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Abstract

In audio content analysis, there exists a scarcity of methods which can efficiently iden-
tify and retrieve musically similar audio content based solely on its rhythmic or temporal
structure elements. This is mainly because rhythm and structure in sound are easily recog-
nized by listeners but difficult to extract and represent efficiently in an automatic fashion.
As rhythm is one of the physical and perceptual properties which plays a significant role
in the characterization of music similarity, it is important to evaluate the relevance of ade-
quate rhythmic content descriptors for the musical genre classification task, which is one of
the most demanding in the music information retrieval literature. In the context of this the-
sis, a musical genre classification system based on accent-related rhythmic content descrip-
tors is described, implemented and evaluated. Based on an musical accent model, novelty
functions of audio features based on different relevance criteria are extracted. These are
then used to create a rhythmic content representation of the acoustic signal, the beat his-
togram, which serves as a basis for the extraction of features for genre classification. Dif-
ferent implementations of features and their combinations are evaluated and tested. In
order to assess the performance of the rhythm-based classification, other well-known de-
scriptors are also extracted from audio and their performance for the classification task
evaluated as a baseline. The evaluation takes place for five music genre datasets, in order
to allow the comparability of the classification with other results published with respect to
those datasets and to assess the suitability of the predictors for different kinds of musical
genre hierarchies. For the classification part, two supervised methods were used: the kNN
algorithm and the Support Vector Machines. An experimental setup is implemented and
the performance of the algorithms are evaluated through their accuracy. Finally, feature
selection methods are applied in order to identify the most relevant features. Results of
the experiments show promising classification accuracy for the most datasets using the
accent-based rhythmic descriptors. With respect to other audio descriptors, the rhythmic
content ones show comparable results. Furthermore, the SVM algorithm shows better re-
sults for all datasets with respect to the kNN. Finally, feature selection methods allowed
the identification of the best descriptors, which in their turn show comparable results to
the full feature set. In all cases, the result are similar to those in other previously presented
systems, which warrants the use and further evaluation of the proposed method in the
future. Due to the generic character of their calculation, their perceptual relevance and
their adequate description of the rhythmic content of an audio signal, the best descriptors
are hoped to be of value in other related tasks, such as automatic language identification
based on rhythmic cues.
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Zusammenfassung

In Audioinhaltsanalyse, ein Mangel an Methoden, welche musikalisch ähnliches Au-
dioinhalt auf Basis seiner rhythmischen oder zeitlich strukturellen Elementen in einer ef-
fizienter Art und Weise identifizieren und abrufen können, ist festzustellen. Das liegt
hauptsächlich daran, dass Rhythmus und Struktur in Sound von Hörern leicht erkannt
werden können, aber ihre Extraktion und effiziente Repräsentation in einer automatischer
Weise ist eine schwierige Aufgabe. Da Rhythmus eine von den wichtigsten physikalis-
chen und perzeptuellen Eigenschaften sind, die eine Rolle in der Charakterisierung von
musikalischer Ähnlichkeit spielen, es ist wichtig, relevante Deskriptoren des rhythmischen
Audioinhaltes für Nutzung in der anspruchsvollen Aufgabe der musikalischer Genreklas-
sifizierung zu gestalten. Im Rahmen dieser Arbeit, ein Musikgenreklassifizierungssys-
tem, das auf akzent-relevante rhythmische Deskriptoren basiert, ist implementiert und
evaluiert. Mithilfe eines Models musikalischen Akzentes, Novitätsfunktionen von Au-
diofeatures auf Basis von verschiedenen Relevanzkriterien sind extrahiert. Sie sind dann
verwendet um eine Repräsentation des rhythmischen Inhaltes eines akustischen Signals,
das Beat-Histogramm, zu generieren. Letzteres dient als Basis um Features für die Gen-
reklassifizierung. Verschiedene Implementierungen von Features und ihre Kombinatio-
nen sind getestet und evaluiert. Um die Leistung der rhythmusbasierten Klassifizierung
zu beurteilen, andere bekannte Deskriptoren sind auch extrahiert und ihre Leistung wird
als eine Baseline benutzt. Die Evaluation findet für fünf verschiedene Datensätze statt.
Somit ist die Vergleichbarkeit der Ergebnisse der Klassifizierung mit diesen anderer Pub-
likationen gewährt. Ausserdem, die Deskriptoren können dann für unterschiedlichen
musikalischer Genrehierarchien evaluiert. In dem Klassifizierungsteil, zwei überwachte
Klassifizierungsmethoden sind eingesetzt: Die kNN und SVM Algorithmen. Ein experi-
menteller Aufbau ist implementiert und die Algorithmen sind auf Basis ihrer Genauigkeit
evaluiert. Schliesslich, Methoden zu Feature Selektion sind angewendet, um die relavan-
teste Deskriptoren zu identifizieren. Die Ergebnisse zeigen vielversprechenden Genauigkeit
für die meisten Datensätze mit Nutzung der akzentbasierten rhythmischen Deskriptoren.
Bezüglich der anderen Audiodeskriptoren, die Rhythmischen zeigen eine vergleichbare
Leistung. Des weiteren, der SVM-Algorithmus zeigt bessere Ergebnisse für alle Datensätze
im Vergleich zum kNN. Die Methoden zur Auswahl der Features erlauben die Identi-
fizierung der besten Deskriptoren, die vergleichbare Resultaten zu denen des ganzen Deskrip-
torsatzes zeigen. In allen Fällen, die Ergebnisse sind ähnlich zu denjenigen von anderen
präsentierten Systemen, was auf die weitere Evaluation und Nutzung der vorgeschla-
genen Methoden hinweist. Wegen des generischen Charakters ihrer Berechnung, ihrer
perzeptuellen Relevanz und ihrer Leistung für die Beschreibung des rhythmischen In-
halts eines akustischen Signals, es ist beabsichtigt, die beste Deskriptoren in verwandten
Aufgaben zu verwenden, wie z.B. die automatische Sprachidentifizierung basierend auf
rhythmischen Cues.
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Introduction
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1. Problem Description and Previous
Research

1.1. Problem Description

Music, widely defined as organized sound [93], has been a solid part of human culture since
its beginning and bears great importance to humans as an acoustic medium, alongside
with speech. In contrast to the latter, its purpose is not primarily to be used as a tool for
efficient communication of facts and ideas, as its depth and openness to interpretation is
quite phenomenal. Music is, among other things, a medium which serves the communica-
tion of feelings and emotions. It also serves as the motivation and companion for human
movement or dance, and is widely regarded as a means of pleasure and enjoyment. It is
for all these reasons that it continues to be a mainstay of human behavior and occupation,
but also serves as an inexhaustible subject for discussion, research and analysis, both from
a theoretical and from a technical perspective.

The richness encountered in music is a consequence of its importance: Music comes
in countless forms and varieties, which traverse the boundaries of culture and historic
period. Musical excerpts which share common elements are grouped under categorical
labels known as genres. Those labels, albeit subjective in nature, help listeners to define
in what way one musical excerpt differs from another, or to find similar excerpts to ones
heard before based on specific acoustic, perceptual or cultural aspects. One very important
dimension of music concerns its temporal structure - what is often summarized under the
concept of rhythm. Together with harmony and melody, rhythm is one of the fundamental
aspects of music - and, in fact, of any acoustic signal [69]. However, due to the semantic
gap between the perceived rhythmicity and the manifest temporal structure of the audio
signal, the definition, description and extraction of rhythm presents a challenging research
subject, which is far from conclusion.

Researchers and scholars of music theory have analyzed music since ancient times, re-
sulting in the emergence of numerous models of musical structure and content. Especially
in the case of western, tonal music tradition, a stable knowledge framework has been pro-
duced and refined, remaining applicable for most of contemporary music. Likewise there
has been much research in the areas of music cognition and psychology, mostly in the
twentieth century, attempting to illuminate the ways listeners perceive and process musi-
cal signals, as well as which behavioral effects are related to the listening of music. One of
the most interesting aspects combining these two views lies in the capability of listeners to
easily and quickly extract abstract information from musical content (e.g., a song’s rhythm
or the genre to which it belongs [34]) with just a minimal amount of acoustic information
available to them.

With the advent of the internet era, the automatic processing of audio signals became
more relevant and, at cases, even necessary [31]. At the technical level, fully automatic
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1. Problem Description and Previous Research

processing of music has not been possible until relatively recently, but advances in infor-
mation technology in the last twenty years have allowed the emergence of various tools
and applications. The interdisciplinary field which deals with this processing is Music
Information Retrieval (henceforth MIR), and combines the research areas of computer sci-
ence, engineering and signal processing with music theory and auditory perception and
cognition [27, 66]. One of the most important subfields of MIR is Audio Content Analysis
(henceforth ACA) [52], which focuses on the automatic analysis of digital audio signals
and the extraction of useful information from them. This last area is also the focus of the
thesis at hand.

One of the most important applications in ACA, automatic musical genre classification [74],
addresses issues which have emerged due to the huge amount of digital audio material
available to everyday users since the 1990s. With individuals and institutions having ac-
cess to the equivalent of thousands of hours of sound material and few or incomplete
metadata to accompany it, interesting questions arise: how can one organize, browse and
analyze efficiently such a massive amount of information? Furthermore, how can this
be performed in a fast and computationally efficient way, while at the same time retain-
ing perceptual relevance of the information extracted? The general field addressing such
subjects related to sound in general is called audio signal classification. Musical genre classi-
fication aims at solving the problem of automatically classifying a given musical excerpt to
one or more genres, based on information extracted directly from the acoustic signal - its
content. Given the complexity of music and the fuzziness of the definition of musical genre
[34, 3]), the task of performing efficient and accurate musical genre classification emerges
as non-trivial. Its relevance is however warranted, as it represents a broadly defined, very
ambitious task with numerous applications [74].

ACA systems for automatic genre classification consist of a feature1 extraction and a
classification module [52]. While the choice of the classifier is relatively arbitrary and
based mainly on performance issues, an important subject concerns the extraction of suit-
able audio descriptors for the considered application. With an almost endless amount of
features and their combinations to extract ([52, 70, 67]), the design and choice of relevant
descriptors is a difficult task. In the context of more specific applications, the features to
be extracted are determined mostly based on the desired outcome, e.g., in beat-tracking,
features must be found which allow an efficient and valid extraction of the dominant pe-
riodicity in the signal. However, in musical genre classification practically all categories
of features may be relevant to the task [52, 74], which renders the search for appropriate
features quite arduous. As such, it becomes evident that the design of more elaborate and,
at the same time, perceptually meaningful features, or the reduction of the problem to a
specific aspect of musical content is potentially a good strategy.

The design of descriptors for automatic musical genre classification is a much researched
topic in audio content analysis the last years. Unfortunately, it has received far less atten-
tion then the subject of classification, since, in contrast to the latter, it is domain specific:
knowledge about the domain of application has to be incorporated when attempting to
produce novel, adequate descriptors. When dealing with sound, this prior knowledge

1The term feature will be used interchangeably with the term descriptor throughout the text. They both refer to
low-level, measurable quantities which can be extracted directly from the audio signal or a transformation
thereof.
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concerns either perceptual matters, which help create features which try to imitate the
way listeners perceive audio stimuli, such as perceptual models of loudness; or theoretical
considerations, such as models of musical structure (e.g. pitch theory or harmony), which
have been used up to date for the creation of relevant features. One of the subjects which
has received somewhat less attention is rhythm-based genre classification, since this aspect
of music is very difficult to quantify in a satisfactory manner which allows the extraction of
numerical features. However, there is a number of publications which have dealt with the
subject of automatic rhythm description. Furthermore, the related subjects of beat tracking
and music similarity have provided a basis for the design of relevant rhythmic descriptors,
albeit with a focus on singular aspects such as tempo. A more detailed discussion about
such approaches will be given in section 1.2. It suffices here to point out an important
shortcoming of previously applied methods: The descriptors used up to now give only
moderate classification results with comparison to other features, since their scope is lim-
ited, i.e. they do not take into account the different levels of rhythm inherent in the audio
signal. Since the design of new features based on mathematical considerations is relatively
easy in comparison to a more conceptual approach, the current situation of rhythm-based
genre classification shows an abundance of subfeatures for the classification task, but only
a few methods for extracting perceptually relevant periodicities from the signal in a mean-
ingful way. Especially, the number of studies attempting to connect musical theory with
the feature extraction process are relatively few; to our knowledge, none of them has been
applied in musical genre classification up to date.

In this context, this thesis is concerned with the problem of automatic genre classifica-
tion of musical signals with the use of adequate rhythmic content descriptors, derived in
part from a music theoretical approach concerning rhythm and its perceptually important
constituents, accents. The parts of designing new features and their extraction, classifica-
tion and the evaluation of the results, as well as individual areas which are involved in the
task are described in detail. Those questions are linked with the matters of musical genre,
rhythm and the features which can be extracted that describe the latter in a useful way, so
that automatic musical genre classification can be conducted efficiently. Furthermore, the
finding of suitable descriptors for the automatic classification task can help provide valu-
able insights regarding the way genre classification is performed from human listeners and
help the improvement of music retrieval applications.

1.2. Previous Research

As Scheirer [75] and Tzanetakis [91] point out, the precursor of musical genre classification
is found in the area of automatic speech recognition (ASR), where feature representations
of the speech signal are used to distinguish phonemes in an audio stream or even at a
higher level, for example in speaker recognition. Expanding this idea, the audio signal to
be classified does not comprise only speech, but also music or other types of audio, and the
categories to which it can be classified into can also be more diverse. Those considerations,
along with the increasing demand for automatic indexing and browsing systems for the
internet and music industry has spurred much research and led to the development of
various musical genre classification systems the latest years, which will be discussed in
more detail in the following.

5



1. Problem Description and Previous Research

In common musical genre classification approaches up to date, the acoustic material to
be categorized is in the form of digital audio data (audio samples). Since the samples
cannot be used directly for the classification (as their dimensionality is extremely high,
the information in them very confounded and the gap to the abstract concepts used by
listeners too big [74], there is a need to create reduced but relevant (in the sense of useful)
representations of the audio data. There are several matters which come into consideration
while attempting to design and construct a musical genre classification system [74, 3]:

• Properties to be represented for genre classification Which musical and/or percep-
tual properties represent musical genre and can (or must) be taken into considera-
tion?

• Relation of perceptual properties to features and feature design How do these
properties relate to the actual features (numerical values and quantities) to be ex-
tracted from the signal?

• Classification methods Which classifier should be used in a specific implementa-
tions and what are the advantages and disadvantages in each case?

• Evaluation of genre classification How can the performance of such a system be
evaluated in a meaningful way and what do the results signify about the dataset and
the features used?

All of those subjects are relevant for the thesis and will be discussed in some depth in
the following chapters. It must be noted in advance that a broadly defined category such
as genre can not be fully described through the variability explained through acoustic fea-
tures alone [74, 3]. However, since the focus of most approaches lies on automatic process-
ing, relevant studies have attempted to extract as much information as possible from the
signal, in order to ensure a connection to all perceptual and musical aspects of the signal:
timbral, tonal, dynamic, temporal (rhythmic), instrumentation-related, production-related
and others [74, 52]. Such approaches have given encouraging results and could even be
suitable for commercial applications, as they provide a very comprehensive representa-
tion of the signal at hand, with a number of publications which have explored the problem
and became very influential in this aspect. We will give here a brief account of the most
important musical genre classification studies in the last years. It must be noted that only
publications conforming to the standard scheme of audio content analysis, i.e. feature
extraction followed by classification, will be mentioned here, leaving aside others which
depart from this model using either symbolic approaches or other schemes.

Scheirer and Slaney In one of the earlier works in automatic audio classification, Scheirer
and Slaney [75] propose a system for the discrimination of speech and music signals. They
extract features from the audio excerpts which pertain to different aspects of their tempo-
ral and timbral content. They proceed in using a Gaussian Mixture Model (GMM) and a
k-Nearest-Neighbor (kNN) classifier for the multidimensional classification and achieve
good discrimination results for speech and music in a broad dataset, which is however
unfortunately not documented in detail.

6



1.2. Previous Research

Foote Foote [32] proposes a method for audio classification and retrieval which has par-
allels to the task of content-based image retrieval. He focuses on detecting similarity be-
tween different musical signals by applying an mel-frequency cepstral coefficient param-
eterization of the signal. He then uses a supervised vector quantization method to extract
statistics about the musical signal, serving as ”templates” for the classification, which is
based on a distance metric between different templates.

Tzanetakis et al. In their seminal work [91], Tzanetakis et al. propose an automatic
classification system for audio signals which operates on a simple hierarchy of ten mu-
sical genres with two sub-genres, although they also consider non-musical signals such as
speech. They use three categories of frame-based features, referring to the timbral texture,
pitch content, and rhythmic content of the audio excerpts. For classification, they employ
also a Gaussian, a GMM and a kNN classifier. Their results show an overall classification
accuracy of 61% and is one of the most pioneering in the area of musical genre classifica-
tion. Conducting a listening experiment, they show that this classification rate is actually
close to the one achieved by human subjects. In a related publication, Li and Tzanetakis
[56] present a classification scheme which is based on the same feature set and dataset
as in [91]. However, they use Linear Discriminant Analysis (LDA) and Support Vector
Machines (SVMs) for the classification. This study can be seen as a continuation of the
work in [91] and presents a deeper evaluation of the features used therein. The results are
comparable to the ones in the previous study, but show the need for using more feature
combinations and classifiers in musical genre classification studies.

Burred and Lerch In a work presented shorty after [91], Burred and Lerch [14] apply
an hierarchical approach to the task of automatic musical genre classification. They also
extract three categories of frame-based features (timbral, rhythmic and other, more tech-
nically oriented quantities) as well as MPEG7 descriptors to represent the content of an
audio excerpt and use a Gaussian Mixture Model for the classification phase. However,
they focus on performing the classification in an hierarchical scheme, since that provides
a more accurate classification, and evaluate the features used in a systematic way. Their
results are promising and will be taken into account in the present study.

Gouyon et al. In 2004, Gouyon et al. [39] proposed an automatic musical genre classifica-
tion scheme which is based on rhythmic descriptors only, with help of a Nearest-Neighbor
classifier. They focus on this aspect of the musical content because of the relevance of
rhythm for musical genre classification and in order to create features for the classification
which bear a close relationship to the cognitive patterns which are used from humans in
order to perform the genre classification task. The features they used will be described
more closely in part II, as they are of relevance for this work as well. One of the impor-
tant elements of this study is that they also evaluate the descriptors in a systematic way,
allowing to pinpoint those which provide a good classification performance.

Lidy and Rauber Lidy and Rauber [57] also focus on rhythmic content descriptors, but
additionally examine the importance of psychoacoustic transformations for the calculation
of the audio features. One of the novelties of the study is the use of multiple datasets and
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multiple feature combinations for the classification, resulting in an increased count of ex-
periments. They use SVMs for classification and calculate various performance measures,
so as not to be binded only by the accuracy of the algorithms. Their results are promising
and highlight the importance of both rhythmic content features and SVMs for automatic
genre classification tasks.

Bergstra In his master’s thesis, Bergstra [8] presents an automatic genre classification
system which is based on a variation of a very often used features, the MFCCs. He achieves
good classification accuracy on a small dataset, while at the same time examining the effect
of different parameters on the genre classification and various machine learning methods.
In two related publications [9, 10], he examines the subjects of the feature aggregation and
the dataset used more closely.

West West [96] introduces a new classification scheme, concentrating on the problem of
increasing accuracy while using well-known predictors which have already been tested
extensively. He also focuses on the parameters of feature extraction in order to quantify
their effect on classification accuracy. The features are then evaluated on a small dataset,
while the study shows good results for several classifiers.

Mandel and Ellis Mandel and Ellis [61] use whole-song level features and SVMs for
artist and excerpt classification. Their dataset is a subset of the uspop2002 and the features
used mainly MFCCs. Their contribution lies mainly in the use of support vector machines
for classification, along with specific distance metrics and methods for parameterization.

Soltau In his diploma thesis [85] and a related publication [86], Soltau analyses a musical
genre classification system in depth. He uses neural networks and HMMs as classifiers,
and focuses also on the temporal structure of the music. To that end, he derives a transfor-
mation of the audio excerpt in abstract acoustic events, from which he extracts statistical
features, and uses them for the recognition of the genres in a small dataset of modern mu-
sic. His results are promising, although his model does not conform completely to the
feature extraction and classification scheme used, for example, in [91, 14, 39].

Scaringella and Zoia Scaringella and Zoia [73] present a system which uses timbral and
rhythmic features for a medium-sized dataset. The excerpts are then classified through
the use of SVMs, Neural Networks (NN) and Hidden Markov Models (HMMs) with spe-
cific implementations. They report good results on their version of the classifiers, which
warrants their further use.

Dixon et al. Dixon et al. in [25] work with the same dataset as in [39] and also extract
rhythm related features, pertaining to the tempo and other periodicities in the signal. Their
extracted representation is called a rhythmic pattern, which they then use to derive fea-
tures and classify using a kNN classifier. Their results using the rhythmic patterns alone
are not extremely good, but in combination with other statistical features they achieve a
good accuracy on their dataset.
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This list is by no means complete, as it focuses on the approaches which are relevant to
the work at hand. The multitude of the above approaches shows that musical genre-based
classification has been a crucial research topic with a steadily rising number of interesting
results. However, two possible issues exist when implementing such approaches ([74]):
First, the lack of parsimoniousness when selecting a descriptor set, which leads to the curse
of dimensionality2; second, the lack of information about which aspects and for what rea-
son exactly are important in defining genre. One solution to overcome both problems is
to take into account only one perceptual quality of the music and try to build descriptors
which are representative of this quality. To this end, we will choose to focus later in the the-
sis on those publications which focus on one specific aspect of music, namely its rhythm.
Previous work done in this area includes the mentioned work of Gouyon [39, 40], who has
examined in depth the evaluation of rhythmic descriptors alone for genre classification.
However, he has also based his research on other findings ([14, 91, 57, 55]), which have
also used and evaluated rhythmic content features. An important part in trying to extract
such features concerns the definition of rhythm itself and its representation or description
through automatic systems based on low-level features extracted from the audio signal.
In general, the features extracted and the system used depend heavily on the application
at hand. A comprehensive review of rhythm description systems can be found in [40]. In
chapter 4, more information will be given on possible rhythm description strategies with
a focus on the ones relevant for this thesis.

Before continuing to the following chapters, two important remarks have to be made
with respect to the approach followed in the thesis. In this work, the system at hand has
the classical form of an audio content analysis system [52], in which features (quantities
corresponding to properties of the acoustic signal) are extracted directly from the signal,
and then used as input for machine learning classification algorithms which allow their
automatic classification. Thus, the discussion will be limited to methods conforming to
this paradigm. An important distinction to be made here concerns the context of classi-
fication: audio recognition and classification can be performed either with knowledge of
the categories in which the audio samples should be classified (one speaks of supervised
classification in this case); or with a category of algorithms and statistical methods which
do not need any prior information about the classes to which the audio belongs prior
to classification and attempt to ”cluster” the audio samples with respect to the statistical
properties of their feature representation (unsupervised classification). Because of the much
more interesting nature of the first category of problems and the mathematical and compu-
tational robustness of methods associated with it, we will consider only such approaches
in the context of this thesis. Of course, such approaches bear the drawback of the need of
manual classification of the samples prior to classification. However, since all the datasets
considered here are already manually labeled, this does not represent a problem in the
present work. We will give some more information about supervised and unsupervised
methods for automatic genre classification in chapter 5.

2The term curse of dimensionality refers to the problem occurring with the use of a large number of possibly
irrelevant or redundant features in classification problems, which can lead to poor classifier performance.
More information about the problem will be given in chapter 5.
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2.1. Thesis Aim

In this work, a similar approach to the ones described in section 1.2 is adopted. The aim,
however, consists on focusing only on the rhythm (or the temporal structure) of the music
and the rhythmic content features associated with it to perform musical genre classifica-
tion. Thus, a differentiated view in the contribution of rhythm to the recognition and clas-
sification of musical genres can be given. A musical work, as every acoustic signal, evolves
in and throughout time, and the evolution of the constituent parts is what drives the at-
tention and helps to ”follow the music”. In the context of this thesis, the concept of rhythm
encompasses the temporal structure of the signal-inherent qualities. Beginning from the
acoustic surface of the signal, human listeners can perceptually derive many other abstract
temporal representations, such as the meter, the beat or a specific and repeated rhythmical
pattern of a musical quality, which then allow the calculation of similarity between the
signal at hand and others or their belonging to a common class. It is those patterns which
are to be represented through appropriate features in this thesis.

An important cue to extracting the aforementioned rhythmic patterns present in the
signal and generalizing on their basis are accents, or points of perceptual prominence in
the acoustic signal. These can be defined on the basis of a music theory approach, with
the purpose of obtaining salient features, much as human listeners do when they try to
classify music in genres ([74, 34]). This part is of great importance, because an appropri-
ate feature design is the key to finding relevant features that can allow for the successful
function of a classification algorithm. Based on those accents, novelty detection methods
are used to quantify the amount of change pertaining to events associated with specific
accentuations in the signal, which provide the ground for the creation of periodicity rep-
resentations capturing the relevant rhythmic structure of parts of the audio excerpt. The
features calculated on these representations which can eventually separate not only rhyth-
mically similar pieces, but also those belonging to the same genre. As mentioned above,
the task of musical genre classification is one of the most demanding and challenging in
ACA, and by far not exhausted as a research area. Considering, however, that temporal
(rhythmic) cues are sufficient for human subjects to group together genre similar musi-
cal excerpts [34, 58, 72], the finding of suitable features seems justified: One can think
about the standard and recurring idiomatic expressions present in well-defined genres,
such as the off-beat riffs and kick drum in most reggae music songs, the syncopated base-
line typical for salsa, the articulation of the beat triplet in a waltz excerpt or the verbose
and fine-grained beat/impulse sequences in techno music. However, to capture such pre-
cise constructs in more complex (although relatively well-defined) genres such as jazz or
experimental music could be much more demanding - perhaps it is exactly the absence of
repeated structures and the presence of great diversity which can help define those genres
rhythmically. In this context, the thesis thus attempts to clarify the following questions:
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• Is it possible to conduct a successful genre classification of musical pieces based only
on rhythmic descriptors and if yes, to what extent?

• What are the features which allow for high classification accuracy and how can they
be derived from a priori knowledge such as through an approach delivered by mu-
sical theory?

Following these research questions, the approach of this thesis is essentially an exper-
imental one. After a description of established rhythmic description systems for musical
genre classification, novel features are proposed, which are based on categories of defined
accents and a correspondence between those accents and the features which can describe
them. Those accent-based descriptors aim at explaining as much rhythm-related variance
in the signal as possible, taking into account different levels of accentuation - not only re-
ferring to the signal envelope (loudness-related accentuation) but also to spectral changes.
This is achieved by extracting novelty functions which then serve as input to create a peri-
odicity representation of the signal. The subfeatures calculated on the basis of this repre-
sentation provide feature vectors, which serve as a compact representation of the rhythmic
content of the signal. Those are then used to train a supervised classification algorithm,
allowing it to learn how to classify new signals with the use of the rhythmic features to
a specific genre. This procedure is repeated for five datasets, two supervised classifica-
tion methods and different parameter settings with the goal of evaluating the classifica-
tion performance. As a comparison baseline, other frame features (which do not describe
only rhythmic content but other aspects of the music, such as timbre, instrumentation and
tonality) are also extracted and their performance evaluated, both alone and in combina-
tion with the rhythmic content features. Since the features are highly correlated to each
other and, as such, perhaps irrelevant or redundant for the classification, feature selec-
tion methods are applied in order to pinpoint only those features which allow for good
classification accuracy and are therefore, adequate rhythmic content descriptors.

Although the number of publications concerning musical genre classification and au-
tomatic rhythm description is relatively large, not many works exist which discuss the
automatic recognition and use of accents in the musical signal. One attempt comes from
Müllensiefen et al. [64]: They define an exhaustive list of binary accent rules, which per-
tain to all possible accentuation effects in the music and conduct listening experiments as
well as clustering, in order to test their salience and usefulness. Phenomenal accents (or
accents actually manifested in the signal) were used from Seppänen in his thesis [81], in
order to find perceptually prominent points in a beat sequence, which could be candidates
for metrically salient beat positions in the signal flow. He then uses the extracted metrical
grid to create a real-time beat tracking system which is then evaluated. Those publications
have shown promising results regarding the definition, extraction and use of accents in
order to perform beat tracking as well as their perceptual relevance. To our knowledge,
however, accent-based rhythmic features have not been explicitly used for musical genre
classification yet. The next chapter presents the aim of the thesis with respect to this ob-
servation.
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2.2. Applications

Answers to the questions posed in 2.1 can be of importance in three main areas:

1. The clarification of the relationship between perceived and automatically extracted
rhythm

2. The adequacy of rhythmic content descriptors extracted from digital audio for musi-
cal genre classification or other related tasks.

3. The creation of successful and efficient musical genre classification systems based on
rhythmic elements of the music.

Furthermore, results can be helpful in the design and implementation of automatic sys-
tems for rhythmic similarity, genre recognition based on rhythm and music recommenda-
tion systems. As such applications (e.g., LastFM and Pandora) become more and more
prevalent, their profiting from the results seems a desirable goal.

The thesis is structured as follows:
In the second part, a brief account of the theory underlying the fundamental aspects

of the thesis is given. First, an introduction to music theory and cognition, focusing on
the concepts of rhythm in general and accent in particular, is given. Second, information
regarding the feature extraction process is provided, with a focus on the automatic de-
scription and extraction of rhythm. Finally, an introduction to machine learning and the
classification methods used in this work is presented.

In the third part, the method and implementation of the novel features describing rhythm
is presented. Specifically, the design of the features which correspond to accents in music
is laid down, together with the subfeatures resulting from them and their relevance to the
perceived rhythm. Furthermore, the specifics of the feature extraction and the details of
the classification process are presented and explained.

The fourth part describes the experimental setup used to test and evaluate the rhythmic
content and other descriptors, as well as the datasets used in the thesis. Subsequently, the
results of the experiments are presented in table form.

In the fifth and final part, the results and the approach are discussed, in order to pin-
point advantages and disadvantages in comparison to other methods and to gauge the
possibility of using those descriptors in other similar task. Finally, an outlook is given
as to which tasks are further conceivable for the improvement and use of the approach
presented here.

As detailed explanations and mathematical foundations of the subjects presented here
can also be found in well-known and acclaimed textbooks and publications, we will focus
only on the most relevant aspects for this work and otherwise refer to the literature for
further reading. More specific information about the features and the datasets employed
here, as well as more detailed results of the evaluation can also be found in the appendices.
We assume that the reader has some background concerning the subjects of digital signal
processing, statistics and basic music theory.
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3. Rhythm

In order to properly analyze the rhythmic content descriptors which are presented and
evaluated in this work, an introduction to the subject of rhythm and its related concepts
is needed. In this chapter, definitions and explanations are given concerning rhythm in
general and the important notions of beat and musical meter. Finally, the concept of accent
and its relation to rhythm is outlined.

3.1. Definition of Rhythm

Rhythm is one of the fundamental dimensions of analysis and perception of music. Al-
though difficult to define, it is a very familiar concept to both musicians and listeners.
The term refers to temporal structure and is therefore primarily not music-specific ([69],
p.96); it is used to generally designate a temporal structuring of events which are in close
relationship to each other (possibly having the same cause), bear significance for atten-
tion (i.e., they are in some way accented) and contribute to the creation of perceived sound
patterns through the alternation and repetition of different layers of similar elements. In
other words, every arrangement or structuring in time of similar sound events (such as
the onsets of notes, musical chords or the beats of a drum) can denote a rhythm, one of its
key properties being that it describes an explicit, recurring pattern of sounds, phenome-
nally present in the acoustic signal [53]. The pattern can refer either to the sound events
themselves or to the durations of the intervals between them. However, not all possible
patterns of sound events are perceived as different rhythms, making clear that the acoustic
realization of rhythm and its perception are two separate phenomena.

There have been numerous attempts to give an acceptable definition of rhythm. One
of the first ones comes from Platon and Aristoxenos, who denote rhythm as ”measure of
movement” and ”order of times” (i.e. durations) which is accessible to the senses [80].
From that point on and until modern times there have been many other definitions, which
however do not deviate much from the original one. As this work concerns itself primarily
with modern, western and tonal music, we will consider some later definitions which at-
tempt to capture a more general essence of rhythm. Cooper and Meyer [18] define rhythm
as the way in which accented and non-accented notes are grouped in a time unit (the mea-
sure). Joel Lester [54] gives a definition which considers the patterns of duration between
musical events. This definition has the advantage that it takes into account events pertain-
ing to various musical qualities, giving rise to the idea that more than one rhythms can be
defined for a musical piece. One of the most interesting definitions comes from Lerdahl
and Jackendoff, which consider rhythmic structure to be result of the interaction of indi-
vidual rhythmic dimensions ([53], p.12), which mainly concern the perceptual grouping of
similar elements and the inferred regular patterns of strong and weak beats, which they
refer to as the meter. Fraisse denotes rhythm as ”...the ordered characteristic of succession”
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[33] and stresses its close relationship with tempo, whereas London [59] defines rhythm as
”the sequential pattern of durations relatively independent of meter or phrase structure”.

More psychologically or cognitively motivated definitions link rhythm to the perceived
patterns generated by recurring events and how they interact and are categorized by lis-
teners ([90, 46, 49, 60]). Here, rhythm refers to what we perceive, when we are listening
to a piece unfolding in time and the abstract representation we are able to create from
it. It is, thus, very closely associated with expectation, reaction and the optimization of
information processing [44]. Furthermore, rhythm is perceived categorically ([16, 17, 79]),
i.e. a specific temporal pattern of musical events is identified as such, even when there
are some deviations from the basic form of the pattern or when it is implemented with
different events. This points towards a strong tendency to a extract a general pattern
from the audio signal, something which is linked to the perceptual phenomenon of me-
ter. There are many approaches as to how listeners extract those rhythmic patterns: One
of the most well-known is the dynamic attending theory from from Jones et al. [46] which
propose that perceived rhythm is the result of different attending modes (future-oriented
and analytic) which involve anticipatory behaviors to coherent temporal events and their
durational patterns. An interesting experimental approach has been undertaken by De-
sain and Honing [21], which could verify the categorical perception of rhythm proposed
by Clarke ([16, 17]) and Schulze [79]. The main point of those studies can be summarized
as follows: the percept of rhythm results from the ability of listeners to extract an abstract
representation from similar, recurring temporal patterns of musical events.

To recapitulate: When focusing on the acoustic signal itself, rhythm can be broadly de-
fined as the specific, repeated patterning of accentuated and non-accentuated events and
durations which is phenomenally present in the signal, and which results through the in-
teraction between patterns comprising groups of similar elements. As such, rhythm is
closely related to periodicities inherent in the signal, and to the quantities (e.g., loudness
or pitch) which give rise to them. This working definition will be used in the context of the
thesis, as it provides a stable ground for the extraction of meaningful representations of
rhythm. It must be noted that very often a confusion occurs between the concept of rhythm
itself - as the general form of the temporal structure of musical events and durations - or
the rhythm of a musical piece, which refers to the recurring patterns of notes and durations
in this specific excerpt (such as for example, waltz or samba). Here the term rhythm will
be used with its first meaning unless mentioned otherwise, whereas the respective terms
denoting a specific rhythmic pattern will be used to refer to the second meaning. At this
point it is important to look more closely at some concepts which are related to rhythm
and paramount to its understanding: meter, beat and accent.

3.2. Beat and Meter

3.2.1. Beat

The term Beat refers to a perceived or real sequence of regularly spaced sound events, but
which have no specific accentuation pattern associated with them. In short, the beat is a
method of time measurement or division of a time span in intervals of the same duration,
where none of the division points bears special significance for attention (or is actually
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different in comparison to the others in some way). Another usually applied term for beat
is pulse, as the regular construct of a beat represents that of a pulse train - for example, the
stroke of a clock or the ticks of a metronome. This kind of basic temporal grid with which
one can establish a time measurement unit for a musical piece also plays a big role in the
definition of tempo, as the amount of beats in one minute gives us the tempo value of a
song. As there can be more than one levels of beats in a piece (e.g. one main beat and its
denominations, even if they do not appear explicitly in the signal), the term tempo refers
to the speed estimate which is extracted from the main beat, also known as tactus ([53]).
Once a beat has been established (mentally) or recognized (in reality), human listeners to
stress or accentuate some of the onsets perceptually. That leads us to the notion of meter.

3.2.2. Meter

Meter is a much discussed subject in music theory. The most important property of meter is
that it is a perceptual content (contrasted to rhythm), which is inducted from the phenome-
nally accented points of the music surface [60]. Furthermore, meter is hierarchical, regular
and stable: Combining those qualities allows meter to serve as a kind of enhanced tempo-
ral grid, which helps shape our expectations about ”what comes next” and thus be able to
anticipate and predict events in time ([60, 44]). In this sense it reveals its role in helping to
create the categorical perception of rhythms, as those patterns which bear a certain rela-
tionship to a specific temporal grid. Although meter is visualized as a train of pulses with
different salience, or durationless events in time which conform to a highly regular pattern
of hierarchical accentuation, the onsets of actual musical events does not have to coincide
with the points in time where those pulses are situated. However, in order to establish
a meter, some regularity has to be manifested in the acoustic signal in the first place: the
meter is inferred exactly through the repetitions of similar events with well-defined du-
rational patterns. Once a meter has been established, all other events are perceived with
reference to this regular pattern. In light of new events which do not concur with the in-
ferred pattern, a new meter will be extracted and established [60]. This points towards the
character of meter as a cognitive phenomenon which primarily serves the listener’s need
to be able to impose some structure on very complex or even inconsistent events, so as to
maximize the extracted information while minimizing the available attentional resources
[60, 44].

The direct extraction of beat and meter from acoustic signals is a very interesting re-
search subject which has attracted much attention the last years [81, 76, 23, 35, 94]. How-
ever, because of its complexity and the somewhat specific character of the results provided
from it, and which are not necessarily of relevance for musical genre classification, we will
focus on more abstract, statistical properties of the rhythmic content of a musical piece
which can be manifested through features extracted directly from the audio data. In this
and the previous section, the concept of accent has been used extensively to denote points
which are in one or more ways emphasized for attention. In the next section we will take
a close look at this important concept, as it is also of added relevance to this work.
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3.3. Accent

In the context of this work, it is of great interest to investigate and attempt to define the
concept of accent. Accents play a central role in music, serving as demarcation objects for
new sequences, but also as carriers of meaning, denoting, for example, a point or part
of high importance in a musical piece. Furthermore they function as tools to enhance
interpretation and convey strong emotions to the listeners. Very often, accents are set
willfully by the interpreter, for instance by playing a certain note substantially louder than
the rest, i.e. emphasizing it; but accents can also emerge and be perceived as intrinsic to the
musical structure surface, even if the score is not signifying them explicitly. Furthermore,
accents are also perceived in non-musical signals, or even artificially produced sounds,
where no interpreter is present [60].

To account for this complex character, a definition of accent is needed which is either
abstract enough to encompass all possible cases, or which differentiates between types
of accents and how they originate. This subject has occupied music theory and sound
scientists for quite a while, and virtually all scholars which have examined the temporal
structure of sound and music have made a contribution or at least a reference to the concept
of accent. Here we will focus on certain treatments which attempt to explain and describe
musical structure in general; in their context it is most possible to receive a good insight
about accents which is not fragmental in nature, but rather set in the premises of a more
general theory. It must be made clear again at this point that these theories mainly concern
themselves with the discussion of western tonal music; however, the treatment of accents
is more general and can be interpreted as valid for music and sound in total.

Cooper and Meyer In The rhythmic structure of music [18], Cooper and Meyer define an
accentuated sound as ”one, which is similar to its neighboring sounds, but differs in some
aspect enough from them, in order to stand out for perception” [18]. This kind of definition
is a good example for a very general view of the concept, which does not make any specific
statement about the nature of deviation; this can pertain to any aspect of the sound, e.g.
its duration, loudness, pitch, timbre etc. However, it sets a very basic premise, that can
guide the search for accents in an acoustic signal, and which can be rephrased as follows:
Every point (and the sounds associated with it) of perceived change or differentiation in
an acoustic/musical signal is a candidate for bearing an accent. To give a very simple ex-
ample: The onset of a new note or chord always denotes an accentuated point or event in
time; while the sound is being held or slowly dissipates, no accent can be attributed to it.
However, a question directly arises: Is really every sound sequence which is held steady
over time a totally non-accentuated event? A positive answer would seem to contrast with
our perception of meter (at least in musical signals), where a listener, under the guidance of
his own ”internal metronome” ([60]) assigns importance over regular points in time, even
if no event is there which explicitly brings novelty to the structure. It seems, therefore, that
a definition is warranted which takes into account different aspects of accentuation.

Lester In The rhythms of tonal music [54], Joel Lester gives a descriptive definition of ac-
cent, attempting to define its properties in full. Firstly, he stresses the character of accent
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as an interpretation tool and its frequent identification with stress, or emphasis, that is, a
willful intensification of a specific event. This misconception originates from the common
use of the term ”accent” in daily musical routine. Secondly, he makes the point that accent
can not be reduced to just the metrical accent - i.e., the one which is given by the bar or
measure of the piece or to similar abstract patterns, such as the poetic feet schemata [18],
without risking the loss of many other accentual aspects or the misattribution of accents to
time points and not specific events. His view can be summarized in the following points:

• Accent is always a point of emphasis, mostly occurring through the appearance of a
new event or a group of events.

• Accent is relative, denoting the difference of a point not absolutely, but in comparison
to the others close to it in time.

• The metrical accent represents a special case, as it is a perceptual phenomenon.

He then continues by listing various factors which can invoke accentuation. He includes
long durations (for example after short notes), new events (e.g. a change in harmony, the
appearance of a new instrument or motivic change) and changes in dynamic and articula-
tion. The model of Lester is decisive because it gives a comprehensive listing of many fac-
tors and properties which play a role in defining accent. However, it lacks a good grouping
of the accents based on their nature or character.

Lerdahl and Jackendoff The last model to be shown here is drawn from the work of Ler-
dahl and Jackendoff, A generative theory of tonal music (henceforth abbreviated as GTTM)
[53]. Their work has been extremely influential concerning a unified approach to describ-
ing musical structure. In it, they deal with various different subjects, such as rhythmic
structure in general and its constituents, grouping and metrical structure. They proceed
by defining a rule system pertaining to specific preference and well-formedness princi-
ples, resulting in a model which can theoretically explain any kind of rhythmic structure
in western tonal music. We will not go into more details about this model, as this would
lie beyond the scope of this thesis. Instead, we will focus on their definition of accent,
which they use to assess the salience of different music events in the grouping or metrical
structure. In their judgment, it is important to differentiate between three kinds of accent:
metrical, structural and phenomenal. They define those three categories in the following way
[53]:

• Phenomenal accents pertain to ”...any event at the musical surface that give empha-
sis or stress to a moment in the musical flow” ([53], p.17). This category includes
”...attack-points of pitch events, local stresses such as sforzandi, sudden changes
in dynamics or timbre, long notes, leaps to relatively high or low note, harmonic
changes, and so forth” ([53], p.17). It is clear that all possible events in music which
carry an added weight for attention are covered under this label.

• Structural accents refer to accents ”...caused by the melodic/harmonic points of
gravity in a phrase or section” ([53], p.17). Those accents are therefore indicative of
changes which denote events that are structurally important in the harmonic context
of a given musical excerpt.
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• Metrical accents are carried by ”...any beat which is relatively strong in its metrical
context” ([53], p.17). The strength in a metrical context refers to the salience of a beat,
i.e. its importance in the meter hierarchy - for example, the downbeat. They continue
by mentioning that the perceptual basis for the metrical accent are the phenomenal
accents, in the sense that listeners base the extraction of a metrical accent on evi-
dence from phenomenal accents. In the case of absence of regularity of phenomenal
accents, metrical accents become less salient [53].

The authors proceed by explaining the interaction of those accents in some depth. The
interested reader might refer to [53] for more information. For the thesis at hand, we keep
one important element: The categorization of accents in GTTM provides a valuable tool
for their division on the basis of their causes, which can then be used to connect them to
specific features. This endeavor will be carried out in section 6.3. We will then take into
account the models described here and attempt to create a correspondence of accents to
specific features, which will then be useful both for the feature extraction and the classi-
fication steps. Of course, the matter of accent is not exhausted through its consideration
here, but the basis for the implementation is certainly set.
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After the basic concepts regarding rhythm and accent have been defined we will proceed to
the more technical matters of the thesis. In the following, an introduction is given regard-
ing the audio descriptors, the methods used to extract them and the general architecture
of a feature extraction system. Most of the audio features discussed here are very well
known in the audio processing and the music information retrieval literature; therefore,
special attention will be pointed towards features describing rhythmic content, which are
of increased relevance for the thesis.

4.1. Feature Extraction Fundamentals

Feature extraction signifies the process of the creating a numerical representation called a
feature out of the signal or its spectrum. The features can either denote simple, statistical
properties of the audio signal, such as its mean or its standard deviation, or more com-
plex properties such as the shape of the spectrum or the magnitude of a specific harmonic
component. When dealing with more than one audio samples as basic processing units,
the feature extraction process results in the generation of a feature vector v, which encodes
information about the value and distribution of the desired quantity for all audio samples
and can be used as input to a classifier method.

In audio content analysis, it is desirable that features pertain to some perceptual quality
of the signal, as they can then be used as a proxy for the representation of that quality.
However, the semantic gap between the abstract, perceived elements of audio (such as
timbre, pitch and rhythm) and the low-level values of the feature can be quite large, which
calls either for the extraction of many different features or of important, perceptually rel-
evant features in order to perform tasks such as musical genre classification efficiently. In
both cases, the goal is the same: To explain as much of the variability present in the au-
dio signal as possible. Achieving this goal is not easy, but since this variability is also the
basis for the perception and cognition of musical qualities from humans, its pursuit is in
any case a fruitful task. To this end, a large number of features for all kinds of tasks in
MIR has been designed up to date. A comprehensive list of most known features can be
found in [52]. Before that, we will address three important subjects which lie at the core of
almost every feature extraction system and also find application here: frame-based feature
extraction, spectral representation and preprocessing.

4.1.1. Frame-Based Feature Extraction

The feature extraction process is essentially a digital signal processing task: All numeri-
cal values are derived from the samples of an audio signal through direct calculation of
physical properties or by applying known mathematical operations and transformations.
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However, the calculations can either take place on the signal as a whole, or on parts of it,
called blocks or frames. In this case, the algorithm selects only a fraction of the total samples
of the audio data, and performs all necessary calculations, optionally applying a window-
ing method prior to that. afterwards, the frame slides to a next chunk of the audio signal,
by advancing at a certain amount of samples and continues the processing. At the end,
instead of the calculation of one feature per whole audio file, a trajectory of the feature
value with respect to time has been extracted. This fact alone is decisive, since the tem-
poral trajectory of a feature value can be expected to hold much more information than
one value for the whole audio excerpt. Apart from that, the new representation is itself
a time-series of values, i.e. a signal: that means, that transformations can be applied to it
and features can also be extracted from it, which greatly increases the scope of available
information regarding the signal at hand. Frame-based processing has some other advan-
tages (for a full list, see [52]), which usually have to do with the specific operational mode
of computer systems or algorithms such as the Discrete Fourier Transform. The discussion
of such topics does not lie in the scope of the thesis. Here, we will rather focus on the
specific terminology concerning block-based feature extraction. There are three important
parameters in frame-based processing:

• Frame length: The frame length denotes the amount of audio samples considered as
a basic processing unit. It will be denoted in the following with NFR.

• Hop size: The amount of samples at which the frame advances in order to consider
a new set of signal values. In the following, the symbol NFRHOP will be used.

• Overlap factor: The overlap between consecutive frames when NHOP ≤ NFR. We
will use here NOV LP to refer to this.

We will meet this terms again in part III when discussing the implementation of feature
extraction in this thesis. It is important to note at this point, that all values given here in
samples can also be given in a time unit of seconds. The relation between samples N and
seconds t in the context of digital is given by t = N

fs
, where fs denotes the sampling rate,

i.e. the amount of samples of an audio excerpt in one second.

4.1.2. Spectral Representation and STFT

The spectral representation of digital audio signals, i.e., their frequency content, is almost
exclusively calculates by applying the Discrete Fourier Transform (DFT). This transforma-
tion essentially maps the discrete-time signal into a frequency representation, by taking the
product of the samples of the signal with basic, complex exponential functions. Detailed
descriptions of the DFT can be found in a multitude of signal processing textbooks. In
frame-based processing, the spectral representation of the DFT refers to a short-time ver-
sion of the signal, effectively acquiring the name Short Time Fourier Transform and having
the following formula (n denotes the index of the current frame, k the DFT frequency bin
with frequency f(k) = fs·k

NFR
, i the sample index and NFR the frame length):

X(k, n) =
NFR∑
i=1

x(i)e
−jk(i−1) 2π

NFR (4.1)
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The STFT is most often used to create a spectrogram. This refers to a mixed time-frequency
representation of an audio signal. Its calculation is relatively straightforward: for each
frame of overlapping audio signal data, the STFT is calculated. Then, consecutive frames
are mapped on an x-axis, whereas the y-axis denotes the indexes of the frequency bins in
increasing order (i.e., the frequency constituents of the spectral representation). The mag-
nitude of each bin is then shown by a color or brightness value, resulting in a pseudo-3D
image [52]. Apart from being very useful for the visualization of the spectral form of a
signal over time, the STFT can be used as the basis for the calculation of spectral features
over time 4.1.2, making it a powerful tool.

One last note concerns the size of the frame. In the creation of STFT, the frame size
takes values between a hundred and several thousand samples (or between 10 and 180 ms
for usual sampling rates such as fs = 44100 samples), remaining small enough to ensure
that the signal is stationary (i.e. its statistical properties do not change over time) in the
given consideration area. In other applications, such as the rhythmic feature extraction
presented in this thesis, the frame size can be in the range of one to several seconds. This
increased size allows for the capture of periodicities in the rhythmic relevant area, which
require much larger amount of samples to manifest themselves.

4.1.3. Preprocessing

Preprocessing is an integral part of each feature extraction process. The reasons for that are
multiple: Avoiding noise or undesired tonal components in the audio signal, creating ver-
sions of the signal which can be processed more effectively, or retaining only the relevant
parts of the spectral information for a specific application. We will present here shortly
some methods which are commonplace for feature extraction algorithms, although not all
of them are used in the proposed implementation.

Normalization Audio excerpts are very often converted to have a maximum amplitude
of one. This is achieved through the division of all samples with the greatest absolute value
present in the signal and serves the purpose of having standardized signals, ensuring that
features extracted from each of them will also be in the same range and only relative dif-
ferences between them will be relevant.

Conversion to Mono Converts a stereo signal to mono by taking the average of both
channels or by retaining only one channel, as in most audio content analysis applications
(excluding the ones having to do with spatial content), the use of two channels is not
necessary.

Down-Sampling Reduces the amount of samples needed to represent an audio excerpt.
This could lead to shorter computation times in problems where this is necessary, without
dramatically changing the shape of the signal waveform. However, down-sampling must
be applied with caution if problems of aliasing1. Therefore, most algorithms apply a low-

1aliasing refers to the phenomenon of appearance of unwanted frequency components in a digital signal
when its sample rate is reduced below the double value of the highest frequency component in the signal
are to be avoided

25
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pass filter before downsampling, in order to ensure that there is no frequency content in
the signal above the new Shannon frequency (fs2 ).

DC Removal Subtracting the mean from a signal. Since DC components have 0 Hz fre-
quency, any analysis aiming at analyzing spectral content does not profit from them. In-
stead, DC is seen us unwanted noise in most problems, which has to be removed in order
not to contaminate results of statistics and other measures extracted from the signal.

Windowing The application of a window function is very often a prerequisite in the
context of frame-based processing. A window function is essentially a block of samples
with the same length as the frame, which has a specific form, defining its spectral content,
which is multiplied sample per sample with the frame in question. This procedure always
results in a change in the spectral content of the signal frame itself, which has to be taken
into account in the subsequent analysis. A multitude of window functions exist for specific
tasks.

Filtering It is very often the case that some of the spectral content of the audio signal
is irrelevant for a specific application. In this case, filtering can be applied in order to
reduce the signal to only low, high or middle frequencies. Filtering can also be used to
stress specific frequencies in an audio signal, for example in the extraction of the envelope,
where it is relevant to keep only low frequencies.

4.2. Instantaneous Features

In the following sections, the features extracted in the main part of the thesis are presented.
These fall in two broad categories: Features describing the rhythmic content of an excerpt
and general instantaneous features. Another category is pitch-related features [52], but as
this thesis is dealing mainly with polyphonic music, they will not be presented here. For
all features, the discrete time audio signal is denoted with x[n] with n the number of the
current sample, the discrete complex spectrum of the signal is denoted withX(k), whereas
k refers to the specific bin of the FFT. The length of the FFT-Transform is considered to be
NFFT , and we will use the index n for the consecutive frames of an STFT as well. Further-
more, i = is(n) shows the beginning index of the signal frame and ie(n) the end index of
the signal frame. This nomenclature borrows heavily from Lerch ([52]).

4.2.1. Spectral Shape, Tonalness and Intensity Features

Instantaneous features ([52]) are numerical quantities which can be extracted from small
samples of audio material. They are also called low-level features, as they represent quan-
tities which are well-defined and physical, as opposed to high-level features, representing
abstract and perceptual qualities. The amount of those features is quite large, therefore
many attempts have been made at classifying them in different taxonomies. Lerch lists
some of the possible categorization schemes [52]. A very approximate information re-
trieval based segregation could be time and spectral domain features, on account of the
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4.2. Instantaneous Features

type of information that they provide about the audio signal. Of course, other categoriza-
tions are possible, such as tonal, spectral shape, intensity and statistical properties. We
will give here an account of all the features used in the present thesis, together with a short
description of their meaning. The abbreviations given here for the features will be used
throughout the rest of the thesis to refer to them.

Spectral Flux (SF): Measures the amount of change in spectral shape of the signal. It
gives an approximation to the sensation of ”roughness” in the sound, taking large values
for abrupt changes in the spectral composition of the signal.

fSF (n) =

Ã
NFFT /2−1∑

k=0

(|X(k, n)| − |X(k, n− 1)|)2

NFFT
2

(4.2)

Spectral Centroid (SCD): Is a measure of the spectral center of gravity. Greater values
signify more content in the higher frequencies, therefore brighter or sharper sound.

fSCD(n) =

NFFT /2−1∑
k=0

k · |X(k, n)|2

NFFT /2−1∑
k=0

|X(k, n)|2
(4.3)

Mel-Frequency Cepstral Coefficients (MFCC): They have been used extensively in the
area of speech recognition, as they provide a compact representation of the spectral shape
of the signal. The details of their calculation can be found in [52]. The formula for their
calculation is given here. The symbols with an apostrophe denote the mel-warped spec-
trum [97]. The transform here corresponds to the DCT of the the mel-frequency bands,
and instead of the spectrum magnitude its logarithm is taken (resulting to the cepstrum).
Those adjustments offer a number of improvements, which have made the MFCCs a valu-
able tool in many tasks. The index j denotes the order of the coefficient to be taken, in this
thesis the 13 first coefficients are used.

fMFCC(j, n) =

N ′
FFT∑
k′=1

log(|X ′(k′, n)|) · cos(j · (k′ − 1

2
)

π

N ′FFT
) (4.4)

Spectral Flatness (SFL): It is a measure of the tonality of the signal based on the spec-
trum, as it represents the ratio of geometric and arithmetic mean of the magnitude spec-
trum.

fSFL(n) =

NFFT /2

Ã
NFFT /2−1∏

k=0

|X(k, n)|

(2/NFFT ) ·
NFFT /2−1∑

k=0

|X(k, n)|

(4.5)
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Spectral Pitch Chroma (SPC): The pitch chroma is a twelve-dimensional vector where
each dimension represents on pitch class. Each coefficient is calculated through the fol-
lowing formula (o denotes each octave):

fSPC(j, n) =
ou∑
o=o1

(
1

ku(o, j)− k1(o, j) + 1

ku(o,j)∑
k=k1(o,j)

|X(k, n)|) (4.6)

Spectral Tonal Power Ratio (STPR): Another measure of the tonalness of the signal,
the tonal power ratio is defined through the ratio of tonal power ET (n) of the signal to
the overall power E(n). For the calculation of the tonal power, the tonal components of
the signal have to be identified through finding tonal peaks in the signal, usually through
finding local maxima or peaks that lie above a given threshold ([52]).

fSTPR(n) =
ET (n)

NFFT /2−1∑
k=0

|X(k, n)|2
(4.7)

Spectral Spread (SSP): The spectral spread describes how concentrated the spectrum of
a signal is around the spectral centroid, essentially being a measure of the bandwidth of
the signal.

fSSP (n) =

√√√√√√√√√√√

NFFT /2−1∑
k=0

(k − fSCD(n))2|X(k, n)|2

NFFT /2−1∑
k=0

|X(k, n)|2
(4.8)

Time Peak Envelope (PE): A peak envelope is extracted by taking the absolute maxi-
mum value of the signal amplitude in a block of samples.

fPE(n) = max
is(n)6i6ie(n)

|x(i)| (4.9)

Time RMS (RMS): The RMS feature gives the root mean square of the signal amplitude
in one block. It results from summing the squared magnitude spectrum for a processing
block.

fRMS(n) =

Õ
1

NFFT /2

ie(n)∑
i=is(n)

x(i)2 (4.10)

Time Zero Crossing Rate (ZCR): The Zero Crossing Rate feature is a measure of tonal-
ness of the signal. It is calculated as the amount of zero crossings of the signal in a given
time period. It takes large values for noisy, high frequency signals, whereas small values
for purely tonal signals.

fZCR(n) =
1

2 ·NFR

ie(n)∑
i=is(n)

|sgn(x(i))− sgn(x(i− 1))| (4.11)
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A full list of the features described here along with their abbreviation is given in table
4.1.

Instantaneous features
Spectral Flux (SF)

Spectral Centroid (SCD)
Mel-Frequency Cepstral Coefficients (MFCC)

Peak Envelope (PE)
Root Mean Square (RMS)

Spectral Pitch Chroma (SPC)
Spectral Tonal Power Ratio (STPR)

Root Mean Square (RMS)
Spectral Flatness (SFL)
Spectral Spread (SSP)

Zero Crossing Rate (ZCR)

(4.12)

Table 4.1.: Instantaneous (spectral shape, tonal, intensity) features

4.2.2. Distribution Features

In this section, a special category of features pertaining to the distribution of audio signal
values is given. It is important to stress that those features are applicable for any kind
of signal, since they consider it as a distribution of random values from which statistics
and other measures can be extracted. It follows that they can also be extracted from a
spectral or periodicity representation without problems regarding their validity, although
their conceptual meaning might be somewhat vague. Those features will be referred to
from now on as subfeatures, since they will be used in the context of this thesis as features
extracted on transformations, temporal trajectories or periodicity representations of other
features. In the following, x(i) denotes the current signal frame with index i for its sam-
ples, n stands for the index of the current frame, i denotes the index of the current sample,
i = is(n) shows the beginning index of the signal frame and ie(n) the end index of the
signal frame.

Mean (ME): The subfeature measures the average of a signal or signal block. It is given
by:

MEx(n) =
1

NFR

ie(n)∑
i=is(n)

x(i) (4.13)

Geometric Mean (ME): This subfeature measures the average of a set of values ordered
logarithmically:

GMx(0, n) = NFR

Õ
ie(n)∏
i=is(n)

x(i) (4.14)
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Standard Deviation (SD): Standard deviation measures the spread of the values of a
signal around their arithmetic mean:

SDx(n) =

Õ
1

NFR

ie(n)∑
i=is(n)

(x(i)−MEx(n))2 (4.15)

Centroid (CD): The centroid is a measure of the center of gravity of an input signal or
distribution:

CDx(n) =

ie(n)∑
i=is(n)

(i− is(n)) · x(i)

ie(n)∑
i=is(n)

x(i)

(4.16)

Skewness (SK): Known also as the centralized moment of third order, skewness mea-
sures the asymmetry of a probability distribution.

SKx(n) =
1

σ3x(n) ·NFR

ie(n)∑
i=is(n)

(x(i)−MEx(n))3 (4.17)

Kurtosis (KU): Kurtosis measures how much the form of a distribution deviates from
that of a normal gaussian.

KUx(n) =
1

σ4x(n) ·NFR

ie(n)∑
i=is(n)

(x(i)−MEx(n))4 − 3 (4.18)

Flatness (KU): Flatness is a measure similar to the one of spectral flatness presented
before and measures the ”peakiness” of a distribution.

FLx(n) =

NFR

Ã
NFR∏
k=1

|x(i)|

(NFR) ·
NFR∑
k=1

|x(i)|
(4.19)

Entropy (EN): Entropy (for a distribution) measures the average information content
stored in a probability density function. For signals, it gives an amount of ”novelty” in the
signal values.

ENx(n) = −
ie(n)∑
i=is(n)

x(i) · log2(x(i)) (4.20)

High Frequency Content (HFC): This subfeature measures is closely related to the cen-
troid and measures the amount the values appearing at the higher end of a distribution.
The implementation here takes into account the squared distribution and does not scale
by the sum of all values in order to created a better scaled form of the feature.
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4.3. Rhythmic Content Features

HFCx(n) =

ie(n)∑
i=is(n)

(i− is(n)) · x2(i) (4.21)

We will present a last category of subfeatures, the peak related features in the next sec-
tion, since they are derived from the specific periodicity representation and can not be
categorized with the features presented in this section. A full list of the features presented
in this section can be seen in table 4.2. Here, we will also include two more features, the
mean and standard deviation of the derivative, since they are easily calculated and there-
fore often used [14]: they denote the computation of the mean and standard deviation
from the first derivative of the signal, in order to detect sharp changes in the signal or dis-
tribution. Since the taking of the first difference is equivalent to a high pass filtering for
digital signals, the features are essentialy a measure of the mean and standard deviation
of a signal version with less low-frequency content.

Distribution Features
Mean (ME)

Standard Deviation (SD)
Mean of Derivative (MD)

Standard Deviation of Derivative (SDD)
Skewness (SK)
Kurtosis (KU)
Entropy (EN)

Geometric Mean (GM)
Centroid (CD)
Flatness (FL)

High-Frequency Content (HFC)

(4.22)

Table 4.2.: Distribution features

4.3. Rhythmic Content Features

In the following, the discussion will focus on the features describing the rhythmic content
of an audio excerpt. We will begin by giving a short account of onset detection and novelty
functions, as they are important concepts for the ensuing discussion. Afterwards, we will
analyze briefly the general scheme of periodicity representations and focus on the beat
histogram, a method for creating a simple yet effective rhythm content representation, out
of which features can be extracted. At the end of the section, some more subfeatures will
be presented to complete the list in table 4.2, for which through the discussion of the beat
histogram is necessary.
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4.3.1. Onset Detection

A part of this work is concerned with the field of onset detection, more precisely with
the concept of the novelty function, which will be described in more detail now. Onset
detection is a wide field whose results are important for applications such as segmenta-
tion (see [95] for some uses), tempo detection or automatic transcription [52]. The goal of
onset detection lies in the finding and tracking of onsets in the audio signal, defined as
the beginnings of new sound events, such as for example, musical notes. When analyz-
ing musical events, it becomes clear that the onsets are not ”clear cut” points in time, as
they have a specific duration which is not infinitesimally small. The onset event can be
described by a short time period, the attack or rise time, in which the note or event makes
its appearance and reaches its maximum amplitude. The signal in this period does not
possess a steady-state character, but is in a phase of very quick evolution. The onset time
is then taken to be one time point in this duration which denotes the event has reached a
quasi-periodic state. As Lerch notes [52], the aforementioned terms are often used in an
inconsistent manner and, to make it worse, the times extracted from the acoustic signal
very often do not coincide exactly with the times perceived by listeners. Therefore, one
distinguishes between note onset time, acoustic onset time and perceptual onset time [71].
As we deal with systems in the field of ACA here, we will choose to define an onset (and
its respective time of occurrence), as the acoustic onset time, i.e. the point in the signal
where a signal or acoustic event is theoretically measurable [52, 71]. As Lerch notes [52],
the accuracy of automatic detection systems is usually too poor to allow to distinguish
between an acoustic and a perceptual onset. Therefore, we can take as granted that the
perceptual onset time of an acoustic event (which would be desirable to extract) coincides
with the acoustic onset time, since the goal of the thesis is not perfectly accurate onset de-
tection (as, e.g., in [95]), but accurate detection of the periodicities caused by them, which
is guaranteed by the algorithms consistency in the way of detecting onsets in the signal.

4.3.2. Novelty Function

The novelty function (also known as novelty curve or detection function [6]) constitutes the
first building block of an onset detection system [52]. The novelty function is essentially
a trajectory denoting points in time where new events take place, i.e. the points where
changes of the acoustic signal are very marked. There is no standardized way to extract
a novelty function from an acoustic signal. However, most studies up to date take into
account the form of the signal envelope, extracted through taking the first difference of the
audio waveform, smoothing, and applying half- or full-wave rectification. The envelope
analysis can either apply to the whole time signal or to specific bands in it. Schloss [77] was
one of the first to present such a system as described above for onset detection, followed
by Klapuri and Scheirer which used the envelope of the signal in several subbands and
applied psychoacoustic transformations ([76, 47]), whereas newer publications compute
the novelty function by STFT methods ([24, 6]). As Lerch states [52], the advantage of such
methods is that not only changes in the amplitude (or its envelope) are taken into account,
but also changes in the spectral domain. Such methods unfortunately come with the draw-
back of a lower time resolution, which is, however, mostly not relevant since the resolution
of a block-based STFT with appropriate parameters is good enough for most applications.
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Many onset detection studies ([24, 6]) have stressed the need to proceed in such a way.
Most publications have then tested those automatically extracted onsets against manually
labelled ones, in order to assess the precision of the algorithms [95, 24]. Others have tried
to extract the exact tempo of given musical excerpts or make assertions about the metrical
structure, attempting to denote for example the downbeat [36, 37, 35]. There are relatively
few studies however on using those spectral onsets to describe rhythm and the perform
genre classification based on the extracted features. The present work attempts exactly
that, by addressing first the problem of finding perceptually relevant novelty functions. A
detailed analysis of onset detection functions can be found in ([47, 24, 6, 4, 19, 5]). For the
sake of completeness we give here the following categories, in which such functions fall:

• Spectrum-based novelty detection: Comprises novelty detection based on spectral
flux, phase deviation, weighted phase deviation, complex domain (departure from
steady-state behavior), rectified complex domain etc. [24, 6]

• Statistics novelty detection: Comprises methods which are based on entropy calcu-
lation or probability models [24, 6].

• Time-signal-based novelty detection: Performs novelty detection based on the en-
velope of the time signal. This can be performed either for amplitude or energy, and
either directly on the waveform or in subbands of the signal.

Finally, we will give a short overview novelty detection methods applied directly in the
spectral domain. The most widely used spectral novelty method is the spectral flux, de-
scribed in section 4.2.1. Lerch [52] mentions three other methods from Laroche, Duxbury
and Hainsworth ([50, 30, 42]), which all use different versions of the spectral flux (in com-
plex form or with different distance measures) in order to calculate spectral novelty from
the signal, whereas Bello [4] use the phase relations, as they can be indicative of transients
(since their phase is not linear) and which most often appear in the case of onsets. Since
the subject of novelty functions is a wide and upcoming field of research, we will not give
more information about other methods at this point. However, it is important to stress that
this work is also based on a similar approach: Spectrum-based methods for novelty detec-
tion up to date have not taken into account the trajectory of other quantities of the signal
based on instantaneous features, such as spectral flatness, spectral centroid etc. (see 4.2.1),
although the change of those quantities in time might provide information which cannot
be found only in the spectral flux or its variations. We will see in part III how novelty
functions can be extracted from those instantaneous features and how they can be used for
rhythmic description. In the following section, a description of another important part of
the rhythmic content analysis, specifically periodicity detection and the features involved
in it, will be discussed in some depth.

4.3.3. Beat Histogram

Approaches for the extraction of features for the representation of rhythm and temporal
structure belong to the field of automatic rhythm description. In an important publication
from Gouyon [38] such those approaches are presented and discussed. The span of the
applications concerning the subject is fairly wide: Rhythmic representations can be used
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for tempo induction, beat tracking, time signature or swing determination, and, of course,
applications of a wider scope such as musical genre classification. The common analyti-
cal frame work underlying the creation of such rhythmic content representations can be
summarized as follows:

• An audio excerpt is preprocessed and subjected to an onset or novelty detection func-
tion, which creates a list of onset times or a novelty curve for some musical quality
such as pitch or loudness.

• The resulting novelty curve is then used as a basis to extract a periodicity represen-
tation with the use of a suitable method.

• The periodicity representation is then used for further tasks: The extraction of fea-
tures and statistics, the comparison with existing templates for similarity calculation
or the determination of more abstract elements of an audio excerpt, such as meter or
tempo.

The above steps can be performed with or without the use of preprocessing for the audio
signal, and there are a number of different operations which can be applied in each part of
the procedure, depending on the end goal. As the subject is extremely complex, both con-
cerning the methods of the periodicity extraction and the possible tasks which follow it,
we will focus here only on those approaches which use rhythmic content features for musi-
cal genre classification. The term ”rhythmic content features” (originally from Tzanetakis
et al. [91]) represents a special category of audio descriptors, which denote quantities re-
lated to the rhythmic structure of music. As stated in section 1.2, those have been already
used in the context of musical genre classification, mainly by [91, 39, 14]. Such studies
share a common approach for the (frame-based) processing scheme, which is very close to
Scheirer’s original approach [76], who was the first to extract periodicities in a completely
methodical way:

• They create a reduced version of the time domain input signal by filtering (through
normal filters or by applying, e.g., a Discrete Wavelet Transform) or applying other
methods such as downsampling. Optionally, the signal is preprocessed with the
methods shown in 4.1.3.

• The signal’s envelope is extracted by half-wave rectification and smoothing, possi-
bly taking the derivative (or, for discrete-time signals, the first difference) to stress
changes in the signal. Here, the points of novelty can be extracted as singular onsets.

• From the signal envelope curve, which serves as a novelty function, the extract a
periodicity representation in the low frequency area (between, e.g., 30 and 240 BPM
(0.5 to 4 Hz)) using an autocorrelation function or a comb filterbank. Alternatively, if
the onsets are present as discrete points on the time domain signal, an computation of
an Interonset-Interval histogram (IOI-Histogram) is attempted, to derive the durations
between all onsets.

After the periodicity representation has been created, features are extracted from it in
the same way they are extracted from a signal or a distribution of values. As such, the
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4.3. Rhythmic Content Features

extraction of all the distribution features shown in table 4.2 and discussed in section 4.2.2
is applicable. However, even the spectral and other features discussed earlier can be con-
sidered, as the resulting periodicity representation is, in fact, in many accounts similar to
a spectrum, but constrained in the very low frequencies. Gouyon [39] attempts that by
extracting MFCCs from an IOI-Histogram and reports very good results on genre clas-
sification by using the first 15-MFCCs on a periodicity histogram. However, taking into
account the definition of MFCCs (4.2.1), their perceptual meaning considering what they
state about a periodicity representation is not so clear to us. Therefore, in order to keep
the features explainable and their number as low as possible, we will refrain from extract-
ing truly spectral subfeatures from the beat histogram. Burred and Lerch [14] extracted
statistics of the beat histogram, together with a rhythmic regularity feature, denoting evenly
spaced peaks in the beat histogram and signifying periodicities in integer relations to an-
other. Tzanetakis, in [91], extracted another group of features, which refer to the most
salient peaks in the beat histogram and its overall strength. We will focus here only on
the ones from the last, as they are of the most important used in the literature and their
meaning relatively straightforward:

Amplitudes of the most salient peaks (A0, A1, RA): The amplitudes of the two highest
peaks in the beat histogram measure the beat strength (i.e., how pronounced they appear
in the signal) of the predominant signal periodicities. apart from that, their ratio is also
taken in order to account for more complex rhythmic structure.

Periodicities of the most salient peaks (P1, P2, P3): The frequencies of the two highest
peaks in the beat histogram denote the BPM value for which the beat is the strongest. Most
often, they coincide either with the tempo of the piece or with a related integer multiple or
division of it. Here, we also consider a third periodicity (P3), which is given as the mean
of the two others and measures the central tendency of the beat histogram.

Sum and Sum of Power (SU, SP): Those two subfeatures measure the overall beat his-
togram strength and are expected to be high for excerpts which have a rich or very pro-
nounced rhythmic structure. The sum of power is calculated by taking the square of the
beat histogram, i.e. its power.

We will refer to those descriptors as peak features, since they are related to the peaks
in the beat histogram. A full count is given in table 4.3. Taking those features for the
rhythmic representation plus the subfeatures mentioned earlier in subsection 4.2.2 gives
in total 19 different subfeatures for the beat histogram. As mentioned before, the count of
features rises very quickly with the addition of new possibilities, therefore we stopped at
this number, considering it sufficient for the experiments to follow and having the surety
of account for many sources of variance in the beat histogram representation. The most
adequate features will be selected later through feature selection.
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4. Feature Extraction

Peak Features
Amplitude of the most salient peak (A0)

Amplitude of the second most salient peak (A1)
Ratio of A0 to A1 (RA)

Periodicity of the most salient peak (P1)
Periodicity of the second most salient peak (P2)

Mean of P1 and P2 (P3)
Sum of beat histogram (SU)

Sum of power of the beat histogram (SP)

(4.23)

Table 4.3.: Peak features
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5. Machine Learning

This chapter provides an account of machine learning fundamentals and the classification
methods used in the musical genre classification task. In the context of thesis, two instance-
based algorithms for supervised learning are used: The k-Nearest-Neighbor (abbr. kNN)
and the Support Vector Machine (abbr. SVM). These methods possess a solid mathematical
basis, they have been used extensively (also in the context of genre classification) and have
proven efficiency. They are also already described in many machine learning textbooks
[28, 12, 78, 20] and have numerous implementations in existing toolboxes, allowing their
free and unproblematic use. As the SVM algorithm is a state-of-the-art classifier which
has shown very good performance results in a variety of problems, it will receive a special
focus in the following discussion. The algorithms in this work have been utilized as com-
ponents of the MATLAB environment (kNN) or as toolboxes which can be used therein
(libSVM [15]).

5.1. Machine Learning Fundamentals

Machine learning (abbr. ML) is a field of techniques and methods in artificial intelligence,
which concerns computer algorithms which can learn from data, i.e. to extract meaning-
ful information out of them. This can then be used either for analysis or for prediction.
The information derived is often referred to as a pattern, which shows the affinity of the
field to pattern recognition. The basic function of an algorithm in ML deals with analyz-
ing relevant data observations given in a numerical form performing a set mathematical
operations on them, and creating a model which then can be used to generalize to new
observations for a given task. As the term is somewhat vague, we will use it here to re-
fer to those algorithms and systems which automatically infer the structure in the data by
extracting this information from the data itself. ML algorithms come in two fundamental
forms: supervised and unsupervised. The intermediate category of reinforcement learn-
ing is not relevant to the thesis and will therefore not be covered here.

Unsupervised learning This collection of problems concerns the finding of structure in
data without possessing any prior information about the categories to which the samples
belong to. It encompasses approaches ranging from clustering to principal component
analysis, though the exact taxonomy of the methods is not very clear since they are used
in the context of many disciplines for various problems. Although at the beginning this
seems to be a difficult and somewhat ill-defined problem, Duda et al. [28] note several
reasons as to why it is useful to employ unsupervised learning. The basic rationale behind
those reasons is that although large amounts of data are nowadays very easy to come
by, their manual annotation remains very costly and tedious, even if one knows how to
perform it correctly. Furthermore, there are cases where no annotation at all is possible; in
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this case, it is well-advised to probe the data to explain something about itself, essentially
to see what it suggests. Another advantage of those methods is that they can help in
dimensionality reduction: When dealing with data which is represented through a large
amount of features, unsupervised learning can disclose hidden structure in the data which
in turn may help to reduce the number of features greatly, by discarding or combining
them. However, this category of algorithms has a considerable drawback: When faced
with complex tasks, the output of the algorithm might not be very informative with respect
to the specific task, as it essentially has no information about what should be achieved -
it simply uncovers some information in the underlying data. In such cases, the use of
supervised learning algorithms is of advantage.

Supervised learning In supervised learning, the discovery of structure in the data is per-
formed through providing the algorithm with labeled instances, or instances whose class
membership is already known. This setting has the advantage that the algorithm receives
information about the correct output which has to be achieved. In this sense, the algorithm
just has to learn a mapping from the input data to the output (or target) data. This mapping,
encoded as a set of mathematical operations and values, is stored as a model which can
subsequently be used for prediction of the labels of data not yet presented to the algorithm.
It becomes apparent that the functionality of an ML algorithm in this setting bears a paral-
lel to the procedure of inductive reasoning in humans: the algorithm derives a rule which
connects the samples and the features, based on some observations at hand, and then used
this rule to generalize to observations which have not been encountered earlier. An impor-
tant implication of those procedures and the existence of labels for the sample data is that
the learning performance of the algorithm can be evaluated in a much more meaningful
way with respect to unsupervised learning, as the outcome labels of the algorithm and the
”real” labels of the data (also known as ground truth) can be compared directly. Another
important distinction concerns the methodology of the learning procedure. In supervised
learning, there are two steps which have to be followed: first, a group of examples together
with the labels are presented to the algorithm. Subsequently, the algorithm analyzes the
data in a specific way and ”learns” the way they relate to their labels based on the features
representing the data. This step is called the training phase. Afterwards, a second group
of unknown data is presented to the algorithm without their labels. The algorithm now
has to predict their labels by applying the model it derived from the training data. This
second step is called the prediction phase. After those two steps, the performance of the al-
gorithm can be evaluated using common evaluation methods and its parameters tweaked
accordingly.

Classification The term classification is used frequently in pattern recognition and statis-
tics to refer to the problem of generally assigning a class label to an observation, based on
a rule which is derived by analyzing a subgroup of the data. Considering automatic clas-
sification in the field of machine learning, the data is almost always represented through
the numerical values of the features, which allows for the study of the problem of clas-
sification independently from the domain of application ([28]). Although classification is
a very diverse problem which involves many procedures ([12, 28]), we will focus here in
its application and use for supervised learning problems. In this context, the classification
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algorithm has to learn a specific decision function, given the input and their class member-
ship. The formulation of the problem is fairly simple: Given a vectorial representation of
a set of samples in the feature space, the goal of classification is to assign a given input
vector x to one of more discrete classes Ck , k = {1, 2, ...,K} [12]. As it is apparent, the
primary problem is of a binary nature: Every instance can either be classified as belonging
to one class or not. Its generalization to multiple classes has to be dealt with separately
and will be examined later on in this section. The algorithms which perform classification
are called classifiers and the two methods used in this thesis fall under this category. In the
following, we will discuss briefly the problem of linear classification, as it is fundamental
for the explanation of the SVM method presented in 5.3

5.1.1. Linear Classification

The problem of linear classification is one of the most important in machine learning and
has ties to linear discriminant analysis and linear programming. In linear classification, the
decision surface (as we are referring to data in n-dimensional spaces) is a linear function
of the input vectors [20], so that:

f(x) = 〈w · x〉+ b =
n∑
i=1

wixi + b (5.1)

From equation 5.1 it becomes apparent that the decision surface is actually a hyperplane
(i.e. a plane in an n-dimensional space), separating the feature space in two disjoint re-
gions. Observing its sign, a decision can be made about which class the instance belongs
to: if f(x) > 0, then the sample belongs to the positive class Cp, otherwise it belongs to
the negative class Cn. The two parameters in the equation have the following significance:
w is called the weight vector and is perpendicular to the hyperplane (thus determining its
angle) and b is called the bias and distance of the hyperplane to the origin of the feature
space. The formulation given here has been used in both statistics and neural processing,
being known respectively as the linear discriminant function and the perceptron [20].

The category of problems which can be solved exactly by defining a linear hyperplane
are called linearly separable [12]. Although a large category of problems exists for which
such a solution is achievable, there are many problems which are non-separable: A linear
decision surface which perfectly separates the instances does not exist, due to the form
of the data distribution, so that any attempt to classify instances in this way will result to
some misclassifications. At this point, it is important to refer to the concept of the functional
margin of an instance x to the hyperplane (w · x): It is defined as the quantity [20]:

γi = f(w · x〉+ b (5.2)

This quantity is of great importance, as the greater the margin is for a training sample (or
for the whole data set), the better separation a decision surface achieves [20]. The SVM is
an example of a classifier which attempts to maximize this margin, leading to an optimum
decision surface. The relevance of the margin will be examined closer in section 5.3.
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5.1.2. Multiple Classes

The extension of the two class problem to multiple (K > 2) classes is unfortunately no
trivial matter, as the classification procedure described in 5.1.1 is essentially a two-class
problem. Several methods can be used to overcome this difficulty [12, 20]:

One-versus-all classification In this case, the multiclass problem is decomposed inK−1
subproblems, where each of the classifiers associated with it has to solve a binary classi-
fication problem, where the samples belonging to the class in question constitute the one
case, whereas all the others are considered as belonging to the other case. The final solution
results from combining (as a union) the solutions of each of the K − 1 classifiers.

One-versus-one classification In one vs. one classification, the problem is stated as the
sum of K(K − 1)/2 binary classifiers, each of them separating one class from the other, for
all pairs of given classes. An instance is then classified to a single class by a majority vote
amongst the discriminant functions.

Direct multiclass discrimination The discriminant function here has the form: 〈wi ·x〉+
bi, wherewi and bi refer to the weight vector and bias of each of the discriminant functions.
The decision function is then given through c(x) = arg max(〈wi ·x〉+bi) over allK classes.
Thus, the sample x is classified in the class whose hyperplane is furthest from it.

Referring to the first and second method, the combination of several binary linear dis-
criminant functions for classification has the drawback of possibly creating regions in the
feature space whose samples cannot be assigned to any class [28, 20, 12]. Furthermore, the
partition of the problem in subproblems might create difficulties if the data is unbalanced,
i.e. if many more samples are available for one class than for the other(s). The third method
is relatively straightforward and has the advantage of creating K simply connected and
convex decision regions in the feature space. Thus, its application is preferred whenever
possible. However, this is not always the case - especially for the SVM as a binary linear
classifier, very often one has to resort to the first or second method. However, as will be
shown in section 5.3, there is a multiclass implementation of the non-linear SVM which
functions similar to the direct method presented here. The kNN method does not suffer
from such problems, as the decision boundaries result essentially from estimating the data
distribution directly from the samples and without making any assumption for the form of
the decision surface (which is also not directly a function of the data samples). Therefore,
the existence of multiple classes is inherent in the ”native” form of the kNN.

5.2. k-Nearest-Neighbor

The kNN algorithm is one of the most simple and yet efficient methods in the field of sta-
tistical pattern recognition. It is a non-parametric method for supervised learning, which
can be used for the estimation of unknown probability distributions underlying the data,
utilizing the nearest-neighbor rule [28]. When used for supervised classification, the input
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consists of a matrix of m observations and n features or dimensions across which each of
the observations is defined, along with a class label for some of the observations. During
classification, an observation whose class is unknown is assigned a class label based on the
majority of the classes of its k nearest neighbors - the proximity measured based on some
distance metric such as euclidean, manhattan or mahalanobis [28]. The only algorithm
parameters1 which have to be defined beforehand are therefore k, the number of nearest
neighbors on which the class label decision is based, and the distance metric for the prox-
imity calculation. Essentially, the kNN algorithm lets the data alone define the decision
boundary for classification, based on its intrinsic structure in the feature space.

The theoretical basis for the kNN algorithm can be found in the field of non-parametric
density estimation of an arbitrary distribution and is described in depth in [28, 12, 2]. It is
beyond of the scope of the thesis to provide details about the inner workings of the algo-
rithm, but the interested reader can refer to the aforementioned literature. It is however,
useful to provide a rationale for its use in this thesis. A first argument is that, exactly ow-
ing to its simplicity and power, the kNN algorithm has been - and still is - used for almost
every supervised classification task, regardless of the data type involved. As such, its per-
formance results can serve as a good comparison basis with those of other publications
- especially in [91, 14, 39], where it has been used for genre classification as well. At the
same time it allows us to perform a ”reality check” and establish a baseline classification
performance result which can then be compared to the performance the SVM.

Notwithstanding its widespread use, kNN is not always the best possible method which
can be applied for classification, as it is sensitive to local structure present in the data when
using tractable implementations (k < ∞), which can lead to poor performance. Further-
more, as a non-parametric method, kNN does not make any a priori assumptions about
the statistical distribution or structure underlying the data. This property is one of its ad-
vantages but also a drawback: the absence of a need for previous analysis or assumption
about the data allows its application to almost every problem, even (or especially) when lit-
tle is known about the data model. However, it can lead to very suboptimal or misleading
results when dealing with data which are unscaled, noisy, possess complex inner structure
and high dimensionality if its parameters are not selected properly [11]. Regarding the
values of these two algorithm parameters, the following considerations are of relevancet:

- Number of nearest neighbors k: The number of k to use for classification is not fixed.
It can be theoretically shown that as k increases, the error rate of the algorithm ap-
proaches the theoretical optimum (Bayes rate) [28]. However, since it is impossible to
use a very large value for k due to reasons of computational cost, most publications
use the first few uneven numbers (e.g., k = 1, 3, 5, ...), since they usually provide sat-
isfactory results. It is also advisable to choose an uneven value for k, as otherwise the
vote of the nearest neighbors could theoretically result in a tie, which would render
the assignment of a label to an unknown instance impossible. A plausible approach
is to test for several values of k, until an optimum (which is problem-dependent) has
been reached.

- Distance metric: The distance metric is also an open subject in the use of the kNN

1here, the term parameters refers to the hyperparameters of the algorithm, i.e. its settings, and not to the
statistical parameters of a distribution.
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in a given problem. The most often used distance metric is the euclidean norm (also
known as L2-Norm). Although its suitability is not warranted for all kinds of prob-
lems (since it cannot deal with translation or rotation of the data, see [28]), when used
with data scaled in the same way (as is the case here), it can be guaranteed to give
similar results to other distance metrics, like manhattan or mahalanobis [28]. One
possibility is to define a new distance metric with properties related to the specific
problem. However, as the euclidean metric is easily interpretable (as the standard
distance between two point in an n-dimensional space) and has been used in most
publications dealing with genre classification, we use this distance metric in our ex-
periments as well.

There exist some further enhancements for the kNN algorithm. For example, a distance-
related weighting scheme can also be applied on the voting participants, so that neighbors
lying further away from the observation to be classified have less influence on the decision
[29]; or misclassification costs for specific classes (which, e.g., possess a small count of
observations) can be defined in order to create adaptive versions of the algorithm [89]. For
the sake of retaining the comparability with other experiments and because the focus of
the work does not lie on the parameter selection of the kNN algorithm, we will refrain
from applying any of those refinements. Their use in future experiments is, however, not
ruled out.

5.3. Support Vector Machines

SVMs were first introduced from Vapnik in [92]. The evolution of the SVM based on the
need to progress from linear programming algorithms with margins to algorithms which
could achieve even more difficult partitions of the feature space, especially in defining
non-linear, complicated separation surfaces.

SVMs were first introduced from Vapnik in [92]. They originated in the context of lin-
ear discriminant analysis, based on the need to progress from linear programming algo-
rithms with margins to algorithms which could achieve even more difficult partitions of
the feature space, especially in defining non-linear, complicated separation surfaces. Al-
though the original formulation of the SVM is a linear one, the main property which helps
the calculation of complex decision surfaces is the kernel trick: a transformation in the
heart of the algorithm which projects the data in an higher-dimensional space (where they
can be linearly separated) and then transforms it back to the original space, delivering a
non-linear decision surface. It falls in a category of algorithms known as kernel methods,
which essentially use linear or non-linear transformations (kernels) to ”map” the features
in a space where classification can be performed more efficiently. Detailed information and
the mathematical background about kernel learning and specifically SVMs can be found
in [78, 20]. For the purposes of the thesis, the basic functionality will be presented here.

As it name gives away, the SVM is an algorithm which calculates a decision surface (a
so-called hyperplane), its limits denoted by the support vectors (which are in fact samples
that act as limits for the separation surface, see figure 5.3). This decision surface is cal-
culated in a very high dimension (through the kernel) as an n-dimensional plane and the
surface is then transformed back to the original space.

42



5.3. Support Vector Machines

Figure 5.1.: Operating mode of SVMs, image originally from [51]

min
w,b,ξ

1

2
wTw + C

l∑
i=1

ξi (5.3)

yi(w
T (xi) + b) ≥ 1− ξi, ξi ≥ 0 (5.4)

The equations shown give an insight in the algorithm parameters of the SVM. As the
kNN method, SVM also does not make any assumption about the underlying structure
of the data. However, in this case there is a clear training step, in which a part of the
data with their classes are presented to the algorithm. The SVM then ”learns” the weights
of the vectors as well as the offsets in order to satisfy equation 5.3 for the given samples
and classes, that is for the given separation surface. Afterwards in the validation/test step,
new samples (feature vectors of the observations) are inputted without their labels, and the
SVM uses the previous weights and offsets, essentially performing a regression, in order
to separate the data into classes so that the structurally most efficient separation can take
place. That means of course, that the SVM optimizes the separation based on the model
generated before but on the new samples, which leads to a classification with a specific
accuracy. Through the knowledge of the labels for the training test as well, the accuracy of
the SVM can be computed and through cross validation the best model generated, which
will be able to generalize for completely unknown data. The SVM can also be cast as a
multiclass classifier: Mostly this happens by building a set of m = n(n−1)

2 classifiers for
n classes, therefore decomposing the original n-class problem in m binary classification
problems, i.e. ”do the samples belong to this class or any other?”. Of course in this case,
problems might result with unbalanced data which can be dealt with either by separating
the dataset accordingly or by applying a weighting scheme on the samples which is in-
versely proportional to their number. Such a weighting scheme has been also applied in
the thesis and will be presented in section 7.2 .

There are two important aspects of the SVM which deserve some attention at this point.
The first is the non-linear nature of the SVM. As stated before, the SVM in its initial form
is a maximum margin linear classifier: it tried to find the hyperplane which best separates
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the data, i.e. to find the support vectors which allow the finding of a decision surface
which allows a maximum distance between classes. If the dot product of the original
linear function is substituted by a non-linear kernel function, the finding of a non-linear
surface becomes evident. There are many choices for the kernel function, like polynomial,
hyperbolic tangent and gaussian radial basis function. The latter has been used extensively
the last years, as it allows a very good non-linear separation of the data.

5.3.1. Kernel Methods

As stated, the linear classification problem described in 5.1.1 suffers from the problem of
non-separability of the data in the feature space. In order to overcome this difficulty and
apply the SVM to non-linearely separable problems, the so-called kernel trick is applied
[20, 78, 28]. The basic consideration is very simple: In section 5.1.1 we saw the basic condi-
tion for the linear classification problem (also presented in equation 5.4). The kernel trick
consists in applyind an (arbitrary) non-linear mapping to the vectors xi, so that equation
5.4 becomes

yi(w
T (φ(xi)) + b) ≥ 1− ξi, ξi ≥ 0 (5.5)

Through the application of the kernel trick, the SVM equation 5.3 (optimization prob-
lem) becomes:

min
w,b,ξ

1

2
wTK(xi,xj)w + C

l∑
i=1

Σi (5.6)

This procedure allows the SVM to map the original feature space of NFeatures dimen-
sions to a higher-dimensional space (theoretically possibly infinite), where the samples are
linearly separable. That way, the handling of very non-linear problems is facilitated, albeit
at the cost of a greater computational time and resources. There are many possibilities
for the kernel function, including linear, polynomial, sigmoid and radial basis function. A
complete listing of those methods can be found in [20, 78, 28]. In our implementation, we
used the radial basis kernel function, as it has proven its efficiency in a multitude of very
non-linearly separable problems [28, 12]. Its formula is given by:

K(xi, xj) = e−γ||xi−xj ||
2
, γ ≥ 0 (5.7)

The hyperparameters usually take values which are powers of two, with γ in the range
of γ = 2{−11,...,1} and C in the range of C = 2{−2,...,7} [20, 78, 28]. The hyperparameter γ
denotes the distance to which one sample influences others in the features space during
classification, similar to the number of neighbors in the kNN algorithm. It thus defines
how much the distributions of samples are allowed to overlap in the feature space. Very
high overlap conceptually means that the samples are very interrelated with each other,
whereas low overlap results in the samples not being able to influence another in the fea-
ture space. The other hyperparameter of this algorithm is the cost parameter C (see equa-
tion 5.6), which denotes the misclassification cost for the algorithm, essentially controlling
the ”smoothness” of the decision surface: low values for C result in a very smooth deci-
sion surface (which may however lead to many misclassifications), whereas high values
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for C result in a very ”jagged” decision surface, which might allow for extremely good
classification performance in terms of accuracy, but could be unable to generalize to new
samples. This latter condition is called overfitting and is a problem that can be solved either
by selecting a moderate value for C (the default in most implementations is C = 1)

This kernel function has been used extensively and has given good results in a variety of
problems [65], including very difficult ones, as in the context of automatic text classifica-
tion. Its advantage consists in the form of the kernel, which makes the decision surface in
the feature space smooth enough to avoid overfitting, but also complicated enough so that
complex relations in the data can be represented. Except from that, its hyperparameters
are tunable and therefore present a good ground for experimentation. In this thesis, we
exploit exactly those advantages for the classification procedure.

5.4. Classification Performance Metrics

The evaluation of classification performance is an important subject, as it helps to evaluate
the different setting and features used for classification. In most supervised classifica-
tion problems, the result of the classification procedure is called a confusion or contingency
matrix. The rows of this matrix correspond to the ground truth labels, whereas are the
columns correspond to the labels predicted by the classification algorithm. In that sense,
each field of the confusion matrix shows the amount of samples classified by the algorithm
as belonging to class Cp ad which actually bear the label of class Ck. In multiclass settings,
and especially in the binary SVM used in this thesis, the confusion matrix results by taking
together the predictions produced by each binary classifier. For the kNN algorithm this is
not necessary, since every sample is assigned a class label separately: thus, the confusion
matrix results by comparing the predicted sample label with the ground truth and sum-
ming up the results. All of those schemes are usually performed in a context of n-fold cross
validation, meaning that the whole sample is randomly separated in n subsets (or folds),
each of them bearing a count of samples proportional to the original class distribution. The
classification procedure is then repeated n times, and the results summed together at the
end.

It follows that error-free classification leads to a matrix with non-zero elements only in
its diagonal: Every sample was assigned a class label which coincides with the label of the
ground truth, whereas other class combination counts are all zero. This, however, is far
by being the case in most problems; some misclassifications will occur using any classifi-
cation algorithm, but the question is whether those errors are meaningful, or if the overall
performance of the algorithm is not very low, i.e., an amount of correct classifications has
been achieved. In order to quantify such considerations, we proceed to showing some
classification performance metrics which are commonly used.

The performance metrics used in this context are most commonly accuracy, followed by
other metrics which can be extracted from a confusion matrix: precision, recall and speci-
ficity. Those terms are being used interchangeably in statistics proper and machine learn-
ing contexts to refer to the same metrics and formulas, although with a different meaning
depending on the field of application. We will explain their significance in the machine
learning area here [84]. We will use the standard terminology for confusion matrices in
a two-class problem (TP, TN, FP, FN) and consider a binary classification problem where
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one class is positive whereas the other negative.

accuracy Accuracy (Correct classification rate) refers to the count of correct classifications
of the algorithm with respect to the total count of classifications. It is given through

Acc =
TP + TN

TP + TN + FP + FN
=

Correct Classifications

Total Count of Classifications

precision Precision gives the amount of true positive classifications as a percentage of all
positive classifications

Pre =
TP

TP + FP
=

Correct Positive Classifications

Total Count of Positive Classifications

recall Recall (sensitivity) expresses the amount of true positive classifications as a per-
centage of true positive and false negatives, i.e. with respect to all correct decisions.

Rec =
TP

TP + FN
=

Correct Positive Classifications

Correct Classifications and Correct Rejections

specificity

Spe =
TN

TN + FP
=

Correct Rejections

Total Count of False Classifications

In the context of this thesis we will concentrate only on accuracy for four reasons:

1. It is easy to calculate and is usable for all kinds of classifiers.

2. Accuracy is the main performance metric which shows a total measure of the classi-
fication performance without taking into account other misclassifications.

3. It is the most commonly used classification performance metric, which allows good
comparability with other results.

4. The other classification metrics refer basically to a binary and not a multiclass clas-
sification problem. Thus, their use in our case is not necessarily helpful. However,
accuracy, as the total amount of correct classifications (i.e. the sum of the diagonal of
the confusion matrix) gives a satisfactory idea of the algorithm performance.

5.5. Feature Selection

Feature Selection is an important procedure in the context of machine learning and pattern
recognition, which is characterized by the involvement of methods for dimensionality re-
duction. The goal of feature selection algorithms is to determine a subset of the whole
feature set, which gives better or at least comparable results in the classification task. Such
methods can be applied both for supervised and unsupervised classification, but the goal
in both cases is the reduction of the feature count while at the same time retaining features
which have good discriminative power and account for as much of the variance in the data
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as possible. In the context of the thesis, only methods which take into account the ground
truth (i.e., the classification labels) are considered. There are three basic methods used in
the context of feature selection: filters, wrappers and embedded ([41, 48, 45]). We will only
discuss the first two here, as their application is sufficient for the goals of the thesis. A
further method which is non-mathematical in nature but has been proposed by Duda et al.
[28] as a good approach and will be discussed here is feature selection based on domain
knowledge.

5.5.1. Filter Methods

Filter selection methods, as the name implies, have the goal of ”filtering” out irrelevant
features prior to the classification process. Irrelevance in this context signifies the property
of features which provide little or no information concerning with regard to classification.
As such, in the best case those features do not make any contribution to the performance
of the algorithm, but only increase the overall computational load in the extraction and
classification phases; in the worst case, they impede the performance of the classifier, es-
sentially representing only noise in the data. As is the case in many applications, noise
is unwanted and must be eliminated since it obscures the results. Especially in machine
learning, irrelevant features hamper the performance of many an algorithm [28, 12, 41],
such as the kNN and SVM which are used in this thesis. As various of the features which
are extracted might be irrelevant due to their sheer number or their non-specificity for
rhythmic content classification, the need to apply a filter method for feature selection is
warranted.

There are various examples of filter methods in the literature [41]. Out of them, the two
most important are correlation with target data and mutual information with target data.
The first measures the correlation of the target data with the feature for a specific amount
of samples by use of the correlation coefficient. However, correlation with target data can
only detect linear relationships between data, making it a less useful feature in this thesis,
since it is not at all expected, that the features and the target are linearly related. The
second method, mutual information with target data [13, 41] is an information-theoretic
tool, measuring the similarity of the distribution of the target data and a given feature. The
mutual information is between two discrete vectorial variables x, y is defined as follows
[41]:

I(x, y) =
∑

P (x, y)log
P (x, y)

P (x)P (y)
(5.8)

The probability P is used to denote the frequency distribution of the vectors x and y
across all samples. In our case, x could represent the ground truth label, where y the cur-
rent feature vector. The mutual information calculation then provides a measure of the
relevance of the feature for the classification with respect to the ground truth. When con-
ducted for all features, the result is a ranking of the features based on this relevance. A
standard method applied afterwards is taking the m first features as the best or to use in
the next feature selection step. Although this method does not ensure that the combination
of those m best features also indeed denotes the best feature subset for classification, it is at
least sure that those features are relevant for classification. In this thesis, an implementa-
tion of the mutual information filter method from the MI-Toolbox for MATLAB [13] was
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used.

5.5.2. Wrapper Methods

The goal of wrapper methods consists in using the classification method itself in order to
find the best features for classification. In this sense, they ”wrap” around a classifier by
taking individual feature subsets and testing their performance in classification. It is very
easy to see that with a moderately high amount of features, the possible subsets are ex-
tremely many. Therefore, those methods are often much more computationally intensive
and slower than the filter methods. The goal of those methods is to discard redundant
features, i.e., features which do not offer more information than the ones already selected
and whose exclusion from the feature subset does not. In this context, wrapper methods
are very often applied after filter methods in feature selection processes, in order to further
reduce the feature subset and achieve a good classification performance with only a frac-
tion of the original features. It must be also mentioned that wrapper methods, since they
are based on use of the classifier for performing the feature selection, must implement a
criterium which allows them to evaluate the classification. This criterium can take various
forms, but since we are using accuracy for the evaluation in this thesis, the misclassifica-
tion rate (1−accuracy) is chose as the criterium for the wrapper method. A detailed review
of wrapper methods can be found in [48, 41].

An important element of wrapper methods is the way they organize the search for the
best features. Since it is theoretically (but not practically) advisable to evaluate all subsets,
a strategy has to be devised that can be performed in relatively short computational time.
There are two methods which take that consideration into account. Sequential backward
selection, which starts by considering the whole feature subset and sequentially discards
feature after feature while evaluating the classification performance, stopping when the
change in performance in consecutive runs is below a threshold. This method, although
it is sure to discard the worst features, has two significant disadvantages: Since the whole
feature set is considered or marginally smaller versions of it, the selection time stays very
high. Furthermore, the end feature set is most of the times almost as large as the original
set, which leads to no significant gain with respect to which features are the ”very best”.
For those reasons, another method, the sequential forward selection is advisable: This
methods begins with very small feature subsets (essentially one feature) and incrementally
adds more, until the change in performance with respect lies below a threshold. This way,
faster selection is possible, while at the same time the end result is a very small feature
subset which, however, guarantees good classification performance: the features selected
can be considered to be the most valuable. For this reason, it is selected for the experiments
conducted in this thesis. Concerning the implementation, the MATLAB internal forward
feature selection method function sequentialfs is used with a misclassification criterium as
mentioned before.

5.5.3. Domain Knowledge

Applying domain knowledge for the task of feature selection is a less mathematical method,
which does not take into account any information theoretical or other criteria. Its goal
consists in conceptually selecting features which might be valuable for classification. Of
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course, this implies either deep knowledge of the domain of the problem which is submit-
ted to classification, or a feature design step which allows for such a selection of a feature
group. The second case can however be observed very often in many audio classification
studies: For example, since the feature categories to be extracted are selected on basis of
their perceptual relevance (comprising, for example, timbral, rhythmical or pitch feature
groups [91, 14]) and pertaining to different qualities of the audio signal, the mere testing
of each of those groups separately or their combinations denotes a simple feature selection
method. Of course, in this case there is no aspiration that the selected features are actually
the best; but their relevance to the classification task can surely be tested on a basic level.
Such methods can also help when the original count of features is so high that other, more
mathematical selection methods have a prohibitive computational cost [28]. In light of
those observations, we will also attempt a ”conceptual” feature selection in the following,
by considering different groups of the accent-based descriptors.
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6. Method

6.1. Desired Goal and Strategy

As discussed in section 2.1, the main goal of this work lies in the design and assessment of
useful rhythmic content descriptors for automatic musical genre classification. Automatic
musical genre classification systems suffer mainly from three problems:

• The increased ambiguity of the classification task which comes as a consequence due
to ambiguous ground truth labels.

• The difficulty of defining genre rigorously because of its dependence on many dif-
ferent aspects of music, which necessitates a laborious feature extraction phase.

• The semantic gap between the extracted acoustic features and the perceived qualities
which denote a specific musical genre.

The first problem is inherent to the task and as such, it will be taken into consideration
by extending the classification to different genre datasets, in order to evaluate the algo-
rithm performance for numerous ”user cases”. The second problem is addressed through
the use and evaluation of pure rhythmic content descriptors, which essentially constrains
the problem only to this one aspect of sound. A solution to the third problem requires
the design and evaluation of highly relevant yet easily interpretable descriptors. A small
step in this direction is made by defining perceptually relevant descriptors in the following
sections. Based on the music theoretical models presented in chapter 3, and especially on
the ones described in [53], a new realization of possible rhythmic features to be used will
be presented here. Those novel features are based on accents and their acoustic correlates
in the signal, and are therefore hypothesized to contain valuable information about those
components of the music which help listeners ”navigate” themselves in a piece in time,
anticipate events and eventually extract rhythmic patterns. The features can then be orga-
nized in groups and be tested separately to assess their importance. Finally, through the
application of feature selection methods, a subset of the features which can give acceptable
performance will be determined. The purpose is to allow for good classification accuracy
while retaining few and relevant features. Results can be relevant for even more general
tasks in the field of audio processing, such as automatic language identification based on
rhythmic cues.

In the following sections, the rationale behind the accent-based features and their corre-
spondence to the actual accents will be addressed.
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6.2. Definition of Accents to Be Used

From the theoretical presentation of accents and their different forms given in section 3.3,
it became clear that an inclusion of all possible accentuated quantities present in the signal
is not expedient, due to their sheer number, multitude of types and their referring to very
abstract musical qualities (such as a melodic arch or a very specific pattern of durations),
which cannot be extracted in a compact numerical form. In the thesis at hand, we focus
mainly on detecting greater accent categories which can then be matched to acoustic fea-
tures. Therefore, we define four main accent groups which then serve as starting points
for the feature extraction, mainly in accordance with [53], but attempting also to include
in that way other types of accents defined in section 3.3:

1. Phenomenal accents: All accents which pertain to an occasional, situational change
in the signal. This applies to loudness changes (stress), timbral changes related to
instrumentation or musical texture, and changes in the signal contour or introduction
of new musical motives.

2. Structural accents: Accents belonging to this group are related to changes in the
”harmonic or melodic points of gravity of a musical piece” [53], most notably changes
in the fundamental frequency (essentially caused by note onsets in monophonic mu-
sic), chord changes (in polyphonic music), or musical key changes.

3. Metrical accents: This group of accents comprises the perceived accents which coin-
cide with the points in a signal flow where stronger beats are perceived as such by
listeners, after they have established the meter of a musical piece (3.2.2).

4. Durational accents: Those accents concern all notes or events which have a longer
duration than others in a given time period and therefore carry an added perceptual
weight in comparison with shorter events.

Those four groups capture, in our view, the greater part of accentuation effects perceived
in any kind of musical context. Concerning their representability through audio features,
however, several considerations have to be taken into account:

• From the four accent groups, the phenomenal ones can be directly extracted from
the signal surface or its spectral representation in an automated processing scheme.
Therefore the basic part of extractable accents relate to this group.

• Structural accents are also relatively straightforward to extract. However, for their
extraction the acquisition of a fundamental frequency trajectory, measures of the sig-
nal tonality or chroma features is necessary. From a technical point of view, they are
also ”phenomenally” present in the signal and extractable as such (see 6.3). For the
sake of keeping the conceptual separation intact, we will consider them as a special
category.
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• Metrical accents, resulting from a purely perceptual phenomenon as meter (3.2.2), are
not directly present in the signal and therefore not extractable in a manner coherent
to the other accents. The only possibility to conduct this would be through estab-
lishing a metrical grid (see [81] for an application of such a method), which allows
to pinpoint their exact position in time and treat them as onsets. Nevertheless, the
perceptual basis of their extraction are the phenomenal accents of the signal. For that
reason, this group will not be comprise a special category in itself; it will be assumed
that those accents are represented by the specific subfeatures of the phenomenal ac-
cent group, such as the period and salience of the most prevalent periodicity of the
signal envelope, expressed through the root mean square feature.

• Durational accents are also not directly extractable from the signal by means of nov-
elty functions and their subfeatures, as they pertain to the duration of specific sound
events, which would require again the establishment of an onset grid. Furthermore,
they do not relate to specific signal qualities but to all of them, therefore their group-
ing in a special category does not appear feasible. However, since similar events with
longer duration relate to lower periodicities, their effect will be implemented through
the application of a weighting scheme on the periodicity representation (i.e., the beat
histogram). In this way, durational accents are accounted for in all possible changes
manifesting themselves in the signal envelope or spectrum, but do not denote an
explicit feature subset.

Based on those remarks, the correspondence between the two accent groups and their
respective features as well as the realization of the durational accent weighting have to be
clarified. The next section deals with this subject.

6.3. Relationship Between Accents and Features

In order to be able to provide the classification algorithms with input data in a numerical
form, an equivalence between accents and the corresponding features must be established
first. We will address the different stages of the beat histogram extraction system (see
chapter 4) in order to determine how exactly the perceptual accents can relate to audio
features.

6.3.1. Novelty Functions and Subfeatures

Novelty functions As described in chapter 4, the beat histogram shows periodicities in-
herent in the signal, which are components of its rhythmic structure. The sum of those
periodicities comprises the total rhythmic feel of the excerpt (see chapter 3). In its basic
form, the beat histogram contains periodicities from the envelope of the audio signal or
a filtered version thereof [91, 76, 39, 14]. However, periodicities in the signal have differ-
ent origins and therefore do not all necessarily manifest themselves in the envelope of the
signal. The question then arises, in what way other periodicities in the signal can be quan-
tified through appropriate novelty functions. The various novelty functions which come
into question for this task were discussed in section 4.3.2. They refer to changes either in
the envelope of the signal or its spectral content. In order to account for as much temporal
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Based on this example, it becomes clear that since the changes tracked by both curves
for the same audio excerpt are substantially different, the periodicity extraction leads to
different novelty functions and beat histograms. Both the general form of the histogram
and the strength and exact BPM value of the most prevalent periodicities can be seen to
differ greatly in the two examples, giving the proof that the two novelty functions track,
in fact, different rhythmic levels in the signal.

As the end amount of features (and therefore the computational time and cost for both
feature extraction and classification) rises rapidly with the addition of more novelty func-
tions (as subfeatures have to be extracted from the corresponding beat histogram) several
of the novelty function detection methods and their respective novelty functions given in
the literature [6, 24] had to be excluded:

• The performance of phase deviation and its derivatives on onset detection in poly-
phonic signals has been shown to be inferior to other methods [6]. As most of the
audio tracks included in the datasets are polyphonic, their use did not seem to be
warranted.

• Wavelet regularity detection methods [6] were excluded as they represent a special
category of transformation which is not easily interpretable through the accent mod-
els described earlier. Apart from that, they tend to produce a very ”spiky” novelty
function which is not useful in creating beat histograms.

• Probability-model based novelty detection methods [6] also denote a specific pro-
cessing scheme which was not conforming to feature extraction scheme of the rest of
the features in our work. Therefore, despite their good performance in onset detec-
tion, they too were not taken into account.

• Other methods, such as complex domain, rectified complex domain [24] and novelty
functions based on other spectral components such as, e.g., spectral-rolloff, spectral
crest factor and spectral spread were also not included, as their results are expected
to be the same with those of of the tonal and spectral shape components mentioned
earlier and are therefore considered covered.

We acknowledge of course at this point that the amount and type of novelty functions
not considered here potentially leaves much to be desired. However, taking into account
the parsimoniousness principle in constructing features, as well as the added computa-
tional cost that the inclusion of those functions would bring, our decision seems to be
justified. Furthermore, our work can be seen as a first step in the direction of using sev-
eral novelty functions as basis for the beat histogram in musical genre classification, and
therefore the potential usage and evaluation of the remaining methods can be based on the
preliminary results shown here.

Subfeatures The rhythmic content features themselves in their end form (subfeatures) do
not seem to offer much room for improvement. The reason is that they are basic statistical,
distributional or peak-related features extracted from a beat histogram, in the same way
that they can be extracted from, e.g., the magnitude spectrum of a signal. However, in
order to ensure that no information contained in the beat histogram is neglected, it would
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be advisable to extract as many subfeatures as possible. A complete list of the subfeatures
used is given in the next chapter (7). One of the characteristics of those descriptors is that
they exhibit a high degree of interrelation - e.g., the arithmetical and geometrical mean
are highly correlated [52]. However, a difference in the exact form of the subfeature might
have an influence on its relevance for the classification task (as, for example, some features
are better scaled than others, even if they refer to the same base quantity). For that reason,
the tendency is to begin with a full feature set and to eliminate the redundant or irrelevant
ones through feature selection. This approach will also be followed in this thesis. However,
we will refrain from using combinations or transformations of those subfeatures, for three
reasons:

1. The main focus of this work lies on the novelty functions and not on the subfeatures
themselves.

2. The total count of features is indeed already high enough, without having to resort
to more combinations.

3. The more transformations applied before the final form of the feature, the less its
interpretability at the end. As the features here result through a transformation in the
first place (the beat histogram), the need to apply even more does not seem justified.

One subfeature class that was not included in our work were the MFCCs on the beat his-
togram, originally calculated on the periodicity histogram by Gouyon [39]. As described
in section 4.2, the MFCCs are directly related to the mel-frequency transformed cepstrum
of the signal. Notwithstanding the analogy of the beat histogram representation to the
amplitude spectrum, it is not clear to us what the meaning of a cepstrum on the beat his-
togram signifies. Furthermore, the mel-frequency band division reflects psychoacoustical
properties and refers to signal frequencies in the area of a 20 to 20000 Hz [97], and therefore
its application on the beat histogram does not seem plausible. Although those features are
reported in [39] to give very good accuracy on the BALLROOM dataset, for the reasons
mentioned here we chose not to include them.

Durational accent The durational accent pertains to sound events which have a longer
duration than others. It seems therefore plausible to assume, that it also refers to lower
periodicities, as they are a direct indication of events with longer duration. A possibil-
ity could be the extraction of subfeatures which detect a greater low-frequency content in
the beat histogram. Indeed, two subfeatures on the beat histogram, the high-frequency-
content (HFC) and the centroid (CD) seem in our opinion to cover this aspect in a mean-
ingful way. However, motivated through the application of a weighting scheme stressing
the preferred tempo ([68]) on the periodicity histogram from Gouyon et al. [39], we will
attempt a similar method: In our work, this type of accent is dealt with by applying a
weighting scheme on the beat histogram with a logarithmic curve, ranging from the value
of 2 for the lowest, to the value of 1 for the highest frequency in the beat histogram, which
therefore emphasizes lower periodicities rather than higher ones. In that sense, a period-
icity occurring at 30 BPM is two times as accented as one occurring at 240 BPM. Such a
weighting scheme has not been applied before. However, its theoretical meaning is ap-
parent and therefore its use seems warranted. Results of preliminary experiments have
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shown that classification performance was, in total, better when using the weighted his-
tograms than without. Therefore, we chose to include it in the end version. All further
considerations will refer to beat histograms weighted as explained.

6.3.2. Correspondence Table

Having presented the range of novelty functions and subfeatures which can be imple-
mented, a correspondence of perceptual accents and novelty functions 3.3 is given on table
6.1. The main idea behind this correspondence is that phenomenal accents can be repre-
sented through the extraction of novelty functions from instantaneous features which de-
note changes in the envelope and spectral shape of the signal, whereas structural accents
can be represented through novelty functions resulting from instantaneous features mea-
suring the tonality and specific pitch content of the signal.

Phenomenal Structural
Spectral Flux Spectral Pitch Chroma Coefficients (1-12)

Spectral Centroid Spectral Tonal Power Ratio
MFCCs (1-13) Spectral Flatness

Root Mean Square

(6.1)

Table 6.1.: Correspondence of Accents and Novelty Functions of Signal Quantities

We are of the view that the subdivision of accents in two groups creates feature sub-
sets which are theoretically ”orthogonal” to each other on account of which and how
much rhythm-related variability they explain, since they pertain to independent sources
of change in the signal. Furthermore, using only one group of features greatly reduces
their amount, which is a desirable condition in classification problems. The expectance is
that those features can still explain a considerable amount of the rhythm content related
variance in the signal and therefore produce good classification results. In oder to estab-
lish a baseline with which to compare the rhythmic content features, the instantaneous
features presented in section 4.2 where also extracted in a frame-based scheme and used
for classification both alone and in combination with the rhythmic content feature set.

In the next chapter, the specifics of the implementation of the musical genre classification
system will be presented in some depth. It should be noted at this point, that the full
implementation (feature extraction and classification), the experiments and the evaluation
of the results was performed in MATLAB [63].
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In this chapter, an overview and the specifics of the automatic musical genre classification
system implemented in the context of this thesis is given. The structure of the system
follows that of a standard audio content analysis module for musical genre classification
([52]). It comprises of the following basic blocks:

• Signal Processing: Preprocessing of audio signal, feature extraction

• Machine Learning: Feature preprocessing, supervised classification, feature selec-
tion, evaluation of results

We will address each of those parts in detail, drawing on the theoretical considerations
in chapters 4 and 5.

7.1. Feature Extraction Implementation

The feature extraction module is essentially a beat detection algorithm, or else a periodicity
detection in the tempo area (30-240 BPM). Such systems have appeared in various flavors
([76, 47, 36, 22, 91]), involving differentiations in some processing steps or addition of new
ones. The basic scheme remains the same: The signal is preprocessed (converted to mono,
band-filtered, DC-freed etc.), then brought in a ”reduced” form (e.g. through smoothing
and undersampling) and then periodicities are detected from this version, using either
comb filterbanks [76] or an autocorrelation function [91]. This transformation leads to the
beat histogram, which gives an overview of the periodicity content of the signal in the very
low frequencies (e.g., 40 − 200 BPM) and its distribution in a specific time period, which
is dictated by the texture frame length, i.e. the part of the signal which is considered as a
basic unit of processing. Deviations from this scheme involve using different filterbanks,
various preprocessing steps, taking the first difference of the envelope (novelty function)
or even extracting more information in order to account for the phase, and not only the
salience, of the periodicities [76].

The realization here is based on the system proposed in Tzanetakis [91], with some ad-
justments in order to account for the use of the novelty functions. Specifically, no band
filtering of the signal is performed (which in [91] is applied through a Discrete Wavelet
Transform), and instead of using the envelope of the signal itself, various instantaneous
features extracted from a spectrogram representation are utilized (6.3.1). We will keep this
terminology here and refer to the results of the analysis as beat histograms as well. The fea-
ture extraction module includes the following parts (performed for each excerpt in every
dataset):
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1. Preprocessing of the audio excerpt: Conversion to mono (by channel averaging),
DC removal (through mean subtraction), normalization (so that the maximum am-
plitude is equal to 1), resampling to fs = 22050 Hz, truncation to a maximum length
of 30 seconds.

2. Frame-based processing: Separation of the signal in overlapping (with a factor of
NOV LP = 75%), texture frames of an appropriate size for rhythmic feature extraction
(NTFR = 3 seconds)

3. Spectrogram calculation: For each frame, an STFT is performed with 75% overlap
between consecutive frames, a length of NAFR = 1024 samples for each frame (cor-
responding to a time duration of approximately 46 ms for the given sample rate), a
hann window and an FFT resolution of NFFT = 2048 samples.

4. Novelty function extraction: The temporal trajectory of the instantaneous features in
table 6.1 is extracted, resulting in a novelty function for each one of them. The novelty
function has a standardized length of NNAFR = NSPHOPS + 1, where NSPHOPS

denotes the count of hops for the spectrogram calculation.

5. Beat histogram extraction: Extraction of a beat histogram for each frame and for each
one of the novelty functions through the calculation of an unbiased ACF, i.e. scaled
with 1

NNAFR−CL , where CL = {1, 2, ..., NNF }. This way the ACF does not exhibit its
inherent tendency to decrease towards higher lags. Only half of the symmetric ACF
is retained.

6. Beat histogram averaging: The beat histograms for all texture frames are summed
and divided by their count, NFRHOPS + 1, the latter denoting the amount of hops
resulting from the texture frame-based processing.

7. Subfeature extraction: From the summary beat histogram of a track for a specific
novelty function, the subfeatures listed in table 7.1 are extracted and stored as a par-
tial feature vector. The concatenation of all subfeature groups for all novelty func-
tions produces the final feature vector for an audio excerpt.

For the baseline classification system, i.e. the classification based on the feature set using
instantaneous features only, the features where extracted in the same way with the scheme
presented above, excluding steps 4 and 5. In order to ensure comparability in the way
the end feature values for a single file are computed, step 6 is also implemented in the
baseline system, with the difference that instead of the averaging of the beat histograms,
the instantaneous feature values themselves are averaged over all frames.

The novelty functions used for the creation of the beat histogram and extraction of the
rhythmic content features were presented in 6.1 in section 6.3.1. A list of all subfeatures for
both the instantaneous and rhythmic content feature set is given in table 7.1. Concerning
the scope of the instantaneous feature set, the feature extraction scheme conforms to that of
the rhythmic content features. The subfeatures extracted can also be seen in table 7.1 and
comprise all the distribution features, but not the peak ones since they are beat histogram
related. The complete list of features for the baseline classification system can be found in
table 4.1.
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Distribution Peak
mean (ME) salience of strongest peak (A1)

standard deviation (SD) salience of second stronger peak (A0)
mean of derivative (MD) period of strongest peak (P1)
SD of derivative (SDD) period of second stronger peak (P2)

skewness (SK) period of peak centroid (P3)
kurtosis (KU) ratio of A0 to A1 (RA)
entropy (EN) sum (SU)

geometrical mean (GM) sum of power (SP)
centroid (CD)
flatness (FL)

High Frequency Content (HFC)

(7.1)

Table 7.1.: Subfeatures on Instantaneous Features (Distribution) and Beat Histograms of
Novelty Functions (All)

After presenting the feature extraction scheme, we will now discuss four aspects of the
beat histogram and their respective implementation or exclusion in this thesis:

Psychoacoustic transformation: Quite a few publications ([76, 47, 81]) have applied a
psychoacoustic transformation or weighting on the sound signal before processing. This
ranges from a transformation of the signal amplitude to represent loudness more closely,
or applying weighting schemes. In just one publication ([39]), the psychoacoustic weight-
ing is applied on the periodicity histogram itself, to model the effect of the preferred tempo
by listeners. The advantage of such approaches is that they try to mimic human auditory
perception, thus leading to possibly perceptually more relevant features. However, fea-
tures derived from such transformations have not shown much better results than those
extracted from ”plain” versions of the signal. This leaves their use an open subject, which
is perhaps advisable when the actual auditory perception has to be modeled. In our case,
we follow the example of Gouyon et al. [39] and apply the low frequency weighting on the
beat histogram (see 6.3.1), as this scheme is conform to the music theoretical considerations
pertaining to durational accent.

Band related analysis: The separation of the signal in bands before processing is also a
”classic” in the literature of feature extraction. The point is that by creating filtered versions
of the signal, the spectral content of specific bands (low, middle or high) can be processed
more effectively. Following that reasoning, band separation has been performed in many
studies of rhythmic feature extraction ([76, 47, 91]). However, its application is not manda-
tory: Band separation is useful in the case of focusing on specific aspects of the signal (for
example when attempting to analyze the spectral content in the low frequencies to per-
form instrument recognition), but brings with it some difficulties. One argument against
its use in our work is that if by taking more bands of the signal as separate signals, the
count of the features would be multiplied with the count of the bands. That would lead to
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very a high feature count, which would be questionable with respect to their redundancy.
A strategy to avoid this problem is to add the filtered envelopes and extract features from
their result, as in [91]. However, since this would raise the computational cost consider-
ably and does not bring any information which was not there in the signal to begin with,
we chose to relay this aspect to future work.

Peak picking: Most beat or periodicity histogram algorithms employ one or other form
of peak picking: the procedure refers to the automatic selection of peaks from a curve
based on their relative amplitude to other points. For example, Tzanetakis takes the three
strongest peaks from the beat histogram in [91] over each frame to extract the final peri-
odicity representation. However, the application of peak picking presents some problems:
Its suitable performance is very dependent on its parameters and it is often the case that
peaks are not found by automatic algorithms, even if they are easily recognizable from
human subjects. Therefore, we just take the beat histogram as a whole in our case, in or-
der to avoid leaving out relevant peaks. However, for the peak-related subfeatures, some
form of peak picking must be applied. For that, we used the MATLAB native peak picking
function.

Periodicity extraction: One last point concerns the use of the autocorrelation function
(ACF) instead of a comb filterbank for periodicity extraction. The great advantage of using
the ACF to extract periodicities is its reduced complexity and very quick computation.
Unfortunately, it provides information only about the periodicities and not about their
phase. On the other side, the comb filters can give information about the phase of the
different periodicities in the signal, which can be useful when trying to locate, e.g., the
downbeat [76, 81]. Since in this work we focus on the periodicities of the novelty functions
and their relationships or distribution, we adopted the ACF method.

7.2. Classification Implementation

Prior to classification, a preprocessing phase takes place. Preprocessing plays an essen-
tial role in every classification setting. The reason is that the data in their original form
might be unsuitable for directs use in classification, when the value range of each feature
is very different, resulting in feature spaces which are not scaled. Such unscaled features
might hamper the performance of an algorithm by letting features which have a greater
range or absolute value dominate the others ([28, 12]). In the case of machine learning,
preprocessing methods are generally application-specific. In our case, only normalization
of the features was necessary in order to ensure that they conform to the same distribu-
tion of their values. Usual schemes for that are normalization in the interval [−1, 1] or
[0, 1] by dividing with the maximum absolute value or z-score normalization of a row of
values, which subtracts the sample mean (therefore turning their mean to 0) and divides
with the sample variance, therefore creating variance equal to 1. In this thesis, the z-score
normalization is used.

At the end of this procedure, each audio excerpt has been transformed to a z-scored nor-
malized feature vector, containing the features for each novelty function. Repeating this
for all excerpts in a dataset yields a Nsamples times Nfeatures matrix for the classification.
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7.2. Classification Implementation

The count of the samples is the total number of tracks in a dataset, whereas the count of
the features is given through NFeatures = NNoveltyFunctions ·NSubfeatures. The data are then
submitted as input to the two supervised classification methods described in chapter 5,
kNN and SVM. From this point on, the system follows the standard schema applied in
classification problems:

• Classification: The data is partitioned in a train and a validation set and classification
with a n-fold cross-validation procedure is performed. In order to ensure compara-
bility with other publications ([39, 91, 14]) and since it is considered to be a plausible
value for many reasons, we used nCV = 10 in our implementation. The results from
the 10 cross-validation runs are summed and stored as a confusion matrix. The pro-
cedure is repeated 10 times over and the end results are averaged. More information
about cross validation is given in section 8.1. The labels for the classification are gen-
erated by observing the track distribution in the genres for a dataset and creating a
vector of different integer values for each track in a dataset, as is the standard way
for the multiclass kNN and SVM algorithm implementations in MATLAB.

• Parameter selection: This step involves inspecting the results and tuning the algo-
rithm parameters (e.g., number of neighbors k for the kNN and C and γ parameters
for the RBF-SVM). In total, four settings are used for the kNN and three for the SVM
algorithm. The specifics of this step are given in section 8.1. An extra setting is calcu-
lated for the SVM classification for the unbalanced datasets, setting the SVM weights
in such a way as to account for the sample distribution.

• Feature selection: Conducting feature selection, first with a filter method (Mutual
Information with Target Data, using the maximum relevance CMIM metric from the
MI-Toolbox [13]) and then with a sequential forward feature selection method (na-
tive in MATLAB). Additionally, the feature groups defined in table 6.1 are evaluated
separately. After the feature selection, steps 1 and 2 are repeated in order to assess
the performance using the reduced feature sets.

• Evaluation: The results of all experiments (confusion matrices) are evaluated, in or-
der to assess the accuracy of each algorithm setting and feature group.

One last remark has to be made with respect to the handling of the unbalanced datasets.
In order to overcome the problems caused by the unbalanced datasets, two strategies exist
([1]): Either to create a balanced form of each dataset, so that prior probabilities for each
genre are equal; or to set the classification algorithm in such as a way as to compensate
for the unbalanced samples size for each genre in a dataset. The first method, also known
as random subsampling [1], has the advantages of not being specific to the classification
algorithm and allowing for the creation of comparable datasets. However, it also exhibits
serious drawbacks: Choosing only a part of the tracks for the genres with a strong presence
in a dataset essentially means changing the dataset itself, which reduces comparability
with other results. Furthermore, random subsampling can lead to datasets which produce
invalid (overly optimistic or pessimistic) results. One could argue here that the genre
distribution in a dataset was random to begin with (see section 8.2), so that a choice of
some of the tracks could not create problems that were not already there to start with due
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7. Implementation

to the subjective nature of the dataset creation. The only way to counter this would be to
create more random versions and average the results, which however would lead to an
unacceptable increase in computational time. Therefore, we follow here only the second
strategy: Setting up the classification algorithm in such a way as to allow for the use of
unbalanced datasets. Unfortunately, this strategy is not applicable for the kNN algorithm,
as its standard implementation cannot take into account unbalanced samples. For the
SVM algorithm, a satisfactory strategy exists: When using the RBF kernel, it is possible
to set the misclassification costs C for each class through a weighting scheme in such a
way that too large or too small class sizes are compensated 5.3. This scheme essentially
sets a greater misclassification cost C for the classes with few samples, so that it will be
attempted to classify them correctly even at the cost of reduced generalization or a more
”jagged” decision surface (see section 5.3); whereas classes with more samples are treated
more leniently, allowing misclassifications in order to ensure that they do not ”dominate”
the whole feature set through their sheer presence. The question is at this point, what kind
of weighting scheme could be applied. Although there are some examples in the literature,
we follow here the method proposed in [1]: Since we have a one vs. one multiclass SVM,
class weights are assigned inversely proportional to the class prior, scaled by the prior of
the smallest class. That is, the smaller class receives the highest weight, equal to 1 (and
therefore the highest c), whereas the largest class receives the smallest weight, equal to
prior(smallest class)
prior(largest class) . Of course, this approach is also far from being perfect, as no universally

acceptable weighting scheme exists.
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8. Experimental Setup

In the following sections, the experimental setup which was used for the evaluation of the
rhythmic descriptors, as well as the datasets used in this work are presented and analyzed.

8.1. Setup Description

In order to test the distribution and peak-related subfeatures based on the beat histograms
resulting from many different novelty functions described in subsection 4.3.2, an experi-
mental setup has been proposed which has two goals: First, the testing of the accent-based
descriptors for various datasets and parameter settings. This first step is performed in or-
der to assess the generality of the descriptors, as the available datasets used in the task
are very diverse and as the results of musical genre classification experiments are neces-
sarily always dataset and parameter dependent. Second, the feature evaluation continues
with a feature selection process which can identify which of the features are the most in-
formative and relevant for classification. In this part, information theory based feature
selection procedures (5.5) are applied in order to pinpoint the features which allow for the
best performance, and conceptually selected feature subsets (6.2) are also evaluated.

Based on those considerations, the experimental setup for the genre classification task is
structured as follows:

1. First, a baseline experiment is conducted, which aims at measuring the effectiveness
of the instantaneous features described in section 4.2. This setting uses 231 descrip-
tors in total, resulting from 21 instantaneous features and 11 subfeatures for each of
them across a texture frame. The subfeature values are then averaged over all texture
frames.

2. Second, an extended experiment is conducted with the rhythmic content descriptors
and the results compared with those of the baseline experiment. This setting uses
570 descriptors in total, resulting from 30 novelty functions and 19 subfeatures for
each of them, calculated on the beat histograms averaged over all texture frames.

3. Finally, a last experiment is conducted with all features pooled together, in order to
assess the total classification accuracy using all available features. This experiment
uses 570 + 231 = 801 features in total.

All experiments take place with 10-fold cross-validation. n-fold cross validation ran-
domly separates the dataset in a training and a validation part in a ratio of n − 1 to 1,
retaining the track distribution relationships. It then repeats this procedure n times with,
as much as possible, disjoint subsets of the dataset (i.e., datasets containing the minimum
amount of common samples). The final results are summed over the validation folds. Fur-
thermore, every experimental run is conducted ten times (runs), and the results over the
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ten runs are averaged, so as to ensure the averaging out of chance effects as well as to
provide an estimate about the statistical deviation of the experiment results across experi-
ments. The chance guess accuracy 1 remains in all cases the inverse of the number of genres
in the dataset (for a balanced dataset), or the genre presence in the dataset, i.e., the count
of tracks belonging to one specific genre as a percentage of the total track count, also called
the prior. In order to counter the effect of the unbalanced datasets, we used a weight vector
which assigns weights for the cost parameter C in a manner inversely proportional to the
prior of each genre class in the dataset. This way, the classes with very few samples have
an advantage and an attempt is undertaken by the algorithm to classify them correctly,
even at the cost of generalization, whereas classes with many samples are more easily mis-
classified. This selection is one of the many possibilities listed in relevant literature [1, 15],
but we have refrained from using others to reduce the computational cost and because
there exists no standard scheme for the selection of the weight vectors.

For the experiments, four parameterizations of the kNN algorithm are used (k = 1, 3, 5, 7,
euclidean distance metric in all cases) and four parameterizations of the RBF-SVM algo-
rithm: unoptimized (C = 1, γ = 1/NFeatures), optimized for C and γ separately and opti-
mized through Grid Search. The last case is performed with and without a weight vector
for the cost parameter in case of the unbalanced datasets. Grid search is the name of the
procedure of trying to find the best set of hyperparameters C and γ for the RBF-SVM
algorithm. It is performed in a context also of n-fold cross validation and conducts an ex-
haustive search of the parameter space (i.e., the values of C and γ) in order to find the set
which provides the best accuracy. This procedure is computationally costly, but ensures
that the classification accuracy of the SVM is the best possible. In the experiments listed
here, it has been performed once for each experimental setting where the dataset consid-
ered or the number of features changed, since the choice of best C and γ depends heavily
on the dimensionality of the feature space and the specific data samples to be classified
[78, 20]. The grid values used where: {2−1, 21, ..., 25} for C and {2−11, 2−9, ..., 2−1} for γ,
which are values suggested by the researchers who implemented the libSVM algorithm
[15] and results in a total of 24 cases. The goal of this first baseline setup is threefold:

• Determining the performance of the full rhythmic content descriptor set and the
combined set in comparison to the baseline set of the instantaneous features.

• The assessment of the best mode for the classifier parameters and the comparison of
the performance of the two classifiers involved.

• A first estimation of the dataset differences in performance and an assessment of
performance in the case of unbalanced datasets.

After performing those basic experiments, feature selection methods are applied for rea-
sons explained in section 5.5. The explicit goal of the thesis is to find a small set of descrip-
tors which give comparable accuracy to the feature set, so as to determine which novelty
functions and subfeatures are relevant for musical genre classification. Furthermore, con-
ceptually selected descriptors, applying prior knowledge of the problem which led to their
design are also evaluated. With those considerations, the classification setup with feature
selection for the full rhythmic content feature set is structured in the following way:

1chance guess accuracy denotes the accuracy a classifier would exhibit by assigning samples a random label.
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8.2. Dataset Description

1. Feature selection based on the criterion of mutual information with target data is
applied, resulting in a relevance ranking of all 570 rhythmic content features. Out of
those, the best 20 are selected and classification performed with the best parameters
for the kNN and SVM algorithms with them. The number of 20 features is selected
as a very suitable value for fast classification, while still allowing the identification
of a small set of relevant features. Preliminary tests showed that classification with
more features from the mutual information ranking (50 − 100) did not improve the
results dramatically with respect to the 20 features set.

2. A sequential forward feature selection with the optimized RBF-SVM algorithm as
wrapper is applied to the 20 rhythmic descriptors which result from the mutual in-
formation feature selection process. After that, classification takes place once more
in order to evaluate the performance of the best, final features. The results are to
be compared with all the others in order to assess the performance of the heavily
reduced feature set in comparison with the full feature set.

3. The full rhythmic content descriptor set is separated in the phenomenal and the
structural feature subset 6.2. Each of them is evaluated in order to assess the im-
portance of the perceptual feature subsets.

In all cases, the measure reported is the mean average accuracy rate computed from
the output of the multi-class classification in the form of confusion matrices. In multiclass
classification, the overall accuracy is given by the trace of the confusion matrix divided by
the total number of classifications. We refer to it here as mean average accuracy, since it is
given over 10 validation folds and 10 experimental runs.

8.2. Dataset Description

In order to ensure comparability of the results with other publications and to properly
evaluate the rhythmic content descriptors for different genre hierarchies and tracks, five
datasets were used in this thesis. These are given here, together with their naming con-
vention used fortwith:

• The Tzanetakis Dataset [91] (GTZAN)

• The Ballroom Dataset [39, 26] (BALLROOM)

• The Homburg Dataset [43] (HOMBURG)

• The ISMIR04 Dataset [7] (ISMIR04)

• The Unique Dataset [83] (UNIQUE)

Specific information on each dataset can be found in the cited publications. A brief but
comprehensive description of their content (included genres, total number of tracks and
distribution, length and file format) is given in Appendix B2. It suffices to say at this point,

2We will exclude information about the exact tracks in the datasets, as it requires great space and it is not
the focus of the present work. However, detailed information or links to it can be found in the publication
associated with each dataset.
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that none of those datasets are ”perfect”, in the sense that there is no claim of completeness
concerning the scope of musical material that they comprise, and that the ground truth
label assignment corresponds to the available data and opinions of the researchers who
collected and arranged them. However, since they have been used extensively up to date,
we will also resort to using them as well, with the caveat that their suitability for the
musical genre classification task is a matter of scientific discourse. There are, however,
current attempts to create standardized datasets for specific tasks in MIR, and especially
for musical genre classification, by the ISMIR community.

Another subject concerns the distribution of the tracks in the genres of the datasets. Four
out of five datasets are unbalanced (i.e., they do not contain the same amount of excerpts
for each genre), which can present a challenge for the classification algorithms [28, 12].
However, each one has been compiled by one or more audio experts (but no musicolo-
gists), so that there is relative safety in assuming that they bear at least ecological valid-
ity. Even more importantly, most of the datasets have already been tested and evaluated
numerous times on a multitude of MIR tasks (including contests), which confirms their
relevance for related research and contributes to the comparability of the results. We will
give here a short description of the content of each dataset:

• GTZAN: A balanced dataset with a medium high track count and many different
but well-known genres (100 tracks per genre, 10 genres, 1000 tracks in total). It is
a standard in the area of musical genre classification, although its validity has been
challenged [87, 88].

• BALLROOM: An unbalanced dataset, but almost uniformly distributed (circa 80
tracks per genre, 8 genres, 698 tracks in total). Included genres refer exclusively to
dance music, with a very strong rhythmic content and pronounced beat, thus ex-
tremely helpful for rhythmic genre classification.

• ISMIR04: A relatively small, quasi-unbalanced dataset (circa 100 tracks per genre
with some deviations (the pop-rock genre comprises almost half of the tracks, whereas
jazz has too few), 6 genres, 729 tracks in total). Genres included are very basic or
compound.

• UNIQUE: A very large, unbalanced dataset (ranging from 50 to 700 tracks per genre,
14 genres, 3115 tracks in total). Genres are very diverse (e.g., world music and speech
are included, which is not the case by any other dataset), but many have too few
examples relative to others.

• HOMBURG: A larger, but also unbalanced dataset (from 50 to 300 tracks per genre,
9 genres, 1886 tracks in total). Included genres are similar to those in the GTZAN
dataset. This dataset has not been used extensively, but its selection of tracks appears
to be ecologically valid.

Having described the experimental setup and the datasets used in them, the experiment
results are presented in the next session.
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Results of the experiments are shown in tables 9.1-9.12. For each dataset and experimen-
tal setting a confusion matrix is the result of the classification procedure, which shows
the correct classification examples and the misclassified ones. Due to considerations of
space, the confusion matrices of only the best experimental setting (optimized SVM, re-
ferred to as SVM-Best) and the full rhythmic content feature set are presented in Appendix
A. Concerning classification, we report here on the mean average classification accuracy
(percentage of correct classifications over all genres with respect to all classifications in
each experiment for every class) along with its standard deviation across the experimental
runs and the weighted average chance guess accuracy of the classifiers. In the captions,
the algorithm settings and the feature subset used are also provided. Finally, tables com-
prising the results of classification after the feature selection process are presented here.
The results are discussed in depth in the next chapter. The best results in each table are
marked by bold fonts. We give here again a brief account of the structure of the tables, in
order to help the reader navigate more efficiently.

• The columns of the result tables correspond to the datasets, which bear the abbrevi-
ations introduced in 8.2.

• The rows of the result tables correspond to the experimental settings. k−NN denotes
the number of neighbors used in the kNN algorithm scheme. For the RBF-SVM,
Basic denotes the setting with C = 1, γ = 1/NFeatures, Opt − C and Opt − γ denote
the separate optimization for the hyperparameters, where a value of C = 4, γ =
1/NFeatures has been used in the first case and a value of C = 1, γ = 1/2k, whereas
2k is the next closer value for γ as an inverse power of two that is smaller than γ =
1/NFeatures. Best denote the setting where the values ofC and γ have been optimized
through grid search, and B&W denotes the optimized case with the application of
the weight vector for the cost parameter C.

• The last row of each table gives the chance guess accuracy of the algorithm.

• Each field in a table contains the mean average accuracy as percentage of correct
classifications to all classifications, followed by the standard deviation over the ex-
periment runs in parentheses.

• Further information about the parameterization and feature group reported in each
table is listed in the captions.

9.1. Classification Prior to Feature Selection

In the next tables, the results presented are produced for all basic feature groups (instanta-
neous (baseline), rhythmic content feature group and combined) with various settings for
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the two algorithms.

S/D GTZAN BALLROOM ISMIR04 UNIQUE HOMBURG
1-NN 53, 7% (1, 1) 40, 7% (1, 1) 55, 1% (0, 7) 47, 3% (0, 5) 30, 0% (0, 7)
3-NN 52, 4% (1, 0) 43, 3% (1, 4) 56, 9% (0, 8) 50, 2% (0, 4) 32, 5% (0, 8)
5-NN 55, 5% (1, 1) 46, 3% (1, 4) 57, 5% (1, 3) 54, 4% (0, 4) 36, 2% (0, 4)
7-NN 56, 4% (1, 0) 47, 7% (0, 6) 57,8% (0,8) 55, 9% (0, 4) 38, 2% (0, 6)

Chance 10, 0% 12, 5% 16, 7% 7, 1% 11, 1%

(9.1)

Table 9.1.: Classification results (mean average accuracy and standard deviation over 10
runs), all datasets, kNN, k = 1/3/5/7, euclidean distance, instantaneous fea-
tures full dataset (S=Setting, D=Dataset)

S/D GTZAN BALLROOM ISMIR04 UNIQUE HOMBURG
1-NN 41, 2% (0, 4) 36, 2% (1, 4) 61, 1% (1, 1) 52, 5% (0, 4) 32, 8% (0, 4)
3-NN 39, 8% (0, 9) 38, 9% (1, 5) 61, 5% (0, 8) 55, 2% (0, 6) 35, 4% (0, 5)
5-NN 42, 6% (0, 9) 44, 3% (1, 2) 61, 2% (0, 8) 58, 5% (0, 4) 38, 7% (0, 6)
7-NN 43, 5% (0, 8) 45, 2% (1, 1) 61,2% (0,7) 60, 1% (0, 6) 40, 3% (0, 8)

Chance 10, 0% 12, 5% 16, 7% 7, 1% 11, 1%

(9.2)

Table 9.2.: Classification results (mean average accuracy and standard deviation over 10
runs), all datasets, kNN, k = 1/3/5/7, euclidean distance, rhythmic content
features full dataset (S=Setting, D=Dataset)

S/D GTZAN BALLROOM ISMIR04 UNIQUE HOMBURG
1-NN 53, 6% (0, 6) 45, 4% (0, 9) 61, 2% (1, 10) 54, 9% (0, 2) 34, 2% (0, 6)
3-NN 53, 3% (0, 5) 47, 0% (1, 7) 61, 5% (1, 0) 57, 8% (0, 7) 36, 1% (0, 6)
5-NN 55, 4% (0, 7) 51, 0% (1, 7) 62, 1% (0, 6) 61, 2% (0, 3) 39, 5% (0, 4)
7-NN 56, 1% (0, 8) 53, 3% (1, 8) 61, 5% (0, 6) 62,3% (0,3) 40, 9% (0, 4)

Chance 10, 0% 12, 5% 16, 7% 7, 1% 11, 1%

(9.3)

Table 9.3.: Classification results (mean average accuracy and standard deviation over 10
runs), all datasets, kNN, k = 1/3/5/7, euclidean distance, all features combined
(S=Setting, D=Dataset)
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S/D GTZAN BALLROOM ISMIR04 UNIQUE HOMBURG
Basic 65, 4% (0, 6) 57, 0% (0, 8) 66, 9% (0, 9) 66, 4% (0, 2) 48, 5% (0, 4)

Opt. c 66, 7% (0, 9) 57, 5% (0, 7) 70,0% (0,7) 66, 8% (0, 3) 47, 8% (0, 6)
Opt. γ 61, 5% (0, 7) 53, 0% (0, 7) 61, 1% (0, 4) 65, 6% (0, 2) 47, 6% (0, 2)
Best 66, 6% (0, 7) 58, 4% (1, 5) 69, 8% (0, 7) 64, 3% (0, 2) 49, 3% (0, 5)

B & W N/A 57, 9% (0, 7) 68, 0% (0, 6) 49, 4% (0, 1) 41, 2% (0, 5)
Chance 10, 0% 12, 5% 16, 7% 7, 1% 11, 1%

(9.4)

Table 9.4.: Classification results (mean average accuracy and standard deviation over 10
runs), all datasets, RBF-SVM, different parameter settings, instantaneous fea-
tures full dataset (S=Setting, D=Dataset)

S/D GTZAN BALLROOM ISMIR04 UNIQUE HOMBURG
Basic 58, 2% (0, 7) 59, 1% (0, 8) 62, 5% (0, 7) 64, 1% (0, 3) 44, 4% (0, 3)

Opt. c 58, 7% (1, 0) 59, 6% (0, 8) 66,2% (0,8) 65, 6% (0, 3) 44, 2% (0, 4)
Opt. γ 57, 1% (0, 8) 59, 7% (0, 7) 61, 3% (0, 6) 64, 3% (0, 4) 44, 5% (0, 3)
Best 59, 2% (0, 9) 60, 4% (0, 9) 65, 9% (0, 7) 64, 6% (0, 2) 44, 3% (0, 4)

B & W N/A 57, 9% (0, 7) 53, 2% (1, 0) 51, 5% (0, 8) 38, 8% (0, 3)
Chance 10, 0% 12, 5% 16, 7% 7, 1% 11, 1%

(9.5)

Table 9.5.: Classification results (mean average accuracy and standard deviation over 10
runs), all datasets, RBF-SVM, different parameter settings, rhythmic content fea-
tures full dataset (S=Setting, D=Dataset)

S/D GTZAN BALLROOM ISMIR04 UNIQUE HOMBURG
Basic 68, 2% (0, 4) 64, 0% (1, 0) 67, 0% (0, 8) 68, 7% (0, 1) 48, 1% (0, 3)

Opt. c 69, 3% (0, 6) 65, 5% (1, 2) 69, 2% (0, 7) 69, 9% (0, 2) 48, 9% (0, 4)
Opt. γ 68, 1% (0, 5) 64, 2% (0, 7) 65, 5% (0, 6) 68, 9% (0, 2) 48, 2% (0, 5)
Best 59, 2% (0, 9) 65, 8% (1, 0) 68, 6% (0, 5) 70,4% (0,1) 48, 1% (0, 3)

B & W N/A 69, 4% (0, 8) 56, 7% (0, 4) 58, 1% (0, 3) 43, 5% (0, 5)
Chance 10, 0% 12, 5% 16, 7% 7, 1% 11, 1%

(9.6)

Table 9.6.: Classification results (mean average accuracy and standard deviation over 10
runs), all datasets, RBF-SVM, different parameter settings, all features combined
(S=Setting, D=Dataset)
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9.2. Classification After Feature Selection

In this section, results from the feature selection methods concerning the feature rankings
as well as their classification performance are given. They are shown in three steps: Results
after mutual information feature selection, after sequential forward selection and after the
accent group based feature selection.

9.2.1. Classification After Mutual Information Feature Selection

In the next tables, the results presented are produced after the mutual information feature
selection for the rhythmic content feature group with the basic and best performance set-
tings for the two algorithms. For details on the count and final features produced in each
case, see table 9.8.

S/D GTZAN BALLROOM ISMIR04 UNIQUE HOMBURG
1-NN 40, 0% (0, 8) 45, 3% (1, 1) 54, 5% (1, 3) 48, 9% (0, 5) 28, 1% (0, 5)
7-NN 44, 0% (0, 9) 51, 9% (1, 0) 60, 5% (0, 8) 58, 3% (0, 3) 36, 8% (0, 6)

SVM-Basic 51, 3% (0, 5) 58, 1% (0, 7) 61, 6% (0, 7) 62, 5% (0, 3) 41, 7% (0, 2)
SVM-Best 51, 8% (0, 6) 57, 9% (0, 9) 62,8% (0,6) 62, 5% (0, 2) 42, 5% (0, 3)
Chance 10, 0% 12, 5% 16, 7% 7, 1% 11, 1%

(9.7)

Table 9.7.: Classification results (mean average accuracy and standard deviation over 10
runs), all datasets, kNN, k = 1/7, euclidean distance, SVM basic and opti-
mized, 20 best features from rhythmic content full dataset after CMIM ranking
(S=Setting, D=Dataset)

9.2.2. Classification After Mutual Information and Sequential Forward Feature
Selection

In the next tables, the results presented are produced after the whole feature selection with
the SVM algorithm as wrapper and with the best performance settings. For details on the
count and final features produced in each case, see table 9.10.

S/D GTZAN BALLROOM ISMIR04 UNIQUE HOMBURG
SVM-Best 49, 4% (0, 7) 56, 5% (0, 8) 63,6% (1,3) 61, 4% (0, 2) 42, 4% (0, 42)
Chance 10, 0% 12, 5% 16, 7% 7, 1% 11, 1%

(9.9)

Table 9.9.: Classification results (mean average accuracy and standard deviation over 10
runs), all datasets, optimized SVM, final best features from rhythmic content full
dataset after CMIM ranking and sequential forward feature selection (S=Setting,
D=Dataset)
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R/D GTZAN BALLROOM ISMIR04 UNIQUE HOMBURG
1 MD RMS P1 SF MD MFCC2 SD MFCC1 SD RMS
2 FL MFCC1 P2 RMS CD MFCC1 GM SFL SD SPC3
3 GM SFL A0 SFL P3 SPC8 MD MFCC2 FL SFL
4 SD MFCC2 CD SPC12 A0 SF SP SCD SD SPC1
5 EN MFCC4 P2 SFL P3 SPC12 SD SPC7 GM SCD
6 CD SPC1 SD SPC3 HFC SPC7 SD MFCC2 EN MFCC2
7 HFC MFCC11 P1 SFL KU MFCC1 P3 SPC2 EN SPC7
8 SDD RMS P2 SF P3 SPC11 FL RMS KU SFL
9 SD MFCC13 HFC SCD SK SPC1 P3 STPR SU SFL

10 SD SPC9 P3 SPC2 SD SCD P1 SF SD SPC7
11 SD SPC12 P3 SPC7 SD MFCC2 A0 SF SD MFCC2
12 KU MFCC1 CD SPC10 P3 RMS KU MFCC1 SD SPC5
13 P3 SPC7 SD MFCC2 A0 SPC6 CD SPC11 GM MFCC11
14 SD SPC7 SD MFCC1 P3 SFL MD RMS SP MFCC3
15 SK SF P1 STPR SK SPC9 P1 SFL A0 RMS
16 SD MFCC4 CD SPC5 P3 SPC2 SD SPC1 SD MFCC3
17 P3 SPC4 SDD RMS P3 SPC4 HFC SPC1 SU MFCC4
18 CD SPC12 RA SF SD SCD P3 SPC5 P3 STPR
19 FL SPC8 P3 STPR A0 SPC7 CD SPC8 P3 SPC11
20 SD MFCC11 SD SPC9 P3 SPC1 SD SPC12 CD SPC10

(9.8)

Table 9.8.: Best 20 rhythmic content features per dataset after selection through mutual
Information with target data (CMIM Method) (R=Ranking,D=Dataset)
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R/D GTZAN BALLROOM ISMIR04 UNIQUE HOMBURG
1 MD RMS P1 SF MD MFCC2 SD MFCC1 SD RMS
2 FL RMS A0 SFL CD MFCC1 GM SFL SD SPC3
3 GM SFL SD SPC3 A0 SF MD MFCC2 FL SFL
4 SD MFCC2 HFC SCD P3 SPC12 SP SCD EN SPC7
5 EN MFCC4 P3 SPC2 HFC SPC7 SD SPC7 SD SPC7
6 CD SPC1 P3 SPC7 P3 SPC11 SD MFCC2 GM MFCC11
7 HFC MFCC11 SD MFCC4 SK SPC1 FL RMS SP MFCC3
8 SD SPC9 P1 STPR HFC SCD P3 STPR SU MFCC34
9 KU MFCC1 SD RMS SD RMS P1 SF P3 SPC11
10 P3 SPC4 P3 STPR SK SPC9 A0 SF
11 FL SPC8 P3 SPC4 KU MFCC1
12 CD SPC11
13 P1 SFL
14 SD SPC1
15 SD SPC12

(9.10)

Table 9.10.: Best final rhythmic content features per dataset after selection through sequen-
tial forward method with SVM wrapper on first 20 features after CMIM rank-
ing (R=Ranking,D=Dataset)

9.2.3. Classification after Feature Selection by Accent Groups

In the next tables, the results presented are produced after the accent group feature selec-
tion from the rhythmic content feature set with the best settings for the kNN and RBF SVM
algorithms. For details on the novelty functions for the features used in each case, see table
6.1 in section 6.3.2. The subfeatures used are all 19 shown in table 7.1 in section 7.2.

S/D GTZAN BALLROOM ISMIR04 UNIQUE HOMBURG
7-NN 40, 6% (0, 8) 37, 1% (0, 9) 54, 4% (1, 2) 53, 6% (0, 4) 36, 6% (0, 8)

SVM-Best 52, 7% (0, 5) 46, 4% (1, 4) 60, 8% (0, 6) 61,3% (0,4) 41, 8% (0, 4)
Chance 10, 0% 12, 5% 16, 7% 7, 1% 11, 1%

(9.11)

Table 9.11.: Classification results (mean average accuracy and standard deviation over 10
runs), all datasets, best kNN, k = 7, euclidean distance, optimized SVM, phe-
nomenal accent feature group (S=Setting, D=Dataset)
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S/D GTZAN BALLROOM ISMIR04 UNIQUE HOMBURG
7-NN 31, 2% (1, 0) 35, 7% (1, 0) 51, 5% (1, 0) 50, 2% (0, 2) 33, 9% (0, 8)

SVM-Best 46, 0% (0, 8) 51, 9% (0, 9) 57, 9% (0, 4) 58,5% (0,4) 41, 6% (0, 5)
Chance 10, 0% 12, 5% 16, 7% 7, 1% 11, 1%

(9.12)

Table 9.12.: Classification results (mean average accuracy and standard deviation over 10
runs), all datasets, best kNN, k = 7, euclidean distance, optimized SVM, struc-
tural accent feature group (S=Setting, D=Dataset)
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10. Discussion

In this chapter, the results presented in the previous chapter will be interpreted and dis-
cussed in some depth and a conclusion is reached about their relevance.

The results in general present a mixed picture. It is clear that the rhythmic features alone
cannot account for all the variance present in the datasets with respect to the musical genre
classification task. It should be noted again here, however, that genre classification is not
a well-defined problem in any case: The ground truth genre labels do not reflect (only)
a physical reality, but rather a subjective categorization based on acoustic, musical and
social criteria. Therefore, it cannot be expected that the extracted low-level features can
separate the genres perfectly: it is much more an attempt to define up to which extent
the track of a dataset are separable in given genres through such features. That is also
the case for the baseline instantaneous features, which serve as a compact representation
of other aspects pertaining to the audio sample, in the hope of being able to capture as
much variance present in the audio samples as possible, which could be important for
the widely defined task of musical genre classification. Given this as a fact, the objective
shifts towards the determination of the performance of the feature subsets and the best
features resulting from the feature selection process, as well as towards the study of the
misclassified examples in order to draw conclusions about the relatedness (especially with
respect to their rhythmic content) of specific genres.

Hereafter, specific aspects of the feature performance in the musical genre classification
task will be discussed.

10.1. Performance of Basic Classification

The results of the baseline experiment with the full set of the instantaneous features, as well
the rhythmic content features full set and the combined feature set experiments for both
classification methods and all datasets are given in tables 9.1-9.6. We will refer to them in
the following sections and compare the performance with respect to datasets, classification
methods, parameterization of the algorithms. Finally a total comparison of the feature set
performance will be given.

10.1.1. Baseline

In the baseline experiment, using the instantaneous feature set alone, the range of mean
average accuracy achieved for each dataset is 30% for the HOMBURG dataset with a 1-
NN classifier (table 9.1) and 70% for the ISMIR04 dataset with the C-optimized RBF-SVM
classifier (table 9.4). Those results lie in any case above the average prior for each dataset
and are indicative of the very acceptable classification performance that can be achieved
by using the instantaneous feature set. We will compare the results regarding the three
aspects mentioned in the beginning of this section.
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Datasets For the baseline experiment, the best classification results are achieved for the
ISMIR04 dataset, followed by the GTZAN and UNIQUE dataset, whereas the BALLROOM
and HOMBURG datasets lie at the end of the scale. This tendency remains the same in-
dependent of classification parameters and method. This can be interpreted as an artifact
pertaining to the track distribution in the datasets (which in case of the HOMBURG dataset
is very unbalanced) and the specific selection of tracks therein, indicating either that the
ground truth could be reexamined or that the collection is too diverse or onesided to allow
good classification. In total, the results lie close to the ones reported in the corresponding
publications ([91, 39, 43, 7, 83, 62]) but in most cases marginally lower. However, this can
be interpreted as the result of using different features and classifiers for their experiments
than the ones used here.

Classification methods The results with respect to the classification methods are un-
ambiguous: the RBF-SVM has better performance than the kNN across all settings and
datasets. It can be seen as a matter of fact, that the results of the basic RBF-SVM version
are better than the best version of the kNN (7-NN), at a rate of ca. 10%. That is a clear
indication that the application of SVMs for the musical genre classification problem gives
better results than very basic methods such as the kNN, which was an expected outcome.

Parameterization Regarding the parameterization, the kNN algorithm shows clearly bet-
ter results for the versions with a higher k for all datasets, with a steady increase in accu-
racy from 1-NN to 7-NN in the range of 2 to 8%. For the SVM, the same remark holds
true for most cases, although the optimization for C alone gives generally the best results,
comparable to the ones obtained from grid search, and the optimization for γ alone gives
generally worse results than even the basic method. The use of a weight vector for C with
the optimized version generally lowers the mean average accuracy, but brings a gain in
the correct classification of the classes which have few samples.

10.1.2. Rhythmic Content Features

With use of the full rhythmic content feature set alone, a mean average classification ac-
curacy ranging from 32, 8% for the HOMBURG dataset to 66, 2% for the UNIQUE dataset
is achieved. As such, those results lie close to the ones given by the baseline experiment,
albeit marginally lower. This difference lies in the area of 5 to 10% for the kNN versions,
and between 3 to 8% for the various SVM parameterizations. This is a good indication
that the rhythmic content features are indeed very informative and useful in classifying
musical genres. The discrepancy between the baseline and the rhythmic feature set alone
can be explained by the fact that the rhythmic descriptors capture only one aspect of genre
dependency (i.e., its rhythmic content), whereas the instantaneous descriptors somehow
encode information about the general content of the music, thus leading to better classifi-
cation. This outcome, however, was expected; but the performance of the rhythmic content
feature set remains very satisfactory. The partial aspects are explained in the following.

Datasets The best classification results for the rhythmic content feature set are also achieved
for the ISMIR04 dataset, followed closely by UNIQUE. An important difference to the
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baseline experiment can be observed here: The BALLROOM dataset achieves very com-
parable results to those of the GTZAN one in all the RBF-SVM and the best kNN settings,
which is an indication that the rhythmic content features are very useful in the case of a
highly rhythmically relevant dataset such as BALLROOM (8.2). As before, the HOMBURG
dataset lies far behind the others in all cases, but still considerably above the prior. We will
examine the performance results for the rhythmic content descriptors for each dataset here
in more detail and compare the results to relevant publications:

GTZAN The results presented here are better than the ones given by Tzanetakis in [91]
for the GTZAN dataset using only rhythmic content features and a single gaussian clas-
sifier (28%). They actually are indeed very close to the results using his whole feature set
(60, 1%), at least when considering the RBF-SVM classifier. One must note, however, that
he uses only 6 rhythmic descriptors on a beat histogram (corresponding to the first 6 of
our peak-related subfeatures in this work, see table 4.3), resulting in a very frugal feature
set in comparison to our experiments.

BALLROOM For the BALLROOM dataset, results using only rhythmic descriptors (as
Gouyon in [39] did, achieving 52, 8% accuracy with the periodicity histogram descriptors
and a 1-NN classifier) are comparable in the case of the RBF-SVM setting. However, we
achieved only 36, 2% using a 1-NN classifier, a difference which could be traced back to the
specific implementation of the periodicity histogram features (comparable to our beat his-
togram features) in his case. His best results using IOI-MFCC features and correct tempo
(90, 1%) could not be reproduced here.

ISMIR04 Marques [62] uses a novel method for feature extraction based on a codebook
representation and achieves 75, 0% accuracy using an SVM classifier with very high C and
83, 0% with a Markov model. Since the method is not truly comparable to ours, his result
must be taken with care. However, our 55, 1% can be interpreted as a satisfactory result
for rhythmic content feature extraction alone.

HOMBURG The accuracies achieved for the HOMBURG dataset for the RBF-SVM set-
ting (44, 5%) are comparable to those achieved with the use of a Naive Bayes classifier in
[43] (43, 7%), but lie lower to the ones attained with a kNN classifier with adaptive distance
metric (53, 2%).

UNIQUE For the UNIQUE dataset, Seyerlehner [82] reports 75, 9% accuracy, though it
is unclear how exactly this value is achieved. It lies, however close to our own value of
66, 8% using only rhythmic content features, which can be interpreted as an encouraging
result.

In table 10.1, the best results from our rhythmic content feature set (for the RBF-SVM
method) are listed together with those of relevant publications in order to allow a direct
comparison. It should be noted, however, that the comparison must be performed with
care: Not all related publications have used only rhythmic descriptors for the classification
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task and classification methods vary widely. Therefore, in the last rows, information about
the classification method and the feature set used is given as well.

GTZAN BALLROOM ISMIR04 UNIQUE HOMBURG
ARCF 59, 2% 60, 4% 55, 1% 66, 8% 44, 5%
Other 28, 0% [91] 52, 8% [39] 75, 0% [62] 75, 9% [82] 53, 2% [43]

Features RF RF OF OF OF
Classifier GS k-NN SVM SIM k-NN
Chance 10, 0% 12, 5% 16, 7% 7, 1% 11, 1%

(10.1)

Table 10.1.: Best classification results comparison between results achieved here (ARCF)
and other approaches (Other) (RF=Rhythmic Features, OF=Other Features,
possibly comprising RF, GS=Gaussian Single Classifier, SIM=Similarity)

Classification methods The results with respect to the classification methods conform to
those in the baseline experiment: the RBF-SVM method shows better performance than the
kNN across all settings and datasets in this case as well. The difference between attained
accuracies is comparable to the ones in the baseline experiment.

Parameterization The results of the parameterization also conform to those in the base-
line experiment. The kNN algorithm shows better performance for higher k and the grid
search results for C and γ give the parameterization which provides the best results for the
SVM. However, the differences are smaller than for the instantaneous feature set.

10.1.3. Combined Feature Set

When using all features pooled together, the mean accuracy is elevated up to 4 − 10% for
the RBF-SVM method with respect to the the rhythmic content features and 1 − 5% with
respect to the instantaneous features. The corresponding values for the kNN are 1 − 12%
and 4 − 7%. Those values hold almost independent of the dataset under consideration.
That is primarily expected, as the more information a good classifier receives, the best
separation it can achieve, regardless of the high correlation of the features used. In total, an
accuracy range of 34, 2% (HOMBURG) to 70, 4% (UNIQUE) is achieved. The classification
results with respect to the parameterization and the datasets conform to the ones in the
baseline experiment, therefore we will not discuss them further here. It is however clear
that the combination of the two feature sets gives the best results, showing that there are
relevant descriptors which can be further used in both of them.

In figure 10.1, the results for the optimized SVM method for instantaneous, rhythmic
content and combined feature set for all datasets can be seen, providing an overview of
the classification results discussed here. The general tendencies to be observed are three:

• The best results are given for the GTZAN and ISMIR04 datasets, whereas the HOM-
BURG dataset performs worse, as was also the case in most settings.
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• For all datasets except the BALLROOM and UNIQUE the combined feature set has a
performance which is very close to the instantaneous feature set. The discrepancy in
the two datasets mentioned, where the combined feature set provides better results,
can be due to the added importance of the rhythmic content features in their case.

• The rhythmic content features achieve results which are very close (ISMIR04) or
slightly better (BALLROOM) than the instantaneous feature set results. In the case
of the BALLROOM dataset, the explanation is once more the very dance-oriented,
rhythmically relevant track selection which can be found in it. For the ISMIR04
dataset, taken into account that the other feature sets show almost the same clas-
sification accuracy, it is an indication that there is no specific feature set which is
more relevant.

Before proceeding to the results after feature selection, two notes should be made: first,
the number of features used in this case remains too high. Taking into account that one
can construct even more of them in order to account for more variability, the goal can
certainly not be to go in this direction, at least from a theoretical and computational par-
simoniousness point of view. Therefore, it is important to search out which features give
at least comparable classification accuracy, but limiting their number to a few so that in-
terpretation can be meaningful and calculation can be efficient. Second, the datasets given
here are, as already mentioned, imperfect: The ground truth in genres is, in the best case,
subjective. In light of this fact, it is not meaningful to try and achieve perfectly accurate
classification, but rather to try and find a small set of features that achieve acceptable clas-
sification performance which is comparable to that of the full feature set.

10.2. Performance of Classification after Feature Selection

In this section, a discussion of the classification results using the features resulting from
the feature selection process will be given. Tables 9.8 and 9.10 show a full list of the best
descriptors after each step of the selection process, whereas in tables 9.7 and 9.9 the corre-
sponding achieved accuracies with the best classification algorithm settings for all datasets
are given. Finally, tables 9.11 and 9.12 show the results of the classification after feature
selection based on accent groups. As an introductory remark, one must note that the best
features are necessarily somewhat different for each dataset, as they have to conform to
the special distribution of tracks in genres therein. We will not discuss all of the best fea-
tures separately here, as this lies beyond the scope of the thesis. Instead, we will focus on
the most prevalent ones and the ones appearing at the top of the list and proceed to some
remarks concerning their classification accuracy and interpretation.

10.2.1. Feature Selection with Mutual Information and Sequential Forward
Methods

Best resulting features from feature selection As can be seen in table 9.8, the best fea-
tures of the ranking based mutual information with the target data, the best features for all
five datasets are the following:
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• GTZAN: The mean of the derivative of the beat histogram derived from the signal
RMS (MD RMS)

• BALLROOM: The most salient periodicity of the beat histogram derived from spec-
tral flux (P1 SF )

• ISMIR04: The mean of the derivative of the beat histogram derived from the second
MFCC (MD MFCC2)

• UNIQUE: The standard deviation of the beat histogram derived from the first MFCC
(SD MFCC1)

• HOMBURG: The standard deviation of the beat histogram derived from the signal
RMS (SD RMS)

Observing those results, we can surmise that the related subfeatures (P1,MD and SD)
as well as the instantaneous features whose novelty functions were used to create the re-
spective beat histograms (RMS,MFCC and SF ) are amongst the most important in the
sense that they explain the genre related variance in the best way. This was to be expected,
since the perceptual accents to which they relate are the phenomenal ones, which are the
most indicative of rhythmic (or, in fact, of any) changes in the signal.

Concerning the distribution of the best features in this list, preliminary analysis shows
that with regard to the subfeatures, distribution features are more prevalent than peak
features, with a tendency towards simple measures such as mean and standard deviation
as opposed to skewness and kurtosis. However, the peak feature P1 not only figures high
in the list, but also appears very often in the results. Since this descriptor is very close to the
tempo of a piece (as it denotes the most salient periodicity), this result is not unexpected:
Gouyon [39] has shown that only the tempo of the piece derived from the envelope is a
feature with good discriminative power.

Concerning the novelty functions, the MFCCs, SPCs and RMS have the highest preva-
lence in this list. This demonstrates their relevance for extracting rhythmic content from
an audio signal. To our understanding, this points towards two important considerations:
The MFCC- and the RMS-based novelty functions, being essentially good descriptors of
energy changes in the signal, signify the importance of the phenomenal accents for the
description of rhythm. On the other hand, the features from beat histograms extracted
through novelty functions of the SPCs are presumably very good descriptors of the struc-
tural (tonal) accents in a signal.

Table 9.10 shows the best features after sequential forward feature selection on the 20
first features from the ranking based mutual information with the target data. The results
contain in the first rows the best features after the mutual information feature selection,
which was to be expected as the most relevant features with respect to the ground truth
will also be the less redundant in a wrapper feature selection context [41]. However, it
is interesting to note that the distribution of the features across novelty functions and
subfeatures remains roughly the same as before, indicating, that no novelty function or
subfeature is actually unnecessary.

We will close the discussion about the best novelty functions and subfeatures from the
mutual information feature selection process with another remark. Since the focus of the

89



10. Discussion

thesis lay on classification, in-depth analysis of the best features was assigned to future
research, which can be however performed on the basis of those preliminary results.

Classification with the resulting features from feature selection Using only the 20 first
features of the mutual information ranking, a classification accuracy is achieved which is
very close to the one using the whole rhythmic content feature set using the kNN and
SVM with their best settings. This result is very important, since it shows that only twenty
descriptors (3, 5% of the full rhythmic content feature set) can produce very similar perfor-
mance for genre classification, saving much time and allowing for better interpretation of
the descriptors. The other tendencies observed here conform to the ones discussed in 10.1:
the kNN shows worse performance than the SVM in all cases, and the performance of the
individual datasets follows the same scheme (in decreasing order): ISMIR04, UNIQUE,
BALLROOM, GTZAN and HOMBURG. It is interesting to note here that the performance
of the BALLROOM dataset with fewer descriptors is actually better than with the full ones
for the SVM setting. Similar considerations apply to the results after the sequential for-
ward feature selection: The end resulting accuracy is very close to the one observed with
the full rhythmic content feature set, which is an very promising result, as it shows that
only very few features (between 9 and 15) can account for much of the rhythmic variance
present in genres in the context of the musical genre classification task. Figure 10.2 shows a
comparison of the performance of the best kNN and SVM settings, using the full rhythmic
content dataset and the reduced versions.

10.2.2. Feature Selection by Accent Groups

The results of the evaluation of the feature subsets described in table 6.1 provides good
conclusions concerning the usefulness of a conceptual categorization of features and its
use for feature selection. As described in section 6.2, two groups of descriptors based on
different accent types were used: phenomenal and structural. Using only the phenomenal
features, a range for the mean average classification accuracy of 41, 8% for the HOMBURG
to 61, 3% for the UNIQUE dataset was achieved for the RBF-SVM setting. Those results
are very close to the ones achieved with use of the full rhythmic content dataset and the
reduced versions with mutual information and sequential forward feature selection, show-
ing that this categorization of features is potentially useful for the description of rhythm.
It is interesting that the structural accent based features show generally slightly worse per-
formance than the phenomenal ones, being possibly less important for audio description
than the RMS or spectral flux feature when extracting a beat histogram from them. How-
ever, the difference between the results of the two accent groups is not extremely high,
showing that both are needed in order to describe rhythm efficiently. Figure 10.3 shows a
comparison of those results with the full rhythmic content feature set and the reduced ver-
sions after feature selection with the methods described above, for the RBF-SVM method
with the best parameters.

It can be seen that the phenomenal and structural feature groups show only slightly
smaller accuracy in comparison with the other settings. An important remark that can be
made concerns the BALLROOM dataset: It is the only one for which the structural accent
group features give better results than the phenomenal accent ones. This can be traced back
to its very rhythmic character: it can be surmised that in view of the very pronounced beat
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of most tracks in this dataset, the classification based on structural, i.e. tonal accents can
allow the better separation of genres which have very similar phenomenal accent struc-
ture (e.g. Waltz and Viennese Waltz or Jive and Quickstep), but are different concerning the
changes in the tonal levels of the signal. For the other datasets, the relative classification
performance stays the same for all feature sets; only a slight fall can be observed from the
full rhythmic feature set to the reduced ones with feature selection. However, that differ-
ence is very small, which encourages the use of very small rhythmic feature subsets for
classification.

We close this section by making a remark on the analyses which were performed here.
It is clear that an in-depth discussion of the whole feature selection experimental results is
a copious undertaking, since there are many settings, feature sets and datasets to consider.
However, a summary would read: For the further analysis of the features and subfeatures
and experiments based on them, the reduced rhythmic content feature set after feature se-
lection with RBF-SVM should be the first choice. Concerning the datasets, the HOMBURG
dataset could definitely be excluded, whereas the BALLROOM and ISMIR datasets are
promising choices for further research.

10.3. Interpretation of Misclassified examples

The discussion of the misclassified examples can provide good ideas concerning the ”real-
istic” function of the algorithms and the relevance of the features. As can be seen in tables
A.1-A.5, (see also the information about the datasets in tables B.1 to B.5), the kind of mis-
classification errors (referring only to the experiments using the rhythmic content features)
in each dataset is very similar. Summing the results up and taking into account only the
results using the best classification methods, the following tendencies can be observed:

• Given that some datasets are highly unbalanced, results tend to favor the classes
which have the highest count of training examples. that results in the strongly
present classes receiving a high classification rate, whereas small classes have often
none correctly classified examples. This is an artifact of the classification algorithm
which, as explained in chapter 5, can only be amended but not totally corrected, and
as such must just taken for granted. The upshot of the procedure is that even in
this case, a high mean average accuracy can be achieved, but this is only due to the
fact that the classes with a large presence in the dataset reach very high scores, but
samples of classes with smaller presence are inevitably assigned to the larger ones.
However, in our view, this is similar to what a human listener would do: in the face
of unbalanced genre preferences, one would expect a listener to classify unknown
genres into something he or she knows better. With respect to the classification meth-
ods, we could see that the use of a weight vector for the cost parameter of the SVM
can help improve the results slightly, but not mitigate the problem; this would re-
quire eventually the use of a balanced dataset. For the kNN, the unbalanced datasets
present less of a problem; this is due to the simpler nature of the algorithm, which has
the downside however of producing lower accuracy in all cases. The choice between
the two is finally a matter of application or computational cost.

• For all datasets where it is applicable, the rock, pop and alternative genres tend to
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be the worst classified (regarding their overall accuracy) and function as a ”reser-
voir” for all other classes which are difficult to classify. This is a result of their very
”general” musical character and rhythmic content, which does not allow for good
separation. However, it is interesting to notice that the misclassification (false neg-
ative rate) takes place mostly between the similar classes, such as country, metal or
blues, which share many common elements with rock and pop, especially concerning
their rhythmic content.

• Varied or rhythmically rich genres, such as classic and jazz tend also to be mixed up
with each other. For instance, in the GTZAN dataset, classic is only confused with
jazz (and vice-versa), something which is also observable for the UNIQUE and IS-
MIR04 dataset. The same analysis holds for the genres which are ”rock-affiliated”
- country is often classified as blues - or conform to a similar production and con-
sumption scheme, for example dance is often misclassified as electronic music. Those
misclassifications can be explained through the use of similar rhythms in the context
of those affiliated genres as a result of similar instrumentation (e.g., a drum kit with
a steady beat) or their relevance for dancing (e.g., the use of a four-on-the-floor beat
in most electronic tracks or of a specific rhythm in dance-specific music such as salsa,
samba or chachacha).

• Rhythmically very strong (but not necessarily varied) genres, such as those of the
BALLROOM dataset produce extremely good results in all cases regarding their mis-
classifications. That is a straight consequence of the relevance of very rhythmic de-
scriptors for such genres. One such case is also the metal genre, which produces
better results supposedly because of its very pronounced rhythmic character, as well
as its fast tempo and high energy.

The above list of observations is far from being complete. However, a methodical anal-
ysis of misclassifications is a difficult matter which requires special attention, due to the
large number of genres and relationships involved, let alone the facto of comparing differ-
ent datasets with each other. Therefore, a strategy would be to focus on a specific dataset
or the relationships between rhythmically very similar or different genres. Such a task lies
beyond the scope of this thesis; however, an in depth analysis of the misclassifications in
datasets which are more easy to analyze (such as the GTZAN and BALLROOM) is planned
for future research.

10.4. Conclusion

From the previous discussion, the following conclusions can be drawn:

1. Musical genre classification remains a challenging task, even when using large sets of
features, or features pertaining to specific sound aspects such as rhythm. However,
when taking into account the difficulties in the definition of genre and its classifica-
tion even from human listeners, high accuracy should not be expected in such tasks;
a meaningful classification which achieves accuracies up to 60 − 70% but makes the
mistakes that human listeners would do (e.g., classifying rock as pop) is desirable and
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attainable. In our results, such a classification accuracy could be achieved for the
most datasets.

2. The datasets used are an important part in every musical genre classification setting,
as the achieved accuracy depends highly on their size, track distribution and specific
composition. It was established in the course of the thesis that datasets which are
unbalanced or not thoroughly created can lead to suboptimal classification results.
Therefore, attempts should be made to create standardized datasets from experts
which are large, balanced and, as much as possible, musicologically valid.

3. Concerning the classification methods, the SVM algorithm has clearly shown the
potential for good classification performance compared to the kNN. It is therefore
proposed for further use in similar problems. Other methods can and should be
used to compare the results of the SVMs to them.

4. The results achieved with the use of the accent-based rhythmic content features are
promising and can be used as basis for further research in the area of automatic
rhythm description or genre classification. Specifically, their use in other rhythm
classification related problems such as beat tracking, tempo and meter induction or
even language recognition based on rhythm is warranted.

5. From the results of the feature selection process with regard to the subfeatures, it fol-
lows that peak related features from the beat histogram are definitely among the best
ones which can be used and therefore further research on rhythmic content should
include them. However, basic statistics on the beat histogram such as standard devi-
ation or the high frequency content also contribute to producing good classification
results. Concerning the novelty functions, the results show that novelty functions
derived from well-known and established features such as the root mean square, the
mel-frequency cepstral and the spectral pitch chroma coefficients are amongst the
most valuable for capturing the essence of the rhythmic content. Their use is there-
fore encouraged and further experiments will be conducted to assert their relevance.
Finally, the features pertaining to phenomenal accents are much more useful in clas-
sification than the ones pertaining to structural ones. This was expected, since the
phenomenal accent features track more ”pronounced”, actual changes in the signal
and can therefore be considered as a good basis for the extraction of rhythm.

In general, it can be stated that the use of music theory approaches to designing new fea-
tures for genre classification, in connection with a solid audio content analysis approach
can give encouraging results. Further approaches conforming to this scheme or the appli-
cation of the method to other related problems should, in our view, be undertaken.
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In the final chapter, an outlook will be given with respect to further experiments which
could be undertaken in order to further evaluate the relevance of the proposed descriptors.

11.1. Improvement of Implementation

Through the course of this thesis, it became clear that the possible scope of experiments
and parameterizations which can be undertaken is fairly wide. Therefore, we focused on
conducting experiments taking into account many different settings, in order to gain a
general idea of the suitability of our approach, but inevitably had to leave some subjects
as material for future research. We give here a list of the possible examinations and exper-
iments which can be undertaken to further increase the validity of the results, with respect
to the subject area to which they apply.

Theoretical Approach The accent-based rhythmic content features described in this the-
sis have shown a good classification performance, even in the settings with the very few
best features after the selection process. However, it is clear that the approach taken here
for the categorization of accents and their correspondence to features is not unique. Fur-
ther research could take into account other models of musical accent and attempt to encode
them in features. A possible refinement would be the definition of more complex accents
and their feature representation. Furthermore, musical accents are only one way of defin-
ing perceptually relevant points in the musical surface. Other methods could include the
definition of other rhythmically relevant elements, such as the beat and or meter, and de-
vise a classification based on features derived from them. Finally, the perceptual relevance
of the accents used here was not tested directly with human listeners to assess their valid-
ity. A further goal would be the conduct of listening experiments in order to determine if
and how listeners perceive accents in music, and base the feature design process on those
results. This approach is one of great interest, as it would be very informative to com-
pare the automatic classification results based on accent descriptors derived here, with the
results produced by human subjects.

Feature Extraction The feature extraction procedure described in this thesis is one of the
many possible implementations for periodicity extraction. There are several steps in the
feature extraction procedure which could assume another approach. We list some of them
here:

• Preprocessing of the features could include band-separation, transformations or other
operations.
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• The periodicity extraction process could be performed with other methods, such as
the IOI-histogram or the application of a comb filter bank instead of an ACF.

• The instantaneous features selected to extract the novelty functions are but a fraction
of the total descriptors available. Therefore, more could be included to test the im-
portance of other signal quantities for classification. Concerning the subfeatures, the
set used here is comprehensive, but other possibilities such as MFCCs on the beat
histogram or derived features could be tested.

• Other transformations or steps in the feature extraction process, such as taking the
first derivative of each novelty function or applying a different weighting scheme for
the beat histogram than the one used here can be undertaken.

Classification The classification methods included here (kNN, SVM) where chosen due
to their wide acceptance, ease of application, mathematical solidity and their good previ-
ous results in other experiments. However, a variety of other methods, such as decision
trees, neural networks, gaussian mixture and hidden markov models can be used for clas-
sification. It remains open of those methods perform better than the kNN or the SVM,
but their testing remains warranted. Furthermore, regarding the two methods employed
in this thesis, other parameter settings, such as other distance metrics for the kNN and
different parameterizations or kernel functions for the SVM could be used. The use of
other settings for multiclass classification such as the one-vs-all method described in sec-
tion 5.1.2 could help examine the problem of unbalanced datasets in more depth. Finally,
in this thesis, unsupervised methods were not applied at all. It would be therefore im-
portant to apply methods from this area to the datasets with the descriptors used here in
order to assess their performance in classification without given labels, and examine if the
results are similar to those given here. This approach could help determine if the descrip-
tors alone (without genre labels) can help explain the variance present in the datasets with
respect to rhythm.

Datasets In our work, a greater number of datasets than in most publications was used.
However, many others exist that can be evaluated, which gives a possibility for further
evaluation of the descriptors proposed here. Concerning the datasets themselves, more
in-depth evaluation such as classification in hierarchically organized datasets or subsets of
them could be a possible research direction. Furthermore, an analysis of the datasets, either
manually or by application of unsupervised learning methods, could be instrumental in
determining if the ground truth is valid and whether specific tracks can be excluded to
create more compact and consistent genre distributions.

Evaluation The evaluation of the classification results performed here is based mainly on
classification accuracy. However, as it was described in section 5.4, there exist other possi-
bilities of evaluating classification, with performance metrics which measure the precision,
recall or specificity of the algorithm, and more compact measures such as the F-Score. In
terms of comparability, this is note a problem since most publications report only on accu-
racy of the algorithm. However, in further settings other measures could be evaluated in
order to assess the algorithm performance with regard to different ”goodness” measures.
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This step will be the next to be undertaken from the author as an expansion of the work
performed in the thesis.

11.2. Further Research

A last word concerns the importance of the results for further research. Since it has been
shown that the accent-based rhythmic features perform unexpectedly well in the task of
musical genre classification with respect to the baseline features and results shown in other
studies, it is in the view of the author that they can be of use for the description of rhythm
in general: That is, their application in automatic rhythmic description problems such as the
ones described in [38] could provide a valuable tool for the extraction of other rhythmic
parameters, such as beat or meter, since their power in detecting rhythmic elements in
music and discriminating music on their basis has been proved in the context of the thesis.
Such use could also lead to the improvement of automatic musical genre classification
systems for public or commercial use.

Furthermore, we believe that the descriptors shown here can be applied in non-musical
signals, due to their generality and perceptual relevance. Therefore, the best ones will be
evaluated further and used by the author in the task of automatic language identification,
which bears many similarities to musical genre classification but focuses on speech signals
of different languages. In this setting, the descriptors could be valuable for quantifying
speech rhythm and testing its importance in distinguishing languages from one another.
This evaluation will be performed in the context of the doctoral dissertation of the author,
which concerns itself with the matter of automatic language identification based on speech
rhythm and the descriptors that can be extracted to represent it.
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A. Confusion Matrices

In this chapter, the confusion matrices as result of the classification process are given. Due
to space considerations and in order to focus on the important results, only the best re-
sults are presented here for each dataset, all rhythmic content feature sets before and after
classification and with use of the optimized RBF-SVM method.
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A. Confusion Matrices
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A. Confusion Matrices
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A. Confusion Matrices
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B. Dataset Description

In this section, the datasets used in the thesis are presented with respect their total track
count, the genres they comprise, the distribution of tracks in genres, their prior (percentage
of tracks of a genre in the dataset) and information about their length and audio data
type. All of them can be found in the internet and are available at no charge for research
purposes.

B.1. GTZAN

Total Track Count 1000 Genres Tracks per Genre Prior
Genre Count 10 Blues 100 10%

Balanced yes Classical 100 10%
Length (s) 30 Country 100 10%

Format .au Disco 100 10%
Hiphop 100 10%

Jazz 100 10%
Metal 100 10%
Pop 100 10%

Reggae 100 10%
Rock 100 10%

(B.1)

Table B.1.: GTZAN dataset

B.2. BALLROOM

Total Track Count 698 Genres Tracks per Genre Prior
Genre Count 8 ChaChaCha 111 15, 9%

Balanced no Jive 60 8, 6%
Length (s) 30 Quickstep 82 11, 7%

Format .wav Rumba 98 14, 0%
Samba 86 12, 3%
Tango 86 12, 3%

Viennese Waltz 65 9, 3%
Waltz 110 15, 8%

(B.2)

Table B.2.: BALLROOM dataset
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B. Dataset Description

B.3. ISMIR04

Total Track Count 729 Genres Tracks per Genre Prior
Genre Count 6 Classical 320 43, 9%

Balanced no Electronic 115 15, 8%
Length (s) 30 Jazz 26 3, 6%

Format .mp3 Metalpunk 45 6, 2%
Rockpop 101 13, 9%

World 122 16, 7%

(B.3)

Table B.3.: ISMIR04 dataset

B.4. UNIQUE

Total Track Count 3115 Genres Tracks per Genre Prior
Genre Count 14 Blues 41 1, 3%

Balanced no Country 58 1, 9%
Length (s) 30 Dance 766 24, 6%

Format .wma Electronica 187 6, 6%
Hiphop 229 7, 4%

Jazz 310 10, 0%
Klassik 744 23, 9%
Reggae 74 2, 4%

Rock 398 12, 8%
Schlager 59 1, 9%
Soulrnb 39 1, 3%

Volksmusik 38 1, 2%
World 146 4, 7%
Wort 26 0, 8%

(B.4)

Table B.4.: UNIQUE dataset
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B.5. HOMBURG

B.5. HOMBURG

Total Track Count 1886 Genres Tracks per Genre Prior
Genre Count 9 Alternative 145 7, 7%

Balanced no Blues 120 6, 4%
Length (s) 30 Electronic 113 6, 0%

Format .mp3 Folkcountry 222 11, 8%
Funksoulrnb 47 2, 5%

Jazz 319 16, 9%
Pop 116 6, 2%

Raphiphop 300 15, 9%
Rock 100 26, 7%

(B.5)

Table B.5.: HOMBURG dataset
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