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Abstract

Themain goal of this master’s thesis was to generate regression models that can predict and explain
perceived musical performance properties from audio content features. For this thesis 69 recordings,
drawn from four musical fragments, and 9440 ratings of their performance properties were examined.
Audio featuresmeasuring tempo, loudness and timbrewere extracted anddi�erent regressionmethods
compared. The resulting models were evaluated using Monte-carlo-cross-validation. Multiple mixed
model analyses on the e�ects of composition and the raters were conducted.

Zusammenfassung

Das Ziel dieser Masterarbeit war es Regressionsmodelle zu entwickeln, die mittels technischer Signal-
maße einer Aufnahmen Merkmale der musikalischen Interpretation vorhersagen und erklären können.
Die extrahierten Signalmaße charakterisierten Tempo, Lautheit und Timbre. Dafür wurden 69 Aufnah-
men von vier Stücken und 9440 Bewertungen ihrer musikalischen Au�ührungsmerkmale betrachtet.
Gleichzeitig wurden vier Regressionsmethoden verglichen. Mittels Monte-Carlo-Kreuzvalidierung wur-
den die resultierenden Modelle evaluiert. Anschließend wurde mit Hilfe von Mixed-Models der Einfluss
der Werke bzw. der Bewerter untersucht.
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1. Introduction

Music, as conceived by a composer, is always perceived through the altering layer of a performer’s
rendition. Two performances based on the same musical score can have entirely di�erent charac-
teristics, yielding nuanced di�erences in the sonic qualities of a composition. While some perceived
properties, such as tempo or loudness, correspond in the physical domain, more complex ones, such
as articulation, expressiveness or phrasing, lack simple acoustical links. Still, there is a consensus
among experts on the presence as well as the validity of these features.

This thesismainly aims to uncover the extent towhich it is possible to infer perceivedmusical properties
of a performance from amere audio signal. That is, are there sets of technical features that correlate
with musical concepts of performance and how do they correlate?

Theoretical Model

If we consider the modified lens model developed by Juslin (1997), the performance of a composition
can be viewed as a process of communication between the performer and the listener. First the
performer’s realisation of the score and his or her “expressive intention” is encoded using expressive
acoustic cues, such as tempo, loudness or timbre. Then the listener uses these cues to form his or her
own “judgements” and attributions of the performance.

Current Research

Since the advent of visual assessments of acoustic waves (Seashore, 1902), similarities and di�erences
between musical performances have been studied based on these acoustic cues (Kendall & Carterette,
1990; Palmer, 1989; Repp, 1992a). Seashore (1967) also demonstrated that the variations are, to a great
degree, consistent and repeatable.

Theacoustic cues a listener uses to formhis or her perception, i.e. the functional validity, havepreviously
been studied for basic cues such as tempo and dynamics (Nakamura, 1987; Repp, 1994; Timmers,
2003). Considering the sometimes notable deviations between a listener’s perception of performance
properties and measured cues (Repp, 1992b), these basic cues alone might not su�iciently explain
perception of a performance.
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In order to expand on these ideas and identify more conclusive cues, Weinzierl & Maempel (2011) tried
to predict 16 di�erent performance properties, as rated by expert listeners. They selected the most
important features of several hundreds of options, demonstrating, for example, the importance of
note-by-note features.

4



2. Methods

This thesis builds on the dataset, used by Trebbin (2010), and Weinzierl & Maempel (2011) to cover
three compositions by Beethoven, Mozart and Schumann and had previously been extended with a
composition by Bach in 2017.

Musical stimuli

Drawn from the period between 1713 and 1849, four musical fragments were picked:

• Johann Sebastian Bach, Cello Suite No. 5 in Cminor (BWV 1011), Sarabande, bars 1–20
• Ludwig van Beethoven, String Quartet No. 13 in B[major (op. 130), 4th mov.: Alla danza tedesca –
Allegro assai, bar 1–48

• Wolfgang Amadeus Mozart, Piano Sonata No. 12 in F major (K. 332), 1st mov.: Allegro, bars 41–94
• Robert Schumann, Fünf Stücke im Volkston for cello and piano (op. 102), 1st mov.: Mit Humor,
bars 1–24

These fragments were selected, as they cover di�erent instrumentations - cello, strings and piano - as
well as genres - baroque, classical and romantic music. However, there is still common terminology
used to describe the musical performances.

For each fragment, multiple recordings were selected: Mozart and Schumann 16, Beethoven 17 and
Bach 20. In total 69 recordings from the period between 1939 and 2008 were used (c.f. appendix A).

The recordings were taken directly from CDmaintaining a sample rate of 44, 1kHz and a bit depth of
16bit.

The durations of the recordings were, on average: 115s for Bach, 52s for Beethoven, 65s for Mozart and
30s for Schumann, allowing enough time for listeners to form an opinion (Thompson, Williamon, &
Valentine, 2007) without becoming exhausted. In the case of the Bach composition, the recordings
were edited by professionals who removed the repetition.

It should be recognised that the processes of recording and production themselves influences the
performance properties (Lerch, 2011). Still, it can reasonably be said that, with the exclusion of loudness
and its dynamics, some of the properties, such as tempo and rhythmisation, are solely related to
performances, while others, such as timbre and dynamics, at least contribute greatly.
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In order for this thesis to compensate for the influence of the production process on loudness and
dynamics, all recordings were normalised for loudness according to Rec. ITU-R BS.1770-4.

Onset Annotation

For each musical stimulus, the timestamp of the onset of each note in the recording was manually
annotated. Onsets were seen as the intended beginning of a note, which can di�er from the actual
realisation. For the initial dataset, onsetswere obtained in a semi-automaticway. Onsetswere detected
by an audio-to-score-alignment algorithm described by Lerch (2008) andmanually edited. Ornamenta-
tions, secondary voices and note values smaller than sixteenth notes were le� out for simplification of
the score. The additional recordings of the Bach fragment where annotatedmanually with the so�ware
Sonic Visualizer (Cannam, Landone, & Sandler, 2010).

All annotation files were checked for consistency, i.e. number and ordering of onsets, within each
fragment.

Listening Test

Vocabulary

Previous to listening, a panel of expert listeners (N=10) that also rated the initial dataset was convened.
The panel agreed on a common vocabulary to characterise the properties of themusical performances:

• Tone colour: tone colour of a single instrument or an ensemble independent of pitch or loudness
• Timbral bandwidth: variability of the tone colour caused by intonation
• Phrasing: width and strength of structuring of musical phrases
• Loudness: mean intended loudness
• Long-term dynamics: strength of di�erences in loudness between phrases
• Short-term dynamics: strength of di�erences in loudness within phrases
• Tempo: mean base tempo
• Agogic: bandwidth of tempomodulations within motifs and phrases
• Vibrato: periodic, minor pitch changes of a held note
• Rhythmisation: conciseness of depiction of the rhythm
• Articulation: strength of temporal separation between notes through shortened length, o�en
also accentuated

Based on this vocabulary the following attributes and their poles were derived:

• Tone colour 1 (so�-hard)
• Tone colour 2 (dark-bright)
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• Tone colour 3 (lean-full)
• Timbral bandwith (small-large)
• Phrasing width (narrow-wide)
• Phrasing strength (weak-strong)
• Loudness (gentle-loud)
• Long-term dynamics (weak-strong)
• Short-term dynamics (weak-strong)
• Tempo (slow-fast)
• Agogic (weak-strong)
• Rhythmisation (weak-concise)
• Articulation (legato-staccato)
• Articulation bandwidth (small-large)

Two attributes, describing general perception, were also added.

• Musical expression (weak-strong)
• Overall impression (dislike-like)

Vibrato was omitted, as it can only be rated for specific instrumentations. For example, a piano cannot
produce a varying pitch.

Based on the attributes defined, a questionnaire was created for listeners to rate performances on
five-point discrete scales. The values of the scales were chosen at random for prevention of ratings
bias (c.f. appendix B)

Listening Tests

The initial dataset containing Beethoven, Mozart and Schumann was rated by a panel of 10 expert
listeners (N=10, 2 female, 8 male) in 2010. The extension of Bach was rated by a second panel of five
expert listeners (N=5, 5 male) in 2017.

Both listening tests were conducted at the studio of the Audio Communication Group at the Technical
University of Berlin, which provided an ideal listening situation andmet the requirements of Rec. ITU-R
BS.1116-3.

All listeners were musical experts, being musicologists, producers, conductors or professional musi-
cians.

In short discussions before the listening tests, participants reviewd the vocabulary and descriptions.

The participants were told which musical composition and instruments they would be listening to.
They also were instructed to start filling out the questionnaire while listening.
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A�er hearing one or more random stimuli, the participants agreed on an appropriate playback level.
This level remained fixed for the rest of the listening session.

Each stimulus was pseudonymised by a group of characters. The participants were allowed to use
pseudonyms throughout the test. They were instructed to note their pseudonyms and that of the
stimulus in question in their questionnaires.

In a randomised order, all stimuli of a fragment were played back. A�er each stimulus, a small pause
was given for participants to finish filling out their questionnaires.

The panel for the initial dataset was split into two groups. The second group listened to the stimuli in
the reverse order to counteract possible sequential e�ects. As the sequences did not seem to a�ect
the results, this was not done for the second panel.

The ratings for the initial listening test were only available as SPSS files. However, this proprietary
format was converted into CSV files with the R library memisc.

The questionnaires for the second listening test were transcribedmanually.

Ratings for vibratowere dropped, as they were only available for the Mozart fragment.

Missing Values

Overall, there were 9440 ratings, of which 46 (0,48%) were either undecided, i.e. in-between two items,
undecipherable or not rated at all. These 46 ratings were consideredmissing.

Based on Rosenthal’s guidelines (2017) Little’s MCAR test (Little, 1988) was conducted. The test did not
reject the null hypothesis of amissing completely at random pattern (χ2(232) = 279.24, p = 0.018)1.

Given the small amount and the random pattern of the missing data, the values were imputed with the
median of each attribute.

Intraclass Correlation Coe�icient

Inorder for the listening test ratings tobeapplied tomeasure theattributesof themusical performances,
the consistency between the experts’ ratings needed to be quantified. A commonly used statistic is the
intraclass correlation coe�icient (ICC) (Shrout & Fleiss, 1979), which describes the degree of agreement
between groups. Based on the classification of ICC (McGraw&Wong, 1996; Koo &Mae, 2016), a two-way
random e�ects models testing for consistency ofmultiple raterswas chosen, i.e. ICC(C, k)2.

1The R library BaylorEdPsych was used.
2Since there was no implementation of ICC(C, k) available, but the estimator is the same, ICC(3, k)was used.
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Table 2.1.: Intraclass correlation of panel ratings. A: initial panel, B: second panel

attribute ICC(C,k) (A) ICC(C,k) (B)

tone colour 1 (so�-hard) 0.83 0.71

tone colour 2 (dark-bright) 0.80 0.75

tone colour 3 (lean-full) 0.69 0.61

timbral bandwith (small-large) 0.76 0.66

phrasing width (narrow-wide) 0.31 0.52

phrasing strength (weak-strong) 0.62 0.56

loudness (gentle-loud) 0.78 0.56

long-term dynamics (weak-strong) 0.87 0.89

short-term dynamics (weak-strong) 0.70 0.59

tempo (slow-fast) 0.96 0.92

agogic (weak-strong) 0.90 0.79

rhythmisation (weak-concise) 0.70 0.62

articulation (legato-staccato) 0.83 0.75

articulation bandwidth (small-large) 0.77 0.77

musical expression (weak-strong) 0.77 0.79

overall impression (dislike-like) 0.76 0.86

all 0.79 0.75

Table 2.1 displays the ICC separately for both listening tests, as they were measured by di�erent raters.
Moreover, each item of the listening test was assessed individually3

Cicchetti (1994) described a coe�icient less than 0.6 as poor or fair, a coe�icient between 0.6 and 0.74
as good and one 0.74 above as excellent in terms of reliability. Based on these guidelines, the reliability
of most of the attributes was good or excellent.

In contrast, the attributes phrasing width and phrasing strength, loudness and short-term dynamics
only resulted in poor or fair reliability for at least one of the listening tests.

3With the exceptions of phrasing strength, agogic and rhythmisation, the results are the same as for Weinzierl & Maempel
(2011).
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The understanding of phrasing might not have been the same among the experts, which could have
led to inconsistent ratings of width and strength.

The lack of reliability of the attribute loudness - mean loudness - can be explained by the fact that
the stimuli had been previously normalised. Di�erences in perceived loudness, therefore, were less
pronounced and subjective.

The fair reliability of short-term dynamics, the dynamics within a phrase, during the second listening
test only, might have be due to di�erence amongmusical fragments.

As a result of the poor reliability in terms of measurement, the attributes phrasing width, phrasing
strength, and loudnesswere dropped in further analyses. However short-term dynamicswas kept as its
reliability was almost good.

Multicollinearity

The attributes were suspected to be interdependent, which could have interfered with individual
analyses of attributes.

Multicollinearity describes the circumstance in which a variable can, to a reasonable extent, be ex-
pressed by a linear combination of the other variables.

A commonly used statistic to quantify this phenomenon is the variance inflation factor (VIF).

Table 2.2.: variance inflation factors of performance attributes

attribute VIF

tone colour (so�-hard) 1.32

tone colour (dark-bright) 1.22

tone colour (lean-full) 1.23

timbral bandwith (small-large) 1.57

long-term dynamics (weak-strong) 1.62

short-term dynamics (weak-strong) 1.33

tempo (slow-fast) 1.26

agogic (weak-strong) 1.39

rhythmisation (weak-concise) 1.34

articulation (legato-staccato) 1.49

articulation bandwidth (small-large) 1.77
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musical expression (weak-strong) 2.07

overall impression (dislike-like) 1.42

Table 2.2 displays the VIF for each attribute.

As a general rule, values greater than 10 indicate high multicollinearity. In this study, the attributes did
not exhibit problems of multicollinearity.

In conclusion, the attributes can be seen as independent and uncorrelated, and therefore, they can be
analysed separately.

Feature Extraction

For representation of the performance attributes for each musical stimulus the following technical
features characterising tempo and timing, loudness and dynamics and timbre were extracted.

Tempo and Timing

Tempo is usually measured in beats per minute (BPM).

BPM = beats in quarters
time in minutes

Onset times of two adjacent notes were used to compute inter-onset intervals (IOI) for each note. In
combination with the distance of these two notes in the score, including rests, a local, micro tempo
was calculated.

BPM(i) = beati+1−beati

onseti+1−onseti
∗ 60 sec

min

The last notes had no following onsets. Therefore, no IOI andmicro tempo could be calculated. Though
mapping of each note to its local tempo, a tempo map was created. Since tempo changes are not
perceived in absolute values, but rather in relative terms, another time series using the ratio of adjacent
notes was derived.

BPMratio(i) = BP M(i+1)
BP M(i)

A value of 1.0 indicates no change in tempo, 1.1 indicates an increase of 10%, and 0.9 indicates a
decrease of 10%.

Loudness and Dynamics

Each stimulus was loaded with librosa (McFee et al., 2015) and the original sample rate wasmaintained.
In order to obtain a mono signal, the stereo signals were averaged.
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Filtering according to Rec. ITU-RBS.1770-4 was applied, as this method has demonstrated (Soulodre,
2004) as having the highest correlation with perceptual loudness among existing loudness measures.

Based on the annotated onset times each stimulus was cut into slices corresponding to a single note.

ITU Loudness

Based on the formulas in Rec. ITU-RBS.1770-4 for a single channel signal, loudness was calculated for
each note as follows:

Li = −0.691 + 10 log10

(
1
Ti

∫ Ti

0
y2

i dt

)

where yi is the slice of the i-th note and Ti its length.

Decrease

In an attempt to measure the amount of legato play, the decrease in loudness from themaximum to
the following minimumwasmeasured.

decrease = Lmax − Lmin

where
imin > imax

It was hypothesised that a high value indicates a separation of the notes, i.e. staccato, and a low value
indicates a compound, legato play.

Timbre

In contrast to tempo and loudness, timbre is a multidimensional property that incorporates both
spectral and temporal patterns. Thismultidimensional aspect raises question of howmany dimensions
and with which features timbre can bemeasured.

Using multidimensional scaling Grey (1977) found three dimensions correlating with “spectral energy
distribution”, the “synchronicity of higher harmonic transients”, along with the “amount of spectral
fluctuation” and the “high-frequency energy in the initial attack segment”.

McAdams, Winsberg, Donnadieu, De Soete, & Krimpho� (1995) also found a three-dimensional model
correlated with the logarithmic rise-time, the spectral centroid, and the degree of spectral variation.
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Lakatos (2000) only identified the centroid and the rise time as principal dimensions of timbre.

Caclin, McAdams, Smith, & Winsberg (2005) also supported spectral centroid and attack time as
the main dimensions, reporting spectral flux as a “less salient timbre parameter” with its influence
depending on changes in other dimensions. Moreover, they added the “spectrum fine structure” as a
fourth dimension.

While there is no absolute consistency across the findings of these studies, there seems to be consensus
about at least two dimensions of timbre: the spectral centroid, measuring the brightness or sharpness,
and the attack time, measuring the impulsiveness of the signal. Spectral flux can be seen as a third
dimension, which measures the variability of the spectrum.

With essentia (Bogdanov et al., 2013), the spectral centroid, the logarithmic attack time and the spectral
flux were measured for each note.

The spectral centroid is the weighted mean of the spectrum, indicating its “centre of mass”. The
logarithmic attack time is measured based on the log10 of the attack time of the signal envelope,
defined as the rise time between 20% and 95% of the maximum envelope value. The spectral flux is
defined as theL2-norm (Euclidean distance) between two consecutive magnitude spectra.

Descriptive Statistics

The seven extracted features (BPM, BPM ratio, ITU loudness, decrease, spectral centroid, spectral
flux, logarithmic attack time) create time series mapping features for every note. As the performance
attributes describe overall characteristics, these time series need to be summarised. Most of the
attributes are related to a property’s mean, e.g. tempo, loudness, or a property’s range, e.g. dynamics
or timbral bandwidth. Therefore, the time series were describedwith the following statisticsmeasuring
central tendency and dispersion.

• mean
• median
• standard deviation
• minimum
• maximum
• interquartile range (IQR)

Standardisation and Functional Transformations

Participants in the listening test were instructed to rate the performances in relation to each other,
independent of the musical fragment. Therefore, the technical features were standardised separately
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within each composition. However, grouped standardisation decreased the resulting scores (c.f. 4) and
therefore was omitted and the data le� una�ected.

Given the perceptual characteristics, there did not need to be a linear relation to the technical features.
In order to describe non-linear relations, two additional transformations were chosen: the logarith-
mic function, taking into account Weber’s law, and the reversed quadratic function, representing an
optimum curve.

The logarithmic transformation of the featureXi is defined as follows:

Xi_log = log10(Xi + a+ 1)

As the logarithm is only defined for values greater than zero, the constant o�set a+ 1, where a is the
minimum value ofXi, was added to reach aminimum value of 1.

The negative square transformation of the featureXi is defined as follows:

Xi_negsquare = −(Xi)2

A�er a combination of seven basic features, six descriptive statistics and three functional transforma-
tions (including the linear relation) 126 features resulted.

Regression Models

The first primary objective of this thesis was to develop an optimal regression model for each musical
attribute by comparing the performance of di�erent regression techniques. The following regression
methods were implemented.

Intercept Model

As a baseline for comparison of the regressionmodel performances, an intercept regressionmodel
predicting themean of each attributewas used. Any othermodel that does not surpass its performance
can be seen as insu�icient, as it does not model the data better than a straight line.

Linear Regression

An ordinary least squares linear regression4 is the most common form of regression, as it is easy to
implement and interpretable via its regression coe�icients.
4LinearRegression from the Python library sklearn was used.
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In this study, the expected highmulticollinearity of the features or independent variables could have
violated the linear regression’s assumptions, leading to high sensitivity to random errors and large
variance. Additionally, overfitting is a common problemwith a high number of independent variables
compared to the number of observations.

Stepwise Regression

A stepwise regression can be seen as a technique that “wraps” a regression model with a feature
selection method (Guyon & Elissee�, 2003). Through recursive addition to or removal from a subset of
features and building of a regression model, a given scoring function is optimised.

In this study, forward selectionwas used.5 Startingwith an empty feature set the feature thatminimised
the Akaike information criterion (AIC) was added at each step. When no such feature was found, the
process was completed, leaving the final model and its subset of features.

It should be noted that this procedure is o�en criticised as it is prone to overfitting and can be biased
as the same data is used for model building and selection.

Akaike information criterion (AIC)

The Akaike information criterion is a score used to evaluate the quality of di�erent statistical models. It
favours a trade-o� between goodness of fit and simplicity by penalising higher numbers of features
(predictors).

AIC = 2k − 2 ln(L̂)

where k is the number of features and L̂ the likelihood of the model.

A stepwise regression itself can be quite intensive to compute when there are many features, as many
subsets have to be evaluated. A pure Python implementation, such as SequentialFeatureSelection
(Raschka, 2018), the calculation of a single model using all features took about three minutes. With the
use of stepAIC of the R library MASS andmaking the function callable fromwithin the Python setup,
the time of a single computation decreased to around 12 seconds.

Regression Tree

Regression trees are types of decision trees, models that build upon “if-then-else” rules. In the case of
regression, the ending leaf nodes predict real values instead of a class label. Since the rules can become
over-complex, they are prone to overfitting. There exist some strategies to prevent this, i.e. pruning,
maximum depth or minimum node size. Finding the optimal decision tree is NP-complete (Hyafil &
5stepAIC from the R library MASS (Venables & Ripley, 2002) was used.
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Rivest, 1976). Therefore, heuristic techniques, such as Classification and Regression Trees (CART), are
used.

In this thesis, the DecisionTreeRegression of the Python library scikit-learn was used. No hyperparame-
ter tuning was done, using the default parameters, resulting in full trees with maximised splits using
all features.

Random Forest Regression

Random forest regression is an ensemblemethod, where instead of a single tree, multiple trees, i.e. the
ensemble, are trained, and their predictions are averaged. Typical numbers of trees are between 10
and 100. The use of bootstrapped data and random subsets of features for each tree (Breiman, 2001)
helps avoid overfitting and reduces the variance.

In this thesis, the RandomForestRegressor of the Python library scikit-learn was used. No hyperparam-
eter tuning was done, and the default parameters were used, i.e. fully grown and unpruned trees. The
number of trees was set to 100 instead of the default value of 10.

Evaluation

Given the relatively small sample size compared to the available features or independent variables, a
thorough evaluation of the performance of the regression models was essential.

Holdout set

Using the samedata to train and test amodel’s performance leads to highly biased estimates of the true
prediction error on new, unseen data. Therefore 20% of the available data (N = 590, Nholdout = 118)
was set aside and used for evaluation of the final models, i.e. the holdout method. Data were drawn
stratified by stimuli, which ensured equal ratios for training and testing.

Model Selection

The performance and generalisation error of the di�erent regression methods were estimated using
Monte-Carlo-Cross-Validation (MCCV) (Xu & Liang, 2001, @Picard1984).

Based on the idea of the holdout method, in the MCCV the holdout set is repeatedly bootstrapped. For
each training and holdout set the result of the scoring function is then calculated. Averaging these
results yields more realistic estimates.
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R2 was used for the scoring function6. Contrary to its name,R2 can be negative, denoting a model
performing worse than one using only the mean.

Based on a comparison of the findings for each regression method and performance attribute, the op-
timal performing method, with regards to generalisation, for each performance attribute was selected.

In total 65000models had to be trained and scored. The scikit-learn’s parallelising capabilities were
leveraged to reduce the total runtime of the MCCV to eight hours.

Final Evaluation

The results of the MCCV only provide a guideline for the selection of a model. An evaluation has to be
done on new, unseen data.

Therefore, the regression models were trained on the complete training set and tested on the holdout
set.

However, a score from a single holdout set can be overly pessimistic, underestimating the true perfor-
mance of the model.

In order to prevent this, an additional 10-fold cross validation using the complete data, both the training
and the holdout sets, was performed. This is a trade-o� between the bias and variance of the estimator.

Interpretation

The second objective of this thesis is to explain the relations between the technical features and
perception of musical performance properties.

Therefore, parsimonious and simple models were needed for interpretation of these relations.

Parsimoniousmodels

For each performance attribute, a linear regressionmodel that uses the features subset selected via
the stepwise regression models was built

The data were standardised before the comparable regression coe�icients were obtained.

Based on an examination of the features contributing the most, redundant linear combinations of
similar features7 were singled out manually. Since these combinations did contribute to the interpre-
tation, they needed to be resolved by excluding one or more. Non-transformed was favoured over
6In the beginning, the mean squared error was used, as it does not assume linearity. However, no such discrimination was
found during analysis, and the MSE was omitted due to simplicity.

7For example: 22.07 * ITU_std - 22.01 * ITU_IQR
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transformed, mean over median, and standard deviation over interquartile range. As a result, 59
features were excluded.

Mixedmodels

For each performance attribute a linear regressionmodel that uses the features subset selected via the
stepwise regression models was built.

Then, a linear mixed e�ect analysis was performed through individual addition of random intercepts
for the musical fragment and the rater. A likelihood ratio test was performed to test the significance of
the mixedmodel.

The relative variance explained by the random intercepts was estimated by the ICC of the random-
intercept-only model.

Based on Nakagawa & Schielzeth (2012), both the marginalR2, describing the variance explained by
fixed e�ects alone, and the conditionalR2, describing the variance explained by both fixed and random
e�ects, were calculated.

The predictors were sorted by their beta coe�icients to single out the most contributing predictors.
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3. Results

Comparing Regression Methods

Table 3.1 displays the averagedR2 results of the MCCV for each attribute and regression method.

Table 3.1.:mean ofR2 scores of MCCV (k=1000)

attribute intercept linear stepwise tree random

tone colour 1 (so�-hard) -0.01 -332375128.19 0.20 0.23 0.24

tone colour 2 (dark-bright) -0.01 -542941512.25 0.12 0.16 0.17

tone colour 3 (lean-full) -0.01 -476512716.34 0.13 0.12 0.13

timbral bandwith (small-large) -0.01 -204618907.64 0.23 0.19 0.21

long-term dynamics (weak-strong) -0.01 -566451572.43 0.33 0.34 0.35

short-term dynamics (weak-strong) -0.01 -500470537.36 0.05 0.05 0.06

tempo (slow-fast) -0.01 -150278333.69 0.64 0.66 0.67

agogic (weak-strong) -0.01 -511538923.15 0.33 0.30 0.31

rhythmisation (weak-concise) -0.01 -470969335.54 0.14 0.09 0.10

articulation (legato-staccato) -0.01 -549652370.35 0.37 0.36 0.37

articulation bandwidth (small-large) -0.01 -275840014.75 0.27 0.24 0.25

musical expression (weak-strong) -0.01 -376557855.06 0.26 0.20 0.21

overall impression (dislike-like) -0.01 -636093408.17 0.10 0.14 0.15

The intercept modelR2 scores were, as expected, near zero, as the mean value of each attribute is
modeled.

For the linear regression, there were several huge outliers, due to extreme overfitting. These outliers
result in substantial negativemean scores, resulting inmodels that areworse than the interceptmodels.
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Both tree-based regression methods (tree and random forest) produced similar scores, with random
forest being slightly better.

The scores of the stepwise regression were relatively the same as the tree-based methods. For timbral
bandwidth, agogic, rhythmisation, articulation bandwidth andmusical expression, the results were
slightly better The results were worse for tone colour 1, tone colour 2 and overall impression.

Table 3.2.:median ofR2 scores of MCCV (k=1000)

attribute intercept linear stepwise tree random

tone colour 1 (so�-hard) -0.01 0.23 0.21 0.24 0.25

tone colour 2 (dark-bright) -0.01 0.16 0.13 0.16 0.18

tone colour 3(lean-full) -0.01 0.13 0.15 0.13 0.14

timbral bandwith (small-large) -0.01 0.19 0.24 0.20 0.22

long-term dynamics (weak-strong) -0.01 0.35 0.34 0.35 0.36

short-term dynamics (weak-strong) -0.01 0.05 0.07 0.06 0.07

tempo (slow-fast) -0.01 0.66 0.65 0.67 0.67

agogic (weak-strong) -0.01 0.31 0.34 0.31 0.32

rhythmisation (weak-concise) -0.01 0.10 0.15 0.10 0.11

articulation (legato-staccato) -0.01 0.37 0.38 0.37 0.38

articulation bandwidth (small-large) -0.01 0.24 0.28 0.25 0.25

musical expression (weak-strong) -0.01 0.20 0.26 0.21 0.22

overall impression (dislike-like) -0.01 0.14 0.11 0.15 0.16

Table 3.2 displays the median R2 results of the MCCV scores. Since the outliers did not impact the
median, the scores for the linear regression resembled the scores of the other methods. The results
were consistent with the averaged scores.

Apart from the outliers of the linear regression, all regression methods produced approximately equal
results.
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Comparing Performance Attributes

The highest meanR2 scores were for tempo, explaining 64% to 67% of its variance. The explained
variance of long-term dynamics, agogic and articulation was between 30% and 37%.

With values below 10% short-term dynamics, rhythmisation and overall impression were not explained
well.

The variance of the remaining attributes was explained by 20% to 30%.

For the attributes tempo, long-term dynamics, agogic and articulation the high scores corresponded
with the ICC values 2.1. Conversely, this was not true for the lower scored attributes. Only the poor
ICC can explain the worse performance for short-term dynamics. A consensus among the raters was
necessary, but not su�icient, for a good prediction.

For tempo and loudness, there were direct correspondences with the features facilitating good predic-
tion. Conversely, the overall impression was mainly subjective with nomatching features.

Holdout Set

Table 3.3.:R2 score of holdout set

attribute intercept linear stepwise tree random

tone colour 1 (so�-hard) -0.02 0.28 0.25 0.28 0.28

tone colour 2 (dark-bright) -0.00 0.30 0.27 0.30 0.30

tone colour 3 (lean-full) -0.00 0.01 0.12 0.01 0.01

timbral bandwith (small-large) -0.00 0.45 0.47 0.45 0.45

long-term dynamics (weak-strong) -0.00 0.40 0.42 0.40 0.40

short-term dynamics (weak-strong) -0.00 0.11 0.12 0.11 0.11

tempo (slow-fast) -0.01 0.68 0.68 0.68 0.68

agogic (weak-strong) -0.00 0.34 0.30 0.34 0.35

rhythmisation (weak-concise) -0.00 0.25 0.16 0.25 0.25

articulation (legato-staccato) -0.01 0.42 0.44 0.42 0.42

articulation bandwidth (small-large) -0.00 0.39 0.39 0.39 0.38

musical expression (weak-strong) -0.00 0.30 0.29 0.30 0.31
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overall impression (dislike-like) -0.00 0.20 0.20 0.20 0.19

Table 3.3 displays the resultingR2 scores of the predictions of the holdout set.

The intercept modelR2 scores were near zero, as expected.

Linear regression did not overfit in this case and produced scores in line with the regression tree.

Di�erences between the regression models were prominent for tone colour 3, where only stepwise
regression explained about 12% of the variance. Additionally, the slightly highermean scores for agogic
and rhythmisation were now reversed.

With some exceptions, the results corresponded to the scores of the MCCV. There were only slightly
higher values. Tempo was still the highest scoring attribute with around 68% explained variance.

The values for long-term dynamics and articulation were slightly higher, while the scores for agogic
remained the same.

Prominent di�erences could be found in the high scores for timbral bandwidth, with around 46%
explained variance, and the score of zero for tone colour 3.

Cross-validation

Table 3.4.:mean ofR2 scores of CV(k=10)

attribute intercept linear stepwise tree random

tone colour 1 (so�-hard) -0.02 0.26 0.21 0.26 0.27

tone colour 2 (dark-bright) -0.04 0.22 0.20 0.23 0.25

tone colour 3 (lean-full) -0.01 0.15 0.13 0.12 0.13

timbral bandwith (small-large) -0.00 0.28 0.28 0.30 0.27

long-term dynamics (weak-strong) -0.02 0.38 0.38 0.38 0.38

short-term dynamics (weak-strong) -0.04 0.11 0.08 0.11 0.11

tempo (slow-fast) -0.03 0.68 0.67 0.67 0.68

agogic (weak-strong) -0.01 0.32 0.35 0.31 0.34

rhythmisation (weak-concise) -0.02 0.15 0.22 0.17 0.14

articulation (legato-staccato) -0.03 0.40 0.38 0.37 0.39
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articulation bandwidth (small-large) -0.02 0.31 0.27 0.30 0.29

musical expression (weak-strong) -0.01 0.26 0.25 0.26 0.24

overall impression (dislike-like) -0.01 0.16 0.20 0.16 0.17

Table 3.4 displays the meanR2 scores of the 10-fold cross-validation, using both training and holdout
sets.

The scores largely corresponded to the findings of the MCCV. While the di�erences in tone colour 2,
timbral bandwidth, long-term dynamics and articulation bandwidth were prominent there is no clear
tendency.

Mixedmodels

Table 3.5.: influence of random intercept: “fragment”

attribute ICCiom R2
c R2

m χ2(1) p

tone colour 1 (so�-hard) 0.14 0.30 0.30 0.00 1.00

tone colour 2 (dark-bright) 0.09 0.27 0.27 0.00 1.00

tone colour 3 (lean-full) 0.12 0.24 0.24 0.00 1.00

timbral bandwith (small-large) 0.28 0.38 0.38 0.00 1.00

long-term dynamics (weak-strong) 0.20 0.45 0.45 0.00 1.00

short-term dynamics (weak-strong) 0.11 0.18 0.18 0.00 1.00

tempo (slow-fast) 0.15 0.99 0.41 136.98 0.00

agogic (weak-strong) 0.16 0.40 0.40 0.00 1.00

rhythmisation (weak-concise) 0.19 0.26 0.26 0.00 1.00

articulation (legato-staccato) 0.37 0.47 0.47 0.00 1.00

articulation bandwidth (small-large) 0.32 0.42 0.42 0.00 1.00

musical expression (weak-strong) 0.21 0.38 0.38 0.00 1.00

overall impression (dislike-like) 0.12 0.27 0.27 0.00 1.00
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Table 3.5 displays the results of themixedmodelswith a random intercept for the fragment, themusical
composition.

A portion of variance was explained by the fragment (ICCiom) for every attribute. For tempo only, this
contribution led to a significant (p < 0.01) gain of 58%.

Table 3.6.: influence of random intercept: “subject”

attribute ICCiom R2
c R2

m χ2(1) p

tone colour 1 (so�-hard) 0.18 0.33 0.29 19.44 0.00

tone colour 2 (dark-bright) 0.10 0.28 0.27 1.07 0.30

tone colour 3 (lean-full) 0.17 0.28 0.24 16.78 0.00

timbral bandwith (small-large) 0.36 0.44 0.36 44.60 0.00

long-term dynamics (weak-strong) 0.26 0.51 0.44 58.02 0.00

short-term dynamics (weak-strong) 0.18 0.24 0.16 32.52 0.00

tempo (slow-fast) 0.15 0.64 0.64 1.01 0.31

agogic (weak-strong) 0.19 0.48 0.40 62.01 0.00

rhythmisation (weak-concise) 0.21 0.29 0.26 13.28 0.00

articulation (legato-staccato) 0.34 0.48 0.47 1.62 0.20

articulation bandwidth (small-large) 0.31 0.44 0.41 13.70 0.00

musical expression (weak-strong) 0.28 0.44 0.37 40.96 0.00

overall impression (dislike-like) 0.24 0.39 0.27 88.51 0.00

Table 3.6 display the results of the mixed models with a random intercept for the rater. Except for tone
colour 2, tempo and articulation, there was a significant (p < 0.01) gain by considering the raters’
intercept.

Overall impression has the highest gain of about 12%, whichmakes sense as it is a highly subjective
rating.

Moreover, timbral bandwidth, long-term and short-term dynamics, agogic and musical expression
gained at least 6% to 8%.

Predictors
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Table 3.7.: top predictors for “tone colour 1 (so�-hard)”

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 2.00 0.07 14.92 30.06 0.00

ITU_min -0.38 0.09 589.71 -4.07 0.00

decrease_mean_log -0.37 0.11 577.94 -3.51 0.00

spectral_flux_mean -0.37 0.12 583.42 -3.17 0.00

ITU_mean -0.36 0.17 589.75 -2.10 0.04

Table 3.8.: top predictors for “tone colour 2 (dark-bright)”

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 2.25 0.04 11.28 50.95 0.00

spectral_centroid_mean 1.26 0.46 573.91 2.77 0.01

spectral_centroid_median -0.81 0.40 573.81 -2.00 0.05

decrease_mean_log -0.59 0.16 574.09 -3.80 0.00

ITU_mean -0.53 0.13 589.35 -4.05 0.00

Table 3.9.: top predictors for “tone colour 3 (lean-full)”

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 2.13 0.07 15.01 31.65 0.00

bpm_std -0.69 0.14 578.48 -4.83 0.00

bpm_min -0.40 0.13 576.76 -3.19 0.00

bpm_max 0.40 0.16 577.77 2.43 0.02

spectral_centroid_median -0.32 0.05 577.49 -6.71 0.00
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Table 3.10.: top predictors for “timbral bandwith (small-large)”

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 2.12 0.09 13.53 23.21 0.00

bpm_max_log -0.84 0.22 582.57 -3.77 0.00

bpm_min -0.67 0.15 574.44 -4.52 0.00

decrease_mean 0.60 0.17 579.62 3.55 0.00

ITU_max_log -0.59 0.08 588.18 -7.33 0.00

Table 3.11.: top predictors for “long-term dynamics (weak-strong)”

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 2.23 0.09 13.90 24.66 0.00

ITU_std 1.32 0.18 574.59 7.25 0.00

bpm_mean 1.27 0.21 583.47 6.14 0.00

bpm_median_log -0.95 0.22 578.80 -4.39 0.00

bpm_max_log 0.79 0.23 578.11 3.49 0.00

Table 3.12.: top predictors for “short-term dynamics (weak-strong)”

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 2.20 0.09 13.72 23.57 0.00

log_attack_time_max 0.33 0.07 535.99 4.64 0.00

bpm_ratio_IQR 0.30 0.07 579.64 4.07 0.00

decrease_mean_log 0.26 0.15 582.83 1.73 0.08

decrease_max -0.22 0.08 584.98 -2.65 0.01
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Table 3.13.: top predictors for “tempo (slow-fast)”

Estimate Std. Error df t value Pr(>|t|)

bpm_mean 2.48 0.26 577.05 9.66 0.00

(Intercept) 2.25 0.03 13.01 65.11 0.00

bpm_ratio_std -1.99 0.27 576.07 -7.26 0.00

bpm_max -1.84 0.54 576.05 -3.42 0.00

bpm_ratio_mean 1.65 0.22 576.05 7.45 0.00

Table 3.14.: top predictors for “agogic (weak-strong)”

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 2.20 0.04 590.00 56.27 0.00

bpm_median_log -1.17 0.25 590.00 -4.73 0.00

bpm_max_log 0.72 0.24 590.00 2.98 0.00

bpm_IQR_log 0.59 0.18 590.00 3.32 0.00

spectral_centroid_mean 0.55 0.17 590.00 3.18 0.00

Table 3.15.: top predictors for “rhythmisation (weak-concise)”

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 2.21 0.06 15.21 37.74 0.00

bpm_mean 0.44 0.13 579.17 3.38 0.00

bpm_median_log -0.38 0.22 577.08 -1.74 0.08

bpm_max_log -0.31 0.20 580.60 -1.53 0.13

decrease_median -0.24 0.07 579.61 -3.57 0.00
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Table 3.16.: top predictors for “articulation (legato-staccato)”

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 2.11 0.05 9.66 46.24 0.00

bpm_min 0.72 0.11 573.10 6.29 0.00

bpm_median_log -0.68 0.22 571.44 -3.06 0.00

decrease_max_log 0.53 0.11 571.51 5.00 0.00

bpm_std 0.46 0.16 570.91 2.83 0.00

Table 3.17.: top predictors for “articulation bandwidth (small-large)”

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 2.22 0.07 13.15 33.94 0.00

bpm_std 1.42 0.18 575.24 7.93 0.00

bpm_ratio_mean -1.25 0.23 575.17 -5.52 0.00

bpm_IQR -0.95 0.21 575.18 -4.52 0.00

bpm_max_log -0.89 0.24 575.90 -3.67 0.00

Table 3.18.: top predictors for “musical expression (weak-strong)”

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 2.39 0.08 13.89 30.21 0.00

bpm_ratio_IQR 0.74 0.12 586.96 6.20 0.00

bpm_ratio_mean -0.65 0.14 583.24 -4.67 0.00

bpm_min_log -0.57 0.10 589.07 -5.78 0.00

bpm_std 0.45 0.14 574.97 3.12 0.00
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Table 3.19.: top predictors for “overall impression (dislike-like)”

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 1.89 0.12 15.38 15.22 0.00

spectral_centroid_median -1.15 0.45 584.04 -2.56 0.01

spectral_centroid_mean 0.88 0.48 582.78 1.81 0.07

bpm_median_log 0.80 0.20 588.30 4.04 0.00

bpm_ratio_IQR 0.61 0.15 588.75 4.18 0.00

Tables 3.7 to 3.19 display the five predictors that contributed the most for each attribute. Except for
tempo, the basis was the mixedmodel with a random intercept for raters.

There were contributing predictors that were associated with the respective attribute such as spectral
centroid for tonal colour 2, the brightness, ITU loudness for long-term dynamics, mean BPM for tempo.

However, most of the predictors’ high beta values were due to suppressing e�ects of others and did
not contribute to the interpretation.
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4. Discussion

In trying to understand musical performance properties, an examination of how they relate to the
acoustical domain is crucial.

This thesis has studied how signal-based audio features can predict attributes of performance proper-
ties. A total of 69 performances of four musical fragments was studied.

With the use of 126 features covering timing, loudness and timbre and di�erent regressionmethods,
models predicting expert ratings on 13 performance attributes were trained and evaluated.

Among the attributes only tempo was predicted well; more than 60% of its variance was explained.
Second to tempo, only long-termdynamics, agogicandarticulation followedwith30%to37%explained
variance.

A high ICC among the raters was necessary, but not su�icient for higher performance of an attribute.

In comparison to Weinzierl & Maempel (2011), the results were considerably lower. Only articulation,
with 38% of its variance explained, performed better.

The results depended on if and how the data was standardized, especially for the stepwise regression.
Table 4.1 displays the MCCV results when data was standardized within the fragments. The same e�ect
occured, when centering the data within the groups. However, when standardizing the data across
groups the results did not change.

Table 4.1.:mean ofR2 of MCCV(k=1000), standardised within fragment groups

attribute intercept linear stepwise tree random

tone colour 1 (so�-hard) -0.01 -15112646068092371206144 0.07 0.22 0.23

tone colour 2 (dark-bright) -0.01 -1973666077439518834688 0.12 0.16 0.17

tone colour 3 (lean-full) -0.01 -1531397065958860259328 0.04 0.12 0.13

timbral bandwith (small-large) -0.01 -3013517571657203974144 -0.05 0.19 0.20

long-term dynamics (weak-strong) -0.01 -56079934077941860794368 0.21 0.34 0.35

short-term dynamics (weak-strong) -0.01 -4868881058580855259136 -0.03 0.05 0.06
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tempo (slow-fast) -0.01 -807931786231528030208 0.57 0.66 0.67

agogic weak-strong) -0.01 -6666193206788588830720 0.18 0.30 0.31

rhythmisation (weak-concise) -0.01 -10348324662249701507072 -0.04 0.09 0.10

articulation (legato-staccato) -0.01 -9374840182395650441216 0.12 0.36 0.36

articulation bandwidth (small-large) -0.01 -6220331702667967463424 -0.01 0.24 0.25

musical expression (weak-strong) -0.01 -1245422671454085840896 0.03 0.20 0.21

overall impression (dislike-like) -0.01 -2409428579903706497024 0.01 0.14 0.15

The analysis of the predictors did not further contribute to the interpretation of musical performances,
Multicollinearity between the predictors seems to be the biggest issue.

In comparison to the di�erent regressionmethods there were no substantial di�erence in performance,
apart from anticipated overfitting problems. A regression method that incorporates the ordinal nature
of the ratings, such as logistic ordinal regression, might have an advantage over assuming continuous
variables.

Overall, while confirming the predictability of tempo and long-term dynamics, this thesis did not met
its goal to gain further insights intomore complex performance attributes. However, practical issues on
features engineering and their standardisation were addressed and show the need for further research
on how to handle the high multicollinearity among features.
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A. Recordings

Table A.1.: Bach

year performer

1957 János Starker

1991 Mstislaw Rostropowitsch

2007 Jean-Guihen Queyras

1939 Ludwig Hoelscher

1965 Ludwig Hoelscher

1979 Anner Bylsma

1964 Enrico Mainardi

2005 Truls Mørk

1985 Mischa Maisky

1964 Maurice Gendron

1998 Pieter Wispelwey

1957 Gaspar Cassadó

1982 Yo-Yo Ma

1984 Heinrich Schi�

1982 Paul Tortelier

1982 Lynn Harrell

2000 Daniel Müller-Schott

1960 Pierre Fournier

2003 Alexander Kniazev

1971 Daniil Shafran
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Table A.2.: Beethoven

year performer label

1970 Juilliard String Quartet Sony

1941 Busch Quartett Sony

1990 Lindsay String Quartet ASV

1962 Amadeus Quartett DGG

1994 Emerson String Quartet DGG

1989 Alban Berg Quartett EMI

1987 Guarneri Quartet Decca

1957 Hollywood String Quartet Testament

1985 Melos Quartet DGG

1999 Petersen Quartet Capriccio

1973 Végh Quartet Valois

1972 LaSalle String Quartet DGG

1969 Quartetto Italiano Philips

1952 Végh Quartet Music & Arts

1982 Smetana Quartet Denon

1971 Yale Quartet Brilliant

1990 Tokyo String Quartet RCA

Table A.3.:Mozart

year performer label

1981 András Schi� DECCA

1985 Daniel Barenboim EMI Classics

1972 Glenn Gould Sony Classics

1946 Vladimir Horowitz Classica D’Oro

1967 Lili Kraus Sony Classics
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1983 Mitsuko Uchida Phi

1984 Christian Zacharias EMI Classics

1988 Mieczyslaw Horszowski Elektra Nonesuch

2005 Mikhail Pletnev DG

1953 Walter Gieseking EMI Classics

1954 Lili Kraus Music & Arts

2000 Alfred Bendel Phi

2000 Lars Vogt EMI Classics

1993 Maria Joao Pires DG

1982 Friedrich Gulda DG

1974 Cecile Ousset Berlin Classics

Table A.4.: Schumann

year performer label

1987 Raphael Wallfisch, Peter Wallfisch Chandos

1993 Jan Vogler, Bruno Canino Berlin Classics

1997 Steven Isserlis, Christoph Eschenbach RCA Red Seal

1995 Anner Bylsma, Lamber Orkis Sony Classics

1988 Klaus Storck, Yasuko Matsuda Colosseum

1993 Maria Kliegel, Kristin Merscher Naxos

1999 Mischa Maisky, Martha Argerich DG

1967 Pierre Fournier, Jean Fonda DG

1961 Mstislav Rostropowitsch, Benjamin Britten Decca

1995 Truls Mørk, Leif Ove Ansdnes Simax

1988 Yo-Yo Ma, Emanuel Ax SK

1952 Pablo Casals, Leopold Mannes Sony Classics

2008 Jean-Guihen Queyras, Eric Le Sage Alpha
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1978 Friedrich Jürgen Sellheim, Eckhart Sellheim Sony Classics

1978 Andre Navarra, Annie d’Arco Calliope

2004 Daniel Müller-Schott, Robert Kulek Orfeo
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B. Questionnaire

Hörversuch Interpretationsanalyse

Im Folgenden präsentieren wir Ihnen jeweils einen Ausschnitt aus einem Mus kstück. Uns
interessiert Ihre Einschätzung der verschiedenen Interpretationen des Stückes. Bitte füllen
Sie im Verlauf der einzelnen Darbietungen jeweils einen Fragebogen vollständig aus. 

Zur Erläuterung der im semantischen Differential genannten Merkmale:

Klangfarbe: Klangcharakter eines einzelnen Instruments (bei Soloaufnahmen) 
oder eines Instrumentalensembles unabhängig von Tonhöhe und 
Lautstärke.
► weich — hart
► hell — dunkel
► schlank — voll

Klangfarbliche Bandbreite:Veränderlichkeit der durch die Tongebung der Musiker bedingten 
Klangfarbe. 
► groß — klein

Phrasierung: Dauer und Prägnanz der durch den Spieler vorgenommenen 
Gliederung des mus kalischen Verlaufs in musikalische Abschnitte 
(Phrasen).
► kleinteilig — weiträumig 
► stark — schwach

Lautstärke: Die mittlere mutmaßlich intendierte Lautstärke der Interpreten
► leise — laut

Dynamische Bandbreite: Größe der Lautstärkeunterschiede zwischen verschiedenen 
Phrasen.
► gering — hoch

Binnendynamik: Größe der Lautstärkeunterschiede innerha b einzelner Phrasen:
► gering — hoch

Tempo: Mittleres Grundtempo der Interpretation
► langsam — schnell 

Agog k: Bandbreite der Tempomodulation um ein bestimmtes Tempo 
(innerha b von Motiven und Phrasen)
► wenig — viel

Vibrato: Periodisch wiederkehrende, geringfügige Veränderung der 
Frequenz eines gehaltenen Tones.
► wenig — viel

Rhythmisierung: Deutlichkeit der Darstellung eines durch den Notentext 
vorgegebenen Rhythmus.
► prägnant — unprägnant

Artikulation: Grad der zeitlichen Trennung von Noten durch Verkürzung hrer 
Spieldauer – häufig unterstützt durch stärkere Betonung.
► abgesetzt — gebunden

Artikulatorische Bandbreite: Unterschiedlichkeit in der Artikulation einzelner Töne über 
den gesamten mus kalischen Verlauf.
► groß — klein

43



  ID:                        
 
Klangfarbe                         weich  ○ ○ ○ ○ ○  hart

                            hell  ○ ○ ○ ○ ○  dunkel

                     schlank  ○ ○ ○ ○ ○  voll

Klangfarbliche Bandbreite                          groß  ○ ○ ○ ○ ○  klein

Phrasierung                   kleinteilig  ○ ○ ○ ○ ○  weiträumig

Phrasierung                         stark  ○ ○ ○ ○ ○  schwach

Lautstärke                          leise  ○ ○ ○ ○ ○  laut

dynamische Bandbreite                       gering  ○ ○ ○ ○ ○  hoch

Binnendynamik                       gering  ○ ○ ○ ○ ○  hoch

Tempo                   langsam  ○ ○ ○ ○ ○  schnell

Agogik                       wenig  ○ ○ ○ ○ ○  viel

Vibrato                           viel  ○ ○ ○ ○ ○  wenig

Rhythmisierung                  prägnant  ○ ○ ○ ○ ○  unprägnant

Artikulation                 abgesetzt  ○ ○ ○ ○ ○  gebunden

Artikulatorische Bandbreite                         groß  ○ ○ ○ ○ ○  klein

Musikalischer Ausdruck                  schwach  ○ ○ ○ ○ ○  stark

Gesamteindruck        gefällt mir nicht  ○ ○ ○ ○ ○  gefällt mir

 

44




