be increased. In transfer learning the data of the related

source task is used for training and in multitask learning all of the data from the

multiple tasks are used for aligning the networks’ parameters. This can result in

more accurate models. And since the actual number of trainable parameters is

being reduced, a more efficient network that is less prone to overfitting is achieved

[13].

Following studies on transfer learning and multitask learning in MIR, this master’s

thesis presents a novel approach of combining both concepts. With these meth-

ods, several deep learning networks are build to classify songs on a new, manually

created dataset. The relatively small dataset includes song tags for DJ applica-

tion. DJs tag their songs to improve their library organization, playlist creation

and performances. Especially for open format DJs, working at dissimilar events

and therefore owning large music libraries including a wide range of music styles,

proper song tagging is an essential part of their gig preparation. The dataset

used for the target tasks in this thesis includes song tags for the four categories:

genre, energy level, performance situation and intro version. The possibility of

training these tasks simultaneously despite being associated with different classifi-

cation types (multiclass, multilabel and regression problems) and the consequent

problematics is demonstrated. The categories having different numbers of classes

3



1 Introduction

and some categories consisting of balanced and imbalanced data result in more

and less difficult tasks to learn. A positive effect of easier tasks on more complex

tasks trained jointly in a multitask setting is evaluated in this thesis. Two dif-

ferent approaches of transfer-learning are implemented. First, additional datasets

with tasks similar to the target classes are created. Auto-tagging on MSD serves

as the second approach for the source task of transfer learning. Comparing the

benefits of both source task approaches for the target dataset give an insight into

the applicability of the auto-tagging task for various music classification tasks.

The research goal is to investigate the possible advantages of multitask and

transfer learning when working with small datasets, understanding the process of

adapting deep models to specific MIR tasks with small available data, and ex-

amining the differences of singletask versus multitask learning in regard to the

model’s performance and efficiency. Multitask learning works especially well for

learning jointly low-level features [14]. Since the transfer learning process already

provides low-level features trained on a large dataset it is interesting to see if there

is potential for any improvement with creating an additional shared learning space

for the target tasks. Additionally, data augmentation is implemented as another

tool to handle small datasets. This puts the benefit of transfer and multitask

learning into context and demonstrates the minimum required size of a dataset

to achieve satisfying results. The motivation for creating a new dataset lies in

having more and less complex data with predefined tags and tag categories ready

for a multitask classification as well as the ability to examine the applicability of

transfer learning for new, yet unconsidered tasks. So far, the target task on trans-

fer learning approaches in MIR research mainly contains genre classification (e.g.,

[15]). Since MSD as the source dataset mostly has tags related to genre, mood,

and instrumentation [9], it is interesting to see how the classification of not closely

4



related tags, like energy level or situation, will perform.

Working as a DJ myself, I am aware of the high time investment that tagging

music libraries requires. This research has the potential to help accelerate this

process and could therefore be of interest for DJs, who emphasize tagging their

music. It can find utilization for record pools as well, which in the future could

provide songs for DJs including useful metadata. DJ software, like Rekordbox4,

provides the ability for DJs to tag their songs inside of the DJ software to organize

the music in playlists. In Rekordbox the default selectable tags are sorted in the

categories genre, components and situation. It might as well be of interest to

automatically tag songs inside the software. In general, this research on transfer

and multitask learning is of interest for specific music classification tasks with no

large datasets available, unlike auto-tagging tasks or common classification tasks

like genre classification.

4https://rekordbox.com

5



1 Introduction

6



2 State of the Art

Due to the complexity of music in general, automatic music classification is a com-

plex task. With deep neural networks (DNN) becoming popular in the machine

learning field, new possibilities for music classification were introduced. For con-

ventional machine learning, audio features had to be created with signal processing

techniques. But selecting task-relevant features turned out to be very difficult and

captured a large part in implementing systems for music classification problems.

With DNNs undertaking this problem by creating feature representations specific

to the tasks, they became very popular in the field of music information retrieval

(MIR). The drawback is that a lot of data is required for deep learning models to

extract the feature representations from the input data. Therefore, auto-tagging

tasks take advantage of large available datasets, like the Million Song Database

(MSD) or MagnaTagATune (MTAT).

After being introduced to the MIR field [16] convolutional neural networks

(CNN), technologies originally designed for the field of image information retrieval

were applied to several auto-tagging systems ([3, [4], [17]). In [3] CNN models of

different sizes are presented to predict tags on MSD and MTAT. More complex

models benefit most from the availability of large datasets, compared to smaller

models achieving better results with less available training data.



2 State of the Art

After showing to be an effective method in computer vision with ImageNet clas-

sification [18] being used as the source task for other image classification tasks

[19], transfer learning is also beginning to be used in MIR tasks. ImageNet clas-

sification appears to be suitable as a source task in computer vision due to its

high number of images and categories. Equivalently, Oord et al. [20] introduce

the approach of using features learned on MSD to predict other music classifica-

tion problems. A multilayer-perceptron (MLP) is implemented, taking features

extracted from the source model as the input. Due to the resulting reduced com-

plexity of the networks, they are able to classify target tasks, in this case genre and

tag prediction, with smaller available training data. Compared to user listening

preference prediction, the transfer learning approach achieves better results with

tag prediction as the source task. Furthermore, transfer learning turns out to be

particularly advantageous, if the target task is similar to the source task. Since

MSD is the biggest available dataset and the model is trained on a wide range

of semantic tasks including genre, instrumentation, mood, etc. Choi et al. [1]

recommend auto-tagging with MSD as the source task for other music classifica-

tion problems as well. Adopting this transfer learning approach, several systems

based on CNNs are trained on MSD [1] [21]. Choi et al. [1] present a CNN

consisting of five convolutions as the source system for transfer learning. The fea-

tures from the trained CNN model are aggregated and used as an input for other

tasks including genre classification, vocal/non-vocal classification, emotion pre-

diction, speech/music classification, and acoustic event classification which lead

to achieving overall good results. The evaluation of the performances however

makes evident, that target tasks which are closely related to the tags in MSD,

like genre or vocal/non-vocal classification, and perform better less related tasks,

like acoustic event classification. Ghosal et al. [15] approve the suitability of this

system for transfer learning. In comparison to other implemented CNN models, a

8



simple MLP network using aggregated features from the pre-trained CNN system

as inputs, achieves better results for solving genre classification problems. In this

master’s thesis, this pre-trained CNN will be used as the source system for trans-

fer learning as well. Unlike most transfer learning approaches predicting closely

related tasks, like tag and genre prediction, the system will be used to predict

DJ-related tasks that are less related to the MSD tags.

Similar to transfer learning, the concept of multitask learning is recently get-

ting more attention in the MIR field. Parallel to the transfer learning approach,

where the tasks take advantage of aggregated audio features from other datasets, a

shared embedding feature space can be implemented in a multitask setting, taking

advantage of the semantic similarities of the tasks. Exploring this approach for

music annotation, Weston et al. [14] record an improved performance of each task

and additionally get faster and more efficient training process. Böck et al. [13] take

advantage of multitask learning for tempo estimation and beat tracking with im-

proving one task by learning from the other. Since high-quality annotated data for

beat tracking is rare, it is particularly benefitting from the availability of a related

task and data. Furthermore, the smaller number of weigths that have to be trained

leads to a more efficient model decreasing the risk of overfitting. Schindler et al.

[7] successfully apply the multitask learning approach on auto-tagging. After dev-

iding the tag labels on MSD into the four categories genre, style, mood and theme,

the multitask approach leads to an improvement for each label group. Solely the

genre classification problem is not showing any improvement when learning jointly

with the other tasks.

In the computer vision domain, studies combine these two concepts of trans-

ferring information. Zhang et al. [22] and Samala et al. [23] use large natural

9



2 State of the Art

image datasets as source tasks to provide information for classifying biological im-

ages. Pre-trained on ImageNet data CNNs are fine-tuned in a multitask setting.

The models perform better using multitask learning in comparison to singletask

transfer learning approaches. However, to the best of the author’s knowledge, no

studies are combining both concepts in the MIR field yet.

10



3 Datasets

3.1 Target Task: DJ-Tags Dataset

As stated in the introduction, a new dataset has been created to examine the

behaviour of transfer and multitask learning for multiple classification tasks. The

goal was to create a high qualitative dataset including music classification tags

similar as well as dissimilar to the MSD tags. These tags were divided into mul-

tiple classification problems (multiclass, multilabel and regression). The dataset

consists of songs from a personal DJ-music library. To ensure a qualitative dataset,

a constrained vocabulary for the tags has been defined. The songs were manually

tagged by the author according to the defined DJ-related tags inside the categories

genre (disco, pop, etc.), energy-Level (on a scale from 1 to 4), situation (lounge,

warmup, etc.) and intro-version (instrumental intro, acapella intro, etc.). Tagging

was accomplished inside the music management software Mediamonkey1, where

the annotations were written in the audio’s metadata.

The biggest obstacle was to achieve balanced data in all classification groups.

With the subsampling method, the songs were picked carefully in a way to en-

sure an as uniform as possible distribution of the tags. The subsampling method

describes the process of reducing the sample size of classes with high count to

1https://www.mediamonkey.com/



3 Datasets

the number of samples of the smallest class. Co-occurrences of labels across the

groups were observed. For example, songs with the genres disco and soul mostly

were labelled as lounge in the situation group. This was also considered during

subsampling, ensuring a wider distribution of labels across the categories to pre-

vent the later proposed networks to just learn co-occurrencies. Another method

was consolidating similar genres to higher level classes resulting in the class cat-

egoriy named main genres. To differentiate between the genre groups, the actual

genres are named subgenres. The idea behind this method was to create a more

balanced class category with a smaller number of classes resulting in the later pro-

posed networks being expected to be trained easier by this task. Therefore, it will

be possible to compare the training from rather easy tasks to difficult tasks. Ad-

ditionally, the potential to improve different and complicated tasks in a multitask

setup can be evaluated.

The subgenres are directly associated to the main genres. Most of the terms for

the main genre and subgenre lables should be familiar and therefore will not be

further explained. I want to note though, that the genre latin dance consists of sev-

eral latin american ballroom dance styles like salsa, rumba or bachata. Afrobeats,

not a latin genre per se, is associated with the main genre latin due to similar

characteristics to dancehall. Pop and rock, although quite dissimilar genres, are

merged to one main genre to ensure uniformly distributed classes.

A large part of DJ music include intros added to the beginning of the songs to

make it easier for DJs to mix from one track to another. A few extracted bars

of the track’s instrumental, often the instrumental of the chorus, most commonly

serve for intros, named as Intro. Mostly found in electronic music, like house

music, extended mixes of the songs include additional instrumental elements in

the beginning, named as Extended-In. Unlike the already mentioned intros, those

12



3.1 Target Task: DJ-Tags Dataset

instrumental elements usually start with just a few looped elements which are

constantly surrounded by more instrumental elements every few bars. Further

intro versions are Aca-Ins and Clapapella-Ins, describing non instrumental intros

consisting only of vocal melodies and vocals in combination with clap sounds ap-

pearing every one or two beats, respectively. No Intro describes songs without an

additional intro in the beginning.

As can be assumed by the term, the situation tags describes the time and place

of DJ performances a song fits in. Lounge describing background music, summer

describing music fitting in an outdoor warm weather setup, warmup describing

danceable but either less energetic or less popular music than music labelled as

midnight, describing danceable music for regular dance floor settings. Builddown

corresponds to less energetic or more sentimental music usually played at the end-

ing of the dance floor setting. In contrast to the described labels focusing on

the playtime of an event, the remaining labels serve for further classification of

electronic music considering the venue in which the music was designed for, with

smallroom, mediumroom and bigroom corresponding to small underground clubs,

larger, commercial club and big festival stages, respectively. Situation is an excep-

tional category in this dataset. On the contrary to the other categories, multiple

tags can be applied to any song, making the situation prediction a multilabel prob-

lem.

The tag category energy distinguish the songs into four levels of energy with

100 being the lowest and 400 the highest energy level. High numbers were chosen

to avoid conflicts with the songs’ track numbers.

Due to the high subjectivity of tagging and to ensure the datasets reliability, it

13
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was jointly created by the author and an additional DJ. The additional DJ was

instructed to verify the song tags with individually annotating the songs tags. To

minimize the number of tags, especially tags of small count, the annotator was

instructed to use the provided vocabulary. Interestingly, the intro version tags

were the only tags remained unchanged, implying a high objectivity of this label

class. Overall 30 subgenres, 38 situation and 56 energy level tags were changed by

the annotator, indicating a particularly high subjectivity for assessing energy lev-

els. Eventually, the dataset was updated with the annotators changes. Table 3.1

gives an overview of the resulting dataset consisting of a total number of 449 songs.

The genre data is highly balanced, while subgenre labels’ counts range from 9

for tech house to 31 for rap. The data in intro version is rather imbalanced as

well, with counts ranging from 68 for Extended-In to 111 for Intro. The energy

task is relatively balanced for the first three energy-levels while the highest level

consists of only less than a half of the counts the three other levels consist of. The

situation task is highly imbalanced with tag counts ranging from 47 for bigroom

to 198 for midnight.

3.2 Source Tasks: DJCity Datasets

The following datasets were created to serve as source tasks for transfer learning.

The audios for the datasets derive from the music platform DJCity2. DJCity is

a digital record pool designed for DJs. The record pool offers a large number of

todays popular, mostly danceable and club-ready music. The music comes in dif-

ferent versions, remixes, edits and intros. Every song is tagged with genre-related

tags. During a personal conversation, one of DJCity’s employee working as a music

2https://www.djcity.com/
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3.2 Source Tasks: DJCity Datasets

Task Problem type #classes Labels (#appearances)

Main Multiclass 6 Bass (74), Hip Hop (74), House (76),
genre Latin (76), Pop/Rock (73), Soul (76)

Subgenre Multiclass 23 Bass Beats (20), EDM Trap (27),
Future Bass (16), Twerk (11);
R&B (26), Rap (31), Trap (17);
Deep House (18), Disco House/
Nu Disco (12), Electro House (19),
Progressive House (18), Tech House (9);
Afrobeats (24), Dancehall (15), Latin
Dance (16), Reggae (11), Reggaeton (10);
Electro-Pop (21), Pop (29),
Rock/Alternative (23);
Disco (27), Funk (23), Soul (26)

Intro Multiclass 5 Aca-In (90), Clapapella-In (76), Extended-
version In (68), Intro (111), No Intro (104)

Energy Regression N/A 100 (125), 200 (139), 300 (128), 400 (57)

Situation Multilabel 8 Lounge (103), Summer (78), Warmup (94),
Midnight (198), Builddown (72);
Smallroom (53), Mediumroom (49),
Bigroom (47)

Table 3.1: Overview of the DJ-Tags dataset with a total number of 449 Songs

editor, outlined the company’s music tagging process. Every newly added song is

being described with a genre tag, e.g. ”Hip Hop”. Additionally, another tag for

further description of the song is added, e.g. ”German Rap”. In electronic music

it is common to add even more tags describing the genre and style. Some of the

songs also receive tags related to a special DJ-Edit.

The whole catalogue of the record pool was downloaded in November 2019. The

total amount of songs counts up to around 78,000 with 152 available tags. A lot of
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3 Datasets

songs are multiple copies, due to being aligned to more than one tag. The motiva-

tion was to create three datasets with similar labels to the target datasets labels.

Since most of the tags are genre-related, datasets similar to the genre-related tags

of the target dataset were created. Songs labeled with the same or similar tags as

the target datasets tags were brought in consideration. The tag distribution of the

downloaded catalogue was very uneven with only one song for merengue electron-

ico and around 14,000 songs for hip hop. Subsampling the dataset a more even

distribution of the tags was achieved, resulting in a subgenre dataset, including

18 of the 23 subgenres presented in the target dataset. A few music styles were

missing, like electro-pop. Soul, disco and funk were merged to one genre due to a

low individual number of song counts.

According to the creation for the target dataset, the genres were merged to main

genres. A lot of the songs are offered in different versions. Therefore for genres

with particularly high song count only one version per song aligned to the genre

was selected. To ensure quality of the dataset, it was also considered to select

only songs which are labelled solely to one genre. This resulted in a minimum of

159 songs for most subgenres and a minimum of 1320 for most main genres cor-

responding to the second smallest count for the main genre. Genres with higher

available counts were randomly subsampled to this number to achieve a balance

in the datasets. Some of the genre tags remained underrepresented in the dataset,

like the main genre class soul, consisting of only 97 songs tagged as soul, disco or

funk as well as subgenre class progressive house (60 songs).

A third dataset was created according to the target dataset’s intro version task.

A lot of the music provided by DJCity include different intro versions for the in-

dividual tracks, especially the previously described Intro, Aca-In, and No Intro
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3.3 Source Task: Million Song Dataset

Task #songs #classes Labels (#appearances)

Main genre 6697 6 Bass (1320), Hip Hop (1320), House (1320),
Latin (1320), Pop/Rock (1320), Soul (97)

Subgenre 2635 18 Trap (159), Future Bass (154), Twerk (155);
R&B (159), Hip Hop (159):
Deep House (159), Disco House/
Nu Disco (107), Electro House (159),
Progressive House (60), Tech House (159);
Afrobeats (159), Dancehall (159), Latin-
Dance (159), Reggae (159), Reggaeton (159);
Pop (154), Rock/Alternative (159);
Soul (97)

Intro version 369 5 Aca-In (123), Intro (123), No Intro (123)

Table 3.2: Overview of the DJCity Datasets

versions. Songs, that are represented in every of the three different intro versions,

were considered for the dataset, resulting in 369 songs (129 songs with 3 ver-

sions). Even though this dataset, unlikely to general transfer learning approaches,

is smaller than the target dataset, it is expected to be easier for the later proposed

networks to learn the musical patterns belonging to this task, while the presented

songs only differ in the intro version. The resulting datasets derived from DJCity

are reported in table 3.2.

3.3 Source Task: Million Song Dataset

Being the largest available dataset, MSD is one of the most popular datasets in

the auto-tagging field. Connected to the Last.Fm API3, it provides crowd-sourced

music tags for 505,216 songs. This thesis follows the approach of transfer learn-

ing with auto-tagging on MSD as the source task presented by Choi et al. [1].

3https://www.last.fm/
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Problem type #songs Categories (#labels)

Multilabel 242,842 Genre (28), Era (5)
Instrumentation (5), Mood (12)

Table 3.3: Overview of the Million Song Dataset

Accordingly, to minimize the number of tags with small counts, the training was

limited to the 50 most popular tags, resulting in 242,842 audio samples associated

with at least one of the 50 tags. Those tags include 28 genres (rock, pop etc.),

5 eras (’60s’-’00s’), 5 instrumentations (guitar, female voice, etc) and 12 moods

(happy, sad, etc) with a distribution lying between 1,257 for the least tag counts

(happy) and 52,944 for the tag with the most occurrences (rock). Table 3.3 gives

an overview of the dataset.

The social tags are weakly labelled and noisy, including incorrect annotations

and diverse text, since every listener is able to use any terms to label the songs.

Additionally, the dataset is highly imbalanced. Yet, Choi et al. [1] provide a

system trained on MSD and recommend its usage for transfer learning for various

music classification tasks. The advantage of the system is clearly the large number

of samples it is trained on. The system provides low- and high-level feature rep-

resentations for learning and due to the diverse semantic music annotations and

different tag categories included in MSD, especially the low-level features can be

very interesting as well for dissimilar music classification tasks.
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4 Method

4.1 Convolutional Neural Networks

One of the main outcomes of this work is to evaluate the applicability of the

auto-tagging task on large, crowd-sourced datasets as the source task for trans-

fer learning on various music classification tasks. To do so, two different transfer

learning approaches are proposed. First, the deep learning model supposed to

be used for classifying the target tasks with the DJ-Tags dataset will be trained

by similar tasks with a higher number of available data. For this approach, the

DJCity datasets are used as the source tasks for transfer learning. In the second

experiment auto-tagging on MSD will serve as the source task for transfer learning.

The learned features trained on the large dataset will be aggregated and used as

the input for new multiple classification tasks.

CNNs provide the basis for the deep learning architectures in both experiments.

Choi et al. [3] recommend CNNs for music classification tasks, especially for music

tagging, since one of the main advantages of CNNs is the ability to detect data

patterns that are locally invariant like musical events appearing at different lo-

cations in the time-frequency domain. CNNs basically consist of the functional

interaction of two types of layers, the convolutional and the pooling layers. After

every convolutional and pooling layer semantically similar data patterns are com-
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bined, model complexity is reduced and with each layer more complex features,

detected in the previous layer, can be combined, leading to high-level features. As

the tasks in the proposed dataset, like the genre or situation classification tasks,

are supposed to be rather characterized by high-level features, the training benefits

from this hierarchical learning property of CNNs. It is interesting to evaluate the

suitability of CNNs for the intro version task, which labels being strongly depen-

dent on musical patterns in the beginning of the tracks. CNNs are chosen over

other variants like convolutional recurrent neural networks, because they provide

comparable results and a more stable and computational faster training [24].

4.2 Transfer Learning

Transfer learning describes the process of taking benefit of related tasks trained

with larger datasets, referred to as source tasks. Transferring the existing knowl-

edge from training the source tasks to the so called target tasks, that have only

small available data for training, can improve the performances of the target tasks.

Related tasks share similar low-level feature representations. Especially tasks be-

ing rather described by high-level features, as it is the case in the proposed target

tasks. Just in the higher level representations, the features become specific to the

task. To take advantage of transfer learning, one possibility is to train a network

on a source task with a large dataset. Afterwards, this pre-trained network is

further trained, usually with a smaller learning rate, on the target task. With this

method, often referred to as fine-tuning, the trainable parameters are adjusted

either on the whole network or only on higher level feature representations. Addi-

tionally, the reduced complexity of the network results in a more efficient and faster

training and is less prone to overfit. Figure 4.1 illustrates this transfer learning

approach that will be implemented in the first experiment. The illustrated model
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4.2 Transfer Learning

Figure 4.1: Proposed model for transfer learning with DJCity datasets

corresponds to a singletask CNN model with the hidden layer corresponding to

multiple convolutional and pooling layers. The model will be trained by the DJC-

ity datasets, serving as the source tasks. Since the genre task has the largest data

of the source tasks, it will train the network’s parameters first. The first layer’s

parameters will be then transferred to the subgenre and intro version networks.

These networks are trained by the remaining source tasks (DJCity subgenre &

DJCity intro version), while already taking advantage from the pre-trained low-

level feature space. Finally the model’s parameters will be fine-tuned with the

proposed DJ-Tag dataset to classify the target tasks.

Another method taking advantage of transfer learning is to build a classifier on

top of a pre-trained network. With the pre-trained network, features are aggre-

gated from the new, smaller dataset before being used as the input data for a

target classifier. This method is utilized in the second experiment. Experiment 2

is based on the proposed CNN system for transfer learning in [1]. It was trained
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Figure 4.2: Overview of the feature extractor designed by Choi et al. [1]

on MSD, the largest available dataset in the MIR field. The trained model serves

as a feature extractor. Figure 4.2 illustrates the feature extraction process. The

pre-trained system takes mel-spectrogram representations of the audio signals as

input. The model consists of five convolutional layers. After average pooling, ev-

ery layer produces 32 features. Simply adding all 32 features per layer results in

a one-dimensional 160-length feature vector. The feature vector thus consists of

low-level as well as high-level features. Those features will be extracted for every

of the DJ-Tags dataset’s songs. It will then serve as the input of a newly designed

multilayer-perceptron (MLP) serving as the classificator.

Afterwards, both approaches will be compared. On one hand, the labels of the

DJCity datasets are heavily related to the labels of the target tasks and therefore

a direct applicability on the target tasks is expected. On the other hand, the
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4.3 Multitask Learning

DJCity datasets consist of just a fraction of training data, the auto-tagging task

with MSD was trained on. The comparison of both approaches will give an insight

for the universal suitability of the auto-tagging task on MSD as the source task in

transfer learning setups.

4.3 Multitask Learning

Similarly to transfer learning, in a multitask learning setting the tasks take ad-

vantage of other tasks’ knowledge. Other than the transfer learning approach, in

multitask settings the tasks are trained simultaneously, learning a shared feature

space. Dependent on the tasks’ degree of similarity usually low-level feature rep-

resentation are trained jointly. Embedding the shared space results in an either

higher possible complexity of the features or smaller required training data. Sev-

eral dissimilar multitask settings will be designed to evaluate the training process

of the five tasks with the DJ-Tag dataset.

The following presented multitask settings correspond to either the CNN mod-

els for experiment 1 or the MLP that serves as the classifier in experiment 2.

Figure 4.3 illustrates the tasks in a basic multitask setting. Training happens si-

multaneously, without sharing any layer’s parameters. Multitask settings provide

special characteristics. While the forward-passing takes place similar to singletask

settings, the backpropagation process adjust the parameters in accordance to the

loss of all tasks. This total loss is calculated as a sum of all losses. Another charac-

teristic is the limited ability of adjusting hyperparameters for each individual task

in the training process. Parameters like batch size or epochs are affecting all tasks.
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Figure 4.3: Proposed model design for multitask learning

Figure 4.4: Proposed model for multitask learning with shared layers

In the second multitask setting the tasks share a low-level feature representation

(figure 4.4). The number of shared layers can be altered. Since the tasks, despite

main genre and subgenre, are not closely related, high-level features have to be

designed individually to classify each task.

Another proposed multitask setting is supposed to take advantage of correla-

tions and direct dependencies of the tasks. The subgenre labels indicate the main

genre labels and vice versa. Also, some labels in the situation task (smallroom,

mediumroom, bigroom) are only present for some of the main genres. To take the
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Figure 4.5: Proposed model for multitask learning with outputs of genre & energy
branch as additional features for the subgenre & situation task

co-occurrences of some labels across the tasks into account, estimates of one task

serve as an additional input for another task. In this example, the main goal is

to help classifying the subgenre and situation tasks. Due to the large number of

classes in the subgenre and the high imbalance in the situation task, both are ex-

pected to be difficult to train. Therefore, the main genre task is anticipated to help

classifying both tasks. Additionally, due to an assumed correlation of energy and

situation, the output value of energy is used as another additional feature for the

situation task. Comparing the multitask variants among each other as well with

singletask settings will give an insight of possibilities and problematic of multitask

settings.

4.4 Data Augmentation

Apart from techniques of using the knowledge of other tasks and datasets to im-

prove classification performances, one of the most common techniques for handling

the difficulty of small datasets in deep learning setups is data augmentation. Data
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(a) (b)

Figure 4.6: Mel-spectrogram of the song ”Avicii ft. Aloe Blacc - S.O.S” (a) pitch
shifted one tone down (b) pitch shifted one tone up

augmentation is a method used to increase the sample sizes. With several data

processing techniques, the data samples are slightly modified in a way where the la-

bels are still recognizable. For instance, in the image classification field, frequently

used techniques for data augmentation are image transformations like rotating and

cropping [25]. The objects in the images are still recognizable and the data, the

network is trained on, can be increased. In the audio field data augmentation tech-

niques exist as well. Popular data augmentation techniques include pitch shifting,

time stretching or adding noise.

Aguirar et al. [26] explored these techniques to improve training CNNs for music

genre classification. Compared to noise addition, time stretching and modified

loudness, pitch shifting the audio samples one tone up and down proved to be most

beneficial. Figure 4.6 visualizes the mel-spectrograms of a pitch-shifted example

song. Following this outcome, augmenting data with pitch shifting one tone up
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4.4 Data Augmentation

and down will be adopted in this work as well. With data augmentation applied

on the DJ-Tag dataset, the sample size rises by a factor of three from 449 to

1347 samples. While comparing its influence on the improvement of the models’

performances to the transfer learning and multitask learning approaches, the usage

of data augmentation will then also serve to evaluate the implementation of the

previously described approaches of transferring knowledge.
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5 Experimental Setup & Results

5.1 Overview

The proposed models are categorized into two different approaches. For the first

approach, CNNs were implemented. Training the CNN models on the DJ-Tags

dataset without any of the proposed transfer and multitask learning methods serve

as the baseline model of this work. This model was then pre-trained by the DJCity

datasets corresponding to the first proposed transfer learning method. The sec-

ond approach corresponds to using extracted features from a system trained on a

large dataset. An MLP was implemented for classifying the tasks of the DJ-Tags

dataset’s tasks. The introduced multitask learning techniques are implemented in

both approaches. Additionally, data augmentation was implemented in the pro-

posed systems as well.

The models were trained on input data consisting of audio samples with a du-

ration of 87 seconds. As part of the pre-processing , Choi et al. [3] trim the

audio samples to 29 seconds. However, trimming the samples to 29 seconds is

not expected to lead to satisfying results in the context of the presented dataset.

The intro version task is characterized by the musical events at the beginning of

the tracks. Classifying the other tasks, for example, the genre, based only on

the beginning of the song is expected to be very difficult, especially if this song
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Song extract (#features) Total loss

0-29s (160) 6.28
29s-58s (160) 6.40
58s-87s (160) 6.48
0-87s (480) 6.03

Table 5.1: Total validation loss for the MTL model in regard of the song positions
features are extracted from

excerpt consists only of acappellas or claps. On the other hand, extracting the

samples of the middle of the tracks would result in an even harder challenge clas-

sifying the intro version. Due to the intro version task supposed to focus on the

beginning of the tracks while the other tasks are supposed to rather focus on the

data after the intro, songs were trimmed to threefold the length, resulting in 87

seconds long audio samples. Supporting the strategy, experiments on training the

proposed MLP on only 29 seconds of the tracks led to worse results. Table 5.1

demonstrates the advantage of using 87 second against 29 seconds clips. The total

losses correspond to the results of the later introduced MLP model in a multitask

setting when training with different excerpts of the audio data. 87 second clips

perform best overall. Focusing on the low frequencies of the data turns out to be

more efficient [3]. Therefore, the songs were downsampled to 12 kHz to reduce the

input dimension and the computational cost of the training process. The same

procedure was performed with the augmented, pitch-shifted data.

Similar to the audio pre-processing, model design was highly inspired by the

proposed systems for auto-tagging tasks in [3] as well. All models used the ADAM

adaptive optimisation [27] and Rectified Linear Unit (ReLU) as the activation

functions in the hidden layers. The output layers’ activation functions were cho-

sen according to the types of the classification tasks and range of the groundtruth
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5.1 Overview

with the number of nodes according to the number of classes of the task. Softmax

activation was implemented for the main genre, subgenre and intro-version classifi-

cation as being singlelabel classification problems, sigmoid activation for situation

classification as a multilabel classification problem and linear activation for the

energy-level task being a regression problem [28]. Binary cross-entropy function

was used for the multilabel classification task. For the multiclass problems, cate-

gorical cross-entropy and for the regression problem mean squared error was used

as the loss function. In a multitask learning setup, the networks were trained on

reducing the total loss of the tasks. This total loss was simply calculated as the

sum of the validation loss of every individual task.

The total loss also serves as the metric to compare the overall performances of

the proposed models. Even though the individual loss functions are different, they

stay consistent in every model. Therefore comparing the networks performances

with the total losses is valid with a smaller value indicating an overall better per-

forming model. The evaluation metrics of the tasks depend on the classification

types. Classification accuracy was used as the go-to evaluation metric for the

multiclass tasks. In the next chapter, confusion matrices report better and worse

performing individual classes. Table 5.2 gives insight on the values a random guess

is expecting to score considering the knowledge of the class distributions. Similar

to auto-tagging tasks [3] [17], Area Under the Receiver Operating Characteristic

Curve (AUC) was used as the metric for the situation task as a multilabel classifi-

cation task. AUC is robust to imbalanced data and works well when most classes

are false in every sample. The range of AUC covers values from 0.5 to 1.0 with an

AUC of 0.5 for a random guess and 1.0 for a perfect classification score. Addition-

ally, discussing scores for precision, recall and F-measure give more insight into the

performance of each individual class in the following chapter. For the regression
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Task Metric Problem type classes Result

Main Genre Multiclass 6 Acc 0.169
Subgenre Multiclass 23 Acc 0.069
Intro Multiclass 5 Acc 0.247
Energy Regression N/A R2 0
Situation Multilabel 8 AUC 0.5

Table 5.2: Prior knowledge of the given tasks

task, R-squared (R2) serves as the evaluation measure. R2-values are expected

to span between 0 and 1.0. Putting the value in the context of the other tasks’

metrics, R2 was prioritized over error measures like mean squared error due to 1.0

being the highest possible value, similarly to the previously described metrics.

Hyperparameter tuning is accomplished by trial and error. Training the designed

CNN models in the first approach though was computationally demanding and

time-consuming. Thus much more parameter tuning was possible to perform in the

second experiment training the multilayer-perceptron. The parameters in the first

approach are mainly based on the knowledge gained by the tuning parameters in

the second experiment as well as on the proposed CNN models for auto-tagging by

Choi et al. [3]. Performing a minimum of five test runs for every model, the optimal

number of epochs for every test run was chosen before the validation loss did not

decrease three times in a row. The models were then trained with the number of

epochs corresponding to the mean of the optimal numbers of epochs during the

test runs. Finally, at least five training runs in the first approach and ten in the

second approach were performed. Evaluation was performed on the validation set.

80% of the dataset served as the training set and 20% for the validation. Training

and validation test split was randomly created for every training run. The values

for the evaluation metrics for every task, that are presented in the results, were
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5.2 Experiment 1: CNN with DJCity Datasets

Layer Output Shape Parameters

Mel-spectrogram input 48 x 1874 x 1 0

3x3 Conv, 32 filters 48 x 1874 x 32 320
Max Pooling (2, 6) 24 x 312 x 32 0
Dropout (0.5) 24 x 312 x 32 0
Batch Normalization 24 x 312 x 32 128

3x3 Conv, 64 filters 42 x 312 x 64 18496
Max Pooling (4, 16) 6 x 19 x 64 0
Dropout (0.5) 6 x 19 x 64 0
Batch Normalization 6 x 19 x 64 256

3x3 Conv, 128 filters 6 x 19 x 128 73856
Max Pooling (6, 19) 1 x 1 x 128 0
Dropout (0.5) 1 x 1 x 128 0
Batch Normalization 1 x 1 x 128 512

Flatten 128 0

Dense (Softmax Activation) 6 774

Total Parameters 94,342

Table 5.3: Baseline CNN model for genre classification

calculated as the means of the evaluation metrics of the multiple training runs.

All results including the applied hyperparameters, like learning rate, batch size or

number of epochs are reported in this work’s appendix.
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5.2 Experiment 1: CNN with DJCity Datasets

5.2.1 Inputs & Architecture

In [3] Choi et al. evaluate several CNN architectures of different sizes for auto-

matic tagging tasks. Although the models consisting of more convolutional layers

perform better, the CNN in this work was inspired by the smallest proposed CNN

model consisting of three convolutional layers. This was chosen due to the much

smaller size of the dataset in this work. In table 5.3 the architecture of the designed

CNN in a singletask setting is presented (genre classification in this example). The

architectures for the other tasks vary only in the output layer’s activation function,

that was chosen as stated above. Facing the problem of heavy computational cost,

reducing the models capacity was demanded and accomplished with reducing the

number of filter maps of the CNN as shown in table 5.3 to 32, 64 and 128 for the

first, second and third convolutional layer, respectively. Pilot experiments showed

similar results to a network with higher numbers of feature maps while enormously

decreasing computational cost. According to the model in [3] every convolutional

block was extended with max pooling, decreasing the size of the feature maps to

1x1 and dropout of 0.5 with batch normalization, for regularization and preventing

the model to overfit. Max-pooling has the ability to detect local features and was

prioritized over avarage-pooling.

The network takes mel-spectrogram representations of the audio samples as in-

put. They achieve better results than other representations, like short-time fourier

transform (STFT) [3]. Being aligned to human auditory system, mel-spectrogram

is suitable for subjective tasks and additionally more efficient in size. Further re-

ducing the dimension of the input data was another strategy leading to a more

efficient training process. Recent studies [29] evaluate the impact of frequency
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and time resolution on accuracy and training times of models trained on auto-

tagging tasks. Reducing the mel-bands to 48 and increasing hop size to 1024

samples results in a satisfying tradeoff between accuracy and computational cost

and therefore was implemented in this work. The CNN presented in table 5.3

along with the CNNs for the other five tasks serve as the baseline models for this

work.

This architecture remained consistent in the multitask learning settings. The

first multitask learning model, henceforth simply termed as ”multitask” or ”MTL”,

consists of five branches of the same architecture as shown in table 5.3 with the

outputs according to the individual task. Those branches belonging to every indi-

vidual task share the same input. In the proposed multitask learning model with

shared layers, henceforth termed as ”shared layers”, the branches share the first

two convolutional blocks resulting in only the third convolutional layers’ param-

eters as well as the output layers’ parameters being individually trained for the

specific task. The third proposed multitask learning method, named ”Output-

Feature”, takes the estimation of the genre and energy tasks as additional features

for the subgenre and situation tasks. More specifically, the values of the outputs of

the genre branch after a training step serves as an additional feature for the input

of the subgenre task’s output layer and together with the energy branch output

value for the input of the situation tasks output layer. It is important to point out

that the gradient connecting the corresponding outputs has to be stopped during

the backpropagation process to prevent updating the other task’s (main genre and

energy) weights.

For the transfer learning process the proposed baseline architecture was trained

on the DJCity datasets as explained in the previous chapter. The first layers were
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pre-trained with DJCity main genre data, shared by all five branches and the re-

maining layers of the main genre, subgenre and intro version tasks were pre-trained

with the corresponding source datasets. First, second and third layer of the genre

branches and second layers of the subgenre and intro version branches were set

untrainable, while the other layers were then fine tuned by the target dataset with

a ten times lower learning rate than training on the source task.

As the last proposed method to improve small datasets, data augmentation was

implemented by training the baseline models with the additional created audio

samples. For the final ”combined” model, the introduced methods that increase

the performance of classifying the tasks were brought together. The model consists

of the first two convolutional layers being shared similarly to the shared model,

while the weights of the layers were set correspondingly to the transfer learning

process. Unlike the the previous transfer learning approach, all parameters were

set trainable, increasing the performance. The input data was expanded by the

samples created with data augmentation.

5.2.2 Results

Table 5.4 reports the results of the baseline singletask models. While the networks

seemed to recognize some trend in the data for the genre, subgenre and situation

tasks, the network performed poorly for the remaining tasks. Classification of

the intro version was just a bit above random guess. No trend in the data for

the energy was recognized. Increasing the sample size with data augmentation

affected classifying the genres and energy marginally. However, slightly improving

the situation task, the intro classification task benefited most with adding audio

samples with increasing the accuracy up to 49%.
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5.2 Experiment 1: CNN with DJCity Datasets

Task Metric Baseline Data aug.

Main genre Acc 0.38 0.38
Subgenre Acc 0.11 0.13
Intro Acc 0.27 0.49
Energy R2 -0.24 -0.06
Situation AUC 0.62 0.69

Total Loss 6.79 6.08

Table 5.4: Results for the CNN singletask model without and with augmented
dataset

Task Metric MTL
Output-
Feature

Shared
layers

Shared layers
+ data aug.

Main
genre

Acc 0.34 0.37 0.36 0.42

Subgenre Acc 0.11 0.11 0.12 0.17
Intro Acc 0.29 0.27 0.29 0.53
Energy R2 -0.28 -0.47 0.06 0.16
Situation AUC 0.65 0.64 0.65 0.75

Total
Loss

6.81 6.78 6.65 5.91

Table 5.5: Results for the proposed mutltiask models

Training in a multitask setting results in similar performances. Using the esti-

mates for main genre and energy as additional features for subgenre and situation

did not improve performance. Due to the relatively poor performances of those

tasks, especially the energy task, this comes not surprising. Note that the MTL

and Output-Feature models are very similar and performances should only differ

for the subgenre and situation tasks. The small differences in the values for the

remaining tasks indicate an affiliation of the networks for the specific training and
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5 Experimental Setup & Results

Task #classes Metric DJCity Dataset

Main genre 6 Acc 0.64
Subgenre 18 Acc 0.31
Intro 3 Acc 0.69

Table 5.6: Results for the source tasks

validation set that changes for every training run. The small number of training

runs in this experiment might result in some tasks randomly over- or underperform

based on the data the network is trained on and validated. The overall perfor-

mance in the multitask setting improveed with sharing the first two convolutional

layers across all tasks. Augmenting the audios in this setup resulted in the overall

best performing model. Interestingly, this is the first model that seemed to slightly

recognize a trend in the energy data.

For the transfer learning approach the models’ parameters were pre-trained by

the DJCity datasets. Results for the source tasks are reported in table 5.6. Thanks

to the high number of samples, the model did a better job in predicting the main

genres. Due to a smaller number of classes, direct comparison of the results for

the source tasks and the target tasks are not possible for the remaining tasks.

However, the prediction of intro version as well as subgenre benefited from the

additional knowledge gained from the source tasks as reported in table 5.7. Even

though the first layer was pre-trained by the main genre task, the situation classi-

fication tasks also seemed to benefit from the additional knowledge in the low-level

feature representation. Surprisingly, the main genre task did not much improve

despite correlating most with the related source task. Adding data augmentation,

the performances of all tasks further improve. The combined model improves the

performances of all tasks but the intro version task.
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5.2 Experiment 1: CNN with DJCity Datasets

Task Metric TL DJCity TL DJCity+data aug. Combined

Genre Acc 0.39 0.43 0.45
Subgenre Acc 0.18 0.20 0.20

Intro Acc 0.42 0.48 0.39
Energy R2 0.01 0.13 0.20

Situation AUC 0.67 0.74 0.75

Total Loss 6.19 5.97 5.97

Table 5.7: Results for the transfer learning methods. Combined stands for the
pre-trained model with shared layers and data augmentated input

In comparison to the results of the baseline models, data augmentation achieved

the overall highest performance improvement in comparison to the other proposed

methods. Without data augmentation, the transfer learning setting delivered bet-

ter results than the presented multitask learning settings. Note that the transfer

learning method is realised in a multitask setting as well. Then again, when

training with more data, sharing layers achieved better results than the transfer

learning method. Interestingly, the models did not recognize the main genres of

the songs much better with the proposed methods, while slightly better results

for the subgenres could be achieved. Intro classification benefits notably from the

proposed methods, especially transfer learning and data augmentation. Same goes

for the situation task. Most of the proposed models, however, fitted the data for

energy very poorly, even worse than a random guess. Only the shared layers and

the transfer learning models trained with augmented data seemed to recognize a

trend in the data.
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5.3 Experiment 2: MLP with MSD Features

5.3.1 Inputs & Architecture

In the second experiment, the transfer learning method extracting features from

the pre-trained system on MSD was implemented. The system, originally trained

on 29 seconds audios, takes mel-spectrogram representations with 96 mel-bins as

input and extracts 160 features per sample [1]. Since 87 seconds clips were used

as audio samples, 160 features were extracted three times for every 29 seconds of

the audios resulting in a 480-feature vector for each song. Additionally, feature

selection methods were implemented to reduce the dimensionality of input data.

The motivation of using feature selection was to evaluate the influence of input di-

mensionality on training small datasets. A mix of feature selection algorithms, in-

cluding removing quasi constant (variance threshold of 0.01) and highly correlated

features (correlation threshold of 0.8), recursive feature elimination with cross-

validated selection (RFECV), analysis of variance (ANOVA) f-value and mutual

information (MI) was implemented to reduce the number of features. Evaluating

combinations of the algorithms on the performances of each task was based on

trial and error and results in applied algorithms as reported in table 5.8. With

augmented data though, the resulting number of kept features differed.

A simple feed forward neural network with decreasing number of neurons per

layer was implemented as a classifier. In comparison to [15] using one hidden

layer for classifying genre in a similar transfer learning setup, two hidden layers

were implemented in the proposed MLP. Extending the MLP by one layer enables

the possibility of creating a jointly shared feature representation for the multi-

task learning methods being introduced later on in this chapter. In comparison

to smaller layer dimensions, pilot experiments revealed an appropriate number of
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5.3 Experiment 2: MLP with MSD Features

Task
Constant/
corre-
lated

RFE-
CV

MI F-value #features

Main genre x x best 40 (40) - 40 (40)
Subgenre x x best 180 (60) - 180 (60)
Intro x x best 100 (70) - 100 (70)
Energy (x) - best 60% (30%) - 288 (87)

Situation x x -
best 16 for
each label

90 (90)

Table 5.8: Feature selection algorithms used for the tasks. Values in parentheses
correspond to multitask settings

Layer Output Shape Parameters

Input 480 0
Dense 64 30784
Dense 32 2080
Dense (Linear Activation) 1 33

Total Parameters 32,897

Table 5.9: MSD transfer learning model for energy classification
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5 Experimental Setup & Results

128 and 64 neurons for the first and second hidden layer, respectively. In the

singletask learning setups, altering the number of neurons for the first and second

layer improved performance on some tasks resulting in two different implemented

architectures with 128 or 64 neurons for the first layer and 64 or 32 neurons for

the second. Table 5.9 gives an overview for a singletask learning architecture (en-

ergy prediction in this example). With observing the behavior of validation and

training loss, dropout and batch normalization layers were implemented in some

configurations to counteract overfitting, similarly to the first experiment. Hyper-

parameters were adjusted on a trial and error method. Learning rates were chosen

with observing the performances of learning rate values from 0.0001 to 0.1 in 6

steps. Learning rates of 0.005 and 0.001 performed best for the proposed models.

In general, adding augmented data resulted in lower learning rates and higher num-

ber of epochs increasing the performances. The proposed network architectures

with the corresponding hyperparameters and results are reported in this work’s

appendix.

Similarly to experiment 1, the architecture of the MTL configuration training

all tasks simultaneously is based on the singletask architectures. Sharing the first

hidden layer by the five multitask branches results in the ”shared layers” config-

uration. Note that the shared layer’s number of nodes has to be consistent for

all branches. 128 nodes for the shared layer and 64 for the second, task specific

layers were implemented. Pilot experiments revealed a better performance sharing

the first of the two hidden layers than adding an additional shared layer to the

network. Further multitask learning methods were evaluated. First approach was

supposed to take advantage of the direct relationship between the main genre and

the subgenre task with learning jointly two hidden layers. Just as presented in the

first experiment, using the estimations of genre and energy as additional inputs for
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5.3 Experiment 2: MLP with MSD Features

the subgenre and situation tasks were implemented in the MLP as well. Addition-

ally, the effect of pre-training the purposed networks with the DJCtiy Datasets on

the model’s performances is tested.

5.3.2 Results

The results for the proposed MLP networks with and without augmented data

and feature selection algorithms are reported in table 5.10. Bold values indicate

the best achieved results overall. In comparison to the networks in experiment 1

the proposed models achieved better overall performances and better or similar re-

sults for each task. Despite energy prediction in the MTL setting, feature selection

improved performances for all tasks in every model. Increasing sample size with

data augmentation vastly improved the performances thus clearly outperforming

any models in experiment 1. Interestingly, while feature selection algorithms im-

proved performances on the original dataset, with augmented data the networks

performed better making use of all available features. Overall, training in a single-

task setting led to better results than in multitask settings. In a multitask setting,

sharing the first layer was the better option, while with data augmentation, despite

for the main genre task, the MTL model performed better.

Additionally pre-training the singletask MLP networks with similar datasets did

only improve the main genre task as reported in table 5.11. However, it became

redundant when adding augmented data to the target task. In comparison to the

first experiment, the source tasks perform better with the features extracted from

the auto-tagging system trained on MSD.

Table 5.12 reports further ideas to improve performances in a multitask setting.

Without data augmentation, the subgenre task took advantage of jointly train-
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Task Data Aug. Feature Sel. Metric Singletask MTL Shared Layer

no no Acc 0.56 0.41 0.42
Main genre no yes Acc 0.63 0.48 0.50

yes no Acc 0.77 0.76 0.79
yes yes Acc 0.72 0.72 0.77
no no Acc 0.16 0.14 0.16

Subgenre no yes Acc 0.22 0.18 0.20
yes no Acc 0.62 0.61 0.54
yes yes Acc 0.60 0.59 0.53
no no Acc 0.50 0.49 0.42

Intro no yes Acc 0.55 0.53 0.52
yes no Acc 0.79 0.79 0.76
yes yes Acc 0.78 0.79 0.75
no no R2 0.17 0.31 0.07

Energy no yes R2 0.24 0.22 0.21
yes no R2 0.54 0.53 0.41
yes yes R2 0.57 0.48 0.43
no no AUC 0.74 0.71 0.73

Situation no yes AUC 0.78 0.72 0.75
yes no AUC 0.87 0.87 0.84
yes yes AUC 0.87 0.87 0.86

no no 5.61 6.03 5.92
Total Loss no yes 5.22 5.71 5.30

yes no 2.85 2.91 3.05
yes yes 3.09 3.17 3.14

Table 5.10: Results for the proposed MLP networks with the transfer learning
system trained on MSD

44



5.3 Experiment 2: MLP with MSD Features

Task Source tasks
Pre-training
1st layer

Pre-training
1st & 2nd
layer

Singletask

Main genre 0.70 0.59 (0.77) 0.57 (0.74) 0.56 (0.77)
Subgenre 0.39 0.16 0.15 0.16
Intro 0.71 0.46 0.42 0.50

Table 5.11: Results for additionally pre-training MLP models with the DJ City
datasets in accuracy. Values in parentheses correspond to training
with augmented input data

Task
Data
aug.

Main & sub-
genre

Output-
feature

Singletask

Main genre (Acc.) no 0.54 0.56
yes 0.81 0.76

Subgenre (Acc.) no 0.21 0.17 0.16
yes 0.60 0.63 0.62

Situation (AUC) no 0.76 0.74
yes 0.88 0.87

Table 5.12: Results for further multitask methods to increase performance

45



5 Experimental Setup & Results

Task Metric Singletask MTL
Output-
Feature

Main genre Acc 0.77 0.76 0.77
Subgenre Acc 0.62 0.61 0.63
Intro Acc 0.79 0.79 0.79
Energy R2 0.57 0.53 0.53
Situation AUC 0.87 0.87 0.88

Total Loss 2.85 2.91 2.82

Table 5.13: Overview of the best performing MLP networks taking augmented data
without feature selection as input

ing with the main genre task sharing the first two layers. However, learning a

shared space did not affect the main genre task positively. With a higher sam-

ple size though, the tasks behaved the other way round. Parallel to the shared

layer model reported in table 5.10, the main genre task benefited from training

a shared learning space. Considering that the primary idea of implementing the

main genre task was to help the other tasks in a multitask setting, the focus here

lay on the subgenre task and therefore this setting was not advantageous. Though

only slightly, using estimates for the main genre and energy tasks improved the

subgenre and situation tasks.

Complementing the MTL network with the Output-Features method resulted

in the overall best MLP network with the lowest total loss value of 2.82 as shown

in table 3.3. Note that the results for the tasks only differ marginally with highest

accuracy values of 0.77, 0.63 and 0.79 for the main genre, subgenre and intro

version, respectively and an AUC value of 0.88 for the situation task. Solely the

energy task showed a considerably better performance in a singletask setting with

a R2 value of 0.57 towards a R2 value 0.53 for the multitask networks.
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6 Discussion

With implementing the proposed methods transfer learning, multitask learning

and data augmentation, networks were able to improve the performances of clas-

sifying the tasks. Solely increasing the sample size by a factor of 3 with data

augmentation techniques created a noticeable performance gain thus indicating

the original dataset size to be too small to train the networks. Same goes for the

transfer learning methods, leading to similar results, as reported in figure 6.1. Ex-

cept for the subgenre task, transfer learning with a system trained on MSD as the

source task achieved better results than pre-training the model with the DJCity

datasets. Even the main genre and intro version tasks did not benefit as much

from the highly correlated source tasks as with the MSD system. Thus clearly

demonstrates the importance of the sample size of source tasks’ datasets. Both

transfer learning settings benefited from extra data. While training the pre-trained

models with augmented data in experiment 1 slightly affects the classifications pos-

itively, additional data enormously increased performances in experiment 2 with

the number of total loss fallen by half. It seems like a sweet spot of the required

number of training data to achieve satisfying results was hit with this approach.

Results from additionally pre-training the MLP with the DJCity datasets support

the assumption. While increasing the performance of the similar main genre task

trained with the original training set, pre-training did not affect the training with

the augmented training set any more. In contrast, the additional data affecting



6 Discussion

Figure 6.1: Comparison of the performances of the proposed transfer learning mod-
els in a basic multitask learning setting

the CNNs less, indicates that the number of training samples remained too small

for training those kind of networks effectively. Or put the other way, the CNN

models are still too complex for this amount of data.

While both data augmentation and transfer learning turned out to be advan-

tageous throughout, the benefit of multitask learning settings on accurate classi-

fication was dependent on the input data, the interaction with transfer learning

methods, and the explicit multitask learning variant. Simply training the tasks

simultaneously did not improve the classification of the tasks, as reported in fig-

ure 6.2. Whereas training jointly low-level feature representations were able to

reduce the complexity of the CNN thus improving classification on the original

data samples. In experiment 2, sharing layers resulted in less accurate models,
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Figure 6.2: Comparison of the performances of the proposed multitask learning
models

especially when trained with augmented data. The extracted features already in-

clude low-level knowledge gained on by far larger datasets. Therefore, the MLP

serves only as a top level classifier being more effective to fine-tune the branches

specifically for each individual task. Using estimates of one task as an additional

feature for training another task positively effects training in a multitask setting

throughout. One should not expect a performance gain though, when the tasks,

supposed to help other tasks, are hardly recognized by the model, like in experi-

ment 1. In experiment 2, with more accurate estimates for main genre and energy,

the Output-Feature network performed best of all multitask learning methods and

provided an even more accurate model than the singletask models. Multitask set-

tings, in general were easier and faster to implement than singletask settings with

less required test runs to find the optimal network architecture and hyperparam-
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eters. On the other hand, layer dimensions in shared layers, hyperparameters like

the number of epochs as well as the input data have to stay consistent in multitask

settings. The possibility of singletask learning to design appropriate networks and

hyperparameters more effectively for each individual task therefore led to more

accurate models. Additionally, feature selection algorithms can be implemented

specifically for each task when trained solely, turned out to be advantageous.

Experiment 2 shows, that reducing the input dimensions with feature selection

is another beneficial method when training deep networks with only small available

data. Feature selection algorithms were able to pick the most valuable features

for each task thus facilitating the training process. For example, the intro version

task is expected to focus on the beginning of the track and therefore features ex-

tracted for the first 29 seconds of the tracks are supposed to be more useful for this

particular task. And indeed, it was observed, that 60% of the selected features by

the recursive feature elimination algorithm were assigned to the first, 40% to the

second and none of the features to the third 29 seconds of the tracks. On the other

hand, with more training data, feature selection became redundant for most tasks

with some tasks achieving better results making use of all available features.

The main difficulties experienced with training in multitask learning settings

is the way, the training algorithms update the feature parameters of the network

when the tasks are of a various nature and complexity. Different loss functions for

multiclass, multilabel and regression problems had to be selected. The differences

in the loss functions as well as in the number of classes of each task resulted in

dissimilar magnitudes of the tasks’ validation losses. Training the networks on

reducing the total loss calculated as the sum of all individual validation losses led

to focusing the training process on the tasks having the biggest part on the total
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Figure 6.3: Accuracy scores of the main genre, subgenre & intro-version predictions
for the proposed models

loss. Therefore, in the backpropagation process, weights were updated, also in

task-specific layers, based on the performance of those tasks. The subgenre task,

including 23 classes. throughout had the highest loss function thus dominating

the whole training process. On the contrary, the mean squared error as the loss

function for the energy prediction produced the smallest value. This circumstance

affected the performances of each individual task and has to be considered when

outlining the results.

Figure 6.3 illustrates the accuracy scores for main genre, subgenre and intro-

version prediction. Transfer learning (red bars) and multitask learning approaches

(blue) in most part led to more accurate models then singletask networks with-

out transfer learning (grey) while transfer learning turned out to be superior to

multitask. Training singletask networks with the extracted features from the auto-

tagging task trained on MSD led to more accurate predictions than multitask net-

works (violet). Note that the right violet bar with black edges corresponds to the
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Output-Feature model differing from the transfer learning singletask model mostly

in implementing the estimates for main genre and energy as additional features

for the subgenre and situation tasks. Therefore, this combination of transfer with

multitask learning techniques affects especially these tasks. Adding augmented

data (black edges) throughout increased performances.

Compared to the intro version task, higher accuracy scores were reached for

main genres when trained with the original dataset size, although consisting of

more classes. The difficulties of predicting intro versions may lie in the locally

dependent nature of the determining musical events. Models predicting the main

genres remained more accurate when trained on the extracted features from the

auto-tagging task (red). This could be due to genre-related tags being most present

in the Million Song Database. On the other hand, the intro version task profits

enormously from the ability of a larger training set resulting in similar perfor-

mances than the main genres. This leads to the assumption that the impact of

the similarity between the source and the target task’s data is higher with less

available data, while with more data, training is easier for less complex tasks, as

it is the intro version prediction in this study.

The confusion matrices in figure 6.4 give insight into the predictions of each in-

dividual intro version. As already mentioned, training on the original sample size

turned out to be extremely difficult. The baseline model (CNN singeltask) was

highly biased predicting mostly two classes (a). The CNN was not able to detect

any useful data patterns. A lower bias can be observed with the transfer learn-

ing approach (c) but the results remained unsatisfying. With data augmented

input and taking advantage of the knowledge from the other tasks with shared

layers, the model recognized trends in the data (b). A bias was still present but
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(a) (b)

(c) (d)

Figure 6.4: Confusion matrices for the intro version prediction task for the (a) CNN
singletask, (b) CNN multitask model with shared layers and data aug-
mentation, (c) MLP with MSD singletask model with feature selction,
(d) MLP with MSD singletask model with data augmentation
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other than the No Intro class the intro versions in a large part were predicted

accurately. In contrast, the transfer learning approach (d) clearly helped poorly

recognized classes (No Intro) and was able to predict most of the classes accurately.

Throughout all proposed models, correlations between Aca-In and Clapapella-In

as well as Extended-In and Intro were observed. There indeed exist high simi-

larities of those intro versions, making it difficult to distinguish them. Therefore,

intro versions predicting the correlated class indicates, that the models were able

to spot the appropriate musical data.

Equivalently to the intro versions, the models predicting the main genre were

biased as well (figure 6.5) but in contrary, the transfer learning models (c, d)

work pretty well even without additional data. Pop/ rock seems to be the most

problematic main genre, performing worst throughout the models. This was ex-

pected, since pop and rock are highly dissimilar genres, therefore indicating that

the models were able to recognize the appropriate feature representations. The

main genres also consist of correlated genres across the classes, e.g. disco and

disco house. Interestingly, the models were able to classify these genres into the

right main genre categories. While other works were able to achieve accuracy

scores above 90% for genre recognition with dataset sizes of a similar dimension as

the proposed dataset [15], the complexity of the proposed dataset is extraordinary.

A lot of DJ music and in particular the music in the proposed dataset correspond

to song remixes, consisting of parts characterizing various genres. This makes the

prediction of the genres exceptionally difficult. The results for training the DJCity

Main Genre dataset highlight this problem. Though the dataset is relatively large

in size, accuracy scores of only 64% for the CNN model and 70% for the MLP

model could be achieved. Considering the complexity of the proposed datasets,

accuracy scores above 70% can be considered as a satisfying result.
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(a) (b)

(c) (d)

Figure 6.5: Confusion matrices for the main genre prediction task for the (a) CNN
singletask, (b) CNN multitask model with shared layers and data aug-
mentation, (c) MLP with MSD singletask model with feature selction,
(d) MLP with MSD singletask model with data augmentation
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The subgenre task is especially interesting for this study. With a large number

of classes (23) and an uneven distribution including subgenres with less than 10

samples, the networks were not expected to learn appropriate features. However,

they seem to recognize a trend in the data already without the transfer learning

approaches. With combining transfer learning with data augmentation, the per-

formances increased drastically, as shown in figure 6.3. Taking into account the

difficulties of this task, accuracy values above 60% are much higher than expected,

leading to the assumption, that especially difficult tasks are able to benefit from

the presented methods. Figure 6.6 demonstrates the performances of each individ-

ual subgenre. Due to the imbalance, the models mostly predicted subgenres with a

high count, like pop, funk, soul or rap. Remaining some bias with a higher count of

pop predictions, the best performing model (d) was pretty accurate in predicting

each genre. The reasons for the relatively high performance of the subgenre tasks,

considering the imbalance, the number of classes and a random guess of just 0.169

might be the close relationship to the tags in MSD as well as the prioritization

over the other tasks in a multitask learning setting, as explained above.

The case is different for the energy task. The small impact on the training

process in multitask settings reflected the results, as shown in figure 6.7 (a). In

contrast to the other tasks, with augmented data and the transfer learning ap-

proach, energy prediction performed noticeably better in a singletask than in a

multitask setting. Interestingly, without transfer learning, the energy task also

benefited from a jointly training. Without the proposed methods, the prediction

performed extremely poorly. The negative R2 value points out, that the models

did not recognize any trend in the data. But especially the data augmentation

method in combination with the features extracted from the system trained on
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(a) (b)

(c) (d)

Figure 6.6: Confusion matrices for the subgenre prediction task for the (a) CNN
singletask, (b) CNN multitask model with shared layers and data aug-
mentation, (c) MLP with MSD singletask model with feature selection,
(d) MLP with MSD multitask Output-Feature model with data aug-
mentation
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(a) (b)

Figure 6.7: (a) R2 Scores of the energy prediction and (b) AUC scores of the
situation prediction

MSD were able to achieve a performance gain. The R2 for the best model is at a

value of 0.57. In an automatic tagging system, where the energy would be tagged

into the four presented energy levels, an accuracy score of 55% would be achieved

for this model. The results for this task are therefore rather unsatisfying. One of

the reasons could be the high subjectivity of this task. Scatter plots for various

models predicting the energy are shown in figure 6.8. The red lines illustrate the

border values for each of the four energy levels. While in the baseline model (a)

the predictions were quite random, with adding data augmentation (b) the models

learned to predict the energy values around the mean value of the training set.

Some trend is recognizable though, giving the true values ”0” lower prediction val-

ues as the true values ”1”. This trend is clearly visible with the transfer learning

methods (c, d). However, the model remains to be prone to predict values around

the mean of the training data.
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(a) (b)

(c) (d)

Figure 6.8: Scatter plots for the energy prediction task for the (a) CNN singletask,
(b) CNN multitask model with shared layers and data augmentation,
(c) MLP with MSD singletask model with feature selction, (d) MLP
with MSD singletask model with data augmentation
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Label Precision Recall F1-Score Support

Bigroom 0.00 0.00 0.00 7
Builddown 0.00 0.00 0.00 12
Lounge 0.00 0.00 0.00 19
Mediumroom 0.00 0.00 0.00 9
Midnight 0.42 0.85 0.56 34
Smallroom 0.50 0.08 0.14 12
Summer 0.14 0.10 0.12 20
Warmup 0.00 0.00 0.00 29

Table 6.1: Results for the situation prediction task with the baseline CNN model
(AUC=0.62)

Label Precision Recall F1-Score Support

Bigroom 0.00 0.00 0.00 34
Builddown 0.00 0.00 0.00 44
Lounge 1.00 0.02 0.03 58
Mediumroom 0.00 0.00 0.00 28
Midnight 0.45 0.98 0.62 116
Smallroom 0.00 0.00 0.00 38
Summer 0.00 0.00 0.00 49
Warmup 0.00 0.00 0.00 59

Table 6.2: Results for the situation prediction task with the CNN multitask model
with shared layers and data augmentation (AUC=0.75)

Predicting the appropriate DJ performance situation, being a multilabel prob-

lem with highly imbalanced data, was expected to be a particularly difficult task.

Figure 6.7 though clearly illustrates, that with the three proposed methods, the

performance, similar to the other tasks, could be increased. Taking into account

the estimates for other tasks, predictions were more accurate. This demonstrates,

that difficult multilabel classification problems can additionally learn from other

tasks. More interesting though is the evaluation of the individual label perfor-
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Label Precision Recall F1-Score Support

Bigroom 0.67 0.25 0.36 8
Builddown 1.00 0.27 0.43 11
Lounge 0.57 0.33 0.42 24
Mediumroom 0.00 0.00 0.00 12
Midnight 0.63 0.51 0.56 43
Smallroom 0.67 0.20 0.31 10
Summer 0.33 0.05 0.09 19
Warmup 0.50 0.29 0.36 14

Table 6.3: Results for the situation prediction task with the MLP with MSD sin-
gletask model with feature selection (AUC=0.77)

Label Precision Recall F1-Score Support

Bigroom 0.67 0.18 0.29 33
Builddown 0.93 0.31 0.47 45
Lounge 0.75 0.58 0.65 52
Mediumroom 1.00 0.03 0.06 31
Midnight 0.83 0.73 0.78 128
Smallroom 1.00 0.14 0.25 28
Summer 0.67 0.15 0.25 39
Warmup 0.86 0.24 0.37 51

Table 6.4: Results for the situation prediction task with the MLP with MSD mul-
titask Output-Feature model with data augmentation (AUC=0.88)

mances. The models without transfer learning methods (table 6.1 & 6.2) were

able to predict only a few of the labels. Due to the highest count, the models were

prone to predict the label Midnight. The small precision value around 0.4 indicates

though, that most of the predictions were wrong. This changes with training the

models with the features extracted from the transfer learning system (table 6.3

& 6.4). Most of the predicted labels have precision values above 0.5. The small

recall values for labels with fewer appearances reveal though, that also the best

performing model rarely predicted those labels thus highlighting the difficulties of

predicting multilabel problems with imbalanced data.
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6 Discussion

Model
TL/
MTL

Trainable
param.

Training
time

Feature extrac-
tion time

CNN MTL model MTL 471,147 220ms/ step 4s/ track
CNN shared layer MTL 395,115 61ms/ step 4s/ track
MLP MTL model TL+MTL 165,739 11ms/ step 15s/ track

Table 6.5: Comparison of computational costs

Besides more accurate models, multitask and transfer learning systems provide

the additional benefit of improving efficiency. Table 6.5 reports the savings of

computational costs and time while training the models with the same equipment.

Sharing low-level feature representations by all tasks resulted in a smaller number

of trainable parameters and a more than three times faster training. Training the

models with the extracted features from the transfer learning system led to even

larger savings with around a third of the trainable parameters and 20 times faster

training. On the other hand though, the feature extraction process lastet nearly

four times longer than just extracting the mel-spectrogram for the CNN models.

Overall, the results in experiment 2 were more satisfying than in experiment 1.

However, it has to be noted that due to the high computational costs of training

CNNs, there were not many different architectures validated. On the other hand,

a lot of model design and hyperparameter adjustments was accomplished in exper-

iment 2. The complexity of the CNNs was much higher with around three times

more trainable parameters than the MLP models. Reducing input dimensionality

and network capacity led to higher performances in the second experiment, as-

suming that reducing the capacity of the CNNs in experiment 1 might increase

performances as well. Therefore, the difference between the results both experi-

ments provided could possibly be smaller with more time investment in designing

the CNNs more appropriately.
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7 Conclusion

This master’s thesis evaluates the impact of transfer and multitask learning meth-

ods on music classification problems with small datasets. A new dataset consisting

of various DJ-related tags was created. The tags were divided into several music

label categories (genre, energy, situation, etc.) and classification problems (mul-

ticlass, multilabel, regression). Expecting, that label noise effects training on a

much larger scale working with small datasets, a constrained vocabulary with ex-

pert annotations are highly recommended. To ensure the quality of the dataset,

it was verified by an additional annotator.

A system trained on automatic song tagging with the Million Song Database

served as the primary source task for transfer learning. Even though MSD in-

cludes mostly genre-related tags, the transfer learning approach also increased

performances of less correlated tasks. Transfer learning with the system based

on MSD clearly outperformed other transfer learning approaches presented in this

work with more closely related source tasks but smaller amount of training data.

Also, additional pre-training of the networks with closer related datasets was not

advantageous, indicating the size of a source task dataset being of capital impor-

tance compared to semantic similarities. This work demonstrates the suitability

of auto-tagging tasks on large dataset for transfer learning on music tagging tasks.

These music classification tasks, similar to the tasks presented in this work, are

mainly described on a high semantic level. Thus, the ability to adapt low- and



7 Conclusion

mid-level feature representations trained with MSD facilitates the training despite

small amount of training data.

Easier tasks were able to assist more difficult tasks, like multilabel problems or

tasks with imbalanced labels. Especially without the availability of transfer learn-

ing systems, multitask learning proved to be beneficial. Reducing the capacity of

the networks resulted in more accurate models and efficient training. However, the

networks did not benefit significantly when transfer learning and multitask learning

approaches were combined. Anyway, they still provided very similar performances

compared to singletask transfer learning settings. While an advantage of multitask

settings on classification accuracies lay almost exclusively when trained without

the transfer learning method, the use of both approaches can be suggested when

training multiple and similar tasks. Multitask learning proved to be easier and

faster to implement, additionally saving computational cost.

Increasing the sample size with data augmentation methods by a factor of three

turned out to be beneficial as well. Moreover, training augmented data with the

features extracted from transfer learning systems resulted in an enormous perfor-

mance gain. It can be assumed, that with combining both approaches a close to

perfect score for at least one task was achieved. Implementing more data augmen-

tation techniques, again increasing the sample size, could further improve perfor-

mances. I suggest to use this technique with caution though. Despite the signal

processing techniques, with small counts for each labels, one can assume networks

to memorize musical patterns associated to the specific sample rather than learning

characteristics of the label category resulting in a suffered generalization. Transfer

and multitask learning on the other hand might result in networks less prone to

memorization.

One crucial problem identified but not treated in this work are the different

loss functions that come with training various classification tasks in a simultane-
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ously training setting. It turned out, that some of the tasks dominated the whole

training process while other tasks having almost no impact on the training. In

future works, I suggest to weight the validation losses and experiment with more

hyperparameter tuning to improve the training on all tasks uniformly in multitask

settings. Moreover, implementing neural networks with the ability of learning mu-

sical relevant relationships of labels across the label categories might help solve

more complex music classification tasks.
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Results and the applied

hyperparameters

For CNN Models (Experiment 1):

non-variable parameters:

Dropout: 0.5

Learning Rate: 0.005 (unless otherwise specified)

Batch size: 32

For MLP Networks with MSD-Features (Experiment 2):

2 Dropout & Batch Normalization layers for all multitask learning setting besides

energy branch

2 Dropout & Batch Normalization layers for all singletask learning setting besides

energy model & besides Genre/ Situation model with data augmentation

non-variable parameters:

Dropout: 0.5

Batch size: 32



Appendix

Task Metric Result

Main Genre Acc 0.38
Subgenre Acc 0.11
Intro Acc 0.27
Energy R2 -0.24

MSE 0.139
Situation AUC 0.62

Total Loss 6.80

CNN, Singletask models. Epochs: 10

Task Metric Result

Main Genre Acc 0.38
Subgenre Acc 0.13
Intro Acc 0.49
Energy R2 -0.06

MSE 0.118
Situation AUC 0.69

Total Loss 6.08

CNN, Singletask models. Epochs: 10, With data augmentation

Task Metric Result

Main Genre Acc 0.34
Subgenre Acc 0.11
Intro Acc 0.29
Energy Acc 0.29

R2 -0.28
MSE 0.136

Situation AUC 0.65

Total Loss 6.81

CNN, Multitask model, Epochs 15
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Task Metric Result

Main Genre Acc 0.40
Subgenre Acc 0.13
Intro Acc 0.54
Energy Acc 0.33

R2 0.08
MSE 0.103

Situation AUC 0.72

Total Loss 6.04

CNN, Multitask model, Epochs 13, With data augmentation

Task Metric Result

Main Genre Acc 0.36
Subgenre Acc 0.12
Intro Acc 0.29
Energy Acc 0.31

R2 0.06
MSE 0.107

Situation AUC 0.65

Total Loss 6.65

CNN, Shared layer Model, Epochs: 13

Task Metric Result

Main Genre Acc 0.42
Subgenre Acc 0.17
Intro Acc 0.53
Energy Acc 0.34

R2 0.16
MSE 0.094

Situation AUC 0.75

Total Loss 5.91

CNN, Shared layer Model, Epochs: 18, With data augmentation
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Appendix

Task Metric Result

Main Genre Acc 0.37
Subgenre Acc 0.11
Intro Acc 0.27
Energy Acc 0.27

R2 -0.47
MSE 0.152

Situation AUC 0.64

Total Loss 6.78

CNN, Output-Feature model, Epochs: 15

Task Metric Result

Main Genre Acc 0.42
Subgenre Acc 0.12
Intro Acc 0.36
Energy Acc 0.31

R2 -0.06
MSE 0.117

Situation AUC 0.65

Total Loss 6.32

CNN, Multitask model, Pre-trained Genre Weights for layer 1, 2, 3, 4, Subgenre
weights for layer 3, Intro weights for layer 3 (all not trainable), Epochs:8, Learning
Rate = 0.0005

X



Task Metric Result

Main Genre Acc 0.44
Subgenre Acc 0.14
Intro Acc 0.39
Energy Acc 0.30

R2 -0.05
MSE 0.120

Situation AUC 0.64

Total Loss 6.21

CNN, Multitask model, Pre-trained weights for: genre branch layer 1, 2, 3, sub-
genre branch layer 3, intro weights layer 3 (all not trainable), Epochs = 8, Learning
Rate = 0.0005

Task Metric Result

Main Genre Acc 0.39
Subgenre Acc 0.18
Intro Acc 0.42
Energy Acc 0.32

R2 0.01
MSE 0.112

Situation AUC 0.67

Total Loss 6.19

CNN, Multitask model, Pre-trained weights for: genre branch layer 1, 2, 3 (not
trainable), subgenre branch layer 3 (trainable), intro weights layer 3 (trainable),
Epochs = 9, Learning Rate = 0.0005
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Task Metric Result

Main Genre Acc 0.43
Subgenre Acc 0.20
Intro Acc 0.48
Energy Acc 0.35

R2 0.13
MSE 0.094

Situation AUC 0.74

Total Loss 5.97

CNN, Multitask model, Pre-trained weights for: genre branch layer 1, 2, 3 (not
trainable), subgenre branch layer 3 (trainable), intro weights layer 3 (trainable),
Epochs = 25, Learning Rate = 0.0005, With data augmentation

Task Metric Result

Main Genre Acc 0.40
Subgenre Acc 0.17
Intro Acc 0.39
Energy Acc 0.30

R2 -0.06
MSE 0.113

Situation AUC 0.65

Total Loss 6.16

CNN, Shared layer model, Pre-trained weights for: genre branch layer 1 (shared,
not trainable), 2 (shared, trainable), 3 (trainable), subgenre branch layer 3 (train-
able), intro weights layer 3 (trainable), Epochs = 10, Learning Rate = 0.0005
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Task Metric Result

Main Genre Acc 0.41
Subgenre Acc 0.16
Intro Acc 0.41
Energy Acc 0.30

R2 -0.02
MSE 0.117

Situation AUC 0.67

Total Loss 6.29

CNN, Shared layer model, Pre-trained weights for: genre branch layer 1 (shared),
2 (shared), 3, subgenre branch layer 3, intro weights layer 3, (all trainable), Epochs
= 10, Learning Rate = 0.0005

Task Metric Result

Main Genre Acc 0.40
Subgenre Acc 0.13
Intro Acc 0.38
Energy Acc 0.24

R2 -0.277
MSE 0.408

Situation AUC 0.68

Total Loss 6.81

CNN, Shared layer model, Pre-trained weights for: genre branch layer 1 (shared),
2 (shared), 3, subgenre branch layer 3, intro weights layer 3, (all trainable), Epochs
= 12, Learning Rate = 0.0005
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Task Metric Result

Main Genre Acc 0.44
Subgenre Acc 0.17
Intro Acc 0.46
Energy Acc 0.35

R2 0.178
MSE 0.089

Situation AUC 0.75

Total Loss 6.03

CNN, Combined model, Pre-trained weights for: genre branch layer 1 (shared,
not trainable), 2 (shared), 3, subgenre branch layer 3, intro weights layer 3, (all
trainable), Epochs = 31, Learning Rate = 0.0005, With data augmentation

Task Metric Result

Main Genre Acc 0.45
Subgenre Acc 0.20
Intro Acc 0.39
Energy Acc 0.33

R2 0.201
MSE 0.089

Situation AUC 0.75

Total Loss 5.97

CNN, Combined model, Pre-trained weights for: genre branch layer 1 (shared), 2
(shared), 3, subgenre branch layer 3, intro weights layer 3, (all trainable), Epochs
= 31, Learning Rate = 0.0005, With data augmentation

XIV



Task Metric Result

Main Genre Acc 0.31
Subgenre Acc 0.12
Intro Acc 0.28
Energy Acc 0.29

R2 -0.23
MSE 0.139

Situation AUC 0.61

Total Loss 6.80

CNN, Output-Feature model, Epochs = 13

Task Metric Result

Main Genre Acc 0.34
Subgenre Acc 0.12
Intro Acc 0.23
Energy Acc 0.31

R2 -0.22
MSE 0.14

Situation AUC 0.63

Total Loss 7,0

CNN, Output-Feature model, 2 layers shared, Epochs = 11

Task Metric Result

Main Genre Acc 0.41
Subgenre Acc 0.13
Intro Acc 0.51
Energy Acc 0.33

R2 0.14
MSE 0.097

Situation AUC 0.74

Total Loss 6,16

CNN, Output-Feature model, Epochs = 14, With data augmentation
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Task Metric Result

Main Genre Acc 0.39
Subgenre Acc 0.14
Intro Acc 0.53
Energy Acc 0.32

R2 0.097
MSE 0.098

Situation AUC 0.73

Total Loss 6.06

CNN, Output-Feature model, 2 Shared layers, Epochs = 11, With data augmen-
tation
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Task Arch. FS
Data
aug.

#ep LR Met Rlt Loss

Main
Genre

64-32-6 no (480) no 8 0.005 Acc 0.56 1.138

no yes 17 0.001 Acc 0.76 0.71
yes (40) no 8 0.005 Acc 0.63 1.025
yes (208) yes 10 0.001 Acc 0.71 0.87

Subgenre 128-64-23 no 480 no 28 0.001 Acc 0.16 2.78
no yes 20 0.001 Acc 0.62 1.223
yes 180 no 28 0.001 Acc 0.22 2.64
yes 180 yes 24 0.001 Acc 0.60 1.270

Intro 128-64-5 no (480) no 12 0.005 Acc 0.50 1.164
no yes 14 0.001 Acc 0.79 0.55
yes 100 no 10 0.005 Acc 0.55 1.08
yes 100 yes 18 0.001 Acc 0.78 0.58

Energy 64-32-1 no (480) no 9 0.005 R2 0.17 0.092
MSE 0.092
Acc 0.34

no yes 20 0.001 R2 0.54 0.052
MSE 0.052

yes (288) no 9 0.005 R2 0.24 0.080
MSE 0.0
Acc 0.38

yes (288) yes 20 0.001 R2 0.57 0.049
MSE 0.049
Acc 0.55

Situation 128-64-8 no 480 no 12 0.005 Acc 0.74 0.431
no yes 19 0.001 Acc 0.87 0.324
yes (90) no 12 0.005 Acc 0.78 0.396
yes 88 yes 22 0.001 Acc 0.87 0.321

MLP Network with MSD-Features, Singletask
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Task Architecture Metric Result

Main Genre 64-32-6 Acc 0.41
Subgenre 128-64-23 Acc 0.14
Intro 128-64-5 Acc 0.49
Energy 64-32-1 R2 0.31

MSE 0.071
Acc 0.44

Situation 128-64-8 AUC 0.71

Total Loss 6,03

MLP Network with MSD-Features, No Feature selection (480 Features), Epochs
11, Learning Rate = 0.005

Task Architecture Metric Result

Main Genre 64-32-6 Acc 0.48
Subgenre 128-64-23 Acc 0.18
Intro 128-64-5 Acc 0.53
Energy 64-32-1 R2 0.22

MSE 0.080
Acc 0.45

Situation 128-64-8 AUC 0.72

Total Loss 5.71

MLP Network with MSD-Features, With feature selection (191 features), Epochs
= 13, Learning rate = 0.005
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Task Architecture Metric Result

Main Genre 64-32-6 Acc 0.75
Subgenre 128-64-23 Acc 0.61
Intro 128-64-5 Acc 0.79
Energy 64-32-1 R2 0.53

MSE 0.051
Acc 0.54

Situation 128-64-8 AUC 0.87

Total Loss 2.91

MLP Network with MSD-Features, No feature selection (480 features), Epochs =
19, Learning rate = 0.001, With data augmentation

Task Architecture Metric Result

Main Genre 128-64-5 Acc 0.79
Subgenre 128-64-23 Acc 0.61
Intro 128-64-5 Acc 0.79
Energy 64-32-1 R2 0.55

MSE 0.050
Acc 0.54

Situation 128-64-8 AUC 0.88

Total Loss 2.83

MLP Network with MSD-Features, No feature selection (480 features), Epochs =
19, Learning rate = 0.001, With data augmentation
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Task Architecture Metric Result

Main Genre 64-32-6 Acc 0.71
Subgenre 128-64-23 Acc 0.59
Intro 128-64-5 Acc 0.79
Energy 64-32-1 R2 0.48

MSE 0.056
Acc 0.53

Situation 128-64-8 AUC 0.87

Total Loss 3.17

MLP Network with MSD-Features, With feature selection (155 features), Epochs
= 20, Learning rate = 0.001, With data augmentation

Task Architecture Metric Result

Main Genre 128-32-6 Acc 0.42
Subgenre 128-64-23 Acc 0.16
Intro 128-64-5 Acc 0.42
Energy 128-64-1 R2 0.07

MSE 0.107
Acc 0.37

Situation 128-64-8 AUC 0.73

Total Loss 5.92

MLP Network with MSD-Features, Shared layer, No feature selection (480 fea-
tures), Epochs = 14, Learning Rate = 0.005, No data augmentation
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Task Architecture Metric Result

Main Genre 128-32-6 Acc 0.50
Subgenre 128-64-23 Acc 0.20
Intro 128-64-5 Acc 0.52
Energy 128-64-1 R2 0.21

MSE 0.086
Acc 0.36

Situation 128-64-8 AUC 0.75

Total Loss 5.30

MLP Network with MSD-Features, Shared layer, With feature selection (191),
Epochs = 14, Learning Rate = 0.005, No data augmentation

Task Architecture Metric Result

Main Genre 128-32-6 Acc 0.79
Subgenre 128-64-23 Acc 0.54
Intro 128-64-5 Acc 0.76
Energy 128-64-1 R2 0.41

MSE 0.066
Acc 0.42

Situation 128-64-8 AUC 0.84

Total Loss 3.05

MLP Network with MSD-Features, Shared layer, No feature selection (480), Learn-
ing Rate = 0.001, Epochs = 20, With data augmentation
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Task Architecture Metric Result

Main Genre 128-32-6 Acc 0.77
Subgenre 128-64-23 Acc 0.53
Intro 128-64-5 Acc 0.75
Energy 128-64-1 R2 0.43

MSE 0.061
Acc 0.43

Situation 128-64-8 AUC 0.86

Total Loss 3.14

MLP Network with MSD-Features, Shared layer, With feature selection (155),
Learning Rate = 0.001, Epochs = 28, With data augmentation

Task Architecture Metric Result

Main Genre 128-32-6 Acc 0.77
Subgenre 128-64-23 Acc 0.63
Intro 128-64-5 Acc 0.80
Energy 64-32-1 R2 0.54

MSE 0.052
Acc 0.55

Situation 128-64-8 AUC 0.88

Total Loss 2.82

MLP Network with MSD-Features, Output-Features, No feature selection (480
features), Epochs = 15, Learning rate = 0.001, With data augmentation
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Task Architecture Metric Result

Main Genre 128-32-6 Acc 0.74
Subgenre 128-64-23 Acc 0.63
Intro 128-64-5 Acc 0.79
Energy 64-32-1 R2 0.47

MSE 0.057
Acc 0.52

Situation 128-64-8 AUC 0.88

Total Loss 3.08

MLP Network with MSD-Features, Output-Features, With feature selection (155
features), Epochs = 21, Learning rate = 0.001, With data augmentation

Task Architecture Metric Result

Main Genre 128-32-6 Acc 0.81
Subgenre 128-64-23 Acc 0.58
Intro 128-64-5 Acc 0.79
Energy 64-32-1 R2 0.53

MSE 0.051
Acc 0.54

Situation 128-64-8 AUC 0.88

Total Loss 2.84

MLP Network with MSD-Features, Main Genre Subgenre Shared + Output-
Feature No feature selection (480), Learning Rate = 0.001, Epochs = 18, With
data augmentation
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Task Architecture Metric Result

Main Genre 128-32-6 Acc 0.78
Subgenre 128-64-23 Acc 0.53
Intro 128-64-5 Acc 0.79
Energy 64-32-1 R2 0.51

MSE 0.055
Acc 0.52

Situation 128-64-8 AUC 0.86

Total Loss 3.03

MLP Network with MSD-Features, Main Genre Subgenre Shared, No feature
selection (480), Learning Rate = 0.001, Epochs = 17, With data augmentation
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Hiermit versichere ich an Eides statt, dass ich die vorliegende Mas-
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