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Abstract

The acoustic information in a room varies depending on the specific location.

Virtual simulations of different conditions have been developed in recent decades.

In 2004, Algazi et al. presented a Motion Tracked Binaural (MTB) System. It

uses certain microphones to record different sources, e.g. an orchestra. The array

of microphones is arranged in a circle and allows to combine different sources

in a virtual way with the support of a head tracker. An MTB algorithm was

developed by Sebastian Roos, at the Technical University of Berlin (TUB), for a

PC based system (Roos, 2011). The task of the paper at hand is the conception

and implementation of a binaural based 360◦ audio and video renderer, tracked

by the motion of a mobile device.

An Application Programming Interface (API) is connected with an external

head tracker or internal sensors. The mobile application is an interactive demon-

stration between a 360◦ audio and video signal. It could improve the immersion of

the recipient through the combination of visual and binaural cues (Dörner et al.,

2013, 13-15). The aim is the implementation of a mobile iOS application for a

simultaneous presentation of 360◦ video streams and MTB audio recordings. It

allows to convey a simulated spatial impression of a recorded event through the

display of the mobile device to the media consumer.
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1 Introduction

The prevalence of mobile devices and communication technologies has increased

in the last decade. Societies are markedly influenced by those technologies. In

case of Apple’s iPhone, the marketplace increased from 1.39 mio. in 2007, to

211,88 mio. devices in 2016 (Nier, 2017). The iPhone has been Apple’s most

profitable device for the last 10 years, ahead of iTunes Software, Mac Computers

and iPads (Loesche, 2017). It shows the marketplace is still growing for mobile

devices. Technology used in the devices is in continual development. The Central

Processing Unit (CPU), Graphics Processing Unit (GPU), power supply, displays,

and software are more powerful than ever before. These evolutions suggest that

mobility and the ’connected lifestyle’ will continue to evolve too.

Augmented Reality (AR) and Virtual Reality (VR) are future innovation in

research and industry as well. Complex consumer systems are able to realise,

because of the fast development of hardware, like displays, interaction devices and

tracking systems. Collateral to the engineering development, the costs decreased

(Dörner et al., 2013, p. 8-12). VR is quite an old topic. The early simulation was

founded by Edwin Link in the 1920’s (Rosen, 2008).

Furthermore, the link between VR and MTB seems credible and worth an

analysis. It could also be possible to connect a virtual sound.

Mobile applications and hardware development of smartphones have gained

more importance recently. These facts make it possible to calculate with highly

complex algorithms in real time on mobile devices. The good standard of stream-

ing services (e.g. YouTube) and media technologies form a well productive basis

in regards to the developments of audio content. An example of this new ap-

proach of media consumption is shown by the 360◦ camera. Even digital signal

processing is a high quality standard for analysing audio waveforms. Sebastian

Roos developed an multiple channel engine for rendering an microphone array in

2011 (Roos, 2011).

In relation to these developments the question arises, if a development of a

mobile application for audio and video rendering with less immersion is possible.

This could then allow the reproduction of a real environment by using VR glasses.
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How is it possible to render streaming or local channels of an MTB microphone

array to stereo signals synchronised to a 360◦ video? As well as through high laten-

cies of bluetooth or Wireless Local Area Network (WLAN) transmission. For the

application, it is necessary to implement a service that provides the MTB samples

via a broadcast or streaming protocol. The Real Time Transport Protocol (RTP),

a continuous transmission of audio, and video contents, was standardized in 2003

(Werner, 2005). The mobile application should have the ability to downstream

multichannel formats and render the files depending on the direction of view by

the usage of the MTB render algorithm (Algazi et al., 2004).

For simplification and best performances is it useful to work with the latest

device in this paper at hand.

Various steps had to be followed during the development of this topic. The

first approach is the development according to the International Standards Organ-

isation (ISO) / Open Systems Interconnect (OSI) layer model. This is necessary

because different ways of processing data are required and data must be provided

across layers. With this model in mind, a backend server has to be implemented

which offers encoded audio and video content based on a protocol for streaming

or downloading.

In addition to the server solution, it is also necessary to integrate an external

sensor to control the movement. This sensor should be connected via bluetooth,

since the WLAN data rate can be relieved if two wireless technologies are used.

The external sensor is based on a gyroscope from Bosch, which is connected

to a bluetooth module via a microcontroller. Therefore, it is used to transmit the

data from the sensor to the transmitter.

The development of the application uses numerous frameworks, which are

offered by Apple, therefore, the access to different hardware components can

be guaranteed. For example, the Audio and Video Rendering Application

(AVR) uses the CoreBluetooth framework to establish the connection to the ex-

ternal sensor.

The internal motion sensor, to ensure three dimensional motion oriented audio

and video processing without a tracker. With the internal sensors the video pro-

cessing has to be rendered, because the viewing angle can change in three planes.

Motion control, on the other hand, only needs to be ensured on the horizontal

plane.
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The algorithm of Sebastian Roos should be integrated into the application as

a rendering engine to ensure stable audio processing. Problems can occur when

wrapping the C++ classes. Furthermore, the application must be extended by

a rendering engine for video processing, in order to reproduce a copy of the real

environment.

The data to be processed is offered by the server or locally as a demonstration

and its output depends on the viewing direction. Therefore, the audio and video

must be connected to the motion control. A double video output is necessary, so

one can freely simulate the environment immersion with VR glasses.
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2 Motion Tracked Binaural system

Algazi et al. presented the MTB system in 2004. MTB is an annular microphone

array embedded in a sound reflecting spherical body, with an average head diam-

eter. Those microphones are located at different angles and originate from the

source. An MTB array could have 8, 16, 24, 36, or more channels. An MTB

recording system simulates a partial human head. It contains the model of a

sphere to simulate reflections and sound pressure levels. The pinna is not in-

cluded. Microphones that are arranged in a circle and in the horizontal plane (see

figure 1),are located at the widest point of the sphere. In contrast thereof, human

ears are not exactly in the centre of a human head.

Figure 1: underlying principal of the motion-tracked binaural sound (Algazi et al.,

2004)

The MTB system allows a multichannel audio recording with partial consid-

eration of physical characteristics in binaural listening, e.g. directional flexibility,

and sound pressure level. Pseudo-binaural audio signals can be generated un-

der usage of a suitable rendering algorithm. The spherical head model creates

Interaural Time Differences (ITDs), which help to calculate the source location.

The main differences are the missing pinna and their shading, which prevent front

and back localization (Roos, 2011, p. 18-29).

4



2.1 Spatial Hearing

The acoustic perception is within three orthogonal planes (see figure 2.1). Human

ears measure the variations of physical quantities in the manner of a monaural

or inter-aural method. These values are operated by the human brain. Monaural

describes the changes in frequencies that are made by reflections on head, shoulder,

body, and pinna. Their complex structure is combined with the characteristics of

directional reflections, resonance, and shading. Interaural is the difference of level

and run-time between the ear signals. It even provides important information

regarding the direction in the horizontal plane (Weinzierl et al., 2008, p. 89-119).

A basic head (sphere) model of this kind is exampled in the Duplex Theory

by Lord Rayleigh (Macpherson et al., 2002). It presents its usage of the ITD for

low frequencies, until the critical frequency of approximately 1.5 kHz is reached.

ITD is the phase difference between the left and right pinna (Strutt, 1904). The

Interaural Level Difference (ILD) analyzes the range above 1.5 kHz. This is useful

because the phase between the left and right ear canal is not precise (Macpherson

et al., 2002).

frontal plane

medial plane

horizontal plane

Figure 2: Head related coordinate system by Daniel et al. (2007)
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Lord Rayleigh invented the mathematical calculation for the sphere based head

simulations in 1904. The result of the sound pressure at the surface due to a plane

wave is calculated in formula 1.

H(µ, θ) =
1

µ2

∞∑
m=0

(−i)m−1(2m+ 1)Pm(cos θ)

h′m(µ)
(1)

µ = kr = 2πfr
c

r = sphere radius

c = acoustic velocity

θ = angle of incidence

P (m-degree) = Legendre polynomial

h′ (order m) = derivation of the

spheric Hankel function

with µ = kr = 2πfr
c

, sphere radius r, acoustic velocity c, angle of incidence

θ, Legendre polynomial P (m-degree), and the derivation of the spheric Hankel

function h′ (order m) (Strutt, 1904).

2.2 Spatial Recording and Reproduction Systems

The human ear measures the variations of physical quantities in the characteristic

of a monaural, or interaural manner.

These facts are the basics of directional, and acoustical simulations. Their

manipulation are requirements for room acoustics, measurement systems, and

even research. In addition to the MTB algorithm, further methods of headphone-

bound spatial audio synthesis exist. Chapter 2.2.1, 2.2.2 and 2.2.3 will explain

different spatial recording, and reproduction systems.
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2.2.1 Binaural Technology

Binaural technology is an ear focused procedure which is based on synthetic ear

signals. The signal is generated directly and separately between the two ear

canals. It contains the influences of the transmitted sound field. A Binaural

Room Impulse Response (BRIR) includes the Head-Related Transfer Function

(HRTF) as well as room characteristics. BRIR enables the simulation of different

sound sources, coupled with their characteristics. HRTF contains the interferences

at body, head and pinna. It determines a signal of room impressions in the

head phone (Dickreiter et al., 2014, p. 362). This enables reproduction with the

pressure conditions at the respective auditory canal of the whole processing, from

source to pinna (Møller, 1992, p. 171-218).

The synthesis is a broadly linear and time invariant system of the sound trans-

mission between a random source and the human eardrum. Therefore, it is possi-

ble to characterize the time range by an impulse response and frequency range by

a transfer function. This system is rather complicated to develop for a number of

reasons. The individual HRTF of each person, the problematic interference from

the microphone, the variations of head movements and its HRTF, the discrete

convolution with low latencies as well as auditive cognition are all influenced by

visual and non-auditive information (Weinzierl et al., 2008, p. 671-672).

2.2.2 Artificial Head Technology

A two channel recording system, based on binaural technology (Chapter 2.2.1),

includes microphones at the beginning of each ear canal of a real, or model head.

This allows a more accurate separation of different sound sources and their di-

rection. The recording system shows a very good record simulation (Steickart,

1988, p. 314-316). It even filters the incoming acoustic signal by the HRTF. This

transfer function contains the acoustical shading, deflection, delay, resonances,

reflexions by torso, shoulder, head, pinna, and the ear channel (compare figure

2.2.2). HRTF is mostly influenced by the head and pinna. Furthermore, of major

importance is the recording location within the ear channel for frequencies higher

than 1 kHz. Microphones were located some millimetres within the ear channel,

7



because the individual differences of HRTFs are minimal (Weinzierl et al., 2008,

p. 586).

input

body

shoulder

head

pinna

+
cavum

conchae

ear

channel

output

dependence in sound input direction independence in sound input direction

Figure 3: Directional and indirection components of HRTF (Weinzierl et al., 2008,

p. 586)

2.2.3 Binaural Synthesis

An artificial head technology is located at the foundation of a computer based

system of binaural technologies containing dynamic convolution. It provides nu-

merous BRIR for potential sound sources. The convolution allows to shape a

selected independent source with room and location information. Directions of

sound sources can align by a connected head tracking system, which captures the

head movement. It affords a spatial reproduction of sound sources with a huge

plausibility rate (Lindau et al., 2007).

2.3 Discretisation and Interpolation

A discrete sampling is the result of limited microphones at the array. Signals for

points at the array without microphones need to be approximated or interpolated
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for a continuous process of ear signals depending on head movements (compare

figure 2.3) (Roos, 2011, p.38).

0

1

2

3

4

5

6

7

a

left ear

right ear

source

Figure 4: Sampling example for ear intermediate position by Algazi et al. (2004)

A similar problem is the auralization of sound sources by HRTF recordings,

which are also based on a limited number of measuring points. HRTF recordings

are based on echo free surroundings. MTB recordings are similar to HRTF datal,

but horizontal microphone positions are simultaneously sampled, not successively.

The differences are the microphone array, as it does not use impulse signals and

spatial information is part of the signal as well. The MTB recordings are an HRTF

convoluted with spatial and source information. Algazi et al. shows different

interpolation processes which are suitable for MTB systems (chapter 2.3.1 - 2.3.6).

The reproduction will be the result of interpolation, continuity signals curved

in each horizontal angle, and their characteristics (Algazi et al., 2004; Roos, 2011).

2.3.1 Sectoral Interpolation

A spheric surface will be divided in equal sectors, which keeps the angle of the

generated system constant. The signal is switched to the next microphone output

9



at the sectoral border, and it then generates clicks, and timbre changes (Roos,

2011, p. 40-41). In 2009, Weinzierl et al. evaluated the minimal required solution

of BRIR discretisation for different audio contents. They found out that 95% of

experimental subjects could not analyse the most tender stimulus in the horizontal

solution of 4◦. A solution of 2◦ for critical audio contents was sufficient classified.

The MTB system would need 180 microphones for this solution (Roos, 2011, p.

41).

2.3.2 Linear Interpolation

This procedure weighted adds the microphone signals with their inverse distance

to the reference point of the ear. Signals with discontinuity could be prevented

through an interpolation of the intermediate value of the two closest microphone

signals (Roos, 2011, p. 41). According to Algazi et al. (2004), the interpolated

signal is calculated in formula 2.

x(t) = ωxn + (1− ω)xm (2)

ω = βnN
2π

xn, xm = nearby microphones

The cut-off range is calculated in formula 3. An essential difference of two

adjacent microphones is the time delay from the sound path difference. The

mixture of adjacent signals could be an effect of a comb filter by phase interference.

A consequence will be a malfunction of localization characteristics, caused by the

modulation effects of the head movement (Algazi et al., 2004, p 1148).

fmax =
Nc

8πr
(3)

The number of microphones is proportional to the frequency of audible range.

The frequency will be higher with the increase of microphones. A range up to
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20 kHz needs 128 microphones. Figure 5 presents level spreading (left), and flaw

effects (right) for linear interpolation for a spheric model with eight microphones

calculated by Algazi et al. in 2004. Flaws are slim for a frequency below 1

kHz (spread line). Above the critical frequency flaws are shown at the points

between nearby microphones and the frequency zeroing. Even the -3 dB flaw is

shown through the solid line. This MTB system is bordered in the number of

microphones (N). The result is a discrete sampling of the sound field.

Figure 5: Linear interpolation for 8 microphones (Algazi et al., 2004)

2.3.3 Separation in Frequency Range

ITD represents the characteristic of localisation in the horizontal plane for low fre-

quencies. Sensitivity decreases for the range above approximately 1.3 kHz. High

frequently artefacts could be prevented through a low pass filtering (compare fig-

ure 5). The crossover frequency, depending on numbers of microphones, separates

the low and high range (see formula 3) (Roos, 2011).
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2.3.4 Fixed Microphones

A fixed omnidirectional microphone provides the high frequencies, with the sig-

nal reproducing the head movement independently. Spectral energy could be

maintained in this frequency range. However, interaural and dynamic localisa-

tion characteristics will be lost. Also due to this effect, spatial impression could

collapse and prevent direction determination. There is also a separated spatial

source patterns, which is generated because of the differences of high and low

frequencies of spatial information. Even the positioning of the microphone array

is important for the timbre, through shading effects (Algazi et al., 2004).

2.3.5 Linear Sectoral Interpolation

A linear sectoral interpolation is a combination of low frequencies used by lin-

ear (see chapter 2.3.2), and high frequency sectoral interpolation (chapter 2.3.1).

Based on the main energy in low frequencies of audio signals, and short energy

in high frequency parts, the click will be less conspicuous. Linear interpolation

will be used for an effective elimination of artefacts through a limited frequency.

This combination generates the linear-sectoral interpolation with a better signal

reconstruction than the previous methods. (Algazi et al., 2005)

2.3.6 Interpolation in Frequency Range

Low frequencies are interpolated in linear (chapter 2.3.2), and high frequencies in

a spectral manner. Short Time Fourier Transform (STFT) is used by a transfor-

mation of the frequency range. STFT is calculated by Zhu et al. (2007) in formula

4.

X[m,Ω] =
∞∑

n=−∞

x[n]Wa[n−mL]e−jΩn (4)

12



m = segment index Wa = analyze tapering function

L = Hopsize Ω = 2πk
N

N = block size

By contrast with the previous methods, the spectral is interpolation less error-

prone. To the detriment of frequency range, interpolation processes signal more

ambitiously, because of the complex Fourier transformation. Even the latency

could be higher than in other methods (Roos, 2011; Algazi et al., 2004).

2.4 Head Movement

The head tracking is an essential part of an MTB system. For a head measurement

system, it is useful to use a low latency and an efficient sensor. It is not necessary

to analyze in three dimensions because the horizontal plane is sufficient. In 2002,

Welch et al. described the different technologies of a head tracker.

• Mechanical sensing is the simplest option, with a typical direct connection

between sensor and environment. An articulated series of fixed mechanic

parts, which are connected with an electro mechanic converter (e.g. po-

tentiometers, rotary encoder). If the target is moving, then the articulated

series will shift.

• Inertial sensing was developed for airplanes, submarines, and ships in

1950s. It contains a highly precise gyroscope with a small packaging. The

gyroscope measures three orthogonal angular-rates. A linear accelerometer

on each axis generates the rotation matrix.

• Acoustic sensing uses a transmission, and cognition of sound waves. The

duration of an ultrasonic impulse is measured, but signals could be destroyed

by interferences of walls, and objects.

• Magnetic sensing is based on measurements of the local magnetic field

with the use of magnetometers. Head movements can change the magnetic

field, which is generated by an electromagnetic coil.
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• Optical sensing is based on measurements of reflected, or emitted light.

Two components (light source and optical sensors) are required. There are

analogue, and digital targets with one or two dimension, and one dimension

could be higher sampled than two dimensions.

It is useful to work with a magnetic sensor, as this indicates the detected

rotational movements in a voltage change relative to the rotational speed.
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3 Visual Computing

AR and Virtual Reality (VR) are not entirely contemporary concepts. They are

based on a long history of inventions. The early developments in simulations, and

VR started in the early 1920’s of the 20th century, carried out by Edwin Link.

He designed a flight training simulator for novice pilots (Rosen, 2008). Morton

Heilig wrote an article about ’The Cinema of the Future’ in 1955. It describes

a place that will appeal to several senses:

”
Thus, individually and collectively, by thoroughly applying the method-

ology of art, the cinema of the future will become the first art form

to reveal the new scientific world to man in the full sensual vividness

and dynamic vitality of his consciousness.“

He even built the Sensorama in 1957. It is the first virtual simulation of a

motorcycle ride through the streets of New York City. The recipient could smell

the smog, feel the wind, and the vibration of the motorbike, and even had a 3D

view shaded by stereo sound (Paech, 2018).

In 1965, Ivan Sutherland developed the first ’Head-Mounted Display’ for 3D

simulation environments. These milestones, and further developments, built the

fundamentals of contemporary AR/VR (Dörner et al., 2013, p. 19).

Visual Computing (VC) has become more popular in the last two years. It is

necessary to distinguish between VR, AR, and 360◦ Videos. Generally, VR is the

superordinate of AR, VC, 360◦ graphics, and visualization (Bebis et al., 2016).

The interaction of visual, and acoustical cognition could generate the sensation

of being inside a virtual environment. A pseudo-real environment is generated

when users awareness, and their illusory stimuli, are secondary; this effect is

called immersion. If the degree of immersion is particularly high, it is also called

’presence’ (Brill, 2008, p. 6). While immersion concerns first and foremost, the

degree of immersion and experience, the term presence aims at the state of being

there (Brill, 2008, p. 6).
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Augmented Reality

AR is the computer-based extension of the perception of reality. It describes

the visual illustration of information. Virtual objects are added to videos and

pictures via overlays. In contrast to VR, augmented reality focuses on presenting

additional information. Good examples of AR can be found in the real time

comments during a sport competition (Azuma et al., 1997, p. 2).

Virtual Reality

VR is a computer-based simulated reality, or artificial environment, which people

allows an interactive experience with the help of technical devices and extensive

software. It signifies a new interface for controlling, and interacting within a

simulated reality. VR is used wherever users visualize, manipulate, and interact

with complex data. It allows a 3D illustration of various existing, or non existing,

objects. Even impressions could be mediated, which are not tactile in the reality,

because they are to fast, or invisible (Brill, 2008, p. 6-12).

3.1 Human Information Processing

The way people perceive and process information, is essential for the design of

virtual environments, as well as the interactions within them. Ultimately, every

virtual world is consumed by humans. Figure 6 shows the human processor model

of cognition, which works like a computer system with input, processing, and

output.

This model starts with environment stimuli that is the input into the percep-

tual system. This setup is connected to memories (e.g auditory memory) and

filter processors. The processing of those senses is managed, and saved in short

and long-term memories by the cognitive system. It will prepare the interaction

with the environment, which is conducted by the motoric system (Card et al.,

1986).
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Figure 6: Model of the Human Processor (modified from Card et al. (1986)) and

Dörner et al. (2013)

3.2 Visual Cognition

Human visual cognition is managed by the eyes and neural system. Light is

projected to the retina through the lens. There are approximately 120 million

visual cells, which are separated in light (rod cells) and colours (cone cells). Cone

cells can differentiate between the Red Green Blue (RGB) spectrum. A sharp

view at the retina is controlled by a muscle, which opens and closes the lens

(accommodation). The highest concentration of visual cells and the best image

sharpness is located at the fovea. The best resolution of image sharpness could

be 0.5 − 1 angular minute with the best conditions. Considering this resolution,

it is possible to realize a 1 millimetre point, at a distance of 3 - 6 meters, from

the human eye.

The visual sense enables the identification of objects. The image’s brightness,

contrast, colour, and motion are analysed by the retina, which will edit them if

necessary. Detection of various elements and objects, and their relevance, works
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probably with comparison of saved experiences in emotions, feelings, smell, and

noises (Dörner et al., 2013, 35-36).

3.2.1 Stereopsis

Stereopsis describes the phenomena of manipulated human cognition by use of

a VR system. Both eyes are not able to separate each individual image but the

visual perception system can create a 3D impression from the 2D retina light

stimulus. Figure 3.2.1 shows the difference between a normal stereopsis, and

its manipulation by terminal environments, as well as a Head Mounted Display

(HMD). While the eyes are focussed on the object, the projection is on both

retinas. In the case where humans are wearing a HMD, the eye muscles need to

be moved, depending on the distance. This motion is called convergence.

Each eye has got another convergence angle (θ) in relation to the considered

object, because of the different eye location. It allows an absolute localization.

Thereby the brain has two different images of the environment. The result of

this image fusion is a three-dimensionality. 3D illustration within VR glasses are

manipulations of the human cognition. This view is generated on a 2D display

with objects in various depths in front of, or behind, the screen. This cue is called

disparity. Depth cues are separated in pictorial, monocular, and binocular cues.

(Dörner et al., 2013, p. 37-39) and (Brill, 2008).

• The monocular cue is a covering of a object by another. The brain can

analyse the depth by experiences.

• The pictorial cue is based on monocular, cue but with a depth analysing in

2D images.

• The binocular cue is the property of disparity (Nagata et al., 2012).

According to Dörner et al., the validity of depth cues depend on the distance

between observer and objects. Covering is solid in a normal visual field. Disparity

is less solid in the instance of a long distance (smax = 10m).
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Figure 7: Normal stereopsis and stereodisplay manipulation adjusted according

to Dörner et al., p. 37

3.2.2 Motion Cognition

Motions are fundamental processes in real, and VR environments. A stimulus

will move whether or not a retina shifts and it also depends on the distance as

well as depth cues. A stimulus that is further away generates a smaller retina

and shifting, if the speed stays the same for both distances. Movements consist

of local movement stimuli and humans are able to analyse complex movements

with elementary detectors. Nevertheless, we mostly use the physical and not the

retinal speed for motion cognition.

A second perception of movements is managed by the hair cells within the

inner ear. They determine liquid changes inside of semicircular canals, which is

called vestibular sense, and helps for linear, as well as rotary acceleration. It is

possible to generate a pseudo-proper motion (vection). This illusion is mainly

due to the perception of the optical flow. The optical flow can be modelled as
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a vector field. It means that each point (P) on an image is assigned a vector.

The image is not isolated, but is part of a sequence of images in which one can

find corresponding pixels. The direction of this vector indicates the direction of

movement of the pixel (P) in the image sequence. The speed of the movement

can be determined by the length of the vector.

Therefore, the optical flow is a projection of the 3D velocity of vectors from

visible objects onto the image plane. (Ernst, 2008; Dörner et al., 2013)

3.3 Displays

The basic equipment of a VR system consists of a computer and a graphic output

device. There can also be audio and motion sensors, depending on the individual

application. Early VR systems used HMDs. Those displays consists of two Liquid

Crystal Display (LCD) for both eyes (Dörner et al., 2013, p.142 - 144)

3.3.1 Head Mounted Displays

A Head Mounted Display (HMD) is fixed on the user’s head and is worn like

an information helmet, or glasses. Central to its design is an image, generated

by a miniaturized Light Emitting Diode (LED), or an Organic Light Emitting

Diode (OLED) display, which are enhanced by an optical lens. Displays and

sensors are linked to a controller and an interface will handle media files between

computer and display (Warnecke and Bullinger, 1994, p. 22).

Field of View (FOV) has a wide influence on the presence (see chapter 3). For

monocular displays, it describes a virtual horizontal and vertical angle of perceived

virtual information by the user’s eye (see figure 8). Resolutions of 442 x 238 pixel

with a FOV of 108◦ and 76◦, were the beginning of HMD. A favourable FOV

angle supports a stronger virtual perception (Warnecke and Bullinger, 1994, p.

22) and (Dörner et al., 2013, p.143). Current HMDs working with a resolution

of 2160x1200 Pixel. A high immersion would be generated by a resolution of 4k

(3840x2160) (Thomeczek, 2016).
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Angles of FOV in instances of binocular displays are shown in figure 8. Those

displays contain two optical lenses and displays for each eye. Therefore, and for

the users and display overlap, it is necessary to separate the angles in the right

and left FOV. The brain will combine both impressions. Both eyes perceive the

common middle of their individual image margin.

One option for a displays in an HMD could be a direct view display (see figure

9). In this case, it is impossible to reproduce the real environment. Only virtual

information is supported. Those displays have to provide a slight front luminance

(formula 5), because isolation is almost full.

Figure 9 shows a concept of direct view displays as well as figure 8. It works

like a common magnifier which enlarges the presented image. The display on

which the user looks through a lens, is positioned at a distance equal to the focal

length of the lens (Melzer, 2001).

Figure 8: FOV of monocular and binocular displays (Dörner et al., pp. 143-144)

According to Dörner et al. (2013), further characteristics for a virtual environ-

ment cognition are:

• Front luminance states for the image brightness (see formula 5).
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• The background contrast-ratio works closely with front luminance. It de-

scribes the relationship between bright and dark (see formula 6)

Cfront =
Lpixel(max)

Lpixel(min)

(5)

Cback =
Lfront − Lback

Lback
(6)

FOV = 2 arctan

(
Dlens

2Le

)
(7)

FOV angles of figure 9 are calculated in formula 7, if (Dlens < Le
S
F

). This

angle depends on lens diameter and eye relief (Le). Eye motion box (E, formula

8) conditional of Le. If the eye is in such distance from the lens that the eye

motion box is smaller than the viewing area of the eye, the virtual image appears

partially cut off (Dörner et al., 2013, p. 149).

E = Dlens −
LeS

F
(8)

Figure 9: Optical concept of direct view displays (by Dörner et al., p 148 and

Melzer)
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3.3.2 Retina Display

Various application options of HMDs and constantly decreasing costs with coin-

cident increase in components performance are very well qualified to use a HMD

based on Apple iOS mobile devices with high resolution retinal displays. The high

pixel density of an iPhone X (2436 x 1125 Pixel with 458 Pixel Per Inch (PPI))

(Apple, 2017a) integrated in a cardboard with optical lenses could convey a high

immersion (compare chapter 3.3.1 and 3). The LCD of an iOperating System (OS)

device needs a high response time to refresh the display. 60 Hz for an iPhone and

maximum 120Hz for an iPad (Apple, 2017g). Even the variations of response time

are important for balanced rendering. It is not profitable if you can see 99 Hz of

100 Hz in the first 5 ms. Finally, the video latency depends on the video quality

(quantities of pixel).

3.4 Latency

VR systems have to work very well with low latencies. A high latency can causes

motion sickness for many users. Cybersickness can occur, if the perception is

not equal to the real environment. In the virtual world, it often happens that

a movement is faked to the visual sense, which does not correspond exactly to

the vestibular proprioceptive information. If a head tracker is used in combi-

nation with these displays, which is responsive for the displayed image to move

in real time, symptoms may occur if the image display is adjusted too late or

asynchronously (Dörner et al., 2013, p. 56).

It is useful to decrease system latencies to prevent this effect. Developments of

current VR hardware has a minimum of requirements. A sufficient resolution per

eye is necessary to achieve a certain level of immersion. A recommended value for

visual rendering by physical movements of the headset is called motion-to-photon

time. It is influenced by the head tracker, screen updates per second, and render-

ing engine. Current displays work with 90 Hz refresh rate. A jerk-free output of

audio and video rendering needs a latency with less than 50 ms = 20 Hz (Lindau,

2009). In comparison, cinema projectors are working with a rate of 48 Hz. A
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frame rate of 100 Hz is flicker-free for the human eye. However, there are different

requirements of latency for video players (Thomeczek, 2016).

The latency of the head tracker includes the sampling rate and time of trans-

mission of the device interface. Also, the MTB rendering and audio/video syn-

chronisation need some processing time (function 9). Lindau (2009) evaluated the

latency of 43 ms of the whole system. This is a good value for the audio and video

synchronisation.

∆tsystem =
3∑

k=1

∆ttrans + ∆tsampling + ∆trendering (9)

t

∆t

∆ttrans ∆tsampling ∆trendering

∆tsystem

Figure 10: Scheme for total latency
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4 Development

This chapter describes the development steps, including the streaming server,

audio and video rendering, and how to control them.

A user-controlled computer system must consist of a frontend and a backend.

The frontend serves as a user interface for data input, which can process the

logic in the backend. As the name suggests, the frontend is located before the

systems interface and the backend behind it. Usually these two terms occur in

web development.

The user interface in the development of an application are the inputs and

outputs via the display, speakers and sensors. The back-end is therefore everything

that happens in the background depending on the users input.

Mobile phones support native and web-based applications. Native applications

are developed based on the supported programming language, architecture and

works without an Internet connection, because they are stored locally on the de-

vice. A web-based application is run by an Hypertext Markup Language (HTML)

version 5 Internet browser that requires an internet connection, or network con-

nection, because it needs to communicate with a server (Schumann et al., 2010,

p. 3-9).

Based on the fact that the application will initially only work on iOS; AVR is

based on a native application for iPhone and iPad.

The interaction of the AVR is based on the input configurations, which inter-

acts with the streaming server (chapter 4.1), sensor data processing (see chapter

4.2.3), audio processing (chapter 4.2.6), and video processing (see chapter 4.2.5)

with its outputs.

To put it all together, this chapter deals with the configuration of the media

server, the coding and decoding options, and the associated internet protocols.

Furthermore, the development of the application is covered with the tracker con-

nection and audio, as well as video processing.

In the special case of application development, special features of the iOS

have to be considered, as well as frameworks offered by Apple have to be used.
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Based on this, the algorithm has to be developed and the connection to external

peripherals has to be established.

ISO/OSI

Based on the ISO/OSI layer model (see figure 11), it is necessary to distinguish

at which level the data processing is performed. The model is divided into the

application layer and the transport layer. Figure 11 also shows in which layer the

respective part of the AVR is to be assigned (Meinel and Sack, 2009, p. 142).

Figure 11: ISO/OSI model linked to the AVR (Meinel and Sack, 2009, p. 142)

The physical layer defines the transmission channel on the part of a network

hardware, for example the connection to the external tracker and to the data

server must be assigned to it. The Data Link Layer controls the communication

between the individual network components. In the case of the AVR, it organizes
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individual data frames between those components. The network layer provides

the transmission of variable data packets. To complete the transport layer, it

provides a reliable transport service for the application (Meinel and Sack, 2009,

p. 143 - 145).

The application layers include three additional members. The session layer

describes and controls the dialogue between two participants of one network. This

means that server and iOS device, or iOS device and external head tracker are

designated and controlled. The presentation layer ensures correct interpretation

of the data from higher-level applications. Tracker data, or audio and video files

can thus be displayed and played back. The application is the last layer and is

an interface of the network participants using the underlying services (Meinel and

Sack, 2009, p. 143 - 145).

4.1 Streaming Service

The principle of streaming is based on the fact that media data is sent in such a

way that it can be received and simultaneously be played back by the user (client)

in real time. This makes live streaming possible in addition to on-demand offers,

which requires the real-time transmission of video and audio in a continuous data

flow between server and client. There are various approaches to implement media

content on the Internet or in a private network. The process of data transmis-

sion itself is called streaming and transmitted (streamed). While transmitting a

broadcast service it is possible to call the stream by various clients (Hansch and

Rentschler, 2012, p. 17).

This section deals in particular with the transmission protocols, decoding,

and the associated web server. A Raspberry Pi version 3 may be a good low cost

device for a prototyping web server. Server with more performance are welcomed.

Furthermore is it useful to have a good internet or local network connection for

the server.
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File Encoding

In order to transmit media files via Internet communication units, they must

be encoded. Moving Picture Experts Group (MPEG) is a procedure defined and

approved by the International Organization for Standardization and International

Electrotechnical Commission, which differs in different versions, for example layer

1-4. These differ in their complexity and audio or video content. For example,

MPEG-layer 3 (MP3) is the most widely used method. Layer 2, the predecessor

of layer 3, has established itself in some radio systems and Layer 1 is rarely used

anymore. Layer 2 and higher can also be used to encode videos. Layer 4 enables

full high definition processing (Weinzierl et al., 2008, p. 870- 872).

File Decoding

A decoder is required to play encoded audio and video content (compare figure

12). This encoder is known in the streaming context as FFMPEG and is merely a

player that fetches and plays a stream via the command line. It even can convert

between different sampling rates and change them during playback with a high-

quality multi-phase filter. Audio and video data are often transmitted over the

network by using the MPEG-TS (Transport Stream) format (FFmpeg, 2018).

Figure 12: Output Transcoding Process in FFMPEG (FFmpeg, 2018)

4.1.1 Network Protocols

Network communication can be separated into basic and further individual tasks.

The basic task of all network communication is data transfer with individual

advantages and disadvantages. The protocols send data separated into packets.
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If a data packet is received correctly, a special acknowledgement procedure can

be established to signal a successful data transfer. Acknowledgements can refer

to individual data packets, or to various data packets called Piggy Pack.

Besides the transfer, another basic task of network communication is the es-

tablishment and termination of a data connection. The protocol mechanism used

must be able to react according to successful or unsuccessful connection requests.

Data transmitted via a switched connection must be delivered in the correct or-

der. Also, fallback and recovery mechanisms must be provided to restore the

communication to a consistent state after a disconnection. Further complex and

important tasks are error handling, flow, rate and congestion control, and multi-

plexing (Meinel and Sack, 2009, p. 152-155).

File Transfer Protocol

The File Transfer Protocol (FTP) enables the download from a server by a client.

Even file transfer between two hosts is possible. The advantage of this technology

is the unrestricted format compatibility. The disadvantage is that the file can only

be used after complete download. This can lead to long loading times for large

files, depending on the Internet connection (Hansch and Rentschler, 2012, p. 17).

Hypertext Transfer Protocol

Hypertext Transfer Protocol (HTTP) was developed in 1999 for distributed col-

laborative, hypermedia information systems. It is even used for communication

between user agents to other internet systems. HTTP allows basic hypermedia

access. Therefore it is stateless protocol to load hypertext files (websites) into a

web browser (Fieldling et al., 1999, p. 7). There are standards that supplement

and build on HTTP, such as Hypertext Transfer Protocol Secure (HTTPS) for

encrypting transmitted content.
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HTTP Live Streaming

HTTP Live Streaming (HLS) streams audio and video content via a server, dis-

tributor to the client, by using HTTP. Input streams are coded and bundled in

a suitable output format, by the server. It sends these bundles to the distributor,

which is based on a basic web server. Incoming requests are handled and out-

put files are provided. Finally the client downloads, bundle up, and shows the

incoming data in a continuous stream (see figure 13).

Figure 13: HLS basic configuration (Apple, 2018ah)

The server generates a video in H.264 compression for MPEG-2 transport

stream. This stream is separated into short media files, by a software segment, and

stored to a web server. Even the Uniform Resource Locator (URL) is published at

this server as well. The client software is showing the bundles encoded as media

content without any pauses or gaps (Apple, 2018ah).

Real Time Transport Protocol

A standard for audio and video data transmission is the RTP. It is based on a

protocol, lower level (e.g. User Datagram Protocol (UDP)), to transmit media

data. However, it offers some important features for the communication of media

data, such as content characterization, or data reception monitoring. Another

important feature is that the protocol enables multicast communication. This

has the advantage that a group of recipients can collect and process the data.

RTP user data, for example, is transported via UDP (Schumann et al., 2010, p.

1).

UDP belongs to the transport layer of the Internet protocol family and enables

applications to send datagrams in Internet Protocol (IP) based computer networks
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without the guarantee that data will be received. Therefore, it is a minimal

connectionless network protocol (Meinel and Sack, 2009, p. 150 - 151).

The data transport of the RTP is extended by a control protocol Real Time

Control Protocol (RTCP), therefore the data transmission in multicast networks

can be monitored, and minimal control and identification functions can be pro-

vided. Since RTCP and RTP only transmit data, but cannot check connection

control, it is flexible in the choice of connection protocols and can transmit via

other means besides the standard UDP (Schumann et al., 2010, p. 1).

Real Time Messaging Protocol

Real Time Messaging Protocol (RTMP) was developed by Adobe to enable live

transmission. A broadcast software (e.g. Open Broadcast Software) can send a

video directly to the web server. This protocol is based on RTP and therefore

clients are able to call the live stream in real time. An internal software module

which is called FFMPEG (see chapter 4.1) can encode the local video and broadcast

it inside the server. For a good transmission it is necessary to have a fast upstream.

The video quality is depending on the quality and type of origin materials, the

compression method, and the data transfer rate (Hansch and Rentschler, 2012, p.

18).

4.1.2 Web Server

Based on a Raspberry Pi, the web server runs with a nginx module. This module

offers modular techniques, such as name and IP-based virtual hosts, flash video

streaming, websocket protocol, and much more (Nedelcu, 2010, p. 1-5).

The installation process for a Linux machine is managed by a Secure Shell

(SSH) via the terminal window. A remote installation via SSH allows a network

based configuration at the Raspberry Pi without a monitor or keyboard. A NGINX

streaming server requires some software packages. The NGINX-RTMP module by

Roman Arutyunyan contains the HLS protocol. It publishes a MPEG-TS format
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over HTTP with the advantage of full performance, access control, logging, and

so on (Arutyunyan, 2017).

Beside the RTMP module, some Debian libraries are needed. Debian is an

open source OS based on Linux distributions. For secure Internet communica-

tion, the libssl-dev package must be installed. It is developed by OpenSSL.

It contains the cryptography protocols Secure Socket Layer (SSL) and Transport

Layer Security (TLS) (SPI, 1997 - 2018). The libraries needed during the process

runtime are provided by the libpcre3 package with its headers, static libraries

and documentation (SPI (1997-2018a), SPI (1997-2018b)).

All necessary commands for installing the server on a Raspberry Pi are listed

in appendix section install NGINX.

It is necessary to add configure lines into the nginx.conf file. In case of RTMP

it includes the standard port = 1935, chunk size = 4000, and application.

The maximum value of this chunk size for stream multiplexing is 4096. It allows

a low Central Processing Unit (CPU) overhead with a big size. The name of the

server streaming application is live or HLS. Its options are set with its path,

fragments and playlist length (Arutyunyan, 2017).

After installing the engine with its streaming protocols, it is possible to stream

via the HLS protocol without sending commands. The files are automatically

linked to the right folder. It is possible to stream the files via the internet if there

is a static IP address or a website. Port forwarding allows external access into

the local network on the individual service port. In case of this web server, port

8080 is configured. The VLC Media Player offers a playback via the network

(Arutyunyan, 2017). It is a solid option to test the server and its functionality

with the following URL:

http://raspberrypi.local:8080/hls/360.mp4

It listens on port 8080 in the local network for the asked media file. The IP

address will differ in other networks. Optionally use clear names for the Raspberry

Pi.
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4.2 iOS Application

This section includes the description of the iOS implementation. Apple’s Integrated

Development Environment (IDE) Xcode is required for an iOS application. Apple

is very restrictive in different areas of using internal hardware. It should help to

keep the surveillance for the development of applications.

IDEs has the facility to test the application, by using a simulator during the

development process. Compared to a desktop computer, smart phones have some

restrictions with regards to CPU, Graphics Processing Unit (GPU) and power

supply, because of the different dimensions of each device.

The first version of Apple’s new programming language
”
Swift“was released

in 2014. It is a powerful development language which is used for iOS, Mac, Apple

TV and iWatch applications. It is not a replacement for the older programming

language Objective-C, but rather a supplement for the former program code. Very

important features of Swift are the easy readability and the automatic managing

of memory. According to Apple, it also has tupels and various returns, generic

types, powerful error handling, and fast and precise iteration through a range or

a collection. In September 2017 the latest version, Swift 4, has been released. It

is used for programming of the AVR (Apple, 2017k, p. 58-59) (Kremenek, 2017).

Apple offers access to hardware components and system applications with

dedicated APIs. These applications are not able to access the hardware directly.

It is handled by the intermediate layer of the OS (see figure 14). Therefore, the

OS and its abstraction of the hardware is the limit of development. It offers all

essential interfaces with various levels of abstraction. Hardware Access has a lower

abstraction than system applications.

The iOS is divided into private and public layers. Only the public one allows

access by developers. It includes the Cocoa Touch, media, core services, and core

OS protocols. The private layer contains the kernel and the hardware drivers (see

figure 14).

Any code created in Swift within the frameworks, is only executable on the

specific systems created for it. Independent libraries that can be used anywhere

are supported by Swift.
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Previous code is written in libraries, which are also used in different projects.

Swift supports the integration of C, Objective-C, and C++. C is probably the

simpler variant, since the functions can be called directly from Swift. Since the

already developed audio processing was written in C++, some adjustments in

the Swift code are necessary. This also necessitates the fact that there are open

source libraries available, which are only available for C++, such as Digital Signal

Processing (DSP). Because Swift can communicate directly with C, but not with

C++, it is necessary to use a program wrapper. This allows C++ code to be read

and executed by C (Singh, 2016).

Figure 14: iOS Device Layer (Stäuble, 2009, p. 26-27)

View Controller

The interaction with an application is controlled by the Model-View-Controller.

The controller updates the model and receives notifications. The other uses are

that the controller updates the view and the controller receives user actions as

well (Apple, 1997), (Reenskaug, 1979).

The design of the human interface needs to have clarity deference and depth.

It means that text and icons are in every size precise and lucid. Also, the motions
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need to be fluid and clear. A clean division is the basic for a self-explaining

interaction with the content. The Graphical User Interface (GUI) controls the

Model-View-Controller Apple (1997), it was founded by Reenskaug in 1979.

Every ViewController starts with its own UIViewController class, which pro-

vides the infrastructure for managing UIKit views (Apple, 2017l). There are two

types of view controllers, according to Apple:

• Content view controllers are the main type of controller used and manage

the application content.

• Container view controllers collect and present information from other con-

trollers differently (Apple, 2017j)

These variations of ViewController are developed in the Xcode’s internal

main file of the storyboard designer. They are connected to their own Swift

class, which is defined in a separate file. In the class, there is an override func-

tion, viewDidLoad. It is the entry point for the algorithm in the respective View

Controller and will perform additional initialization on views. Of course, the

classes can communicate with each other and change variables and outputs (Ap-

ple, 2018ai), (Apple, 2017k, 376-396).

The interface designer allows buttons to be added, as well as, sliders, labels

and other in and output options. These interactions must be linked to the source

code in order to enable individual functions, statements, inputs and outputs to be

executed. Of course, it is also possible to develop a storyboard by using program

code (Apple, 2018ai).
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Figure 15: AVR storyboard

According to Apple, it is possible to use various ViewController types. The

most important ones are: table-, collection-, navigation-, tab bar-, page-, and

GLKit views controller. In the case of AVR, no predefined view controllers are

used, because they are individually designed (see figure 15), furthermore, no ta-

bles, pages, or other features are displayed (Apple, 2018ai).

The application is therefore based on different views. They will be changed

step by step, depending on the progress. After the start, the setting view is loaded,

in which the user can influence the server address and select the type of media

source. If the settings are successfully loaded, the next view is audio processing.

To optionally add the video afterwards, the internal sensors will automatically

control the audio processing, as well. The views are always stacked on top of each

other or removed.

During playback, the operating objects can be shown or hidden by using the

instance property that uses the boolean value isHidden (Apple, 2017i). This

effect is primarily used in the video reproduction. The menu is hidden while the

video is playing, however, it can be activated by a tapping the left side of the

screen. In the case of the audio playback, non hidden objects (e.g. microphone

circle) is an indicator of successful connection to Bluetooth Low Energy (BLE)

peripherals or the other remote control opportunities.

In general, the application is based on different processes (see figure 16), par-

tially parallel. After the user has started the application, selected the data source
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and the tracker option, audio processing and video processing (chapter 4.2.5 and

4.2.6) are loaded with their respective rendering engines.

Figure 16: Flowchart of the AVR

4.2.1 Frameworks

The iOS Software Development Kit (SDK) contains numerous frameworks that

provide the developer with interfaces for developing applications on different ab-

straction layers. The lowest two layers, Core OS and Core Services, provide fun-

damental iOS interfaces and are largely written in the C programming language.

Among other things, low-level interfaces for the file and network input and out-

put are made available. The frameworks contained in the upper-Layer, Media

and Cocoa Touch offer object-oriented abstractions for low-level constructions

and technologies of the lower two layers and are largely written in the Objective-

C programming language. Encapsulation of complex features, such as sockets

and threads, reduce the volume of individual program code needed the likelihood

of errors. For this reason, high-level frameworks are preferred (Stäuble, 2009, p.

35-38).

Foundation

The Foundation framework is the base layer for all Objective-C and Swift classes

from the iOS SDK because it creates a root object class NSObject. It also pro-

vides a fixed set of utility classes and introduces consistent conventions within
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a class hierarchy. For example, it establishes a policy for memory management

by bindingly defining what is responsible for dealing with an object. Its portable

code also supports the platform independence of all frameworks and its code is

based on it (Apple, 2018ag).

UI Kit

This framework contains all necessary classes for the development of the Graph-

ical User Interface and is especially optimized for touch screen interfaces. The

implementation of the framework ranges from the construction of the main loop

in the application object, through the drawing model that belongs to windows

and views, to event handling. Apple recommends using UIResponder or classes

with a manipulated user interface only from the main thread or main dispatch

queue (Apple, 2018av).

AV Foundation

This framework combines the four possibilities of audiovisual recording: process-

ing, synthesis, control, and import or export. It also enables access to the built-in-

camera. An Objective-C interface offers the action, creation, edition or re-encode

of audio and video content. For these opportunities, the AV Foundation stack

contains the frameworks of the core audio, video, media animation, and media

and video toolboxes.

The main class of the framework is AVAsset, which represents a collection of

several audio and video data, even their information (title and duration). No

specific data format is required. It enables parallel various play-back of several

different files with different resolutions. A player item object manages the pre-

sentation status of an asset. The track elements allow editing during playback

of audio mix parameters and video composition settings. Queues of elements are

possible as well. As already mentioned, the analysis of the files is also possible.

A new asset for the output can be created by re-encoding an old one or saving it

as a new asset.
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The combination of reader and writer assets further options for transformation.

This allows conversion from one asset to another, for example to define the output

format or to display the audio waveform by using the reader. Apple recommends

selecting the frameworks according to their individual task. For video playback

the AVKit framework is required (Apple, 2018ab).

Core Bluetooth

The CoreBluetooth framework provides internal access to the BLE classes. They

offer the scanning, discovering, connecting, and communication between BLE de-

vices in the nearby environment. Since the iOS 6, iPhones and iPads can also

work as a peripheral client.

BLE connections consist of two different members, both with individual tasks.

The peripheral offers its presence and data over the air. As a central, the iPhone

uses the classes of the CoreBluetooth framework to ensure communication. If

necessary, the connection is closed by the receiving device as well (Apple, 2017b).

Core Audio

Even Core Audio is a framework for audio processing as an interface. It offers

specialised data types for interacting with audio streams, complex buffers, and

time stamps. Even data types are declared, which are used by other core audio

interfaces (Apple, 2018bg)

Accelerate

Large mathematical computations and image calculations are managed by the

accelerate framework. Vector processing offers high performance and concur-

rent energy efficiency on the CPU. This framework offers the vDSP library for

digital signal processing in iOS development. It includes Fast Fourier Trans-

formation (FFT), convolution, correlation, windows generation, and biquadratic

filtering (Apple, 2018aa).
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Graphics

Working with graphics is provided by the appropriate framework. The classes of

the CoreGraphic framework allows interactions with 2D vector graphics. It is

included if the standard UIKit framework does not offer the necessary functions,

especially animations. It is based in the programming language C but contains

an interface for the Quartz 2D API, for object oriented abstractions. The OpenGL

framework provides an interface between 2D and 3D graphics. It became well

known as an open source library for graphic processing (Stäuble, 2009, p. 33).

Besides these frameworks, Apple offers useful views and classes for video re-

production. This section will explain the advantages and disadvantages of four

different ways to add a video player into the application.

AV Player View Controller

The AVPlayerViewController.class displays video content in a specific View-

Conroller, managed by the player. This native system player includes remote

buttons and sliders and even supports AirPlay in sharing the video content with

an Apple TV. It is an easy method to transfer video content to an application, as

it is not necessary to use an URL stream via the internet or a local video, which

is linked inside the application.

This opportunity allows a quick implementation. It does not support a ren-

dering of 360◦ videos by the CoreMotion.framework (Apple, 2018ad).

Web Kit

WebKit Views objects show integrated interactive web content. Embedded videos,

e.g. YouTube videos, can be presented in a specific web browser. Therefore, it is

only possible to stream the video via the internet. However, even this possibility

does not support a 360◦ video rendering by device orientation (Apple, 2018aw).
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SpriteKit

The SpriteKit framework offers an implementation of 2D animations and graphic

rendering. The engine works with a loop. It determines the displayed content

and the changing of the frames with the help of efficient graphic hardware usage.

Because it is optimized for the arbitrary use of animations and changes, it is very

well suited for games and flexible animation applications (Apple, 2018as).

SceneKit

These views offers an opportunity to combine 3D content with a high-performance

engine and is part of the ARKit. It creates a link with the CoreMotion framework

(see section 4.2.3) for device orientation that controls the video rendering (Apple,

2018al).

4.2.2 File Download

The MTB algorithm by Roos gets the audio files via the Jack Audio Connection

Kit. It is an audio server, which provides a low latency processing for various OS.

Several clients can be connected to share audio information between audio devices

(JACK, 2014). It is a popular and professional audio connection software, but it

is no longer available for iOS devices since 2013. Because of that fact, the AVR

needs an own streaming service (compare section 4.1)

To keep latency as low as possible, all files should be download at the start of

the application (see figure 17). This is necessary because, despite the HLS format,

data volumes of 700 mega byte has to be streamed simultaneously. If the play is

used for other files, the data stream can become very large, because the test files

are only about three minutes long.

Optionally, there is also a demonstration version stored in the AVR. Apple

offers the possibility to save files to a local file path on the iOS device via the

internet or network (Apple, 2018). The download enables the possibility to play
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back files from various recordings, which were previously copied to the Raspberry

Pi in the /mnt/hls/files/ folder.

Figure 17: PickerView for downloading

The user interface offers the possibility of entering an IP address. If this

is confirmed, a connection test is performed by downloading an empty text file

and then deleting it. If this test is successful, the user is informed via the user

interaction, and the audio download can be selected. This method is called by

a PickerView. In case of reproducing the local demo files, the server test is not

needed.

To download audio and video, some functions are required. There is a func-

tion that calls an empty array containing the server address, file name, and file

extension. This array must be converted to an URL. The function linkstoURL().

It equates the array with an URL and converts it into a string. A filter checks

that the array is not equal to NIL. The function getAudioDataFromURL() with

the parameters audioURL, data expect a return value, because it is declared as

void. This function starts a shared URL session that receives a data task. It calls

the audioURL parameter from the function as an URL. The function ensures the

complete download of the data and checks for any errors.

A progress bar is displayed, which continues once the various steps have been

completed. There is also an activity indicator for the audio and video download,

as the download of Raspberry Pi will take longer in this case, depending on

the existing network speed. If the download was successful, a check mark will be

displayed as an indicator. The server test can be skipped if only the demonstration

version is to be played.
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Depending on the selection of the data source, the respective files are played

in the further course of the audio and video processing. The internal memory is

accessed via the file manager for the loaded files. Local audio files are stored in

the mainBundle based on the NSBundle.h library.

The advantage of a full download is that the files do not have to be streamed

again. A new stream means that the requested files always generate new traffic.

Downloaded files can be saved locally and used after closing the application. In

addition, just a data server or cloud service is needed, and no streaming server

for this type of file provision.

4.2.3 Head-dependent Control Unit

The mobile audio and video rendering application can be controlled by various

opportunities in the function of motion values. It supports a hand-controlled sim-

ulation (chapter 4.2.3), internal motion processing (section 4.2.3) and an external

motion sensor (chapter 4.2.3). Internal sensors are used to control the video ren-

dering (compare section 4.2.5), because of the three-dimensional nature. Audio

processing supports each case of sensor control. The user can choose the option

via a picker view (see figure 18). BLE (compare chapter 4.2.4) is used for the

external motion sensor. Values of these opportunities are saved in the TrackerX

variable.

For audio processing, it is not necessary to develop a three dimensional con-

trol unit, because the microphones are just located in the horizontal plane. For

the external sensor this means less data rate and also probably less latencies.

For simplicity, the circle slider can also be used in the horizontal plane only,

otherwise the application will need three different sliders, one for each level.

When comparing these three possibilities, with reference to latency, it is useful

to choose the internal sensor. A connected external measurement generates a

sharply higher latency than the internal which you can see in the animation by a

fast movement. However, each option has advantages and disadvantages in their

own operation.
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Figure 18: Selection of remote control

Manual Control System

A simulator is an option, beside the target device, to test the audio processing

while the developmental stage, because the Xcode internal device simulator does

not support a BLE connection and motion sensors as well.

This manual system is a simple way to change the rotation angle. In case of this

property, the user can rotate the represented head manually via a slider. Ragonese

developed a circle shape slider in 2016. Adapted to the AVR requirements is it a

solid base to build on.

The developer offers a class that compares start and end coordinates to the

circle center. Radian values are generated by the finger movement as a touch

gesture. A function call of rotarySlider() will print a transparent circle with

its touch diameter, touch point, touch tolerance, and trail. Generated values

are returned as a string in Euler angles. Even the pre-developed class analyses

when the circle is completed, or the user leaves the tolerance. These exceptions

are printed in the Xcode internal terminal.

When the audio and video are playing concurrently, it is not possible to change

the values of this simulator because it is not shown in the video reproduction.

The only option to offer an autonomous reproduction of MTB. The following two

sections are options to use an automated movement-dependent remote.
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Internal Motion Sensors

Apple’s iOS devices have an orientation sensor. This sensor contains an accelerom-

eter, gyroscope, pedometer, and magnetometer. The Core Motion for device ori-

entation is the internal opportunity to analyze movements of the device. This

framework supports the access to the raw and processed accelerometer and the

gyroscope data (Apple, 2017h).

Accelerometer and gyroscope data are presented in three axes through the

device. All axes start in the root. X-directions are in order to use portrait mode

from the root to the left (−x) and to the right (+x). The Y-axis goes to the

bottom (−y) and top (+y). Last but not least, the x-axis is the perpendicular

from the x and y axis. Positive direction (+z) runs through the top of the display

and negative direction (−z) goes through the back of the device (see figure 19)

(Cook, 2014).

Figure 19: iPhone device orientation (Cook, 2014)

The initialisation of its CMMotionManager object is the base to report the on-

board motion service. It enables access to the already listed sensors. Linked

to this class, device orientation is managed by function MotionSetup for the

initialisation of deviceMotionInterval and startDeviceMotionUpdates, which
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both start the incoming data process (Apple, 2018ae,a). Motion interval is the

time in seconds, which handles refreshment of incoming values (Apple, 2018af).

Incoming values of CoreMotion have to be stopped, if the user is selecting

another control option for rotation (Apple, 2018at). Furthermore, Apple recom-

mends to use only one motion manager in an mobile application, because one

could conflict with another otherwise.

Access to the function AccelerometerUpdate is handled by MotionData.

gravity x-z. Return variables contain a three digit number and one decimal

format, for each direction.

Gyroscope updates (MotionData.rotationRate.x, MotionData.rotation

Rate.y, MotionData.rotationRate.z) returns a four digit format and one dec-

imal in func GyroscopeUpdate. The fourth one is a place holder for the mathe-

matical sign. Motion values of iOS devices are generated as a radian. For MTB

it is useful to work with Euler values. The terms of the calculation and relations

of the radian and Euler degrees are shown in equation 10 and 11 (Papula, 2009,

p. 244-245).

1 rad =
360◦

2π
=

180◦

π
≈ 57, 296◦ (10)

1◦ =
2π

360
rad =

π

180
rad ≈ 0, 017 rad (11)

External Motion Sensor

The sensor used within the audio communication group is the BNO055, by Bosch.

It has a 9-axis with an absolute orientation, which includes a fusion sensor package

of a triaxial 14-bit accelerometer, a triaxial 16-bit gyroscope with a range of ±2000

degrees per second, a triaxial geomagnetic sensor, and a 32-bit microcontroller.
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The accelerometer could work in the range of±2g/±4g/±8g/±16g. It also has

a motion triggered interruption signal generation for any motion (slope) detection,

slow or no motion recognition, and high-g detection. Features of the gyroscope

range from ±125◦/s - ±2000◦/s with the low pass filter bandwidth range 523Hz

- 12Hz. The On-chip interruption controller handles motion triggered interrupt-

signal generation for any motion (slope) detection, and the high rate as well.

Magnetic fields are ranged from ±1300µ for the x and y axis and, ±2500µT for

z-axis. The sensor has a magnetic field resolution of ∼ 0.3µT.

Software Driver

As already mentioned, the microcontroller is based on Arduino. Therefore, the

driver (see figure 20) development can be made easier by using the corresponding

IDE. Adafruit offers headers to initialize the sensor correctly and to read the

data correctly. The driver is developed in C. An array with 18 digits must be

defined, in which later the three axes can be loaded with its sign. A sub-function

AT-Read() checks whether a BLE module is connected and sends the data from

the Serial.Monitor to the chip. The setup function connects at 9600 Baud

(number of transmitted symbols) to the sensor via the serial interface. A second

connection is established with the BLE module.

Once both communication units are connected, BLE specific commands are

sent to its module, for defining the name, and to turn off the notifications as iOS

also turns off the notifications. An if-condition checks that the sensor data

has been received.The loop function sets a new sensor event and receives the

data at regular intervals. These are converted into Euler values and written to

the array that it can be sent via BLE.
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Figure 20: Flowchart of the sensor software driver

Connected with the Arduino based development board Teensy 3.2, it is pos-

sible to send the sensor data via a Serial.Monitor and the wired Universal Serial

Bus (USB) connection to a terminal. It simulates a serial connection. This mi-

crochip has a 32 bit ARM processor with an Inter Integrated Circuit (I2C) and

serial port (Teensy, 2017). The sensor is connected via the I2C bus. The source

code for receiving sensor data also contains the option to send the data via BLE

to a target device, beside the Serial.Monitor.

4.2.4 Bluetooth Low Energy

Bluetooth Low Energy (BLE) was launched in 2010 and is based on the Bluetooth

4.0 specification, which defines a set of communication protocols for low-energy

devices. The CoreBluetooh framework offered by Apple defines the BLE protocol

stack (see figure 21). There are two player in the communication, the central

and peripherals with respective tasks. Peripherals make its presence known by

offering its data via radio. The central search for offered periphery data in the

local environment will request a connection to it (Apple, 2017b).

It uses the 2.4 GHz Industrial, Scientific and Medical Band (ISM) which pro-

vides 40 frequencies and two channels. The bandwidth is separated in three

advertising channels for peripheral scanning and 37 data channels for connection

and data exchange. Gaussian Frequency Key Shiftings (GFSK) is used to protect

against interference through shifting between the 37 frequencies.

The BLE microcontroller is separated into two parts (figure 21). It contains

the controller and the host, the former of which provides the technical part. It

implements various protocols for BLE (e.g. Security Manager Protocol, or Logical
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Link Control and Application Protocol). Both are linked in a Host-Controller-

Interface (HCI). The physical layer and the link layer are implemented in a

System-On-A-Chip. Pairing security is saved through the Security Manager Pro-

tocol (SMP) by the host. (Maier, 2010, p 2-3)

Non-core profiles

GAP
Host

Generic Attribute Profile (GATT)

Attribute Profile (ATT)SMP

Logical Link Control And Application Protocol (L2CAP)

HCI
Link Layer

Physical Layer
Controller

Figure 21: BLE protocol stack (Gomez et al., 2012)

For using the BLE connections in an iOS device, it is necessary to add Core

Blutetooth framework, as it is the basis of getting access to the BLE hardware.

It provides the basic profiles in the stack: Generic Access Profile (GAP), GATT

and ATT (Apple, 2017b). The framework supports the roles of using:

• Performing Common Peripheral Role Task

Peripherals will publish and advertise services and even responding of read

and write.

• Performing Central Role Task

The device will handle, scan and connect to available peripherals, while also

exploring and dealing with data offered by the peripheral. This case is used

in the AVR (Apple, 2017b).

Two more BLE specific protocols need to added into ViewController.class.

These protocols are called CBCentralManagerDelegate and CBPeripheral
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Delegate. The CBCentralManagerDelegate protocol delegates the monitoring

of discovery, connectivity and the retrieval of peripherals. It also indicates the

availability of the CBCentralManager. The protocol is calling states of updated

CBCentralManager (Apple, 2017c). Also the CBPeripheralDelegate protocol

uses the monitoring of discovering, exploration and the interaction of peripherals

services and properties. It is even adopted by the CBPeripheral object (Apple,

2017d).

Furthermore some functions are essential:

• func centralManager discovers the peripherals. It will connect, if the po-

tential head tracker is listed (Apple, 2017c).

• func peripheral uses the service of the peripherals as well as receiving and

printing the data by the characterArray (Apple, 2017d).

• func centralManagerDidUpdateState checks the state updates by the CB

CentralManager. BLE states are printed into an alert (see figure 22) (Apple,

2017c).

If the user selected the external tracker, and the tracker is not available, it

is possible to select a new option after confirming the alert. All these input

options are developed in an if - else if condition. It means that an entry

must be made and depending on which option is chosen, any bluetooth or motion

connections will be closed, or the manual circular slider will be removed from the

ViewController.

Figure 22: Alert States for an External Motion Sensor
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There are two more instant methods for a link to the head tracker. The func-

tion peripheral(didDiscoverServices) will invoke when the application calls

available services and function peripheral(didDiscoverCharacteristicsFor)

the characteristics of a specified service, according to Apple (2017f,e). The con-

nections to any service is managed by the Universally Unique Identifier (UUID),

as a hexadecimal number, of the peripheral.

4.2.5 Video Processing

Video processing is an essential part of the present paper.

A video player has to render an already pre-recorded 360◦ video. It was

recorded under usage of 12 GoPro version 4, action cameras attached on a sphere

based rig, and was located next to the microphone array. All videos were gener-

ated in an one sphere video. There are different software tools for this process,

for example Unity. In case of the AVR video player the video was already merged

into the spheric video with its meta data and angle depending viewpoints.

In order to play the video, it must be linked to motion sensors so that the

direction can be changed. Based on an iOS device, all required sensors are inte-

grated. The source code has to connect these measurements to a video rendering

engine.

An open source player was developed by Arthur Swiniarski in 2016. Adapted

from this already written player, the AVR uses the SceneKit as well. It supports

the possibility to play the video locally or stream it from the network or internet.

The associated algorithm is described with its class, protocols, variables, func-

tions and instances. Even the methods to define stereoscopic opportunities will

be explained.

Rendering Engine

The player is added to the UIViewController protocol in AVR class, to man-

age view hierarchies, update contents, and respond to user interactions (see Figure

23) (Apple, 2017l).
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Figure 23: Flowchart of VideoProcessing

Even SceneKit protocols, like SCNSceneRendererDelegate are needed to

display the video scene with its rendering. It is displayed in a SCNView, which

is a subclass of UIView. The scene is managed by a loop, which handles the

rendering in a succession of steps (see figure 24). A call of the render instance

(render:updateAtTime:), which is called by the view, is the entry point into the

loop. It is called once per frame until the video is paused (Apple, 2018ak), then the

scene performs attached actions. Those actions are managed by the SCNAction

class and SCNAnimatable.protocol. It offers the possibility of changing the

scene frequently through the user’s input (Apple, 2018am).

The protocol performs those objects on nodes for animations and movements.

It checks any current running actions and can stop them, as well (Apple, 2018an).

In step three, the view will call its delegates’ renderer method for animation.

It updates the scene view immediately through changes in the user’s interaction

(Apple, 2018aj).

Step four and five are not essential for the 360◦ processing, because the latter

applies physics simulations to its various bodies and its delegate with a time

renderer method. The present application does not have these objects.

At the end of the loop the view will call the render:Scene:atTime twice,

which updates the scene view. The view will be updated by the scene, before call

number two (Apple, 2018aq).
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Figure 24: Frame processing in a SceneKit renderer (Apple, 2018aq)

UIGestureRecognizerDelegate protocol is necessary as well. The gesture

recognizer will communicate with its delegates. It will manipulate gestures and

their relationship to another gesture recognizer, such as allowing simultaneous

recognition (Apple, 2018au).

Scenes and nodes need to be instantiated as a variable in the case of a SceneKit

View with its spheric video rendering, to display the content. SCNNode classes are

representing positions and 3D transformations of structural elements. It only

represents positions, orientations, and scales (Apple, 2018ao). Three-dimensional

nature and their angles (roll, yaw, pitch) need to be defined in various nodes for a

360◦ Player. These nodes are linked to SCNScene. It contains the represented 3D

content. They are managed by its render SCNSceneRendererDelegate protocol

(Apple, 2018ap).

The rendering function is based on a dispatcher queue, which processes the

main threads asymmetrically. The asynchronous processing of the grinding allows

a direct change of possible viewing angle changes. Thus, the outputs of the three

planes are independent of each other. Within a plane there is dependency on the

previous value. The queue organizes the processing of video data depending on
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the process and transaction data. A for loop guarantees the permanent query of

the transaction data during this processing, and transfers it to the output scenes.

The device motion and its properties are defined as well. It can be described as

internal sensors working as a remote for video rendering with an update interval.

Reproduction

As already mentioned, the video player can play a local video file or even a stream.

The options are offered in a pickerView as well. To start a player, it is necessary

to connect the developed player to the AV Player instance, with the latter also

receiving the file source value (the location and name) of the video it is linked to.

In addition, the local display size and associated nodes must also be defined.

Furthermore, the possibility of stereoscopic display in the player must be

linked. The outcome of being observation depends on the device size, with rela-

tion to the width of the individual display and how it is defined. It is kind of a

constraint. Constraints are restrictions in the output of each view. Elements and

objects on the output surface can be defined in a strict way.

The player options of wide screen or separated views have individual nodes

for rendering. In case of device rotation, an observer detects the alignment and

adjusts the video view scenes and their nodes.

The function getNodeCamAngle observes the landscape mode in right and

left direction depending on the status bar. An else-if loop will compare the

orientation of the device and set a new camera node angle. It returns the new

calculated value to the calling function startVideo().

Even panGesture() is used for calculating the shown content. Depending on

the devices orientation, it turns the video by tilting the target. In order for this

method to work, the angles will be saved in a new variable, using both, landscape

and portrait mode. However, as it does not make sense to watch a video, with or

without VR glasses, in portrait mode, this mode is switched off.

The video player itself is developed in function LaunchVideoPlayer(). The

AVPlayer gets the file URL as a string for streaming options, or from the Bundle.

main.path as the local option. This player is linked to the left video node de-

pending on the full device screen scale. It will also automatically be divided into
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two scenes in case of stereoscopic view, depending on its screen scale. By tabbing

this option of views, the right scene will be shown. The left scene will be layered

over the right one in case of a full screen.

Both scenes are defined as a SKCropNode() to allow a replay of the individual

left and right scene. In general, a SKCropNode() is offered by Apple, as any effect

with a set of nodes, should be drawn only inside a specific part of a scene (Apple,

2018ar). A loop will calculate the individual node position without increasing the

sprite kit value. It is defined as weak var to deallocate to decay it to nil.

The actual rendering happens in the function render and defines the engine

which is described in section 4.2.5 depending on its time interval. The engine uses

a asynchronous queue, depending on its device orientation and renders the axis

in its own loop. It sets the motion attitude equally as roll, pitch, and yaw. An

observer checks the incoming motion values. It will remove the nodes and stop

the video, if there is an exception.

For connection of all these functions and processes, it is necessary to use a

separate function startVideo(). At the beginning the scenes, nodes, angles,

rotational position, and far value (distance between the camera and the surface)

are defined. Even added ChildNodes are linked to the left camera node, depending

on the camera nodes and later, on the right one as well. These definitions are

separated because the right one is just needed in a stereoscopic view.This option

is checked by an if-else loop.

Further the camera node in general are set to the positions and angles in a for

loop. It defines the three dimensions as a vector and generates the needed camera

angles for both views as float values. The view point itself is to NodeCamL and

NodeCamR, after both scenes get the boolean value: true. Even the motion

manager is called in the start function as well. Just as outlined in section 4.2.3.

It gets a motion refresh rate of 1
60

s. That means the values are updated 60 times

in a second. At the end, the video player is launched and motion controlled video

rendering starts.
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Stereoscopic View

Just as outlined in section 3.2, it is useful to separate the presented video content

into two individual displays when using VR glasses. Therefore, there are two

different scenes in the storyboard of the application. Tabbing the right display

part, activates the stereoscopic view. When turned off, only the left scene is shown

on the complete display (see figure 25).

During the simulation in the Xcode internal simulator the image is rotated 90◦

to the right, probably because the simulator has no internal sensors to align the

image correctly. On the physical target device, the image is automatically rotated

in the viewing direction by the panorama recognizer and the motion manager as

well.

Figure 25: Landscape and Stereoscopic View

This option is defined in an if-else condition in the startVideo() function and

will be called by the button action @IBAction func activateStereo( sender:

AnyObject) to ensure a change between these views during playback. It compares

the current view with its expectation. All local variables and instances are set

in the startVideo() function. The camera angles are assigned with a starting

position (Float = 0). And the nodes for rendering are added to their respective

scenes.

The if-else condition distinguishes between the activation of the stereoscopic

view and the landscape mode. If the program option is equal to true, left and

right scenes are assigned to the camera properties and the CoreMotion sensor

data. So the right scene gets its own display options and is not just a copy of the
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left one. This is important for an independent video presentation. If stereoscopic

view is equal to false, all associated properties are assigned to the left scene only.

A fileprivate function will manage the display scale of the individual de-

vice size. It even set constraints to the bounds of a target device. Depending on

the stereoscopic view, the output scenes are projected as SuperView onto the ex-

isting elements. Functions declared as fileprivate are accessible from the same

source file. It can only be accessed within their lexical range (Apple, 2017k, p.

792-821).

4.2.6 Audio Processing

The AVR has to render a synchronized MTB microphone array besides the video

rendering. The array contains 16 microphones arranged by a circle, which sim-

ulates the human head (compare chapter 2). It uses omnidirectional electret

condenser capsules (compare section 4.2.6) from Sennheiser (KE14) with a diam-

eter of 14 mm (Fiedler, 2018, p. 7-8). Even the audio rendering is controlled by

motion sensors for changing the microphones of the MTB array.

Various rendering algorithms of different qualities have been developed in a

thesis by Roos, at TUBs. The control centre of the advocated one is the MTB

Engine, it handles file receiving, signal processing, and file sending. These files

are transmitted to a buffer after crossing a FFT and filter (Roos, 2011, pp 62-66).

Microphone Array

A microphone containing out of 16 pieces array was built at TUB, which allows a

360◦ recording. It uses permanently polarized electret microphones and is a sub-

group of condenser acoustic transducer. The capsule contains a foil to simplify

the schematics, because no external polarisation voltage has to be generated. The

electrical charge is applied to heat the foil, which consists of Teflon, by electron

shelling and remains frozen there after cooling down. These microphones espe-

cially capsules are a low cost variations of condenser acoustic transducer, mostly
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used for telecommunication applications and target devices (Weinzierl et al., 2008,

p. 326-327).

Microphones with the use of a permanently polarized electret foil have to be

converted, because the phasing is either positive or negative. In case of the TUB

internal microphone array, the phase of the capsule has to be turned because a

negative output signal is generated by a positive pressure impulse. Figure 26

shows the configuration of this phasing. The sensitivity increases by 10 to 14 dB

(Sennheiser, 2018).

Figure 26: Amplifier configuration of electret capsules (compare Sennheiser

(2018))

The individual angle of a microphone is calculated in formula 12. The angle

calculates the product of a single angle with the number of total microphones

and subtracts the product of one microphone. Otherwise the angle of individual

microphone + 1 is calculated.

α =

(
360◦

NMics

∗Mic

)
− 360◦

NMics

(12)

Figure 27 shows the azimuth angle of the individual numbered microphones

located in the array. It defines the horizontal angle based on 0◦ (north).
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Figure 27: MTB Array with its indices and azimuth

Function MicsAndAngles() calculates based on formula 12 and scheme 27 the

individual angle for various microphones in a for-loop. The loop defines float

variables of the angle, individual ratio of left and right output, and the output

itself. An if-else statement computes the values of left and right output depend-

ing on TrackerX value. The variables ChR, ChL gets the value of the individual

channel depending on an observer to swap left and right output. The percentage

is calculated, in case of a position between two microphones on each side. The

individual microphone has an output impact depending on the percentage. In-

fluences are higher, when the ears are inside of the individual microphone angle

range.

Rendering Engine

The original MTB program code uses different libraries that are offered for various

computer platforms. Most of these libraries are offered by Apple explicitly for iOS

and Mac iOS development, such as vDSP. These allows efficient audio processing

on the iOS layer (figure 14).

The audio playback in the AVR is based on AV Foundation framework and

different Objective C classes, which are based on an already developed program

code by Welbes in 2017. Figure 28 shows the principal algorithm of audio process-

ing. The session is globally instantiated by the AVRSession class. A static

dispatcher is defined, which returns a global concurrent queue by the system
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with a specified quality of service class (Apple, 2018bh). The session is set to 0

for a defined state. The instance will return its Global Instance to the calling

function.

Furthermore, the AVRSession class has three additional function which are

offered for the audio processing. The AVRSetup sets the AVRnstance to a shared

AVAudioSession, which acts as an intermediary between the AVR and the iOS

(Apple, 2018ac). The setup function also defines the instance category to

AVSessionCategoryPlayback for music content, SampleRate = 48000 kHz and

BufferTime = 0.005 ms (Apple, 2018bb). Before the session can be started suc-

cessfully, the interrupt and routing handler must be called. The interrupt handler

consists of the interruption type, which reports a notification. If the interrupt

can be terminated, the session will be set active again, if not, the session will

be terminated. The routing handler also reports a notification and prints any

changes.

The AVREngine class in AVREngine.m, defines an AVAudioEngine and con-

nects the 16 channel nodes to AVAudioPlayerNode. In addition, two BOOL vari-

ables (Playing and audiolocal) are defined. The playing variable later checks

whether the player is active or inactive. The audiolocal variable is set if the

local files and not the downloaded files are to be played. The Playing variable

is returned by the playerRuns function. To initialize the AVREngine class the

Init is set as id. The value self is returned to the calling function. If self !=

NIL, the playing variable is set to false. This is basically important for interactions

between audio engine and player.

The engine starts with the callEngine function. In this function, the AVAudio

Engine is assigned to Init. For the different file paths there is a variable for each

channel (FileUrl01 - FileUrl16). Depending on the user’s selection, local or

downloaded files are assigned to FileUrl, so that the files can be read into a

buffer. Each audio node (AVAudioPlayerNode) is also assigned to the init and

then added to the audioEngine.

Initializing the AVAudioPlayerNode enables the access to samples in the AV

AudioBuffer at any time. This scheduling of AVAudioPlayerNode supports pro-

cesses at a specific point by the AVAudioFile. The output format depends on

the number of channels and buffers. If the output is not compliant, channels are

deleted or added as required. A sample rate conversion can also be performed.
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Therefore, the output rate should be selected file conform. Buffer playback is

based on the implicit assumption that it operates at the same sampling rate as

the node output. It is subject to the possibility that all previously scheduled

buffers are disabled and sets the players timeline to 0. A second timeline is over-

laid. This specifies the start time stamp of the player and stops intervals. When

the buffer is emptied, the completionHandler is called to create a defined states.

The result may also be 0. If required, the completionHandler can also be called

before the start of rendering or playback (Apple, 2018bf).

The objects of an AVAudio Engine consist of various subclasses. The nodes

always consist of input and output buses, which can be regarded as access points

or connection points. For example, a mixer has several inputs, but only one

output. The output formats consist of sampling rates and channel numbers. A

connection between nodes requires the same formats. There are exceptions for

AVAudioMixerNode and AVAudioOutputNode (Apple, 2018be).

AVAudioFIle opens a file for reading and writing, which processes the input

format of AVAudioPCMBuffer as AVAudioCommonFormat, contained in the sample.

It is the processing format, independent of the data input format. Read and write

operations are always performed sequentially (Apple, 2018bc).

An if condition checks whether an error occurred while reading the file. If

this happens, the error description is printed in the console. The audio file is

assigned to an AVAudioPCM buffer. Depending on its properties, it is loaded into

this buffer. That means its format and frame size depend on the file length. If this

is known, the buffer is filled. An if condition also checks the buffering process

and outputs of an error description. This reading and buffering is performed

individually for each of the 16 channels.

When the files are read and buffered, each buffer is connected to a AVAudio

MixerNode. This mixer can have various numbers of input. It accepts any sam-

ple rates and efficiently combines sample rate conversions (Apple, 2018bd). The

channel nodes are connected to the individual buffer and a loop option, that the

startAVRPlayer function can play all nodes and the playing variable becomes

YES. The player is stopped by the engine and the variable is set to NO.

Parameter which are set by the users input are connected through the AVR

-Bridging-Header.h. It contains the Objective-C header files of the Audio

Session. For this interaction each channel has its own pan and volume value.
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This link to the AVR.swift file is defined as the avrManager:AVRManager!. It is

set as a global instance and becomes the engine in function startAudio(). Even

the engine is loaded in this function.

The access of those functions are managed in the MicsAndAngles() function

as well. An If condition checks, if the right ear is between microphone 1 and 9,

so that avrManager.panCh01 - avrManager.panCh08 be set to 1 (right) and -1

(left) for avrManager.panCh09 - avrManager.panCh16. If the left ear is between

microphone 1 and 9, the left and right channels are switched.

Even the volume is managed by the avrManager. Depending on the location

of the right and left position, the individual channels will be fadeIn, fadeOut, set

to 1 or 0. For a defined start of the volume all values are set to 0 at the beginning

and are only faded in and out after the first movement of the rotary slider, internal

or external tracker.

Figure 28: Flowchart of AudioProcessing

4.3 Discussion

As described in chapter 4.1, the streaming server offers the audio and video content

to the application, and a BLE connection offers an outstanding remote control for

head movements. Even 360◦ videos are processed by a rendering loop (see chapter

4.2.5).

The necessity to develop a streaming server is because the Audio Connection

Jack is no longer available for iOS. It also means that the Audio Connection
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Jack buffers used, by the algorithm. could not be applied for this application.

Even a higher latency is expected, because the target device has to play all audio

channels independently to each other. In the case of communication with an Audio

Connection Jack, it plays the channels and streams them over to the network or

locally on the computer. Once the data has been downloaded and rendered,

buffers can be filled.

Continuing programming is necessary to figure out the wrapping of the MTB

algorithm. It requires a communication between the Swift audio players and the

original C++ code. That means a buffer must be filled for each player for reading

it by the MTB algorithm.

That means the programming languages C++, Objective-C, C, and Swift,

are compatible with each other. To allow functions to communicate between it

and thus to merge them. Swift cannot communicate directly with C++. An

Objective-C class must be developed that performs the exchange. In case of the

MTB algorithm, the application must use the internal headers or buffers and make

them available to the C++ MTB algorithm.

The migration of the code revealed that the Xcode Linker could not translate

the code and thus make it readable. As a result of the development, the error

output that symbols of the architecture x86 64 could not be found:

clang: linker command failed with exit code 1 (use -v to see

invocation)

It is recommended to merge both software projects in addition of a bridging

header, which could be created automatically, as soon as C++ or Objective-C

code is added. In this header the C++ libraries are made known to the Swift

project. In order for the C++ program code to communicate with the Swift

classes, they must be added with ”AVR-SWIFT/AVR-SWIFT.h”.

Different solutions, like the Other Linker Flags release values change to

BUILT PRODUCTS DIR/libCordova.a, or the Build Active Architecture Only

are set to NO. The solutions did not make the code translatable. Therefore, the

assumption is that missing libraries causing the error what has to be considered

in further work.
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The libc++.dylib must be added to read C++ code in a Swift environment.

It is a standard C++ library to translate such program code. Adding this library

didn’t solve the problem either.

A class to pass, simple integer values was created temporarily to check that

the wrapping principle works. After successful testing, an attempt was made to

access the C++ project classes based on this description. In almost all cases the

clang error (see above) was produced again.

In order for a better implementation of the rendering of the MTB algorithm,

it is necessary to figure out how the Apple headers can replaced the third party

libraries for a bug free calculation of the audio output.

During a non-scientific test listening it was noticed that the audio processing

has a higher runtime with increasing the used channels. This led to the effect that

the right output channel was heard earlier than the left. As a result, no spatial

perception can take place.

Furthermore, the effect was generated by acoustic artefacts that are audible

when the microphones change angle-dependently. To eliminate this effect, the

audio processing was switched to the basic algorithm, so that every microphone

outside its effective range (22.5 ◦) is switched off hard.

This means that they can be heard in their respective angle ranges. At a view-

ing angle of 0-180◦, microphones number 1-8 are switched to the left, and 9-16 to

the right channel. If the viewing direction changes higher than 180◦, the channels

are switched between left and right. The newly developed 16 audio channel player

is based on the AVAudioPlayer class and is declared class wide. The players are

called in the local function for reproducing the stores files or network function in

order to play the downloaded files. With this kind of development the artefacts,

and runtime differences between right and left channel are eliminated. A spatial

hearing can thus be experienced.

In order to be able to integrate the extended algorithms correctly, it is recom-

mended to develop an individual audio unit for each algorithm.

Audio Units enables complex and sophisticated audio processing functions

that are processed in a sub-application. It serves as an application extension that

sends an internal stream to the processing application and return. These extension
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points provide APIs enables mutual communication. In summary, AudioUnits are

stand-alone programs that supplement to applications (Apple, 2018ba).
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5 Conclusion

In conclusion, the MTB system is a reproduction of a room with acoustical infor-

mation of direction, sound pressure, and room response. It provides the possibility

to simulate the acoustical situation, depending on the head movement. The mix-

ture of sounds depends on the angle of the listener towards the source (Algazi

et al., 2004).

A possible virtual reconstruction of the real environment with the connec-

tion of spatial audio and video processing is demonstrated with work. Modern

smartphones are able to perform complex processings with low latency and high

immersion.

From a visual point of view, perception is the simulation of a virtual envi-

ronment that allows a realistic reproduction of a pre-recorded situation, with a

certain perceptibility of the technical devices, such as pix-elated displays, repro-

duction, or motion latencies. The display quality is particularly noticeable when

using VR glasses, as the built-in lenses represent a zoom into the display and

thus a change in focus is generated. This happens despite the possibility of high

definition playback. If one uses the application without such glasses, thus in land-

scape mode, the video quality is indeed the same, but there is no optical zoom

into the display. However, the lenses in VR glasses are necessary in order to be

able to adjust individual sharpness. This also changes the angle to the image.

Thus a lower immersion is created when wearing VR glasses. For the use of a

cardboard the internal sensor evaluation is unavoidable, because all three axes

must be evaluated.

The frameworks offered by Apple, to access the devices hardware, such as

CoreBluetooth, considering the BLE protocol stack, or CoreMotion, provides a

stable and high-performance connection to read or transmit motion data.

Audio control via one external and two internal connections is possible, how-

ever, with the external tracker it is important to note that a more modern

BLE chip and a high-performance microcontroller is used, such as the Adafruit

HUZZAH32 - ESP32 Feather Board with built-in BLE module, so that latencies

can be kept low. The used tracker has relatively high latencies, because a fast

angle change shows up in the application with a delayed movement of the vir-
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tual head. It is also recommended that the internal sensors are evaluated, as of

the latencies occurrence, which are not to be taken into account. Fast and slow

movements do not lead to a delayed movement.

The server-based data provision via streaming protocols was also successfully

demonstrated. At the end, it is possible to stream several audio and video files,

but it makes sense to download the files completely when starting the application,

as a data of about 700 megabyte could generate big traffic. Therefore, the amount

of data happens, as well as because of UDP, due to no reception guarantee.

The necessity to develop a new modified rendering is that the source code

of Sebastian Roos is based on the Audio Connection Jack, which is no longer

supported for iOS. Therefore, the data provision is download based or local. This

has the disadvantage that the data has to be played back on the device, and not as

in the original algorithm, in the Audio Connection Jack, therefore, the algorithm

only has to communicate with the player directly.

In conclusion, it is advisable to use Apple’s vDSP libraries as they are op-

timized for iOS. There are conflicts for the buffering of all 16 channels during

runtime, because the AudioBufferList did not play files synchronously. This is

because the array of the AudioBufferList has one position and the samples of

the files are loaded in multiple numbers into one memory of the array.

The merging of AVR application and MTB algorithm did not work as expected

because the communication via bridging header did not work. Thus, several errors

were generated, which could not be solved in different approaches.

One possibility for a MTB migration can be that the algorithm is completely

newly developed and implemented in Swift. This requires the use of various

frameworks to calculate interpolations, discretions, cut-off frequencies, or FFT.

For this signal processing, Apple offers the vDSP and Accelerate Framework. The

migration of my implementation of the MTB algorithm was based on the already

used libraries. However, the wrapping went wrong and an alternative had to be

developed.

In order to maintain clarity in the Xcode, all non-functional software parts have

been removed and the rendering engine is using FadeIn and FadeOut. This leads

to the fact that a certain latency or overlay can be heard during the transition.

This may be due to the fact that the audio files are not read synchronously from

the PCM buffer depending on the process.

67



In summary, this project shows that the virtual environment can be simulated

on an iPhone or iPad, with the connection of external motion sensors and a

streaming service or download.
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Appendix

Configure the Raspberry Pi

1. Download the latest OS.

https://www.raspberrypi.org/downloads/raspbian/

2. Take a Micro SD Card (at least 8GB) for the Raspberry Pi version 3.

3. Unzip the downloaded Image.

4. Open the Terminal.

5. List all Memories.

$ diskutil list

6. Select the right disk (depending on its memory capacity)

7. Unmount the selected disk

$ sudo diskutil unmountDisk /dev/diskX (X depends on the disk)

8. Create the boot disk.

NOTE: Replace FOLDER through the folder where Raspbian OS is stored.

NOTE: Replace RASPIANNME.img into the actual Filename.

NOTE: Replace the X through your memory number.

NOTE: It needs around 10 minutes without any feedback.

$ sudo dd bs=1m if=FOLDER/RASPBIANNAME.img of=/dev/rdiskX

9. Eject the disk (X depends on the disk).

$ sudo diskutil eject /dev/diskX

10. Remove the disk on your Macintosh.

11. Create an empty file ssh.txt in boot.

12. Create a wpa supplicant.conf file with the following content in boot.

network={
s s i d=”Your SSID−Name”

psk=”Your WIFi Password”

key mgmt=WPA−PSK}

i



13. Or use a LAN cable connected to your Router.

14. Insert the SD Card into the Raspberry Pi

15. Start the Raspberry Pi

16. Log in (Passwort: raspberry)

ssh pi@raspberrypi.local

17. Update the system.

sudo apt-get update

18. Upgrade the system.

sudo apt-get upgrade

Installing NGINX Streaming Server

NOTE: Please use the root user and type sudo su after log in.

19. Clone RTMP for NGINX.

$ git clone https://github.com/sergey-dryabzhinsky/nginx-rtmp-module.git

20. Install NGINX dependencies.

$ apt-get install build-essential libpcre3 libpcre3-dev libssl-dev

21. Download NGINX source code.

$ wget http://nginx.org/download/nginx-1.14.0.tar.gz

22. Unzip the source code and enter the NGINX directory.

$ tar -xf nginx-1.14.0.tar.gz

23. Move to the downloaded folder.

$ cd nginx-1.14.0

24. Build NGINX (Please don’t copy and paste. Type the first line!).

$ ./configure --with-http ssl module --add-module=../nginx-rtmp-module

$ make -j 1

$ make install

25. Start the server.

$ /usr/local/nginx/sbin/nginx
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26. Make sure NGINX is running in your browser.

http://Server IP address

27. Copy the nginx.conf file from the data stick to the default path of the web

server.

$ cp -a /media/pi/USB/files /mnt/hls/

28. Restart NGINX.

$ cp /media/pi/USB/nginx.conf /usr/local/nginx/conf/

29. Copy media files to /mnt/hls/ folder.

30. Restart NGINX. $ /usr/local/nginx/sbin/nginx -s stop

$ /usr/local/nginx/sbin/nginx

31. Update the OS.

$ apt-get update

32. Install the multimedia keyring.

$ apt-get install deb-multimedia-keyring

33. Update again.

$ apt-get update

34. Install FFMPEG.

$ apt-get install ffmpeg

35. Update again.

36. Restart NGINX. $ /usr/local/nginx/sbin/nginx -s stop

$ /usr/local/nginx/sbin/nginx
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