
Technical University Berlin
Faculty I - Humanities

Summer Term 2020

Audio Technology Group Native Instruments GmbH
in collaboration with

Beat Detection on Popular Music with
Varying Tempo using Neural Networks

Master Thesis

Anyere Bendrien

supervised by

Prof. Dr. Stefan Weinzierl
D.Sc. Julian Parker

October 20, 2020

Eidesstattliche Erklärung
Hiermit erkläre ich an Eides statt gegenüber der Fakultät I der Technischen Univer-
sität Berlin, dass die vorliegende, dieser Erklärung angefügte Arbeit selbstständig
und nur unter Zuhilfenahme der im Literaturverzeichnis genannten Quellen und Hil-
fsmittel angefertigt wurde. Alle Stellen der Arbeit, die anderen Werken dem Wort-
laut oder dem Sinn nach entnommen wurden, sind kenntlich gemacht. Ich reiche
die Arbeit erstmals als Prüfungsleistung ein. Ich versichere, dass diese Arbeit oder
wesentliche Teile dieser Arbeit nicht bereits dem Leistungserwerb in einer anderen
Lehrveranstaltung zugrunde lagen.

Titel der schriftlichen Arbeit

Beat Detection on Popular Music with Varying Tempo using Neural Networks

Verfasser

Anyere Bendrien

Betreuende Dozenten

Prof. Dr. Stefan Weinzierl
D.Sc. Julian Parker

Mit meiner Unterschrift bestätige ich, dass ich über fachübliche Zitierregeln unter-
richtet worden bin und verstanden habe. Die im betroffenen Fachgebiet üblichen
Zitiervorschriften sind eingehalten worden. Eine Überprüfung der Arbeit auf Pla-
giate mithilfe elektronischer Hilfsmittel darf vorgenommen werden.

Berlin, October 20, 2020

Zusammenfassung

Aus Beat-Informationen lässt sich eine Vielzahl von zeitlichen Musik-Eigenschaften
herleiten. Eine Audioanwendung zum Mischen von Musik könnte diese Informa-
tionen nutzen, um die zeitliche Grundstruktur von Musikstücken automatisch an-
zugleichen. Insbesondere für Musik, die von Menschen gespielt wird, ist dies eine
herausfordernde Aufgabe, da die Musik subtilen zeitlichen Variationen unterliegen
kann. Mit einem Computer hingegen lässt sich Musik von einer festen Timeline
exportieren und folgt daher einer präzisen zeitlichen Struktur. Mit dieser Arbeit
wird ein neuer Datensatz erstellt, der für das Trainieren neuronaler Netze zur Beat-
Erkennung optimiert ist. Zusätzlich wird ein Konzept zur automatischen Vorhersage
von Beat-Informationen aus Musik mit Hilfe neuronaler Netze erforscht. Besonderes
Augenmerk wird auf Musik mit variierendem Tempo gelegt. Ziel ist es, diese Tech-
nologie für den Einsatz in einem Produkt robuster zu machen mit einem Fokus auf
reduzierte Rechenkosten.

Abstract

A multiplicity of temporal music properties can be deduced from beat information.
An audio application like a music mixing software could exploit this information to
automatically align the temporal basis structure of music pieces. This is a challeng-
ing task especially for music played by humans who are not as precise as a machine
exporting audio from a fixed timeline. With this thesis, a new dataset suited for
training neural networks on beat detection will be created. In addition, a concept
for automatically predicting beat information from the music itself, using a neu-
ral network, is being researched. Special attention is given to music with varying
tempo. The aim is to make this technology more robust for production use cases
with a focus on decreased computational cost.

Contents

Acknowledgements v

List of Figures vi

List of Tables ix

Notation xi

1 Introduction 1
1.1 Motivation . 2
1.2 Related Work . 3
1.3 Contribution of this Thesis . 5
1.4 Outline . 5

2 Method 7
2.1 Machine Learning . 7

2.1.1 Supervised Learning . 7
2.1.2 Neural Networks . 9
2.1.3 Optimization of Neural Networks 11
2.1.4 Regularization . 21
2.1.5 Data Augmentation . 26

2.2 Implementation . 26
2.2.1 Pre-Processing . 27
2.2.2 Data Preparation . 27
2.2.3 Network Architecture . 29
2.2.4 Post-Processing . 32

2.3 Roundup . 33

3 Evaluation 37
3.1 Datasets . 37

i

Contents

3.1.1 TapCorrect . 37
3.1.2 Beatles . 38
3.1.3 Ballroom . 38
3.1.4 Maschine . 38

3.2 Beat Evaluation Metrics . 41
3.2.1 F-Measure . 41
3.2.2 Continuity-Based Scores . 42
3.2.3 Information Gain . 42

3.3 Baseline . 42
3.4 Experiments . 43

3.4.1 Training . 43
3.4.2 Hardware and Training-Time 44
3.4.3 Evaluation Details . 44

3.5 Results . 45
3.5.1 Beat-Tracking Performance 46
3.5.2 Filter Visualization . 47

4 Discussion 49

ii

Contents

iii

Contents

iv

Acknowledgements

I would like to thank…
Julian Parker for his comprehensive support in the process of writing this thesis,
being a great help for making the right decisions and maintaining focus on the
relevant topics.
André Bergner for building my fundamental knowledge of machine learning.
Mickael Le Goff for introducing me to the topic of beat detection.
Moritz Heppner for giving valuable insights into the Maschine codebase.
The Traktor Pro Team for the appreciation of my research.
Native Instruments for the opportunity of collaboration and providing infrastruc-
ture.
Jonas Köhler, Maximilian Wagenbach, Moritz Lehr, Sebastian Wolf and
Nils Bultja for proofreading.
My family for being supportive my whole life.

Thank you !

Contents

vi

List of Figures

2.1 Two fictitious training scenarios over several epochs showing the effect
of overfitting. The training error is the solid line and the validation
error is the dashed line. 9

2.2 A dense layer configuration. Each neuron of the upper layer holds a
connection from all neurons of its preceding layer. 10

2.3 A common fully connected feed forward neural network (NN) archi-
tecture. 10

2.4 A selection of common activation functions (solid blue line) including
their first order derivatives (dashed orange line). 18

2.5 A residual block. 20

2.6 Convolutional layer with a kernel size of 3. With 5 neurons in the
input layer the resulting output has 3 neurons. 23

2.7 Convolutional layer with a kernel size of 3 and a padding of 2. The
padded values (dotted circles) on both borders of the bottom input
layer allow the convolution to maintain the same output size as the
input. 24

2.8 A pooling layer with equally sized kernel and stride of 2 is down
sampling the input by a factor of 2. 24

2.9 Dilations of 1, 2 and 4 with a fixed kernel size of 2. One output
represents a receptive field of 8 inputs. 25

2.10 After applying dropout on a normal network (left) a randomly chosen
subset of that network (right) remains which still should be able to
adequately handle its input. 26

2.11 One exemplary item taken from the Beatles dataset including vertical
beat annotations with timestamps. Solid lines are downbeats and
dashed lines are normal beats representing the different beat kinds. . 28

vii

List of Figures

2.12 A stack of two convolutional layers with an odd kernels size of 3 in
a strided and dilated configuration. The straight spatial relationship
of the centered features is highlighted in green. 30

2.13 The signal chain of the whole beat-tracking system. 34
2.14 The various building blocks forming the network architecture. 36

3.1 The distribution of tempo factors across all datasets. 40
3.2 The 7 most active filter kernels of the first convolutional layer and

the lengths of all filter kernels. 48

viii

List of Tables

2.1 Different padding patterns for a given sequence S with 4 elements
and a padding of 2. 24

2.2 Overview of the configuration of the various network components . . 35

3.1 Overview of the datasets. 37
3.2 Confusion matrix for classification problems. 41
3.3 Overview of the training and conditioning details of the network . . . 45
3.4 Performance of the proposed network architecture in comparison with

the beat detection implementations of Madmom. 46

ix

List of Tables

x

Notation

x A vector
0 Vector filled with zeros
⊙ Operator for element wise multiplication also known as the Hadamard product
∗ Convolution operator
⊕ Concatenation operator
⊙√ Element wise applied square root
t Iteration step of an algorithm
X A data set
(i) Layer within a NN

xi

List of Tables

xii

1 Introduction

When asked about their preferred musical style, their favorite recording, or perfor-
mance, many music listeners will most likely answer with a rather nebulous descrip-
tion containing ambiguous terms like ’feeling’ or ’groove’ or, and this is often a more
solid way to describe music: rhythm and melody. The two terms seem ubiquitous
but are seldom clearly defined by the person saying them. Both terms can loosely be
described by the same definition: A series of events structured temporally, which in
their context become musical. It becomes apparent here that the beat is an integral
part of the music listening experience for popular music.

Compared to other kinds of music, popular music has developed a large number of
permutations, styles, genres, sub-genres, movements and counter-movements but the
set of rhythmical choices has been rather limited. Nevertheless, music listeners prefer
certain recordings over others. One reason for this might be found in what is often
called the ’performance’ of the players. A term that might be defined as tiny shifts
in the series of (musical) events, small imperfections, deliberate accentuations that,
compared to a static grid of notes would be interpreted as mistakes, but ultimately
makes a performance feel human. Depending on what type of music a particular
listener favors, this might be seen as the ’normal’ or even ’real’ way of making music,
but for many people, contemporary popular music is exactly the opposite: made with
machines and with computers in particular. Here a programmed sequence is always
played back exactly the way it was programmed.

Arguably the task at hand should be to help these imperfections, the ’feeling’,
the ’groove’, the partial departure from the fixed grid of the beat to find their way
into the context of modern popular music. And since dj-culture has been on the
rise for years and is just on the verge of taking over the ’live’-music industry, it is
imperative to emphasize the way djs are working which is heavily relying on ’the
grid’ as the basis of mixing.

What this thesis proposes is to expand on the already existing method of beat
tracking in a way that will enable digital software to recognize and incorporate
said imperfections into the practice of modern music production and digital djing.

1

1.1. Motivation

Here the focus will be put on music with varying tempo. The aim is to make
the technology more robust for production use cases with a focus on decreased
computational cost. The task of giving modern technology the tools to interpret
and work with the human element will play an integral part in the ongoing process
of modern music development. The potential of digital djing software is already
huge, but often at its limits when it comes to leaving ’the grid’ or recognizing and
dealing with the lack of it. Working on this frontier will not only enable new music to
be produced but also traditionally made music to be incorporated into contemporary
dj culture.

1.1 Motivation
Rhythm is a fundamental attribute of music with distinguishable elements such
as onset, beat, tempo and meter defining its temporal structure. Automatically
extracting this rhythm related information plays a decisive role in machine-human
interaction within a musical context. One of the most basic rhythmic elements
building the foundation for more advanced temporal metrics is the onset. It refers
to the beginning of a musical event like a playing note or sound. A beat is a regular
repeating event denoting the basic unit of time. An intuitive analogy of a beat is
how a listener of music would tap or clap to it. The beat is a similar attribute to
the onset regarding the likeliness of onsets being aligned with beat events.

Detecting beats in music is part of the music information retrieval (MIR) field
of research. Since the success story of machine learning (ML) for image and lan-
guage processing, ML is getting more attention in the audio domain. ML gives new
approaches to solve all kinds of MIR related tasks. In general ML tries to deduce
specialized information from data. Therefore a NN has to be trained with aggregated
training data, the more the better. This usually includes data related annotations
giving the answer to an intended problem to solve. Creating the annotations for the
data in the first place is mostly not automatable and therefore a time-consuming
task. This holds especially true if a high quality of the annotations is desirable.

In the domain of digital djing, there is a huge potential for supporting a live
performing dj with algorithms. Traktor Pro from Native Instruments (NI) is a digital
dj application that implements a multitude of features in this regard allowing the dj
to focus on more high-level features. One of the most important functionality is the
automatic synchronization of two simultaneously playing tracks. Listening to both
at the same time is more pleasing if their rhythmic structure is aligned. This works
very well on music with a steady tempo but those who have unsteady tempo can
not be aligned that easily. In such a situation a dj usually has to compensate for
the repeatedly appearing drift of both music pieces by adjusting the tempo himself.

2

Varying tempo is likely in music recorded from a band without the use of a
metronome. This is common for music like funk which was recorded before the
personal computer got mainstream in the recording studios. The process of digi-
talizing music from analog media like vinyl or tape could also introduce unsteady
tempi especially if the used hardware is not working precisely. Acquiring the beat
structure on music with varying tempo could be useful to support a dj in the process
of mixing such music within a live situation. The beat information could be used to
automatically compensate for the drift between the to be mixed music pieces.

1.2 Related Work
The research field of beat detection has a long history reaching back to 1985 with the
work of Schloss [25] and is traditionally based on processing a list of onsets. Starting
in 2011, the first beat tracking system based on an artificial NN has been introduced
with the work of Böck et al. [2]. Because this thesis tries to solve the problem of
tracking beats in music with a NN as well, only related work also utilizing NNs is
presented here.

The work of Böck et al. [2] utilizes a recurrent bidirectional long short-term
memory (BLSTM) network to perform a frame by frame beat classification of the
input signal. The signal is pre-processed into spectral features and then directly
transformed into a beat activation function via the network. In a post-processing
stage, the predominant tempo is extracted with an autocorrelation for further re-
finement of the beat activation function. Therefore they present two algorithms,
one for steady tempo and one adapting to tempo changes.

Following up work of Böck et al. [4] extend their first approach [2] with a
concept of modeling different music styles independently and thus more specialized.
The most appropriate beat activation function for the input signal is then chosen
from all models. In a post-processing stage, a dynamic Bayesian network (DBN)
extracts the final beat positions from the selected beat activation function. Their
work reaches state-of-the-art performance.

The idea of modeling tempo and meter in music with a DBN originates from the
work of Whiteley et al. [28]. They introduced the idea of a probabilistic bar pointer
model which maps an input signal to one cycle of a latent, periodic-rhythmical
pattern. It is capable of detecting changes in rhythmic pattern and meter which
makes it an important ingredient for the process of tracking beats in music. The
work of Krebs et al. [20] improves on the original bar pointer model by drastically
reducing time and memory complexity. Furthermore, their approach improved the
beat and downbeat tracking performance as well.

Dannenberg et al. [7] have characterized tempo changes in musical performances.

3

1.2. Related Work

They developed mathematical models to describe tempo variations which could be
exploited for synthesized performances.

One of the most successful methods for beat detection is a joint beat and down-
beat tracking system proposed by Böck et al. [5]. Their model is also based on
a recurrent BLSTM network in addition to a DBN in a post-processing stage to
acquire the global most suitable sequence of beat timestamps. The output of the
system clearly distinguishes between beats and downbeats. Since 2016 their ap-
proach is in the top list of the Music Information Retrieval Evaluation eXchange
(MIREX) beat tracking task on all datasets and can be considered the current state
of the art1. The work of Davies et al. [9] has made a big step towards forming a
foundation of beat tracking evaluation.

With madmom Böck et al. introduced an open-source audio processing and
MIR library2 written in Python [6]. This library provides implementations of beat
tracking processors [4, 5] and evaluations which this thesis is making use of.

Vogl et. al. [27] are extending the ideas of [5] by introducing additional covolu-
tional neural network (CNN) layers in their NN architecture. Since their main focus
was drum transcription they concluded that their method could also be applied for
beat detection. With WaveNet [22] a generative model for raw audio was presented
which is based on CNNs. They introduced the concept of dilated convolution to
exponentially increase the receptive field of their CNN architecture. Recent studies
show that CNN architectures are also capable of modeling long term dependen-
cies similar to recurrent long short-term memory (LSTM) networks. ”An Empirical
Evaluation of Generic Convolutional and Recurrent Networks” [1] shows that dilated
CNNs combined with residual connections, called temporal convolutional networks
(TCNs), outperform generic recurrent architectures such as LSTMs on a majority of
sequence modelling tasks. They also show that TCNs exhibit longer memory than
recurrent architectures with the same capacity. Adapting the concept of dilated
CNNs for beat detection will be researched further in this thesis.

The work of [8] present a beat-tracking system implemented with a TCN. They
demonstrate three promising attributes of TCNs.

1. They achieve state-of-the-art-performance.

2. They are suited for parallel processing and highly efficient.

3. They require a small number of weights.

Further, they suggest exploring the potential of operating on raw audio itself and
simultaneously modeling beat and downbeats.

1MIREX results from 2016, 2017 and 2018
https://www.music-ir.org/mirex/wiki/2018:MIREX2018_Results

2https://github.com/CPJKU/madmom

4

Böck et al. [3] are using a CNN highly inspired by the WaveNet architecture
to extract beats and tempo in a multi-task approach. Further, they show that the
accuracy of one task can be improved by training the other.

Purwins et al. [23] are giving a review of state-of-the-art deep learning techniques
in the context of audio signal processing. Among other things they comment on the
approach of working directly with raw audio features on page 10:

”Raw waveforms avoid hand-designed features, which should allow to
better exploit the improved modeling capability of deep learning mod-
els, learning representations optimized for a task. However, this incurs
higher computational costs and data requirements, and benefits may be
hard to realize in practice.”

1.3 Contribution of this Thesis
With this thesis, a new training dataset for beat detection will be created focusing
on popular music with varying tempo. This dataset will be generated from the
Maschine Expansions (MEs) content of NI, which spreads over a big variety of genres
in popular music. The quality of the dataset annotations will have a high priority.
Additionally, a neural network architecture suitable for inferring beat positions from
music will be presented and implemented.

As a novel approach a model of the proposed network architecture will be trained
directly on raw audio data within the time domain instead of pre-processed fast
fourier transoform (FFT).

The beat predictions from the NN will be refined using a DBN. The accuracy
of the trained model will be evaluated against the beat detection implementation of
[4] and [5] as a baseline. Furthermore, the performance of both baseline models and
the proposed model on the new dataset will be presented.

1.4 Outline
The following chapter gives an introduction to machine learning, covering the for
this thesis relevant topics 2.1. Further, the approach of implementing a beat tracking
system is described in detail 2.2. This is followed by an evaluation of the imple-
mentation 3 and presentation of the datasets 3.1. A discussion 4 summarizes the
findings of this thesis.

5

1.4. Outline

6

2 Method

2.1 Machine Learning

Machine learning is the science of solving statistical problems, like pattern recog-
nition or regression, using efficient algorithms. Typically this involves a process
called training, which iteratively improves the performance of a model on a problem
with some data given. This chapter gives an introduction to machine learning in
particular neural networks and how to design and train them for beat recognition.

There are two classes of learning problems in ML, supervised and unsupervised
learning. Unsupervised learning algorithms search for an alternative representation
of some data without supervision during this process. E.g. this means reducing
the complexity of the data according to some constraint while preserving as much
information as possible [14, ch. 5.8]. This thesis focuses on the supervised learning
approach, thus the topic of unsupervised learning will not receive further attention.

2.1.1 Supervised Learning

In supervised learning a dataset is supplemented with annotations representing a
specialized observation about the data. These annotations are also known as ground
truth, target or labels conditioning the data. Datasets are organized in pairs of input
data xi and corresponding labels yi with m being the overall number of training
samples X = {(x1,y1), ..., (xm,ym)}. In practice, such a dataset is just a finite
observation of a real problem and therefore a noisy approximation of it. Supervised
learning tries to predict the labels y given some features x in a dataset.

Assuming an unknown function f ∗ exists, modeling the relationship between a
ground truth distribution y and some data x with some small valued noise ϵ

y = f ∗(x) + ϵ, (2.1)

7

2.1. Machine Learning

supervised learning tries to approximate f ∗ using a parameterized family of curves

g(x;θ) ≈ f ∗(x). (2.2)

The right parameterization θ of g has to be found to model the relationship between
x and y without getting too specialized on the finite observation itself. In this
process, a tradeoff between variance and bias has to be made. A high error in
variance indicates that g is modeling the noise of the finite observation which leads
to a bad generalization of the problem. If the bias error is too high g misses the
relationship between the features and their target. Diverging from the right balance
of variance and bias is known as overfitting and underfitting of which is detailed in
the following section [14, ch. 5.7].

Overfitting

Fitting a very powerful model with a high variance to a small training data set could
lead to perfect memorization and in that case perfect performance on this training
set. If the training data set does not represent the data source completely, the
model may perform a lot worse for new data. This phenomenon is called overfitting.
A crucial step for good performance outside the training data distribution is thus
carefully tuning the model’s flexibility while measuring the generalization perfor-
mance. The general approach here is to achieve that is to maintain at least two
datasets, one for training the model parameters and the other just for performance
evaluation. The important distinction between the training and evaluation stage
is that the evaluation dataset is not used for the optimization of the model. The
terminology for a model to pass through both stages is an epoch.

When training a model going from epoch to epoch a descending training error is
desirable to become as small as possible. Overfitting describes the situation where
the error of the evaluation starts to diverge from the curve progression of the training
error. Figure 2.1b visualizes this scenario of the evaluation error rising again while
the training error is still descending. This phenomenon is a high indicator for the
model learning too specialized information of the training data set which is not
applicable in the evaluation data set anymore. Usually, the evaluation error is a
small margin above the training error since it is harder for the network to truthfully
predict data it has never seen before. In a good performing training situation, both
error values share the same curve progression just having a small gap as seen in
figure 2.1a.

The opposite of overfitting is called underfitting and describing the situation
in which the model is not able to converge to a satisfactory result at all. Both
situations are usually in direct connection with the capacity or parameter count of

8

C
os

t

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

Epochs

(a) A good performing network training

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

Epochs

(b) Network training illustrating the effect
of overfitting

Figure 2.1: Two fictitious training scenarios over several epochs showing the effect
of overfitting. The training error is the solid line and the validation error is the
dashed line.

a model. The capacity in turn depends on the depth and width of the network.
Having a low capacity may result in underfitting and having a high capacity could
lead to overfitting by just memorizing properties of the training data. Finding the
right balance between both scenarios is important to the model’s performance [14,
ch. 5.2]. Section 2.1.4 is presenting several approaches to counteract overfitting.

2.1.2 Neural Networks

Recent work [5, 8] has shown that NNs provide useful function classes for solving
the beat recognition problem in a supervised learning fashion. An artificial neural
network is a collection of connected computation nodes whose mode of operation is
inspired by neurons in the human brain. A common structure for it is following a
feed-forward principle consisting of serial chained layers which are clusters of parallel
neurons. The number of layers of a NN is called its depth. The number of neurons
in each layer is its width. The connections between layers and their neurons are
called weights.

Probably the most straightforward layer configuration is a dense layer also known
as a fully connected layer. Each node in a dense layer holds a connection from all
neurons of its preceding layer as shown in figure 2.2. For m neurons in the dense
layer and n neurons in the preceding layer, this results in a m× n matrix of weight
connections. Applying this weight matrix to a vector has a runtime cost of O(m×n).

Data is fed into the input layer and the result is passed on to the following layers
(also called hidden layers) until reaching the final output layer (see figure 2.3). The
values of the output layer neurons are the predictions of the NN. This process is

9

function. Purely linear models are not capable of solving nonlinear problems like
modeling the xor function as Marvin Minsky already pointed out in the 1940s [14,
ch. 6.6].

Often a bias b is added right before applying the activation function. It sets a
threshold that the neuron has to exceed to become active. All weights and biases
combined are called the parameters of a NN. For the first neuron in the first layer
h
(1)
1 this leads the the equation

a
(1)
1 = g(1)

(∑
i

w
(1)
i,1 xi + b

(1)
1

)
(2.3)

with x as input data. In vector notation with

h(1) = g(1)
(
w(1)⊤x+ b(1)

)
(2.4)

being the input layer and

h(k) = g(k)
(
w(k)⊤h(k−1) + b(k)

)
(2.5)

describing all successive layers with k < K [14, ch. 6.4].
Equations 2.4 and 2.5 are defining a whole feed-forward network architecture

with a depth of K. Having the basic definition of a NN in place the following
section describes how to optimize the parameters to approximate the unknown target
function f ∗ of equation 2.2.

2.1.3 Optimization of Neural Networks

The critical step for training a NN is finding weights and biases, such that it can
perform predictions on previously unseen data. The first step is choosing a loss
function which serves as a proxy for the model performance. In a second step, we
try to find parameters that minimize this loss both for training and unseen data.
There are many choices for designing loss functions. For regression problems, it
is common to use the mean-squared error. For binary classification problems, a
common loss function is the binary cross-entropy.

Mean-Squared Error

Starting in the 1980s and 1990s the mean squared error (MSE) was popularized to
compute losses. Given a training sample (x,y) and the final output prediction ŷ of
the NN, the difference z = ŷ− y describes how far the prediction is deviating from

11

2.1. Machine Learning

the target. It is the average value of the squared elements of a vector z

MSE(z) = 1

m

m∑
i

z2i . (2.6)

It is important to note that negative values can not cancel each other out since their
squared value will always be positive. Otherwise, this could lead to unpredictable
behavior and would make training less reliable [14, ch. 5.2.4].

Binary Cross-Entropy

The cross-entropy measures the difference between two probability distributions. In
the domain of ML these are the probability distribution of the data set labels p(y)
and the probability distribution of the model predictions p(ŷ|x) for the correspond-
ing input x. It is computed via the negative sum of the logarithm of the model
prediction times the label

H(y, ŷ) = −
∑
i

yi log2(ŷi). (2.7)

Minimizing the cross entropy results in a ŷ that requires as few extra bits as possible
to encode classes from y [14, ch. 5.5]. Using sigmoid (see section Sigmoid) as the
output unit of a NN assures that all predictions are probabilities. Seeing the sigmoid
function in conjunction with cross-entropy loss is a common setup for a binary
optimization problem.

Minimization of average loss

Given a loss function L, we can now analyze a model’s performance by its average
performance on the data set for a fixed parameter θ:

J(θ) =
1

m

m∑
i=1

L(f(xi;θ),yi). (2.8)

Under the assumption that the training set is representative for the whole data
distribution, by minimizing J(θ) we will thus achieve a good model performance for
unseen data.

Minimization via Gradient Descent

One way to minimize J(θ) is using gradient descent, an algorithm to numerically
find local minima of differentiable scalar functions. This algorithm works via the
following three steps.

12

1. All parameters of a NN model are initialized with an initial value which is
explained in more detail in section Parameter Initialization.

2. The gradient of the cost function with respect to all parameters ∇θJ(θ) is
computed. This can be achieved in an efficient way using the so called back-
propagation algorithm (see section Efficient gradient computation using back-
propagation).

3. The computed negative gradient pointing towards a (local) minimum of the
cost function is used to iteratively adjust the model parameters θ in small
increments.

Each update thus has the form

θt+1 = θt − ϵ∇θJ(θt), (2.9)

where the scalar value ϵ is called learning rate. This procedure will converge on a
local minimum θ∗ of J with ∇θJ(θ

∗) = 0 once t → ∞ [14, ch. 4.3].

Difficulties using Gradient Descent for NN optimization in practice

Minimizing the average loss of a NN in practice is a challenging task due to the
following problems.

1. Optimization with gradient descent struggles to find a global minimum on
a non-convex function due to many possibly bad performing local minima.
Furthermore, the whole dataset could be large which makes updates slow. A
practical solution is to apply gradient descent on mini-batches doing many
fast but noisy updates rather than few slow and exact ones. This is known
as the stochastic gradient descent (SGD) algorithm as described in section
Non-convex optimization with Stochastic Gradient Descent.

2. The convergence could be slow depending on the curvature of the average loss
function. It could take a long time to escape a bad performing local minima or
saddle points. A solution to this is to dynamically adapt the learning rate (see
section Importance of controlling learning rate) and introduce a momentum
to the update process (see section Faster convergence with Momentum).

3. The computation of the gradients is an extensive and complex task. An effi-
cient gradient computation is possible with the back propagation algorithm as
described in section Efficient gradient computation using backpropagation.

13

2.1. Machine Learning

4. A poor initialization of model parameters as well as the problem of vanishing
gradients (see section Vanishing/Exploding Gradients in deep architectures)
could lead to tiny update steps or long convergence time. These problems can
be tackled by applying improved initialization schemes (see section Parameter
Initialization), self-normalizing layers (see section Weight Normalization) and
utilizing skip-connections (section Skip-Connections and Residual Networks).

Non-convex optimization with Stochastic Gradient Descent

During SGD we evaluate J and ∇J only for a small random subset of the whole data
(also called a mini-batch) before performing a gradient descent update step. The
reduced size of a mini-batch speeds up a single iteration, especially for large data sets.
Furthermore, the stochasticity introduced from random subsamples helps to escape
local minima and saddle points of J due to the increased variety of approximated
gradients.

On each iteration the SGD algorithm uniformly takes m′ training samples from
a data set X building a minibatch B = {(x1,y1), ..., (xm′ ,ym′)} ⊆ X with size m′.
The gradient equation becomes

gt =
1

m′∇θ

m′∑
i=1

L(f(xi;θt),yi) (2.10)

for each time step t. The size m′ of a minibatch usually stays fixed during training
and is decoupled from the data set size m which may vary. The most basic version
of SGD with m′ = 1 comes with the highest variance in approximating the desired
gradient. Thus increasing m′ will decrease the variance leading to more stable
convergence on a minimum of the cost function. In a final training typical sizes
for m′ are in a range of 32 to 256 samples. With m training samples in a data
set the computational cost of the basic gradient ∇θJ(θ) is O(m). Using SGD with
m′ << m training samples the computational cost will be much lower at O(m′) [14,
ch. 5.9].

Importance of controlling learning rate

One crucial part using optimizing with gradient descent is the learning rate ϵ. If ϵ is
set too high, J might be oscillating around a minimum without ever reaching it or
even steering away from it. If ϵ is set too low, the convergence of J would be slow
and the training might get stuck.

It is common practice to expand the SGD algorithm with a linear learning rate

14

decay τ ∈ N transitioning the learning rate from ϵ0 to ϵτ on each iteration t

ϵt = (1− α)ϵ0 + αϵτ (2.11)

with α = t
τ
. Usually once t ≥ τ the learning rate wont be adjusted anymore

and stays constant at ϵτ . With ϵ0 > ϵτ this technique counteracts overshooting a
minimum of the cost function going back and forth over it while reaching a gradient
of 0 [14, ch. 8.3.1]. For the sake of simplicity, the learning rate decay will not be
labeled explicitly in this thesis.

AdaGrad and RMSProp The AdaGrad [11] and RMSProp algorithms extend
stochastic gradient descent with the concept of per parameter adapting learning
rates. Instead of using one learning rate each parameter gets an individually tai-
lored learning rate. In AdaGrad the adaptive learning rates r are scaled inversely
proportional to the square root of the sum of all the historical squared values of the
gradient

rt = rt−1 + gt ⊙ gt, (2.12)

θt+1 = θt −
ϵ

δ + ⊙√rt
⊙ gt (2.13)

where δ is a constant for numerical stability around 10−7 and avoids division by zero
[11, 14, ch. 8.5.1].

The RMSProp algorithm modifies AdaGrad by changing the gradient accumu-
lation into an exponentially weighted moving average. This turns equation 2.12
into

rt = ρrt−1 + (1− ρ)gt ⊙ gt (2.14)

with ρ ∈ [0, 1) being the decay rate and leaving equation 2.13 as is. Due to the
exponential decay the history from the distant past does not have as much influence
as it does have in the basic AdaGrad algorithm. This prevents a shortcoming of
AdaGrad of potentially reaching an infinitely small learning rate due to the steady
accumulation of always positive squared gradients in the nominator. In such a
situation the algorithm would not acquire any more knowledge [14, ch. 8.5.2].

Faster convergence with Momentum

Inspired by physical motion stochastic gradient descent with momentum introduces
a new variable v modeling a velocity-like behavior while moving through the param-
eter space of the cost function. This has several benefits like passing through flat

15

2.1. Machine Learning

regions of the solution space with more pace and overcoming local minima due to
the accumulated momentum.

SGD with simple momentum The velocity variable accumulates the exponen-
tial decaying moving average of the past negative gradients. A hyperparameter
α ∈ [0, 1) controls the weight of the previously contributed gradients or in other
words the exponential decay of them. Starting with an initial value of v = 0 this
consolidates into the following update rules

vt = αvt−1 − ϵgt, (2.15)
θt+1 = θt + vt. (2.16)

The velocity becomes greater when successive gradients are pointing in the same
direction, which accelerates the learning process. If the successive gradients are
alternating the velocity becomes smaller and averages into a mutual direction of the
successive gradients [14, ch. 8.3.2].

Adam The adaptive moment estimation (Adam) algorithm combines RMSProp
with momentum. It computes an exponentially decaying average of past gradients
similar to SGD with momentum

st = ρ1st−1 + (1− ρ1)gt (2.17)

as well as an exponentially decaying average of past squared gradients like RMSProp

rt = ρ2rt−1 + (1− ρ2)gt ⊙ gt (2.18)

with ρ1 and ρ2 ∈ [0, 1) being the decay rates. The estimates of the first moment st
being the mean and the second moment rt being the off-centered variance tend to
have a bias towards zero especially in the beginning of the training when initialized
with 0. Therefore two bias correcting terms

ŝ =
st

1− ρt1
, (2.19)

r̂ =
rt

1− ρt2
(2.20)

are computed to counteract this tendency. Common values for ρ1 and ρ2 proposed
by the authors are 0.9 and 0.999 respectively [19]. Using the bias corrected terms

16

the final update rule of Adam becomes

θt+1 = θt −
ϵ

δ +
⊙√
r̂
⊙ ŝ (2.21)

being very similar to RMSProp. Adam is one of the most popular optimization
algorithms for ML due its generally good performance [14, ch. 8.5.3].

Efficient gradient computation using backpropagation

The gradient ∇θJ(θ) can be computed efficiently using the backpropagation algo-
rithm. It consists of two steps: a forward-pass and a backward-pass.

During the forward-pass we propagate an input x through a NN and compute the
scalar cost J(θ). In this step, it is crucial to store the activations of the intermediate
hidden layers. It is best practice to build some kind of computational graph keeping
track of this.

In the backward pass we compute the gradient ∇θJ(θ) using these stored values.
Going backward through the network starting at the output layer we compute local
gradients for each layer via partial differentiation and recursively apply the chain
rule

∂J(θ)

∂θ
=
∑
i

∂J(θ)

∂h(i)

∂h(i)

∂θj
(2.22)

=
∑
i

∂J(θ)

∂h(K)

∂h(K)

∂h(K−1)
· · · ∂h

(i)

∂θ
. (2.23)

Using the already saved intermediate activations h(i) we can now use dynamic
programming to recursively compute this gradient from left to right. This pro-
cedure is efficient as we only need to store K activations to compute the gradient
in O(m × K × D) where D denotes the width of the largest hidden layer. This
algorithm was a critical optimization making NN usable in real world applications
[14, ch. 6.5].

Vanishing/Exploding Gradients in deep architectures

For very deep NNs the gradients of the activation functions tend to get infinitesimally
small during the backward pass which implies undiscernible updates to its affecting
parameters. This holds especially true if the gradients of an activation function
are always below one. By multiplying several of them together they are becoming
successively through the chain rule. This results in the weights on the first layers
training the slowest. The problem is known as the vanishing gradient as described
by Hochreiter et al. [17] and occurs especially in very deep NN architectures. The

17

2.1. Machine Learning

opposite can happen if the majority of gradients are greater than 1 which is known
as the exploding gradient problem.

Activation Functions

Activation functions are usually the last instance of a layer in a NN and get applied
element-wise on their input vector introducing non-linearities within a specific range.
Figure 2.4 shows a selection of common activation functions used in ML.

−4 −3 −2 −1 0 1 2 3 4
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(a) Sigmoid

−4 −3 −2 −1 0 1 2 3 4
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(b) Hyperbolic Tangent

−4 −3 −2 −1 0 1 2 3 4
−1

0

1

2

3

4

(c) Rectified Linear Unit

−4 −3 −2 −1 0 1 2 3 4
−1

0

1

2

3

4

(d) Exponential Linear Unit

Figure 2.4: A selection of common activation functions (solid blue line) including
their first order derivatives (dashed orange line).

Sigmoid The sigmoid function also known as the logistic function has a S-shaped
curve with one lower and one upper bound. It maps any real numbered value to the
interval (0, 1) ∈ R:

sigmoid(x) =
1

1 + e−x
(2.24)

18

The sigmoid is bound to the limits 0 and 1 which are unreachable at ±∞. Its
derivative also known as the logistic distribution is computed by

d

dx
sigmoid(x) = sigmoid(x)(1− sigmoid(x)) (2.25)

which can be seen in figure 2.4a. Due to its low valued gradient, it tends to suffer
from the vanishing gradient problem especially for input values far away from the
origin.

Hyperbolic Tangent The tanh function is very similar to the sigmoid function
as it also follows a S-shaped curve but expands the mapping from an unipolar to a
bipolar interval of (−1, 1) ∈ R

tanh(x) = 1− 2

1 + e2x
. (2.26)

Utilizing a bipolar interval makes tanh suitable for signals like raw audio. Its deriva-
tive is defined by

d

dx
tanh(x) = 1− tanh2(x). (2.27)

The tanh activation function including its derivative are visualized in figure 2.4b.
Due to the similarity to the logistic function tanh also suffers from the vanishing
gradient problem.

Rectified Linear Unit The rectified linear unit is a piecewise linear function
defined by an identity function with its negative part clipped at 0

ReLU(x) = max(0, x) =

0 if x < 0,

x otherwise.
(2.28)

Due to its piecewise linearity its computational cost is far below of the sigmoid
function. This greatly improved performance of neural networks [14, ch. 6.6]. The
derivative of the rectified linear unit (ReLU) is the unit step function

d

dx
ReLU(x) = sign(x) + 1

2
=

0 if x < 0,

1 otherwise.
(2.29)

Figure 2.4c shows the ReLU activation function and its derivative. In contrast to
the sigmoid function, the ReLU does not have an upper bound and therefore does
not struggle with saturated gradients on positive inputs. But for example, if a bias

19

2.1. Machine Learning

gets too big and therefore all incoming values are negative it could still go inactive
due to zero clipping all negative values [13].

Exponential Linear Unit The exponential linear unit (ELU) is a piecewise com-
bination of the identity function and a down shifted exponential curve for the neg-
ative values

ELU(x) = min(0, ex − 1) +max(0, x) =

ex − 1 if x < 0,

x otherwise.
(2.30)

Its derivative is defined by

d

dx
ELU(x) = min(1, ex) =

ex if x < 0,

1 otherwise.
(2.31)

Both functions can be seen in figure 2.4d.

Skip-Connections and Residual Networks

In residual networks, the problem of vanishing gradients gets counteracted using
recurring skip connections between hidden layers which maintain a steady gradient
flow. Here each subsequent hidden layer results in a residual of the prior layer:
h(i+1) = f(h(i))+h(i) (see figure 2.5). This idea has been proven to be very efficient in
suppressing vanishing gradients and therefore allow arbitrary deep NN architectures
[16].

Layer Layer Layer Layer

Figure 2.5: A residual block.

Parameter Initialization

The choice of initial parameters θ before starting the training can also be critical
for the optimization. Common random parameter initialization can be interpreted
as a randomly chosen starting point within the solution space of the model’s cost
function. This random initialization breaks the symmetry and enforces different
parameter updates for each unit within a network. Commonly, a scaled Gaussian or a
uniform distribution is used for the initialization [14, ch. 8.4]. For different activation
functions and numbers of hidden units in a layer, optimal scaling parameters can

20

be computed [12]. The use of such proper initialization was an important step in
making deep NN trainable.

Weight Normalization

To compensate bad initialization of weights multiple self-normalizing layers have
been proposed, e.g., [24, 18]. Weight normalization [24] decouples the length of the
weight vectors from their direction. The weight vector w gets reparameterized with
v and a scalar g

w =
g

||v||2
v (2.32)

with ||w||2 = g. SGD is then applied with respect to those parameters instead. Do-
ing so improves the conditioning of the gradients and leads to improved convergence
of the optimization procedure. Furthermore, NN with weight normalization work
well with a much wider range of learning rates given an intial choice of parameters.

2.1.4 Regularization

While NN are powerful approximators, they can overfit to small data sets easily. So
even if we can optimize them on our training set, careful regularization techniques are
required to make them generalize to unseen data [14, ch. 7]. Common regularization
tricks involve early-stopping, choice of inductive bias, dropout layers 2.10, and data
augmentation 2.1.5.

Early-Stopping

The idea of early stopping is to recognize if a model stagnates or starts overfitting
during training and to consider the training to be done as a consequence. Along
the way, the best performing model state will always be saved according to a metric
coming from the evaluation. This metric is generally the cost of the validation
dataset. A common criterion to end the training is when the model does not improve
upon the metric for some predefined number of epochs in a row. Once the criterion
was met, to end the training the saved model state is taken as the outcome of the
training procedure, rather than the most recent model parameters.

Early stopping is a popular but simple regularization technique with great ef-
fect. It does not modify the model parameters directly but decides after how many
training iterations to settle on a sweet spot. Due to how early stopping is driven by
the evaluation dataset it has an indirect effect on the parameterization of the final
selected model. For this reason, a third independent test dataset has to be utilized
to receive a truly unopinionated performance measure of the model.

21

2.1. Machine Learning

To improve performance further the iteration count determined via early stop-
ping could be exploited to recommence a new model training using the iteration
count as a hard stop but this time incorporating all available datasets for parameter
updates. This can be reasonable if the amount of available training data is quite
limited as long as the first experiment confirmed the model to be functional [14,
ch. 7.8].

Choice of inductive bias

If we have an understanding of how our data is structured we can restrict our space
of all neural networks to those which represent this structure. This restriction con-
cerning a domain problem is called an inductive bias. For audio signals as analyzed
in beat-recognition tasks, a sensible inductive bias is given by CNNs. They are built
from convolution layers and pooling layers.

Convolution Layer The common convolution used in ML [14, ch. 9] is very
similar to the convolution in digital signal processing (DSP) also applying a filter
kernel on sequential data like audio. In contrast to the common convolution known
in DSP the convolution in ML has a flipped kernel which makes the operation a
cross-correlation. Although talking about convolution in ML refers to applying the
cross-correlation operation on the whole input in parallel by sliding over it. This
allows different sized input data making the convolution very flexible on what data
it works with compared to a fully connected layer configuration.

The connections to a neuron within a convolutional layer are locked by the size
of the filter kernel

(x ∗ k)m =
∑
i

xm+iki. (2.33)

In contrast to a fully connected layer configuration a great performance improvement
is achieved by omitting most operations. An exemplary convolution is visualized in
figure 2.6. With m output neurons and n input neurons, the sparse connectivity of
having a kernel size smaller than the input k ≪ n results in a runtime of O(k×m).
Sliding over the input with the same kernel allows for parameter sharing over the
whole input which enforces generalizing behavior and reduces the memory footprint.

The properties of a convolution have a regularizing impact on a model. Especially
the reduction of the parameter count via parameter sharing emphasizes exploiting
exploiting the structure of information inherent to the data. Overall this reduces
the search space drastically compared to a fully connected version [14, ch. 9.2].

22

Due to the strided convolutions of the network, it will have a reduced time resolu-
tion or frame rate on the output compared to the input sequence. As a consequence,
each output feature of the NN is corresponding to a block or frame of several input
samples. This downsampling process prepares the data for a final refinement by a
DBN as described in section 2.2.4.

An overview of the whole network architecture and how all parts are inter-
connected can be seen in figure 2.14. The signal conditioning and various block
configurations are summarized in table 2.2.

2.2.1 Pre-Processing

In the research field of beat tracking, it is common practice to convert the audio
from the time domain into the frequency domain as a first step before engaging in
further signal processing. This thesis skips this pre-processing stage entirely and
follows an approach to solve the problem working directly on the raw audio itself.
For this reason, the data used for training the NN is a raw pulse code modulated
(PCM) audio signal. The DJ software Traktor Pro from NI is using a sample rate of
22050 Hz for its multitude of MIR analyses. Following this guidance and to create
a common ground as well as reducing the impact of high-resolution audio on the
computational complexity upfront, the audio going into the NN is restricted to have
22050 Hz as well. In addition to that, each audio file will be mixed down into a single
mono channel. The audio material across all datasets is pre-processed as described
in this section.

2.2.2 Data Preparation

A dataset used for beat detection consists of a collection of audio files with an
accompanying text file holding the beat annotations. Each beat annotation consists
of a timestamp in seconds and a type of beat. For this thesis all beat kinds are
equally relevant, thus their differentiation can be ignored. An exemplary excerpt of
a dataset is visualized in figure 2.11

Labels

The beat annotations are holding the information for conditioning the network.
They are divided into 2 classes; no-beats and beats which represent the target the
model is trained to predict. All classes are considered to be exclusive as precon-
ditioned by the binary cross-entropy. Since the annotations are only holding in-
formation about beats, the no-beat information has to be deduced indirectly. The
timestamps of the classes are put into the representation of the audio material, e.g.

27

2.2. Implementation

49.876 50.573 51.223 51.885 52.535 53.174 53.824 54.474 55.124
Time [s]

−1

0

1
A

m
pl

itu
de

08_Sgt._Pepper’s_Lonely_Hearts_Club_Band__03_Lucy_In_The_Sky_With_Diamonds

Figure 2.11: One exemplary item taken from the Beatles dataset including vertical
beat annotations with timestamps. Solid lines are downbeats and dashed lines are
normal beats representing the different beat kinds.

samples, to have a common ground. It is useful to interpret the input sequence as
being grouped into equally sized blocks or frames due to the downsampling property
of the NN. All audio surrounding the annotation timestamps within such a frame
is classified as a beat. All remaining audio is classified as no-beat from which a
no-beat timestamp can be randomly chosen.

Audio Chunks

During training, the proposed model will be fed with equally sized chunks of audio
capturing at least the period defined by the receptive field of the NN. These audio
chunks are directly taken from the audio files and are centered around the beat or
no-beat timestamps. It is important to note that the receptive field associated with
a no-beat class could indeed overlap the receptive field associated with a beat class.
But this does not apply to the much smaller frame size due to the reduction of the
time resolution of the network. The center of the extracted audio chunks and their
vicinity are not allowed to overlap within this frame size. This is necessary to make
a clear distinction between all beat classes during training. While respecting this
restriction a no-beat chunk can just be randomly sampled from the whole track,
which already applies data augmentation for the no-beat events.

If a beat event is at the beginning or end of the audio material there is a chance
that not enough audio samples are available to fill up a whole chunk since the termini
of the corresponding audio file would be surpassed. In such situations, the missing
content is compensated by zero-padding the audio material accordingly.

Dataset Balance

At a sample rate of 22050 Hz, the amount of as no-beat classified audio is much
higher compared to the audio classified as a beat. Training a network with an un-
equal distribution of annotations could encourage a bias towards the more frequent

28

ones. The overall number of beat events is fixed according to the available annota-
tion data within a dataset. Since all no-beat events can be randomly sampled from
the audio material their share in the dataset can be tailored to complement the beat
events by matching the sum of all beat annotations. This leads to a well-defined
distribution of no-beat events across all audio files.

To expand the temporal region of beats label smoothing is applied similar to the
work of Davies et al. [8]. Both neighboring frames of a beat class will be considered
a beat as well but weighted half as much. This doubles the impact of beat labels,
thus allowing the no-beat class to be sampled twice as much.

Augmentation

To improve the ability to generalize in the context of a limited amount of training
data it is useful to expand the search space of the NN model by augmenting the
available data. While doing so it is important to maintain the underlying meaning
encoded by the labels. During training of the proposed model, 3 kinds of data
augmentation techniques are applied to the audio material of each loaded chunk.

Translation Since the model downsamples its input an extended frame in which
the beat annotations uphold their meaning exists. For this reason, the timestamp
of each beat can randomly be translated back and forth by half the frame size. The
translated timestamp will then be the final center for extracting an audio chunk.
In case of no-beat labels this kind of data augmentation is already applied at by
randomly sampling the whole audio material as described in section Labels.

Attenuation Each audio chunk gets attenuated to increase the variety of dynam-
ics. Therefore a randomly chosen attenuation factor within a range of 6db is applied
when loading the data. It is important to note that this attenuation is affecting an
audio chunk as a whole so its dynamic range is left untouched.

Inversion With a probability of 50%, a whole audio chunk gets multiplied by -1
to invert the signal. Given that the network is acting on raw audio material this
helps to improve generalization over phase information.

2.2.3 Network Architecture

This section presents the architectural decisions and components on which the pro-
posed network model is based.

29

Network Width

The very first block of the network will expand from a one-dimensional raw mono
audio input to a hidden width of 16 channels. The width of the skip-connections is
configured the same way. Once expanded, the network width will remain constant
until reaching the output layer.

Building Blocks

The architecture of the proposed model consists of three principal constituents which
are described in more detail within this section. Its core design is highly inspired
by the work of Oord et al. [22] with their concept of dilated convolutions as well
as Böck et al. [3] and their adaption to use the ELU activation function instead
of a gated tanh. All trainable parameters within the network are initialized using
Gaussian distribution and are configured to use weight normalization as proposed
by [1].

Striding Front This is the entry point of the network. It will be fed with raw
audio at a sample rate of 22050 Hz to be transformed into a beat activation with
a framerate of ≈ 115 frames per second (FPS). Therefore the input needs to be
downsampled within the network, giving it the possibility to optimize upon this
process. The striding front of the network architecture is taking care of this using
the stride parameter on convolutional and average pooling layers.

A striding block is following the principle of a residual block. It doubles its
input into two parallel branches, a trainable convolutional layer and a non-trainable
average pooling layer passing the input minimally invasive. The stride of both layers
defines their downsampling factor and is set equally. An ELU activation function
right after the convolutional layer introduces non-linearities. It will be followed by
a dropout layer to regularize the network. In the end, both parallel branches are
added together to have one unified output again.

In total 3 striding blocks are stacked on each other until the desired framerate
is reached. Since all striding blocks are placed in the front of the network the whole
architecture benefits from an early reduction of parameters. This is a crucial part of
the network to lower its computational cost facing raw audio signals on a reasonably
high sampling rate. Besides downsampling, this stage of the network transforms the
input into a unified intermediate feature representation tailored for the following
parts of the network.

Dilation Core After the striding front, the desired frame rate of the postprocess-
ing DBN is reached. This has increased the intermediate receptive field of which

31

2.2. Implementation

each feature accounts information for 192 input features or r ≈ 8.7 ms. A timeframe
of this size seems too small to understand the temporal nuances of a beat within
the audio material. Hence the receptive field has to increase further but this time
utilizing dilated convolutional layers.

Similar to the striding block a dilation block also follows the principle of a residual
block utilizing two parallel branches. One simply passes the input unaltered and
the other applying a dilated convolution. The dilated convolution is followed by
an ELU activation function as well as a dropout layer to regularize the network.
Subsequently, a 1x1 convolution layer provides skip connections to the output layer.
They accumulate and build the foundation of the network’s final output. A portion
of them is also added back to the unaltered input, carrying over relevant information
to the upcoming blocks in a common information stream.

Altogether 8 dilation blocks with an exponential growing dilation parameter with
a base of 2 are stacked on top of each other. Along the way, all skip connections
are accumulated for further processing in the upcoming part of the network. The
common information stream gets terminated after the very last dilation block.

Consolidating Back The back of the network transforms all accumulated skip
connections into the desired output shape of the network. All skip connections
are concatenated before going into two sequences of an ELU activation function,
a dropout and a 1x1 convolutional layer. The first convolution mixes the concate-
nated channels down to the hidden width of the network and the second convolution
transforms from the hidden width to the desired output channel count.

A 1x1 convolutional layer can be interpreted as a dense layer over channels
capable of scaling with the length of the input sequence fed into the network. This
gives the model the ability to handle audio of arbitrary length if it is at least as long
as the overall receptive field demands. Since the network is designed for solving a
classification problem a sigmoid activation function finalizes the network’s output.

2.2.4 Post-Processing

Music and its temporal structure generally follow a more or less regular pattern
based on tempo and meter. Taking this property for granted, it can be exploited
to infer the most likely sequence of repetitive beat events given the rhythm activity
of a whole musical piece. Therefore a DBN will be used as a post-processing stage
as seen in [5] taking the results of the NN as an observation of beat activation to
extract the most likely sequence of beat timestamps. For convenience the DBN
implementation within the madmom library [6] will be used.

A DBN is an advanced hidden markov model capable of incorporating the tem-

32

poral structure within music by modeling probabilities over a variety of tempo and
meter configurations. Therefore, an initial state distribution and a transition model
define a probabilistic model of within-bar position and tempo. It is based on a bar
pointer model associating a velocity to a bar pointer simulating the steady conti-
nuity of music following a tempo. More detail on hidden markov models and the
bar pointer approach can be taken from the original work of Whiteley et al. [28].
Given an external probability distribution as observation of beat activity a directed
acyclic graph is constructed using the probabilistic model. The graph is the hidden
state space of a DBN discretized into as many fixed steps as needed to cover the
given observation. The underlying bar pointer model allows to continuously advance
even when facing a low activity period within the given observation. The Viterbi
algorithm is efficient in finding the most likely path within the state-space due to
its strategy of dynamically rating paths and excluding unlikely ones as early as pos-
sible. Using the most likely path of the state space of the DBN, the observation’s
most likely sequence of beat events can be predicted.

The work of Krebs, Bock, and Widmer [20] improves upon the original bar
pointer model by introducing a more efficient probabilistic model for their DBN.
They make the number of discrete bar positions dependent on the tempo to dis-
tribute them evenly over the whole tempo range and increase the time resolution
especially for music with a higher tempo. Additionally, tempo transitions are only
allowed on beat positions but therefore to all available tempo states instead of the
nearest three as in the original model. All these changes reduce the computational
complexity and memory footprint significantly. For the initial state, no prior knowl-
edge of the data is incorporated and thus a uniform distribution used. To impede
excessive tempo state changes the exponential transition function of two hidden
tempo variables Φ̇k and Φ̇k−1

f(Φ̇k, Φ̇k−1) = exp

(
−λ×

∣∣∣∣∣ Φ̇k

Φ̇k−1

− 1

∣∣∣∣∣
)

(2.34)

models the likeliness of a tempo change. Its λ parameter scales the tempo transition
probability with a value of λ ∈ [1, 300] referring roughly to constant tempo and a
value of zero makes transitions to all tempi equally probable.

2.3 Roundup

This section aggregates all relevant information from the previous sections of this
chapter to give a centralized overview of the proposed model architecture and how
it is trained. Figure 2.14 shows the individual parts of the model and how they are

33

Table 2.2: Overview of the configuration of the various network components

Downsampling Front
Channels 1, 16, 16
Kernel Size 33, 17, 9
Stride 8, 6, 4
Activation Function ELU

Pooling Function Average Pooling

Dropout 0.2

Dilation Core
Channels 16
Skip Channels 16

Kernel Size 5
Dilation 20, ..., 27

Activation Function ELU

Dropout 0.2

Consolidating Back
Channels 16 + 16, 16
Output Channels 1
Output Activation Function Sigmoid

Activation Function ELU

Dropout 0.2

Model Summary
Model Parameters 22978
Frame Size 192 samples (≈ 8.7 ms)
Receptive Field 196385 samples (≈ 8.9 s)
Output Frame Rate ≈ 115 FPS1

35

3 Evaluation

The evaluation of a beat detection system is a crucial part of measuring its per-
formance in context of related research. This chapter introduces the datasets used
for training, evaluation and testing, the metrics common for beat detection and the
baseline to compare against as well as the results thereof.

3.1 Datasets
A beat-tracking dataset consists of audio files accompanied by beat annotations.
This section presents several datasets and why they are used in this thesis. An
overview of all datasets and their content is shown in table 3.1. An excerpt from
the Beatles dataset can be seen in figure 2.11.

Table 3.1: Overview of the datasets.

Dataset Files # Beats # Length
TapCorrect[10] 89 36078 6h 09m
Ballroom[15, 21] 698 44604 6h 04m
Beatles[9] 179 52729 8h 00m

Maschinetrain 224 40053 6h 17m
Maschinetest 223 40902 6h 18m
Maschine

∑
447 80955 12h 36m

3.1.1 TapCorrect

The TapCorrect dataset [10] consists of beat annotations for a variety of established
popular music. It is comprised of a variety of genres from various recording condi-
tions and instrumentations. The whole audio corpus can be found on the YouTube
video platform. The researchers put much effort into detecting annotation errors as
well as refining their annotations which results in a high-quality dataset. It includes

37

3.1. Datasets

music with varying tempo (see figure 3.1c). Due to its quality it is suited to be
used as a training dataset for the proposed NN architecture. Nevertheless, during
the inspection of the dataset, some further adjustments had to be made. One file
has been split in two and some audio files were unfortunately not available. Thus
a subset of the original TapCorrect dataset is used in this thesis consisting of 89
audio files with a total playback length of 6 hours and 9 minutes and has 40902 beat
annotations.

3.1.2 Beatles

The Beatles dataset [9] contains 12 studio albums of the band The Beatles. It has
179 audio files with a playback length of 8 hours and overall 52729 beat annotations.
It is a great example of music with varying tempo as seen in 3.1b. This dataset is
used as a test dataset to neutrally measure the actual performance of the proposed
network architecture.

3.1.3 Ballroom

The ballroom dataset [15, 21] is an established dataset for beat tracking. It consists
of ballroom dancing music across various genres. The genres comprise Cha Cha,
Jive, Quickstep, Rumba, Samba, Tango, Viennese Waltz and Slow Waltz. Each file
is an excerpt of a song and has an average length of 30 seconds sampled at 11.025
kHz. It consists of 698 files with an overall playback time of 6 hours and 4 minutes
and a total of 44604 beat annotations. This dataset is used as an evaluation dataset
in the training of the proposed network.

3.1.4 Maschine

This dataset was created as a research goal of this thesis and to be used for training
and testing of the proposed NN architecture having varying tempo in mind. It
is based on the content of ME1 coming from the Maschine ecosystem of NI. A
ME is a collection of synthesizer presets, audio samples and loops tailored to the
needs of producing music for a variety of popular music genres. For example EDM,
Electronica, Experimental, Funk, Future Bass, Global, Hip Hop, House, Indie, Pop,
R&B, Soul and Techno. Each ME includes several projects of demo songs showcasing
the bought product. These demo songs are the foundation of the Maschine dataset.

All demo songs are reexported from the Maschine software with an automation
modifying the playback speed. This automation is applied during the export of the
audio via a tempo factor multiplied by the base beats per minute (BPM) of the song.

1https://www.native-instruments.com/de/catalog/maschine/expansions/

38

This makes the exported songs vary in tempo as an alternative approach to post-
processing technics like resampling or time-stretching. While exporting the audio,
all occurring beat events including their timestamps are tracked to be written to an
annotation file once the export is finished (see algorithm 1).

Unfortunately, all Maschine projects are set up with a fixed BPM value over the
whole song and automating the tempo is currently not an available feature. This
feature had to be implemented as well as the mechanism of extracting the beat
information of the song during the exporting process. Additionally, the process of
exporting all projects was automated by implementing a robotic process automation
(RPA) script. It is based on the robot framework2 communicating with the testing
interface of the Maschine software. Due to the implementation efforts, the dataset
creation was mostly automated and therefore less time-consuming compared to a
manual annotation approach. The final dataset consists of 447 audio files with a
total playback length of 12 hours and 36 minutes and has a total of 80955 beat
annotations. Since the annotations are generated in the export process itself, they
are very consistent and accurate compared to handmade ones. Having high quality
annotations could benefit the overall performance of a beat detection system.

A simplified version of the whole process of exporting the audio files with an
altered tempo sequence and the accompanying beat annotations is shown in algo-
rithm 1 in pseudo-code. For each beat within a song, a random tempo factor is
set which manipulates the playback speed during the export. The beats within a
song are iterated in ascending order from the first to the last. The random() expres-
sion draws a random sample from a Gaussian noise distribution within the interval
(−1, 1) which results in a random tempo increase or decrease of a maximum of 2%
going from beat to beat.

Algorithm 1: Routine exporting the Maschine projects
Data: projects
foreach p in projects do

song = p.loadSong();
exp = 0.0;
foreach beat in song do

exp += random() * 0.02;
song.tempoFactorSequence[beat] = 2exp;

end
p.exportSongAsWav();
p.exportAnnotations();

end

The chosen rate of tempo change is inspired by the findings of Dannenberg et al.
2https://robotframework.org

39

3.1. Datasets

[7] who analyzed the tempo changes in live performances of amateurs and profes-
sionals. The Maschine dataset takes the tempo variations of amateur performances
as a starting point but goes further allowing even higher tempo changes. Since the
dataset is used for training, this emphasizes the aspect of varying tempo in music as
a research topic of this thesis. The available tempo variations within the dataset can
be measured by looking at the beat-interval, the period of two ascending beats. For
each song, a tempo factor sequence stf is computed based on the songs beat-interval
sequence sbi and its mean as a reference

stf =
mean(sbi)

sbi
. (3.1)

0.8 0.9 1.0 1.1 1.2
Tempo Factor

0

10

20

30

40

50

D
at

as
et

sh
ar

e
in

pe
rc

en
t

(a) Maschine

0.8 0.9 1.0 1.1 1.2
Tempo Factor

0

10

20

30

40

50

(b) Beatles

0.8 0.9 1.0 1.1 1.2
Tempo Factor

0

10

20

30

40

50

60

D
at

as
et

sh
ar

e
in

pe
rc

en
t

(c) TapCorrect

0.8 0.9 1.0 1.1 1.2
Tempo Factor

0

10

20

30

40

50

60

(d) Ballroom

Figure 3.1: The distribution of tempo factors across all datasets.

Figure 3.1a shows the distribution of the concatenation of all tempo factor se-
quences within the Maschine dataset represented by a histogram across 15 bins
within the range [0.75, 1.25]. The tempo factor distribution of all other datasets is
shown in figure 3.1 as a reference. Comparing the distributions, the focus on varying
tempo of the Maschine dataset is visible by the broader share of the side bins within

40

the dataset while staying in similar bounds.

3.2 Beat Evaluation Metrics
For the evaluation of a classification problem, it is useful to categorize all predictions
into four groups concerning their associated target as seen in table 3.2.

Table 3.2: Confusion matrix for classification problems.

Positive Target Negative Target
Positive Prediction True Positive False Negative
Negative Prediction False Positive True Negative

True positives are all predictions that are correctly classified as positive. True
negatives are all predictions that are correctly classified as negative. Together they
are representing all correctly classified predictions. False positives are all predictions
that are falsely classified as positive and false negatives are all predictions that are
falsely classified as negative. Together they are representing all falsely classified
predictions.

3.2.1 F-Measure

This metric summarizes the four classification groups seen in table 3.2 and provides
a more general score of a classifier’s performance. It is based on two intermediate
metrics known as precision p and recall r. They describe the fraction of all correctly
positive classified predictions among all positive targets and among all positive pre-
dictions respectively

p =
tp

tp+ fp
, r =

tp

tp+ fn
. (3.2)

The f-measure F1 is computed from their balance as follows

F1 =
2 p r

p+ r
=

2tp

2tp+ fp+ fn
(3.3)

and is known to be a reliable metric even in the context of an imbalanced dataset. In
contrast, the very popular accuracy metric is a more straightforward measure of a
classifier’s performance. It is built upon the fraction between all correct predictions
among the total number of examined cases. The problem with accuracy is that it
does not respect the balance of all classes. On a highly imbalanced dataset, good
accuracy could be achieved by always predicting the most frequent class which would
not be a useful classifier.

41

3.3. Baseline

In the context of beat tracking evaluation, a tolerance window around the target
timestamps allows predicted beat timestamps to be considered as a true positive
as long as they are within this window. For comparison to related research, the
default tolerance window of ±70 ms around a target timestamp is used for the final
evaluation.

3.2.2 Continuity-Based Scores

The correct metrical level (CML) scores are measuring how many beats have been
predicted correctly in a row according to the beat-intervals of the annotations.
Therefore two consecutive predicted beats have to match the corresponding an-
notation beat-interval within a tolerance window of ±17.5%. The CMLc is only
accounting for the longest consecutive period while CMLt takes all consecutive pe-
riods into account. Both allowed metrical level (AML) scores, AMLc and AMLt are
working the same respectively but consider the predicted beats also to be correct if
they are offbeat or at half, double or triple beat-interval tempi. More information
about the continuity-based scores is available in [9].

3.2.3 Information Gain

This metric measures how much information about the annotations is describable
with the predictions. The higher the information gain the better the prediction. It
is built upon a probability distribution of beat-errors. A beat-error is the distance
between the annotation and the prediction within a one-beat window around the
annotation. The information gain is the Kullback Leibler divergence (KLD) between
such a probability distribution of a beat-error sequence and a uniform probability
distribution as a worst-case reference. In the context of beat tracking it is common
to estimate the beat-error probability distribution with a histogram composed of
40 bins allowing a maximal information gain of Dmax = log2(40) ≈ 5.3 bits. More
details about this metric can be found in [9].

3.3 Baseline

For the evaluation of the proposed model, it is being compared to two baseline
models [4, 5] with state of the art performance. Both provide an implementation
within the madmom library [6]. They utilize a DBN as a post-processing stage for
extracting the final beat timestamps. In this thesis the efficient implementation [20]
is used for all models as a post-processing stage. Both baseline beat-processors have
to be fed audio at a sample rate of 44.1 kHz. To achieve this requirement the audio

42

material from the datasets has to be sampled up for the evaluation, doubling the
sample rate.

The first baseline model [4] uses a multi-model approach to detect beats which
is in turn based on the approach of [2]. From a collection of specialized models
for certain musical styles, it chooses the model with the most appropriate beat
activation function.

The second baseline model [5] is trained to jointly detect beats and downbeats.
To make it comparable to the model proposed by this thesis, both outputs (beats
and downbeats) are added forming a unified beat prediction.

Both baseline models are built upon an advanced recurrent neural network
(RNN) architecture; a BLSTM network. A RNN allows feedback connections that
extend the underlying computational graph to have cycles. RNNs are very popular
NN configurations besides CNNs and are suited for sequence modeling. The long
short-term memory extension allows the network to discern which information to
keep or to forget while processing the input sequence. Due to the bidirectional im-
plementation, future and past information of the input sequence is simultaneously
available for decision making in an offline fashion. Unfortunately, the recurrent
structure of RNNs hinders them from maxing out modern hardware resources which
are highly parallelized like graphic cards. This makes their training slow. More
information about RNNs is available in [14, ch. 10] and about the model implemen-
tations in the respective papers [2, 4, 5].

3.4 Experiments

The final model is configured with a hidden width of 16 channels and a depth of 11
residual blocks followed by two 1x1 convolutions as described in section 2.2.3. This
adds up to a total of 22978 trainable parameters. During training, a dropout of
0.2 has proven to reliably counteract overfitting. An overview of the whole network
configuration is listed in table 2.2.

3.4.1 Training

The TapCorrect dataset is used for training in conjunction with a portion of the Mas-
chine dataset which approximately matches TapCorrect’s annotation count. Both
datasets sum up to a total of 76131 beat annotations. The ballroom dataset is used
for measuring the evaluation loss due to its diversity of genres. The remaining por-
tion of the Maschine dataset and the Beatles dataset are reserved for testing the
actual performance of the model.

The model was trained with batches of 256 training samples. A binary cross-

43

3.4. Experiments

entropy loss measured its performance during the whole training process. An Adam
optimizer was chosen and initialized with default parameters as described in para-
graph 2.1.3, zero weight decay and a learning rate of 0.002. The training ended
whenever the validation loss did not increase over the 50 most recent epochs as an
early stop criteria similar to the work of Davies et al. [8]. The best performing
model state is saved to be used for the final model comparison. An overview of the
training setup is shown in table 3.3.

3.4.2 Hardware and Training-Time

The experiments were run on a desktop PC with a 4 core Intel Core i7 CPU 870
@2.93gHz, 8 GB of RAM and a single NVIDIA GeForce 970 graphics card with 4
GB of VRAM. Due to the hardware limitations of the PC the datasets could not
be loaded fully into RAM and thus had to be loaded from a Samsung SSD 850
EVO with 500 GB. Nevertheless, the performance of the graphics card could on
average be utilized more then 80% after some optimization efforts on the software
implementation.

The training of the final model took 21 hours and 55 minutes for 145 epochs.
Epoch #95 had performed best on the evaluation loss after a training time of 14
hours and 45 minutes. A second run was restored from the best performing epoch
#95 to refine the model. This time the learning rate has been reduced by a factor
of 5 similar to the work of Davies et al. [8]. This second training took additional 12
hours and 16 minutes ending with 182 epochs of which epoch #131 has performed
best after a training time of 5 hours and 9 minutes. This adds up to a total training
time of 34 hours and 1 minute or an effective training time of 19 hours and 54
minutes for the final model from epoch #131.

3.4.3 Evaluation Details

All models are compared to each other on all datasets looking at the complete music
pieces instead of audio chunks as it is done during the training process. The output
sequence of the models are describing the likelihood of a beat being present. This
is also also known as the beat activation curve or function. Instead of using a
threshold on the activation curve to extract final beat positions, a DBN [20] is used
and initialized with the default parameters3. The FPS are set to 100 for the baseline
models and approximately 115 for the proposed model.

With r being the receptive field of the proposed model, the input audio sequence
3BPMmin=55, BPMmin=215, transition-lambda=100, observation-lambda=16 (https:

//madmom.readthedocs.io/en/latest/modules/features/beats.html#madmom.features.
beats.DBNBeatTrackingProcessor)

44

has to be padded with r
2
zeros on both sides to align the original input sequence to

the downsampled output of the model. This is necessary because the model does
not utilize padding (see section 2.2.3).

Table 3.3: Overview of the training and conditioning details of the network

Data Preparation
Channels Mono
Audio Sample Rate 22050 Hz
Zero Padding at borders of a track
Attenuation 6 dB range
Inversion 0.5 probability
Translation (Beat Event) ±96 audio samples
Position (No-Beat Event) random over whole track

Training
Optimizer Adam

Learning Rate 0.002 (0.0004)4

Loss Function Binary Cross-Entropy

Test Datasets Maschinetest, Beatles
Evaluation Dataset Ballroom
Training Datasets Maschinetrain, TapCorrect
Training Samples 76131 beats + 152262 no-beats5

Beat Label Smoothing +2frames (0.5 weighted)
Batch Size 256
Epochs 181

3.5 Results
The predicted beat timestamps are compared to the annotations using the BeatE-
valuation class6 from the madmom library initialized with its default parameters as
described in section 3.2. The whole beat-tracking system based on the final model
of the proposed network architecture and the DBN is further referred to as strided
dilated convolution (SDC), named after its main mechanics.

4Once the stop criterion was reached the first time a second training run with the learning rate
reduced by a factor of 5.

5The no-beat annotation count is two times the beat annotation count to maintain dataset
balance in context of beat label smoothing.

6https://madmom.readthedocs.io/en/latest/modules/evaluation/beats.html#madmom.
evaluation.beats.BeatEvaluation

45

3.5. Results

3.5.1 Beat-Tracking Performance

Table 3.4 shows the performance of the SDC model in comparison to the baseline
models over all datasets. The best performing model on the beat evaluation metrics
is highlighted in bold text.

Table 3.4: Performance of the proposed network architecture in comparison with
the beat detection implementations of Madmom.

F1 CMLc CMLt AMLc AMLt D

Beatles
SDC 0.853 0.621 0.693 0.769 0.870 2.620
BLSTM[4] 0.930 0.793 0.859 0.842 0.914 3.047
BLSTM[5] 0.936 0.809 0.870 0.855 0.930 3.046

Maschinetest

SDC 0.791 0.587 0.638 0.701 0.762 2.863
BLSTM[4] 0.846 0.738 0.758 0.803 0.825 3.118
BLSTM[5] 0.850 0.726 0.748 0.808 0.833 3.259

Maschinetrain

SDC 0.841 0.676 0.707 0.769 0.805 3.016
BLSTM[4] 0.847 0.744 0.761 0.824 0.843 3.066
BLSTM[5] 0.849 0.731 0.756 0.816 0.842 3.172

TapCorrect
SDC 0.808 0.505 0.553 0.723 0.852 2.826
BLSTM[4] 0.885 0.689 0.729 0.816 0.894 3.521
BLSTM[5] 0.853 0.610 0.653 0.816 0.893 3.388

Ballroom
SDC 0.805 0.599 0.616 0.800 0.841 2.849
BLSTM[4] 0.933 0.856 0.876 0.908 0.932 3.475
BLSTM[5] 0.915 0.816 0.829 0.914 0.932 3.368

Investigating table 3.4 in more detail, it is noticeable that both baseline models
are leading the scores across all metrics and datasets. Regarding the f-measure, SDC
is on average about 7% below the better baseline performance with the smallest gaps
on the Maschine datasets. The competitive performance of SDC on Maschinetrain
seems reasonable since the model was trained on it, but this argument does not hold

46

up for the TapCorrect dataset. Looking at the continuity-based metrics, the discrep-
ancy between CML and AML on the TapCorrect dataset indicates that SDC tends
to misjudge beat occurrences while still figuring out the temporal structure. Even
though the SDC performance is worst on the Maschinetest dataset, having a small
gap to the baseline indicates that SDC emphasizes knowledge on music with varying
tempo due the bias towards tempo changes in the dataset itself. Furthermore, see-
ing the baseline models performing worst on the Maschine datasets indicates that
it is more challenging compared to the others. The biggest difference between the
baseline and SDC is on the ballroom dataset. Surprisingly SDC is performing best
on the Beatles test dataset even though it has been used neither for training nor
evaluation. This proves that the SDC model is capable to solve the task of detecting
beats but with room for optimization.

3.5.2 Filter Visualization

Understanding how a NN is making its decisions is in general not comprehensible.
Nevertheless, one way to get an intuition of its internal mechanics is to analyze the
filter kernels of the layers. Therefore the 7 most active filters of the first convolutional
layer of the trained model are shown in figure 3.2. They are displayed in a normalized
representation due to the weight normalization applied to the model as described in
section 2.1.3. Figure 3.2h shows the scalar length g associated to each filter modeling
their impact. These filters are operating directly on the audio input sequence.

An interesting insight is the curvature of the 4 most active filters showing os-
cillations of more or less steady frequencies, eg. filter 1 (3.2b), 2 (3.2c), 13 (3.2f)
and 15 (3.2g). This seems reasonable facing audio material. Looking closely at
filter 15 (3.2g) and 13 (3.2f) having the highest associated scalar lengths, leads to
the conclusion that higher frequencies are providing useful knowledge at this time
resolution. The discrepancy of length scalars g is relative high in this layer, with the
majority of filters being below its mean (mean(g) = 10.37). Moreover, the scalar
length of the filters 4, 6, 7, 9 and 14 is almost zero. This indicates that the model
had problems recovering from not very useful filter kernels which seems like a waste
of resources. One possible solution might be a more gradual channel expansion of
the first layers to allow more efficient utilization of model parameters.

47

3.5. Results

0 5 10 15 20 25 30
x

−1.0

−0.5

0.0

0.5

1.0

y

(a) Filter 0
0 5 10 15 20 25 30

x

−1.0

−0.5

0.0

0.5

1.0

y

(b) Filter 1

0 5 10 15 20 25 30
x

−1.0

−0.5

0.0

0.5

1.0

y

(c) Filter 2
0 5 10 15 20 25 30

x

−1.0

−0.5

0.0

0.5

1.0

y

(d) Filter 5

0 5 10 15 20 25 30
x

−1.0

−0.5

0.0

0.5

1.0

y

(e) Filter 8
0 5 10 15 20 25 30

x

−1.0

−0.5

0.0

0.5

1.0

y

(f) Filter 13

0 5 10 15 20 25 30
x

−1.0

−0.5

0.0

0.5

1.0

y

(g) Filter 15
0 2 4 6 8 10 12 14

filter index
0

5

10

15

20

25

30

35

sc
al

ar
le

ng
th

(h) Filter lengths

Figure 3.2: The 7 most active filter kernels of the first convolutional layer and the
lengths of all filter kernels.

48

4 Discussion

This thesis is targeting the topic of detecting beats in music with varying tempo
by modeling it as a classification problem based on covolutional neural networks.
Therefore a dataset has been created using the Maschine Expansion demo content
of Native Instruments. The audio was reexported with the Maschine software by
utilizing the beat information available in the project files. In this process, random
tempo variations have been introduced for each song, artificially changing the base
BPM of the originally fixed-grid computer-based music. Additionally, the songs beat
information has been exported resulting in highly accurate and consistent annota-
tions compared to hand-made ones. A robotic process automation was implemented
to automate the process of exporting the data from the Maschine software. This
newly created dataset consists of a total of 447 files spanning a total playtime of
12 hours and 36 minutes with 80955 beat annotations. This makes it the largest
dataset among the others used in this thesis. The results of the evaluation have
shown that the f-measure is the lowest on the Maschine dataset of all models. This
seems to correlate with its broader range of tempo variations compared to the other
datasets. Since an automation of the dataset creation process was implemented as
part of this thesis, additional versions of the ME corpus could be created for future
work and also made available to the research community. The tempo variations of
these additional datasets could be between the one created in this thesis and no
tempo variations at all.

Further, a CNN architecture has been proposed for predicting beat sequences
from raw audio without relying on a pre-processing stage converting the audio into
the frequency domain. The architecture utilizes the stride and dilation parameter
of its convolutional layers to successively increase the temporal context of the input
sequence. Residual connections are used to maintain a reliable information flow
through all layers. The beat activation curve produced by the network is further
processed with a DBN to extract the final sequence of beat timestamps. A model of
the proposed network architecture has been trained, evaluated and tested on several
datasets including the newly created one described above. The whole beat-tracking

49

Chapter 4. Discussion

system is composed of the trained model and the DBN, also called SDC.
The SDC achieves an f-measure of 85.3% on the Beatles test dataset which

has been used neither for optimizing the model parameters nor for evaluating the
model’s performance during training. This result proves that the SDC is capable
of solving the problem of detecting beats in music. The SDC has been compared
to two state-of-the-art performing beat-tracking systems as a baseline, showing an
average f-measure difference of 7% to the better performing baseline model. Since
both baseline models are utilizing information from the frequency spectrum, this
leads to believe that the information coming from the frequency domain gives valu-
able insights for detecting beats in music. Hints towards that can also be seen in the
curvature of the most prominent filter kernels of the first layer of the SDC. Their
oscillating structure is modeling frequency content as well. Future work could in-
vestigate an approach combining both domains (time and frequency) to train a NN.
Furthermore, a multi-task approach including more temporal features like down-
beats, tempo and meter could be researched as well as seen in [3]. To improve the
performance of the proposed network architecture, it could be trained on a bigger
collection of data utilizing cross-validation in the training procedure. Results could
be improved further by specializing in specific music styles following the approach
of Böck et al. [4].

The proposed network architecture has been designed in a highly compact fashion
compared to the baseline models. It consists of a total of 22978 trainable param-
eters playing in a similar ballpark as the work of Davies et al. [8]. Similar to the
findings of [8] the proposed network architecture is capable of encoding temporal
information more efficiently compared to the RNN based baseline models. Comput-
ing performance improvements of a CNN based architecture as seen in this thesis
in comparison to the RNN based baseline models have already been pointed out in
the work of Davies et al. [8] with a similar network architecture, parameter count
and baseline. Being able to train the proposed network architecture on moderate
consumer hardware is a nice side effect of its performance-oriented design. In prac-
tice the proposed SDC should be even faster than the model of Davies et al. since
it skips the computation of the FFTs completely.

Future work could adapt the presented approach to beat-tracking to act in real-
time by turning every non-causal decision into a causal one. For this data loading,
padding and timestamp positioning have to be reconfigured as well as adapting the
internal truncation mechanics of the network. As long as the aforementioned ad-
justments are adopted the model could be trained more or less the same way as its
offline version. Having a well-performing realtime beat-tracking system adapting
on varying tempo has a huge potential for improved immediate communication of
rhythm within a computer-based live setup in conjunction with classical instruments

50

played by humans. The task of giving modern technology the tools to interpret and
work with the human element is a complex one but will play an integral part in the
ongoing process of modern music development.

51

Chapter 4. Discussion

52

Bibliography

[1] Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. “An Empirical Evaluation of
Generic Convolutional and Recurrent Networks for Sequence Modeling.” In:
arXiv:1803.01271 [cs]. Mar. 2018. url: http://arxiv.org/abs/1803.01271
(visited on 08/13/2019).

[2] Sebastian Böck. “Enhanced Beat Tracking With Context-Aware Neural Net-
works.” en. In: (2011), p. 5.

[3] Sebastian Böck, Matthew E P Davies, and Peter Knees. “Multi-Task Learning
of Tempo and Beat: Learning One to Improve the Other.” en. In: (2019), p. 8.

[4] Sebastian Böck, Florian Krebs, and Gerhard Widmer. “A Multi-Model Ap-
proach to Beat Tracking Considering Heterogeneous Music Styles.” en. In:
(2014), p. 6.

[5] Sebastian Böck, Florian Krebs, and Gerhard Widmer. “Joint Beat and Down-
beat Tracking with Recurrent Neural Networks.” In: Proceedings of the 17th
International Society for Music Information Retrieval Conference. 2016.

[6] Sebastian Böck et al. “madmom: a new Python Audio and Music Signal
Processing Library.” In: Proceedings of the 24th ACM international confer-
ence. May 2016. url: http : / / arxiv . org / abs / 1605 . 07008 (visited on
11/27/2018).

[7] Roger Dannenberg and Sukrit Mohan. “Characterizing Tempo Change In Mu-
sical Performances.” In: Proceedings of the International Computer Music Con-
ference 2011. Jan. 2011. url: https://www.cs.cmu.edu/rbd/papers/
Tempo-Change-ICMC-2011.pdf.

[8] Matthew E P Davies and Sebastian Bock. “Temporal Convolutional Networks
for Musical Audio Beat Tracking.” en. In: (2019), p. 5.

[9] Matthew E P Davies, Norberto Degara, and Mark D Plumbley. “Evaluation
Methods for Musical Audio Beat Tracking Algorithms.” en. In: (2009), p. 17.

A

Bibliography

[10] Jonathan Driedger et al. “Towards Automatically Correcting Tapped Beat
Annotations for Music Recordings.” en. In: (2019), p. 8.

[11] John Duchi, Elad Hazan, and Yoram Singer. “Adaptive Subgradient Methods
for Online Learning and Stochastic Optimization.” en. In: (2011), p. 39.

[12] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of training
deep feedforward neural networks.” en. In: (2010), p. 8.

[13] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. “Deep Sparse Rectifier
Neural Networks.” en. In: (Apr. 2011), p. 9.

[14] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. url: http://www.deeplearningbook.org.

[15] F. Gouyon et al. “An experimental comparison of audio tempo induction algo-
rithms.” en. In: IEEE Transactions on Audio, Speech and Language Processing
14.5 (Sept. 2006), pp. 1832 1844. issn: 1558-7916. doi: 10.1109/TSA.2005.
858509. url: http://ieeexplore.ieee.org/document/1678001/ (visited
on 10/14/2020).

[16] Kaiming He et al. “Deep Residual Learning for Image Recognition.” en. In:
arXiv:1512.03385 [cs] (Dec. 2015). arXiv: 1512.03385. url: http://arxiv.
org/abs/1512.03385 (visited on 05/08/2020).

[17] Sepp Hochreiter et al. Gradient Flow in Recurrent Nets: the Difficulty of
Learning Long-Term Dependencies. 2001.

[18] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift.” en. In: arXiv:1502.03167
[cs] (Mar. 2015). arXiv: 1502.03167. url: http://arxiv.org/abs/1502.
03167 (visited on 10/15/2020).

[19] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Opti-
mization.” In: arXiv:1412.6980 [cs] (Jan. 2017). url: http://arxiv.org/
abs/1412.6980 (visited on 11/25/2019).

[20] Florian Krebs, Sebastian Bock, and Gerhard Widmer. “An Efficient State-
Space Model for Joint Tempo and Meter Tracking.” en. In: (2015), p. 7.

[21] Florian Krebs, Sebastian Boeck, and Gerhard Widmer. “Rhythmic pattern
modeling for Beat and Downbeat Tracking in musical audio.” en. In: (2013),
p. 6.

[22] Aaron van den Oord et al. “WaveNet: A Generative Model for Raw Audio.”
In: arXiv:1609.03499 [cs] (Sept. 2016). url: http://arxiv.org/abs/1609.
03499 (visited on 08/14/2019).

B

Bibliography

[23] Hendrik Purwins et al. “Deep Learning for Audio Signal Processing.” In: IEEE
Journal of Selected Topics in Signal Processing 13.2 (May 2019), pp. 206 219.
issn: 1932-4553, 1941-0484. doi: 10.1109/JSTSP.2019.2908700. url: http:
//arxiv.org/abs/1905.00078 (visited on 02/17/2020).

[24] Tim Salimans and Diederik P. Kingma. “Weight Normalization: A Simple
Reparameterization to Accelerate Training of Deep Neural Networks.” In:
arXiv:1602.07868 [cs] (June 2016). arXiv: 1602.07868. url: http://arxiv.
org/abs/1602.07868 (visited on 05/12/2020).

[25] W. A. Schloss. “On the Automatic Transcription of Percussive Music - From
Acoustic Signal to High-Level Analysis.” MA thesis. Stanford, CA: Stanford
University, 1985. url: https : / / ccrma . stanford . edu / files / papers /
stanm27.pdf.

[26] Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural Networks
from Overfitting.” en. In: (2014), p. 30.

[27] Richard Vogl et al. “Drum Transcription via Joint Beat and Drum Modeling
using Convolutional Recurrent Neural Networks.” In: Proceedings of the 18th
Inter- national Society for Music Information Retrieval Conference. 2017.

[28] Nick Whiteley, A Taylan Cemgil, and Simon Godsill. “Bayesian Modelling of
Temporal Structure in Musical Audio.” en. In: (2006), p. 6.

C

Bibliography

D

Acronyms

Adam adaptive moment estimation. 16, 17

AML allowed metrical level. 42, 46

BLSTM bidirectional long short-term memory. 3, 4, 43

BPM beats per minute. 38, 39, 44, 49

CML correct metrical level. 42, 46

CNN covolutional neural network. 4, 22, 23, 26, 43, 49, 50

DBN dynamic Bayesian network. 3, 4, 5, 26, 31, 32, 33, 42, 44, 45, 49

DSP digital signal processing. 22

ELU exponential linear unit. 20

FFT fast fourier transoform. 5, 50

FPS frames per second. 31, 34, 44

KLD Kullback Leibler divergence. 42

LSTM long short-term memory. 4

ME Maschine Expansion. 5, 38, 49

MIR music information retrieval. 2, 4, 27

MIREX Music Information Retrieval Evaluation eXchange. 4

ML machine learning. 2, 5, 7, 12, 17, 18, 22

MSE mean squared error. 11

E

Acronyms

NI Native Instruments. 2, 5, 27, 38, 49

NN neural network. vii, xi, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 17, 18, 20, 21, 25, 26, 27,
28, 29, 32, 37, 38, 43, 47, 50

ReLU rectified linear unit. 19

RNN recurrent neural network. 43, 50

RPA robotic process automation. 39, 49

SDC strided dilated convolution. 45, 46, 49, 50

SGD stochastic gradient descent. 13, 14, 15, 16, 21

TCN temporal convolutional network. 4

F

Index

activation function 10, 18, 19, 31, 32

AdaGrad 15

back-propagation 13

cost function 13, 14, 15

gradient descent 12, 13, 14

learning rate 13, 14, 15

minibatch 14

RMSProp 15, 16, 17

supervised learning 7

unsupervised learning 7

vanishing gradient 17, 19, 20

G

