
 

 

 

 

 
 

 
 

 

CONCATENATIVE CROWD NOISE 

 SYNTHESIS  
 

- A C++ IMPLEMENTATION USING THE VALENCE-AROUSAL MODEL  

 

 

 

 

Master thesis by Christian Knörzer  

  

Supervision: Henrik von Coler 

Reviewer: Prof. Dr. Stefan Weinzierl, Henrik von Coler  

Technische Universität Berlin  

Fakultät I - Geisteswissenschaften  

Fachgebiet Audiokommunikation 

  



  



 

STATUTORY DECLARATION 

 

Hiermit erkläre ich an Eides statt gegenüber der Fakultät I der Technischen Universität Berlin, 

dass die vorliegende, dieser Erklärung angefügte Arbeit  selbstständig und nur unter 

Zuhilfenahme der im Literaturverzeichnis genannten Quellen und Hilfsmittel angefertigt 

wurde. Alle Stellen der Arbeit, die anderen Werken dem Wortlaut oder dem Sinn nach 

entnommen wurden, sind kenntlich gemacht. Ich reiche die Arbeit erstmals als Prüfungsleistung 

ein. Ich versichere, dass diese Arbeit oder wesentliche Teile dieser Arbeit nicht bereits dem 

Leistungserwerb in einer anderen Lehrveranstaltung zugrunde lagen. 

 

___________________      ______________________ 

Ort, Datum        (Christian Knörzer) 

 

  



  



 

ACKNOWLEDGEMENT 

I would like to thank my tutor Henrik von Coler and my professor Prof. Stefan Weinzierl for 

their subject-specific support, as well as my family and Marion for their moral and mental 

support. 

  



 

 

  



 

I. ABSTRACT 

The goal of this master thesis is to implement a C++ algorithm that synthesizes the noise of a 

talking, human crowd and to evaluate the performance of the algorithm for different affective 

states within a two-dimensional valence-/arousal plane. The algorithm uses a concatenative 

synthesis with grains from speech recordings in an anechoic environment. 

To create the grains automatically, five different syllable segmentation algorithms are 

implemented as MATLAB functions and compared to a manual syllable segmentation; the 

algorithm closest to the manual segmentation is chosen for the creation of the corpus of the 

concatenative synthesis. 

Three different models for the handling of the selection and processing of affective states are 

presented: Model A1 and A2 use grains that are mapped to a position within the two-dimensional 

affective space. The mapping is computed manually for Model A1 and automatically with a 

combined regression- and classification model for Model A2. For both models, a position within 

the affective space and a range to determine the grains used for the concatenation can be 

selected. Model B selects grains during runtime according to acoustic parameters derived from 

the selected position within the affective space. 

The output streams of the C++ algorithm of the three models implemented as VST3-plugins 

were convolved with binaural impulse responses and then presented to a group of 50 people 

who evaluated the position of the perceived affective state within the valence-/arousal plane. 

Results show significant1, medium to high correlations between the (affective) position input 

values of the plugins and the subjects’ evaluations for both affective dimensions of Model A1 

and Model A2 and for the arousal dimension of Model B. Model B fails to generate crowd noises 

with affective states of perceivably different valence values due to the lack of a sufficient 

correlation of acoustic parameters with the valence. 

Several improvements and approaches for future research are suggested.  

                                                 
1 For a significance level of 0.01 



ZUSAMMENFASSUNG 

Ziel dieser Masterarbeit ist die Implementierung eines C++-Synthesealgorithmus zur 

Generierung von (Hintergrund-)Geräuschen einer sprechenden Menschenmenge mit 

anpassbarem, affektivem Zustand. Die Auswahl des affektiven Zustandes erfolgt über ein 

zweidimensionales Koordinatensystem mit der Dimension der Valenz (von negativ bis positiv) 

auf der x-Achse und der Dimension der Erregtheit (von ruhig bis erregt) auf der y-Achse. Die 

Synthese geschieht mittels einer konkatenativen Synthese mit silbenähnlichen Audioeinheiten, 

welche mit einem MATLAB-Skript automatisch aus im schalltoten Raum aufgenommenen 

Sprachaufnahmen generiert werden. 

Für die Generierung werden die automatisch generierten Audioeinheiten von fünf 

verschiedenen MATLAB-Skripten mit manuell erstellten Silbengrenzen verglichen. Der 

Silbengenerator, der der manuellen Segmentierung an nächsten kommt, wird für die Erstellung 

des sogenannten Synthese-Korpus verwendet. 

Drei verschiedene Modelle für die Auswahl und Generierung der affektiven Zustände werden 

implementiert: Bei Modell A1 und A2 wird den Audioeinheiten eine feste Position im 

gegebenen zweidimensionalen affektiven Raum zugewiesen. Dies geschieht bei Modell A1 

manuell, bei Modell A2 automatisiert durch die Kombinierung eines Regressions- und 

Klassifizierungsmodells. Ausgehend von dem gewählten Auswahlbereich im 

Koordinatensystem verwenden beide Modelle nur Audioeinheiten für die Synthese, die 

innerhalb des Bereiches liegen. Bei Modell B wählt der Algorithmus zur Ausführungszeit 

Audioeinheiten aus, die aufgrund von akustischen Merkmalen zur derzeit ausgewählten 

Position im Koordinatensystem passen. 

Die Ausgangssignale der VST3-Plugins, die diese Modelle umsetzen, wurden binaural gefaltet 

und 50 Probanden präsentiert, welche die Stimuli hinsichtlich der wahrgenommenen Position 

im zweidimensionalen affektiven Raum bewerteten. 

Die Ergebnisse zeigen signifikante2, mittelstarke bis starke Korrelationen zwischen bei der 

Geräuschgenerierung als Eingangsparameter für den Algorithmus gewählten, affektiven 

Positionen und wahrgenommenen affektiven Positionen für beide Dimensionen bei Modell A1 

und A2, sowie für die Dimension der Erregung für Modell B. Da (derzeit noch) keine bekannten, 

ausreichenden Korrelationen zwischen der Valenz-Dimension und akustischen Parametern 

existieren, kann der Algorithmus nach Modell B keine in der Valenz-Dimension klar 

unterscheidbare Signale erzeugen. 

Eine Vielzahl von Möglichkeiten zur Verbesserung und Erweiterung der beschriebenen 

Synthese und zur weiteren Erforschung des Themengebietes wird erläutert. 

  

                                                 
2 Bei einem Signifikanzniveau von 0,01 



 

II. DEFINITIONS AND ABBREVIATIONS 

Affect  “A set of observable manifestations of a subjectively experienced 

emotion” (Merriam-Webster, 2017a) 

Affective position  A position in the affective space, here mostly within the two-

dimensional valence-arousal plane 

Corpus  The ensemble of the grains together with data describing or 

classifying the grains to be used in a concatenative synthesis 

DAW    Digital Audio Workstation 

Emotion   Here: Also used as synonym for affective state 

F0, f0    Fundamental frequency 

F1    First formant 

FFT    Fast-Fourier-Transformation 

Fricative “a consonant characterized by frictional passage of the expired 

breath through a narrowing at some point in the vocal tract” 

(Merriam-Webster, 2017b) 

Grain  Small piece of audio data as used in granular synthesis or 

concatenative synthesis 

GUI    Graphical User Interface 

Host  Software that provides the opportunity to be extended by plugins 

and to exchange data between the host and the plugin 

HRTF Head-related transfer function 

NaN  Not a number, invalid result 

OSC    Open Sound Control 

Pitch    Used here mostly as synonym for fundamental frequency 

Plugin  Software component that extents the functionalities of another 

software (of the host). Cannot be executed without the host. 

RMS    Root Mean Square 

Signal-to-noise ratio (SNR) Ratio of signal power to noise power  

Soundscape  Acoustic analogy to the visual landscape, the entirety of sounds 

in a certain environment (Wulff, 2012) 

Syllable A C++ object that contains the audio data of one grain and Meta 

data about that grain 

syllable  Not necessarily a syllable in the traditional sense, but comprises 

also syllable-like grains 



Thread  Sequential process in programming “that share[s] memory” (Lee, 

2006, p. 2)   

TTS     Text-to-speech 

Valence-arousal plane A two-dimensional affective space described by the x-coordinate 

of valence and the y-coordinate of arousal  

VUV    voiced/unvoiced 
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SYNTHESIS OF AFFECTIVE CROWD NOISE 

1. Introduction 

When it comes to the simulation of noise of a human crowd, sound designers of games, virtual 

reality applications or developers of audio installations tend to use long, prerecorded sounds 

(e.g. the so called Wallas3) as a basis for their soundscapes.4 

This implicates several disadvantages, as those sound files have fixed characteristics: 

First of all, a prerecorded sound has a fixed length. Any use that exceeds this length leads to 

the necessity of loops, resulting in audible repetitions. The number of available channels is also 

determined, restricting the sound designer in his choice of files or leading to the necessity of 

up- or down-mixing. 

The perhaps most striking disadvantage, however, is the fact, that sound files of human crowds 

mostly contain the audible room response of the room or environment they were recorded in. 

These files can therefore only be used in scenarios that take place in rooms or environments 

whose audio characteristics are sufficiently similar to those of the recording location, as the 

multiplication of two different room responses can lead to a rather unrealistic sound. 

Those complications leave the sound designer the choice between investing time in finding a 

suitable sound texture (for a definition see chapter 2.2.2) file or the more elaborate solution of 

conducting their own recordings. 

But even with custom human crowd recordings, a real-time user interaction can only be 

implemented to a very limited extent, e.g. with a level control for different sound files. As a 

consequence of using many sound files (that are sufficiently long to avoid repetitions) to 

achieve a possible user interaction, more memory space is required. 

With sound texture synthesis, a dry5 signal of infinite length can be generated for as many 

channels as needed using only a limited amount of stored data and enabling a real-time adaption 

of the texture sound to events like user interaction.  

For game sound design or interactive audio installations, a synthesized crowd noise that changes 

its mood or affective state according to the user’s actions could intensify the user experience, 

since humans are able to correctly identify the expressed affective state within speech signals 

even without understanding the content of the speech itself (Scherer, 1995, p. 237). 

The hereby presented master thesis describes and discusses the implementation of a C++-

application, which synthesizes the textural noise of a human crowd with a selectable affective 

state using a concatenative, corpus-based, granular synthesis on the basis of syllables or 

syllable-like grains. 

                                                 
3 The term Walla describes an audio file containing background noise in form of a talking or murmuring human 

crowd. It is used in movies, radio and television to set a mood (Carlsson, n.d.). 
4 See e.g. the statement in Appendix B 
5 In this context, dry states the absence or negligible presence of room reflections 
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Chapter 2 gives an overview on the topics related to this work and presents previous related 

work. Chapter 3 describes, how the speech material is prepared for the synthesis algorithm and 

chapter 4 explains, how audio grains are concatenated within the synthesis. The audio output 

of the synthesis is evaluated in a listening test described in chapter 5. Results of the listening 

test as well as general methods used for the synthesis are discussed in chapter 6. 
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2. Background 

A synthesis of affective crowd noise combines the fields of emotion research with the fields of 

speech and texture synthesis. The following subchapters are dedicated to providing some 

background information on each of the fields and offer the basis for the decision to implement 

the synthesis as a concatenative synthesis with a two-dimensional valence-arousal coordinate 

system as affective model. The final subchapter gives an overview on previous work that is 

either directly linked to the synthesis of crowd noise or allows a deduction of methods for the 

here presented work. 

2.1 The valence-arousal model of affect 

The possibility to select affective states demands for a predefinition on how the algorithm itself 

distinguishes affective states and which kind of handles are offered to the user to select an 

affective state. 

Psychologists tended to describe emotion or affect in terms of individual dimensions of affect 

(as sadness, anger, tension or fear) up until the middle of the last century. While the theory of 

emotion used in psychiatric and neuroscience research still mostly assigns a limited and discrete 

number of independent basic emotional dimensions to humans (Posner, Russell, & Peterson, 

2005, p. 2), Schlosberg (1952) placed different states of affect based on facial expressions on 

an oval according to a two-dimensional scale. The longer axis of the oval represented a 

pleasantness-unpleasantness dimension, the shorter axis an attention-rejection dimension 

(Schlosberg, 1952). Two years later, he included an activation theory of emotion by Lindsley 

(1951, as cited in Candland, 2003, p. 174) to his research of facial expressions and suggested a 

three-dimensional model of affect. 

Russell (1980) discarded the Schlosberg’s attention-rejection-dimension, placing affective 

states on a circle within a “two-dimensional bipolar space” (Russell, 1980, p. 1162). Affective 

states are placed according to their degree of valence as horizontal dimension and arousal as 

vertical dimension. His Circumplex Model of Affect with 28 affective states can be seen in 

Figure 1. 

This two-dimensional model of valence and arousal was chosen to serve as a basis for the 

affective space used both for processing the audio source material and as a way for the user to 

determine the emotional output of the synthesis, since it seemingly offers a promising 

compromise between affective diversity and practicability. 

The term affective position, whenever used in the following chapters, implies a position within 

this two-dimensional valence-arousal-plane. 
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Figure 1: Russell's Circumplex Model of Affect (from Russell, 1980, Figure 2) 

2.2 Synthesis 

The output of the C++-algorithm can be described as speech texture sounds. The following 

chapters therefore provide an insight on the topics of speech and sound texture synthesis. 

2.2.1 Speech synthesis 

Speech synthesis has been a widely explored field within the last decades. Researchers 

concentrated particularly on the translation of written texts into acoustic speech. Consequently, 

numerous scientific papers, programs and application extensions dedicated to the topic of the 

so called TTS-systems (short for text-to-speech) are available today.6 

The first step of transferring a text into speech is the translation of the text into the correct 

phonetic counterparts. As for background crowd noises the content of what is said is not of 

interest, this linguistic analysis step will not be explained any further here. A detailed 

explanation with examples for the German language can be found in Pfister & Kaufmann (2017, 

Chapter 8), further information on computer linguistics in general can be found in Carstensen 

et al. (2010, Chapter 3.3.2). 

The second step, the translation of the phonetic symbols into speech can roughly be separated 

into two different synthesis methods: The concatenative synthesis and the parametric synthesis. 

2.2.1.1 Concatenative synthesis 

The concatenative synthesis or data-driven synthesis is the most frequently used synthesis 

method today (Pfister & Kaufmann, 2017, p. 246) and is based on the reassembling of 

beforehand recorded, segmented and labelled units. In TTS-systems, one unit refers to a speech 

                                                 
6 An example for a TTS-system, an implementation of the Web Speech API created by Matt West, can be tried out 

on CodePen: https://codepen.io/matt-west/pen/wGzuJ (as of January 18) 
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segment and can consist of an allophone7, a diphone8, a triphone9, a syllable, a word, a part of 

a phrase or a whole phrase, although the last two can also be categorized as mere speech replay 

systems, in which previously recorded utterances of a speaker are replayed. The essential 

difference for the distinction would be the fact that a speech replay system is limited to the 

recorded material of sentences, whereas a TTS synthesis model should be able to transfer every 

text into an audio speech signal (Pfister & Kaufmann, 2017, p. 27). 

The entirety of the speech units together with their acoustical or higher-level descriptors builds 

the so-called corpus of the concatenative synthesis. 

The basic concept is to find the speech unit that fits the next phonetic symbol and is the best 

approximation for a natural prosodic progression. For concatenative synthesis in general, this 

“selection is performed according to the descriptors of the units, which are characteristics 

extracted from the source sounds, or higher level descriptors attributed to them” (IRCAM, 2012, 

sec. Principle). Applied to speech units, the higher level descriptors would correspond to the 

phonetic classification, whereas characteristics extracted from the source would be for example 

pitch and the RMS values. 

Depending on the size of the corpus, the selected speech units might have to be adapted in 

duration, fundamental frequency or loudness to fit to the previous units. Applying these 

processes to the speech units is computationally much more expensive than it is for the formant 

synthesis (see 2.2.1.2.1) and it can only be done within certain limits to avoid unnatural results 

or artefacts. The best case in terms of the naturalness would be if no adjustments were 

necessary. This can be achieved by storing variances of the same unit, which in turn increases 

the size of the corpus. The amount of adjustments decreases also with the size of the speech 

units, since the number of connection points between units decreases. However, bigger speech 

units imply a bigger corpus as well (Lemmetty, 1999, p. 33). The decision on a unit size is 

therefore always a trade-off between data size and quality. 

Today’s TTS-systems usually rely on a combination of small speech units like diphones and 

bigger units (e.g. for the more frequently needed words). The smaller units are only used when 

no good fit of the bigger units can be found within the corpus, e.g. for personal names (Pfister 

& Kaufmann, 2017, p. 247). 

The limitations in the parametric control during the synthesis make it difficult to add effects 

like different speaking styles or affective states to speech units (Murray, Edgington, Campion, 

& Lynn, 2000, p. 173). One approach for that is the RP-PSOLA-system, developed by Vine 

and Sahandi (2000). However, their paper focuses on the examination of perceived distortions 

of the synthesis system rather than examining the impact of the presented system on the emotion 

                                                 
7 Allophones are the phonetic interpretations of a phoneme (Carstensen et al., 2010, p. 180). Replacing one 

allophone by another doesn’t change the meaning of a word, but the sound. Example: The phoneme /t/ has 

(amongst others) the allophones [th] as in torch and [t] as in stop. 
8 A diphone is the speech unit that contains the speech signal from one core of a phone or allophone to the next 

core. The pure concatenation of phones or allophones leads to jumps at the transition points or unnatural transitions 

between the cores. This can be avoided by the use of diphones. Examples for TTS-systems that rely only on 

diphones can be seen or listened to on the website of the MBROLA project (MBROLA Project Development 

Team, 1999) 
9 A triphone is a speech unit that consists of a core sound in the middle and transitions towards other core sounds 

on the left and right side of the core, thereby taking into account the phonetic context of the core (Pfister & 

Kaufmann, 2017, p. 393). 
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recognition. 

For results with a natural sound, it is evidentially better, if the speech units already contain the 

required speaking style or affective state. If this is the case, the concatenative synthesis can 

deliver a synthesized speech output with a high level of naturalness and can preserve 

characteristics of the original speaker of the speech units. 

One example for a system that is based on this method is Talkapillar, an expressive TTS-system 

developed by Beller, Hueber, Schwarz & Rodet (2006).  

2.2.1.2 Parametric synthesis 

A parametric synthesis creates artificial speech through the variation of the parameters of a 

speech creation model (Eichner & Wolff, 2001, sec. Beschreibung). Two sub classes of the 

parametric synthesis, namely the formant synthesis and the articulatory synthesis, will be 

discussed in the following sections. 

2.2.1.2.1 Formant Synthesis 

The term formant describes a distinctive local maximum in the spectrum of a speech signal, 

which is the result of a resonance in the vocal tract. When speaking, these resonances are 

adapted by the articulators’ positions (e.g. the tongue or the lips) to form the specific sound that 

people connect – for example – to a vowel. The formant synthesis imitates theses resonances 

by filters of second order (Pfister & Kaufmann, 2017, p. 14). 

As a first step of the formant synthesis, a signal generator, e.g. consisting of an impulse 

generator for voiced parts and a noise generator for unvoiced parts, creates an excitation signal 

with a selected fundamental frequency for the voiced part. This signal is then filtered with the 

formant filters. Most formant synthesizes use five of these filters (Pfister & Kaufmann, 2017, 

p. 243). 

For the most part, a speech signal is a signal undergoing a constant change. Speech can be for 

few moments almost stationary, but never reaches a real stationary state – real stationary sounds 

are perceived as technical sounds, like the horn of a car (Pfister & Kaufmann, 2017, p. 243). As 

a consequence, to synthesize a natural speech sound, the excitation signal and the formant filters 

have to change constantly, too. 

The parameters that are changed can be the fundamental frequency or the ratio between the 

unvoiced and the voiced part of the excitation signal, the formant frequencies and amplitudes, 

or the “intensity of a low- and high-frequency region”(Lemmetty, 1999, p. 29). 

However, it is extremely difficult to model the parametric changes from one speech sound to 

another according to the changes of the vocal tract resonances, which differ from language to 

language and from speaker to speaker. To model the parametric changes in a more natural way, 

researchers make use of HMMs 10  (Hidden-Markov-Models) or nowadays also Neural 

Networks, which were previously trained on speech recordings. Yet most implementations of 

the formant synthesis sound understandable but very unnatural in comparison to today’s 

concatenative synthesis implementations. 

Nevertheless, the formant synthesis offers some evident advantages: As for the creation of a 

specific sound only the parametric settings have to be stored, the data consumption of the 

                                                 
10 For detailed information on HMMs in speech synthesis, see e.g. Tokuda et al. (2013) 
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formant analysis is very small compared to the concatenative synthesis. The fact that no human 

speech recordings are involved in the synthesis of the sound (the analysis part for the 

parametrization left aside) makes the formant synthesis also a very flexible solution. The 

implementation of changes of pitch, speech rate11 or voice quality12 is much less complicated 

as with a data-driven synthesis, since it implies only the change of one or several parameters. 

These benefits could make the formant synthesis a promising approach for the implementation 

of an affective speech synthesis. “One can control voice quality, pitch, intensity, spectral energy 

distributions, harmonics-to-noise ratio or articulatory precision which allows modeling many 

co-articulation effects occurring in emotional speech” (Oudeyer, 2003, p. 161). Yet, the deficits 

in terms of naturalness are up until now still too big to consider this form of synthesis for the 

here presented crowd noise synthesis. 

An example for a TTS-system based on formant synthesis is eSpeak, an open source speech 

synthesizer created by Duddington, Avison, Dunn & Vitolins (2017). 

2.2.1.2.2 Articulatory synthesis 

“When speaking, the vocal tract muscles cause articulators to move and change shape of the 

vocal tract which causes different sounds” (Lemmetty, 1999, p. 28).  

The Articulatory Synthesis is an approach of speech synthesis that generates speech signals by 

modelling the human articulatory system and its movements (Pfister & Kaufmann, 2017, p. 

240). 

Kröger & Birkholz (2009, p. 307f) provide a sub classification of this approach. 

They present a Vocal Tract Model, which calculates the geometries of the complete vocal tract. 

The position and shape of every vocal tract organ (including e.g. lips, tongue and nasal cavity) 

are remodeled and changed over time to create speech signals. Parameters for the vocal tract 

modelling are e.g. derived from MRI- or X-Ray-Scans or from sensors attached to the vocal 

tract (Pfister & Kaufmann, 2017, p. 240).  

Another sub classification presented by Kröger & Birkholz (2009, p. 307f) is the Acoustic 

Model, which models the air flow and the air pressure distribution within and around the human 

body. A subglottal air flow in combination with a specific lung pressure is altered over time by 

a tube model, which consists of several tube sections imitating the trachea, pharynx, nasal, and 

oral cavities. Those tube sections possess distinctive aerodynamic and acoustic characteristics 

described by the tube model. 

According to Lemmetty (1999, p. 28) the Articulatory Synthesis theoretically has the highest 

potential to deliver high-quality synthetic speech. However, the computation of this model is 

both computationally expensive and much more complicated than other methods. The 

movements of the tongue alone are highly complicated and therefore almost impossible to 

model (Lemmetty, 1999, p. 29). Furthermore, the retrieval of data for the parametrization of the 

models through MRI-scans or sensor information is time-consuming, expensive and somewhat 

unpleasant for the person being examined, which is why implementations of an Articulatory 

                                                 
11 The speech rate is a term to describe the speed of the speech and denotes usually the number of speech units per 

time unit 
12 The voice quality comprises spectral features of the speech signal, e.g. the spectral slope 
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Synthesis have not been able to deliver results that are comparable to a concatenative synthesis 

regarding the naturalness of the produced speech signal (Pfister & Kaufmann, 2017, p. 240f). 

Given the characteristics of all the different synthesis methods, the concatenative synthesis was 

chosen as approach for the synthesis of a talking, human crowd. 

2.2.2 Texture synthesis 

The term sound texture represents an audio medium that consists of (altered repetitions of) 

smaller units. These smaller units are often extracted from an original (recorded or synthesized) 

sound file and (re-)synthesized “using a sequence of extracted building patterns”(Lu, Wenyin, 

& Zhang, 2004, p. 156). The sound texture is normally an attempt to create a sound that is 

perceived as similar to or ideally identical with the original sound (Möhlmann, 2011, p. 16). 

Sound textures should not contain audible repetitions or artefacts and should sound natural 

(Strobl, Eckel, Rocchesso, & Le Grazie, 2006, p. 4). Schwarz (2011, p. 221) defines a sound 

texture by the following five points: 

1. Sound textures are formed of basic sound elements, or atoms; 

2. atoms occur according to a higher-level pattern, which can be periodic, 

random, or both; 

3. the high-level characteristics must remain the same over long time periods 

(which implies that there can be no complex message); 

4. the high-level pattern must be completely exposed within a few seconds 

(“attention span”); 

5. high-level randomness is also acceptable, as long as there are enough 

occurrences within the attention span to make a good example of the 

random properties. 

(Schwarz, 2011, p. 221) 

Schwarz (2011, p. 221) visualizes the consequences of point 3 and 4 in a graph shown in Figure 

2. It illustrates, that unlike speech or music, after a certain amount of time, a sound texture does 

not provide any new information to the listener. This moment, however, arrives later than it 

does for pure noise. Thus, the potential information content of a sound texture approaches a 

constant value which is higher than that of noise. 

 

Figure 2: Information content over time for different sound categories (from Schwarz, 2011, p. 221) 

There are different ways and models to approach the synthesis of texture sounds. Schwarz 

(2011, p. 223) distinguishes between signal models and physical models. The corpus-based 
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concatenative synthesis presented in 2.2.1.1 as a speech synthesis method is also a common 

model to create textural sounds. It can be classified as an extended type of the granular synthesis 

and is therefore a (physically informed) signal model. An overview over the classification can 

be seen in Schwarz’s (2011) publication. 

Regarding simpler textural sounds (e.g. fire, waves or rain), sound synthesis is already a 

common tool for sound design, not so much for movies as for sound installations or virtual 

reality installations and games, in which the duration of the soundscape is not predefined. 

2.3 Previous related work 

2.3.1 Orchestra of speech 

The Orchestra of Speech is a research project by Daniel Formo as a part of the Norwegian 

Artistic Research Program at the Music Department of Norwegian University for Science and 

Technology in Trondheim (Formo, 2013a). It covers the extraction of musical features or 

“prosodic traits” (Formo, 2013a) from speech in order to recombine speech segments in a 

musical way to create electroacoustic music. The main goal of the project is to provide a tool 

or instrument allowing a musical use of speech in an improvisational manner. The instrument 

is implemented as a standalone patch in Max/MSP (Formo, 2014). Especially his work on 

syllable extraction from speech signals is of interest for the here presented work. 

2.3.2 CataRT 

CataRT is a concatenative software synthesizer by the IRCAM, which creates its corpus from 

a given audio file and selectable audio features. It is implemented as Max/MSP and is available 

as a standalone version or as modular system for Max/MSP (Schwarz, 2017). 

A loaded audio file is split up into segments of a selected size and a set of features (e.g. audio 

features as spectral centroid, pitch, loudness, file-related features as position in the original file 

or higher-level descriptors imported by text files) is extracted from the resulting grains. The 

grains are then displayed as dots in a window according to two features chosen as dimensions. 

A third dimension can be displayed with the color of the dots. 

Via a graphical user interface and the mouse or an external controller, a position in the two-

dimensional space as well as a circular window region around the middle position are selected. 

According to the selected trigger mode, the playback of a grain within the selected window is 

triggered on certain events (e.g. a mouse move or a metronome beat) (Schwarz, 2010, sec. 

Trigger Modes). Several parameters like crossfade, attack, release or transposition can be set 

by the user. A more detailed overview on the functions of CataRT is provided by Schwarz 

(2010). 

The software is intended to be a tool for explorative granular synthesis, gesture-controlled 

synthesis, audio-controlled synthesis, as a data-driven drumbox or for expressive speech 

synthesis (Schwarz, Beller, Verbrugghe, & Britton, 2006, p. 5). The expressive speech synthesis 

is, however, seemingly meant in an experimental way and not in a way to add emotions to a 

natural sounding speech. 
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2.3.3 MyNoise.net Background Noise Generator 

MyNoise.net offers several sound generators as a browser application allowing to mix and play 

back background soundscapes of different categories. The soundscapes are meant to be used to 

boost concentration or creativity by masking unwanted background noise13, to mask a tinnitus, 

as a relaxation aid, for meditation or for sound therapy. Every soundscape contains ten channels. 

Every channel contains sounds with a different spectral focus (Pigeon, 2013c).14 The user can 

thus adapt the spectral distribution of the soundscape via the channels in a way that masks the 

unwanted background sounds best or to get the mix that suits best his purposes. 

Apart from nature sounds, industrial soundscapes or city noise, human crowd noises referred to 

as Babble Noise are also available. According to Pigeon (2013b), these Babble Noises are an 

ideal way to mask confidential conversations, e.g. in offices. A Babble Noise consists of a mix 

of speech recordings that were treated in a way to mask the words that are spoken. Some words 

are still understandable, but only if you specifically pay attention to them. 

The output of the ten channels is generated in runtime by playing back HTML5 audio files 

(Pigeon, 2013a). The audio files mainly have a length of several seconds and are played in 

random order with a dynamically changed panning. The Babble Noise Generator does not make 

use of anechoic speech samples. The voice recordings contain room information, which is not 

consistent over the different recordings. 

Unfortunately, Pigeon (2013a) does not provide any details on the algorithms used. It is 

therefore not evident, if the selection of speech segments follows pure randomness or if higher-

level descriptors or audio features are involved in the generation. 

2.3.4 Parametric crowd noise examination 

The project run by Grimaldi, Böhm, Weinzierl & von Coler (2017) in the course of an internship 

at the Technical University of Berlin examines the perception of a parametric synthesis of 

human crowd noise in virtual environments. The crowd noise for Grimaldi’s studies is created 

by a Pure-Data-synthesizer concatenating grains of a corpus, which was specifically recorded 

for this application. 

The recordings took place in the anechoic chamber of the TU Berlin to avoid an audible room 

information within the corpus. Two groups of five students (five male and five female students 

in total) were placed on seats arranged in a circle facing each other. Five cardioid microphones, 

each of them pointing at one seat, were placed in the center of the circle. The distance between 

the students and their respective microphone was approximately 1.5 m to avoid an elevation of 

low frequencies due to the proximity effect (Grimaldi, 2017, p. 2). 

The students were first recorded unsupervised for about 45 minutes, then they were asked to 

act out scenarios with the intention of provoking speech of different affective states. Five of 

those scenarios were: 

                                                 
13 Noise is meant here in the colloquial way, representing a sound or several sounds that are perceived as annoying 
14 The channels are not divided up into different frequency regions as a multi-band equalizer would do it. The 

sounds are distributed amongst the ten channels according to their spectral features from low sounds to high 

sounds. It is not specified, if the distribution is based on an acoustic parameter like the spectral centroid or only 

based on perception of the author. 
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- There is a fire in your apartment. Call the fire fighters. 

- You see a group of young people damaging your bike from the distance. Make 

them stop. 

- The Police stopped you for riding your bike without lights. Try to talk your 

way out. 

- Ask your friends on the phone to help you move, tomorrow. 

- Your kid’s pet died. How would you tell it? 

(Grimaldi, 2017, p. 2f) 

The recordings were split into utterances and sorted by speaker and by the three different 

excitement classes calm, neutral, and excited (Grimaldi, 2017, p. 3). An RMS and pitch value 

were also extracted from the utterances, but as the excitement classification was executed 

manually on the basis of the played scenario, the paper is not clear on how these values were 

used. Each utterance was segmented into syllable estimates by an algorithm developed by 

Härmä (2003). Rejecting syllables with a length of less than 80 ms or more than 1000 ms, the 

remaining syllables form the corpus for the synthesis. 

Grimaldi (2017, p. 3) uses a speech model, which concatenates random syllables of one speaker 

to an audio stream. The random selection, which avoids immediate repetitions of one syllable, 

as well as the playback of the grains are computed by Pure Data objects (Grimaldi, 2016, p. 

27). Grimaldi multiplies each syllable with a Gaussian envelope to get smooth transitions 

between the syllables. He uses a metronome with a speed of one beat per second as a trigger to 

deactivate and reactivate the concatenation of syllables for one stream to include longer pauses 

to the streams. The probabilities for the deactivation-decisions as well as the inclusion of 

smaller pauses (with a length of approximately 250 ms) are not further specified. 

Grimaldi (2017, p. 5) places different numbers (16, 32 and 96) of streams (representing different 

sizes of crowds), which include the three different excitement levels, on varying circle positions 

around the listener using the SoundScape Renderer by Geier, Ahrens & Spors (2008). This way 

he generates 45 different binaural stimuli, which are presented to 30 subjects in a controlled 

environment via headphones. 

He then compares the effects of the excitement levels and the number of streams on the 

perceived naturalness of the stimuli. 

Grimaldi’s results show a significantly lower perceived naturalness for the two higher number 

of streams compared to the perceived naturalness of the smallest number of streams. For the 

two larger stream numbers, the perceived naturalness for the excited crowd is significantly 

higher than for the neutral or the quiet crowd. For the smallest stream number, all three 

excitement levels are perceived as relatively natural. The estimated size of the crowd is bigger 

than the actual stream number. This could be due to the fact, that in a real human crowd, not 

everybody is talking all the time. 

Two main artefacts of the synthesis are mentioned: Perceived repetitions of long grains and 

unnatural jumps of the RMS values. The first artefact is proposed to be solved by the 

improvement of the syllable segmentation and the creation of a bigger corpus. To diminish the 

second artefact, it is suggested to consider the RMS values of the previous grain in the selection 

of the new grain. 
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The here presented master thesis can be regarded as extension of Grimaldi’s (2017) work by 

adding the valence-arousal model as a handle to set the affective state of the crowd and by 

implementing the synthesis algorithm as a C++-plugin, which can be used with numerous hosts 

on several platforms.  



Corpus-Creation  Emotion detection  

 

 

 

13 

3. Corpus-Creation 

To enable a real-time concatenation of syllables, the synthesis algorithm needs a pre-prepared 

corpus, which includes the audio data of every syllable as well as descriptive information on 

the syllable. In the case of the hereby presented work, this descriptive information has to enable 

the synthesis of a specific, selected, affective state within the valence-arousal coordinates. 

Chapter 3.1 therefore discusses the way of linking syllables to affective states. 

The speech material for the creation of the corpus was taken from the recordings made by 

Grimaldi et al. (2017) for the project described in section 2.3.4. Syllables or syllable-like grains 

have to be extracted from these recordings. Chapter 3.2 thus addresses an automated syllable 

segmentation. 

3.1 Emotion detection 

Before starting the creation of a corpus or programming the algorithm, a decision on the way 

syllables are stored and connected to affective positions on the valence-arousal plane has to be 

made. Two options are theoretically conceivable: 

Option A: The syllables are directly linked to a position within the valence-arousal plane, which 

means, that each syllable from the corpus can only be used for one affective position. Since 

single syllables can hardly be evaluated regarding their affective state, the evaluation has to be 

executed with utterances rather than syllables. Syllables within one utterance would be placed 

on the same position. 

Option B: The syllables contain certain acoustic features that correlate with the dimensions of 

the valence-arousal plane and a syllable-picking algorithm collects during runtime all the 

syllables within the corpus that correspond to the acoustic features the selected affective state 

demands for. 

As Schröder (2001, p. 2) states, recognition rates for different synthesized emotions are better, 

if the whole corpus is directly linked to an affective state rather than picking corresponding 

units out of one corpus based on prosody rules. This would speak for option A. 

However, option B has the advantage, that one syllable could potentially be used for different 

affective states, possibly providing a bigger variety of syllables for each affective state. 

Obviously, option B can only be implemented if one or more acoustic features (or a combination 

of them) of the syllables themselves or the progression of acoustic features within the utterances 

correlate with the valence- and the arousal-dimension.15 Such a correlation could also allow for 

an automated syllable placement on the valence-arousal plane for Option A. 

Listening to recordings of utterances of different affective states but without meaningful content 

(e.g. numbers read by actors in different affective ways), humans are able to correctly identify 

the expressed affective state with an accuracy of about 50 %, which is about four or five times 

higher than the guessing probability (Scherer, 1995, p. 237). A correlation with affective states 

(but not necessarily with the affective dimensions of the chosen model) has to exist somehow. 

The following chapter contains a literature review on studies that examined such a correlation. 

                                                 
15 These can of course be different features or feature combinations for the two dimensions. 
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3.1.1 State of research 

Numerous studies throughout the last decades were dedicated to the topic of emotion 

recognition. The majority of them focused on the discrimination of distinctive affective states, 

mostly including anger, happiness or joy, fear, sadness and neutrality or calmness. 

Scherer (1995, p. 241) summed up common results of studies examining a correlation of 

acoustic parameters and affective states up until 1995: 

According to him, the affective state of anger is generally connected to an increase of the mean 

fundamental frequency f0, the mean intensity and the high-frequency energy in comparison to 

neutral speech. The f0-contours are directed downwards. 

Fear is connected to an increased mean f0, to a higher range of f0 and to an increased articulation 

rate.16 For some studies, worry or anxiety as “weaker forms of fear” (Scherer, 1995, p. 241) are 

also connected to an increased mean f0. 

Sadness is connected to a decreased mean f0 and f0 range and a decrease in the mean intensity, 

high frequency energy and articulation rate. For the most part, f0-contours are directed 

downwards.  

Joy is generally connected to an increased mean f0, f0 range, f0 variability, mean intensity and 

articulation rate. 

Kienast & Sendlmeier (2000) extended the set of examined affective states by boredom. They 

used three phrases spoken by six actors. They extracted parameters describing a segment 

deletion rate, formant shifts, and a spectral balance of fricatives in comparison to fricatives in 

neutral speech. All fricatives in utterances expressing sadness and boredom had a negative 

spectral balance value compared to the one in neutral utterances, while happiness, fear and 

anger lead to positive spectral balance values. Kienast & Sendlmeier’s (2000) examinations 

showed a positive and high segment deletion rate for fear, boredom and sadness, a low positive 

rate for happiness and a negative rate (meaning segment insertions) for anger. 

Goudbeek & Scherer’s (2008) studies on 17 emotions confirm Scherer’s (1995) results 

regarding fundamental frequency and intensity. The examination of their corpus also revealed 

significant correlations on several parameters connected to spectral characteristics, such as the 

Hammarberg Index17 or the intensity below 1 kHz. 

As the performance of computers increased drastically within the 1990s, researchers started to 

include machine learning algorithms in the implementation of automated emotion classifiers. 

These studies consist of a parameter extraction from recorded, spontaneously acted out or read 

speech and the use of the obtained parameters to train one or several machine learning 

algorithms: 

With a “jack-knifing procedure”, Scherer (1996, p. 2) explored the performance of subsets of 

29 acoustic parameters in the classification of 224 affective vocal cues which were spoken by 

professional actors. The recordings were assigned to 14 different emotion classes and all 29 

parameters were extracted from them. The vocal cues were then automatically classified by 

calculating the mean parameter profile for every class (not using the cue that was being 

classified) and assigning it to the class, for which the sum of squared differences between the 

                                                 
16 The term articulation rate is used here as a measure for the speed of speech 
17 In this case the „difference between the energy maxima in the 0-2 kHz and 2-5 kHz range” (Goudbeek & 

Scherer, 2008, p. 2) 
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cue’s profile and the classes profile was lowest. The algorithm changed randomly the subset of 

parameters keeping parameters that provide a higher percentage of correct classifications, until 

no further improvement was achieved. With “an overall hit rate of 40.4% (as compared to 7% 

expected by chance)”, Scherer (1996, p. 2) achieves the best score with the following subset of 

parameters: 

Fundamental frequency: Mean, standard deviation, 25th percentile, 75th percentile; 

Energy: Mean; Speech rate: duration of articulation periods, Bands in the voiced 

long term average spectrum: 125-200 Hz, 200-300 Hz, 500-600 Hz, 1000-1600 

Hz, 5000-8000 Hz; Hammarberg index; slope of spectral energy above 1000 Hz; 

proportion of voiced energy up to 1000 Hz. Bands in the unvoiced long term 

average spectrum: 125-250 Hz, 5000-8000 Hz (Scherer, 1996, p. 2) 

The five affective states fear, anger, happiness, sadness and neutrality are subject to studies 

made by Petrushin (1999) and McGilloway et al. (2000): 

Petrushin (1999) lists 14 features as the strongest of a set of 43 features he extracted from 700 

utterances consisting of four sentences: 

F0 maximum, F0 standard deviation, F0 range, F0 mean, BW1 mean, BW2 mean, 

energy standard deviation, speaking rate, F0 slope, F1 maximum, energy 

maximum, energy range, F2 range, and F1 range. (Petrushin, 1999, p. 4) 

He achieves the best results with an Ensemble of Neural Networks classifier with the lowest 

score for fear (35-53%), the highest score for sadness (73 – 83%) and an average score of 70%. 

McGilloway et al. (2000) examined 32 different acoustic features from the ASSESS system18 

of five text passages read by 40 subjects. Apart from the parameter energy below 250 Hz, the 

parameters were all related to the progressions of fundamental frequency and intensity over 

time. McGilloway et al. (2000, p. 5) achieved the best score on the test set with a Linear 

Discriminant classifier, the recognition rate being 52.3 %. 

Oudeyer (2003, Chapter 5) achieved very high recognition rates (up to 96%) training 19 

different classifiers with the extracted parameters from a database of 4800 utterances for the 

four affective states joy/pleasure, sorrow/sadness/grief, anger, normal/neutral. The acoustic 

features used were “max, min, median, 3rd quartile and 1st quartile of low-passed signal 

intensity, pitch and minima of unfiltered signal intensity”(Oudeyer, 2003, p. 176). 

As Cowie et al. (2001, p. 52) points out in a summary on the topic, there are some parameters 

(especially the ones related to pitch or intensity), that have repeatedly been validated across 

studies to have an impact on the perception of affective content of speech. However, other 

parameters have led to contradictive results: The affective states of anger, fear and happiness 

have both been assigned to faster and slower speech rates (R. Cowie et al., 2001, p. 52). 

Other studies, describing an analysis-by-synthesis approach, conducted an implementation of a 

system to generate affective (speech) signals, which were then evaluated by an emotion 

discrimination by humans: 

                                                 
18 ASSESS stands for “Automatic Statistical Summary of Elementary Speech Structures” (Roddy Cowie, Douglas-

Cowie, & Sawey, 1995) and is a “system for semi-automatic analysis of acoustic speech parameters. […] It 

generates a simplified core representation of the speech signal based mainly on the F0 and intensity contours.” 

(Schröder, 2005)  
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Scherer & Oshinsky (1977) synthesized a saw tooth signal, which was modified with different 

pitches, amplitudes, envelopes, speeds, number of harmonics and cutoff frequencies. All in all 

they presented 188 cues to 48 students who attempted to rate the perceived affective content of 

the cues. The links between the acoustic parameters and a perceived affective state or dimension 

which were rated as significant are listed in Table 1. Although connections between auditory 

stimuli and affect are shown, it does not necessarily mean, that the results can also be directly 

assigned to speech. 

Table 1: Significant affective states or dimensions associated with acoustic parameters as presented by Scherer & Oshinsky 

(1977, p. 339) 

Burkhardt & Sendlmeier (2000) used the parameters mean pitch, pitch range, pitch variation, 

pitch contour of the phrase, pitch contour of the syllable, f0-flutter, intensity of syllables, speech 

rate, phonation type, vowel precision and lip-spreading to alter a formant synthesis generating 

affective utterances in German. While they chose an utterance with a neutral meaning,19 the 

intended affective states of the generated utterances through parameter modulation were 

                                                 
19 The phrase was “‘An den Wochenenden bin ich jetzt immer nach Hause gefahren und habe Agnes besucht‘(At 

the weekends I always drove home and visited Agnes)” (Burkhardt & Sendlmeier, 2000, p. 2) 

Acoustic parameters of 

tone sequence 

Direction of 

effect 

Emotion rating scales listed in 

decreasing order of associative 

strength 

Amplitude variation Small Happiness, pleasantness, activity 

Large Fear 

 

Pitch variation Small Disgust, anger, fear, boredom 

Large Happiness, pleasantness, activity, 

surprise 

 

Pitch contour Down Boredom, pleasantness, sadness 

Up Fear, surprise, anger, potency 

 

Pitch level Low Boredom, pleasantness, sadness 

High Surprise, potency, anger, fear, 

activity 

 

Tempo Slow Sadness, boredom, disgust 

Fast Activity, surprise, happiness, 

pleasantness, potency, fear, anger 

 

Envelope Round Disgust, sadness, fear, boredom, 

potency 

Sharp Pleasantness, happiness, surprise, 

activity 

 

Filtration cutoff (number 

of harmonics) 

Intermediate 

(few) 

Pleasantness, boredom, happiness, 

sadness 

 

Level (number of 

harmonics) 

High (many) Potency, anger, disgust, fear, activity, 

surprise 
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hot/cold anger20, happiness/joy, crying despair, quiet sorrow, fear and boredom. In a first 

experiment, the output of different settings of the first five parameters was assigned to the 

perceived affective states by 30 native German-speaking participants to obtain the best setting 

for each affective state. Burkhardt & Sendlmeier then further adapted the resulting settings for 

each state and presented them in several versions per emotion to 42 subjects, who were again 

asked to assign the heard utterances to an affective state. The received recognition rates were 

between 29 % (for hot anger) and 81 % (for joy). 

Breazeal (2002) designed for her sociable robot both an affective recognition and speech 

system. Her robot was able to distinguish between approval, prohibition, comfort, attention and 

neutral speech and responds (in the same order) pleased, sad, content, interested or calm. The 

recognition consisted of two stages: A low-level pitch and energy extraction and a high-level 

prosodic feature extraction. Breazeal achieved very high recognition rates of between 40% and 

87% for utterances with a strong affect and with speakers other than those the robot was trained 

with. 

Oudeyer (2003, Chapter 3) generated “cartoon emotional speech” (Oudeyer, 2003, p. 160) 

expressing happiness, anger, sadness, comfort and calmness with the freeware speech 

synthesizer MBROLA.21 Recognition rates were between 38% and 76%. 

Across these studies, subjects were always asked to identify the perceived affective state by 

assigning an affective state from a list of possibilities to the perceived stimulus. As Schröder 

(2004, p. 95) points out, this procedure “corresponds rather to a discrimination task than an 

identification task, especially when the number of categories involved is small.” It is evident, 

that the recognition rates of Scherer (1996) are not only less than half as good as the ones 

presented by Oudeyer (2003, Chapter 5), because Scherer didn’t use the same mathematically 

advanced machine learning algorithms or different parameters, but also because his algorithm 

discriminated amongst 14 affective states as opposed to the four examined by Oudeyer.  

Another important remark might be, that “a forced choice test provides no information about 

the quality of the stimulus in terms of naturalness or believability.” (Schröder, 2004, p. 95) 

Although the examined affective states of the previously mentioned studies can be converted 

to positions on a valence-arousal scale,22 the findings of the studies regarding the respective 

parameter profiles are difficult to translate to the two-dimensional emotion model. The 

translation would necessarily be based on numerous assumptions.23 However, to be able to 

illustrate an affective state corresponding to a position within the valence/arousal-plane, a 

continuous parameter adaption over both dimension has to be specified. 

It is therefore necessary to examine the acoustic parameters regarding a possible direct 

correlation with the two dimensions themselves. 

                                                 
20 Hot and cold anger can be discriminated by a different level of arousal: Hot anger or rage can be “characterized 

by the  outward display of anger by means of gestures, facial and verbal (e.g., cursing) expressions, hostile 

aggressive behaviour” (Biassoni, Balzarotti, Giamporcaro, & Ciceri, 2016, p. 2), cold anger such as irritation 

comprises “milder and more subtle forms of anger” (Biassoni et al., 2016, p. 2). 
21 More information on the MBROLA project on http://tcts fpms.ac.be/synthesis/mbrola html  
22 The corresponding positions are listed e.g. by Schröder et al. (2001, p. 89) 
23 E.g. regarding the selected set of emotion profiles, the mere assumption, that in between the placed profiles, 

parameter values can be interpolated, the way of interpolation or the behaviour of parameter values towards 

extreme areas, where no parameter profile was examined. 
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Scherer & Oshinsky (1977) set their results in relation to the affective dimensions activation, 

pleasantness and strength. They observe a “consistent relationship between the auditory cues 

of pitch, loudness, rate, and timbre and the subjectively rated activity level”(Scherer & 

Oshinsky, 1977, p. 335), but not for the pleasantness or strength dimension. 

Scherer later confirms this statement: “There has been relatively little evidence for the vocal 

differentiation of individual emotions on other dimensions such as valence” (Scherer, 1995, p. 

241). 

Pareira (2000) calculates Pearson’s linear correlation coefficients for 40 utterances placed on 

the three-dimensional model of activation, evaluation and power. Her study reveals significant 

correlations of the parameters mean of f0, f0 range and mean of RMS with the activation 

dimension. For the evaluation dimension, the mean of f0 shows a weak correlation (at a 0.05 

level), but only for female speakers. 

Cowie et al. (2001, p. 52f) connect positive activation to an increase in mean and range of f0 

and a tense voice quality, negative activation to a decrease in mean and range of f0.  

Schröder (2004, Chapter 11) use the Belfast Naturalistic Emotion Database for his analysis. 

The database contains emotional speech material from 124 (English) speakers recorded from 

talk shows and “religious programs, as well as interviews recorded in a studio” (Schröder, 

Cowie, Douglas-Cowie, Westerdijk, & Gielen, 2001, p. 87). The recordings were split up into 

5500 “inter-pause stretches” (Schröder et al., 2001, p. 88), which were placed on the same three-

dimensional model as used by Pareira (2000) and mentioned by Cowie et al. (2001) by seven 

subjects. Schröder (2004, Chapter 11) used the ASSESS system to extract acoustic parameters 

and calculated the correlation and a linear regression for each dimension. He states, “that nearly 

all of the acoustic variables show substantial correlations with the emotion dimensions” 

(Schröder, 2004, p. 113). However, his correlation calculation returns significant results even 

for very small correlations due to the big database used. A scatter plot of the strongest 

correlation he found can be seen in Figure 3. 

 

Figure 3: Fundamental frequency of utterances over arousal as presented by Schröder (2004, p. 108) for female (left) and 

male (right) speakers. Correlation coefficients were 0.313 for female speakers and 0.441 for male speakers (Schröder, 2004, 

pp. 114–115). 

Schröder evaluated correlations with coefficients over 0.25 as very strong, between 0.14 and 

0.25 as strong and correlations with coefficients between 0.08 and 0.14 as weak (regarding the 

absolute values). For the activation dimension, the parameters related to pitch induce the 
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strongest correlations (coefficients up to 0.44 for mean f0 for male speakers). Regarding 

parameters that are not related to pitch, the strongest correlation is caused by the spectral slope 

with a coefficient value of 0.265 for female speakers. The strongest correlations within the 

evaluation dimension are those for median duration f0 falls and the Hammarberg index24 

‘coarse’ (with coefficiants of 0.17 and -0.17). A correlation related to intensity could not be 

found by Schröder, which he assumes to be due to the amplitude manipulations that TV show 

audio tracks undergo (Schröder, 2004, p. 113). Schröder suggests not to use these correlations 

for models that don’t include all three dimensions: 

For example, if the input to be used for calculating acoustic variables specified 

activation and evaluation, but not power, then it would not be optimal to use the 

coefficients calculated here. (Schröder, 2004, p. 111) 

The mentioned studies seem to have certain drawbacks regarding a generalization or usefulness 

of the results for the purposes of the present thesis: Most of the studies either use only a handful 

of sentences to connect acoustic parameters to affective states (Goudbeek & Scherer, 2008, 

2008; Kienast & Sendlmeier, 2000; Petrushin, 1999), or do not make use of natural sounding 

speech (Burkhardt & Sendlmeier, 2000; Oudeyer, 2003), use the same dataset for the training 

of an algorithm as for its testing (Oudeyer, 2003; Petrushin, 1999) or use a commercial 

synthesizer (Breazeal, 2002).  

Yet, the examined studies generally agree on a positive correlation between pitch and arousal 

as well as between intensity and arousal. Correlations with the valence dimension are assumed 

to be parameters describing the voice quality25, even though a general agreement as for the 

arousal dimension could not be found. 

While an implementation of Option A as described in chapter 3.1 might be able to illustrate an 

affective state without evident acoustic correlations for the affective dimensions,26 Option B 

depends on a generally valid correlation between at least one acoustic parameter and each 

affective dimension. 

3.1.2 Phrase Analysis 

The following chapters 3.1.2.1 and 3.1.2.2 describe two examinations of a correlation between 

several acoustic parameters and the affective dimensions of valence and arousal to get a brief 

idea of whether an implementation of Option B that can recreate affective states (especially 

along the valence dimension) based on acoustic features was feasible. 

3.1.2.1 Movie and talk show utterance analysis 

488 utterances with comparably very low background noise were extracted from movies and 

talk shows using the Sonic Visualiser27. They then were placed manually on the valence-arousal 

                                                 
24 The Hammarberg indices are parameters created by Britta Hammarberg and her co-workers to describe voice 

quality features by the division of specific maxima of distinctive frequency bands (Schröder, 2004, p. 109). 
25  The voice quality as used here does not refer to a quality aspect of a speech recording, but to spectral 

characteristics of the voice itself. 
26 The essence of the affective state, even if it is not corresponding to acoustic parameters that have been examined, 

could be preserved in the speech material itself, then be recognized by the human listener and subconsciously 

translated to an affective position on the affective dimension 
27 The Sonic Visualiser is a freeware application for the “analysis, visualisation, and annotation of music audio 

files”(Cannam, Landone, & Sandler, 2010). It is available at http://www.sonicvisualiser.org/. 
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plane and examined regarding a correlation between their positions on the valence-arousal plane 

and acoustic features. 

A MATLAB-GUI-application was developed to facilitate the manual placement of large 

numbers of audio files. A screenshot of the user interface is displayed in Figure C-1 in the 

appendix. Further explanations on the use of the application are given in the appendix on page 

81f. 

The utterances were chosen to cover the valence-arousal-plane in an approximately even 

manner. The positions can be seen in Figure 4. A linear correlation test on the two dimensions 

of the utterances showed no correlation with a Pearson correlation coefficient of −0.013 and a 

probability value of 0.77. 

 

Figure 4: Positions of examined utterances from movies and talk shows across the valence-arousal-plane 

46 acoustic parameters were extracted from each utterance covering pitch-related, intensity-

related, spectral features as well as some other features. A complete list with explanations can 

be seen in Table 2. 

Table 2: Acoustic Parameters extracted from the utterances and examined regarding a correlation with the affective 

dimensions 

Pitch-related parameters 

 mean of f0 

 minimum of f0 

 maximum of f0 

 spread of f0 

 standard deviation of f0 

The fundamental frequency was calculated via an 

autocorrelation applied on the zero-frequency-

filtered signal as presented by Murty & 

Yegnanarayana (2008, p. 1608).28 The spread of f0 

was calculated as the difference of the 90th 

percentile and the 10th percentile of f0. 

                                                 
28 This process is explained in further detail in section III.3.2.2.4 
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 mean of relative pitch changes 

 minimal relative pitch change 

 maximal relative pitch change 

 relative pitch change variance 

 standard deviation of relative 

pitch changes 

These parameters examine the relative pitch 

changes between successive voiced parts and were 

included to examine the inter-syllable pitch 

relations within an utterance. A relative pitch 

change is defined as the absolute difference of the 

ratio of pitches of successive voiced parts to 1. The 

voiced/unvoiced discrimination was estimated 

frame-wise with the number of zero crossings of 

the signal divided by the signal energy according 

to Bachu, Kopparthi, Adapa, & Barkana (2010). 

 Number of pitch rises and falls 

 Duration of pitch rises and falls 

 Culminated amount of pitch 

rises and falls 

To calculate the pitch rises and falls, the pitch 

returned by an autocorrelation function was 

smoothed by a moving-average filter. Signal parts 

in between turning points and end points of the 

resulting pitch curve were counted as pitch falls or 

rises. An example can be seen in Figure 5. 

 Maximal syllable prominence The maximal peak prominence of a pitch contour 

formed by the mean pitch of each syllable.  

 mean of pitch steps Absolute differences of the mean pitches of 

successive syllables. 

Intensity related parameters 

 mean of RMS of utterance 

 maximum of RMS of utterance 

 variance of RMS of utterance 

The RMS was calculated over windows of 1024 

samples length with an overlap of 512 samples. 

 RMS of voiced parts The voiced/unvoiced decision was implemented as 

described by Bachu et al. (2010): If the quotient of 

zero crossing rate and energy exceeds a threshold, 

the examined window is regarded as unvoiced. 

Unvoiced parts were removed from the signal and 

the RMS was calculated with the remaining signal. 

The impact of each part on the result depends 

therefore on the length of the part. 

 mean of relative RMS changes 

 minimal relative RMS change 

 maximal relative RMS change 

 variance of relative RMS 

changes 

 standard deviation of relative 

RMS changes 

Describe the ratio of RMS values between 

successive voiced parts. As with the pitch, these 

parameters were included to examine inter-syllable 

RMS progressions. Differences between 

successive voiced parts were divided through the 

first of two syllables. 

 mean of RMS peaks 

 mean of distance in between 

RMS peaks 

The peaks were also calculated over frames of 

1024 samples length with an overlap of 512 

samples. The distance between peaks could be a 

way to estimate the speed of speech. 

Spectrum-related parameters 

 Spectral Slope of voiced parts 

 Spectral Flatness of voiced 

parts 

 Spectral Rolloff of voiced parts 

Apart from the Spectral Slope, these parameter 

calculations were done with code provided by 

Lerch (n.d.) according to formulas descibed in 
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 Spectral Centroid of voiced 

parts 

 Spectral Spread of voiced parts 

 Tonal Power Ratio of voiced 

parts 

Lerch (2012, Chapter 3).29 The Spectral Slope was 

retrieved as the linear approximation of the FFT-

spectrum from 70 to 8000 Hz. 

 Hammarberg Vocal Effort 

 Hammarberg Breathy Voice 

 Hammarberg Head 

 Hammarberg Coarse 

 Hammarberg Unstable 

These Hammarberg Indices were implemented as 

described by Schröder (2004, p. 109) and were 

only calculated over the voiced parts. 

 ratio of spectral energy above 

400 Hz to under 400 Hz 

 ratio of spectral energy above 

3000 Hz to under 3000 Hz 

The cumulated sums of the corresponding 

frequency bins of FFTs of the utterances as a 

whole. 

Other parameters 

 zero crossings per second 

 mean of aperiodicity (from Yin-algorithm30) 

 proportion of voiced parts 

 speech rate (as the reciprocal of the length of voiced parts) 

 

 

Figure 5: Pitch contour of the shouted phrase "Lass mein Fahrrad in Ruhe, das geht doch nicht!" (roughly translated “Let 

go off my bike, you can’t do that!”). Turning points are marked as horizontal, dashed lines. 

A Jarque-Bera test revealed, that the distributions for most variables do not correspond to a 

normal distribution. As a linear correlation after Pearson requires data that is distributed 

normally, a rank correlation test after Spearman was computed for all extracted audio features. 

Results can be seen in Table 3. (A linear correlation test was computed, too, since some 

variables were normally distributed, and it turned out to show very similar results which can be 

seen in Table C-1 in Appendix C.) To take in account a possible quadratic relation between 

acoustic parameters and affective dimensions a coefficient of determination31 for the curve 

fitting of a quadratic curve was calculated for both dimensions. Results for the curve fitting can 

be seen in Table 4. 

                                                 
29 The code is available (as of October ‘17) on the following website: https://www.audiocontentanalysis.org/code/ 
30 The code for the Yin-pitch-extraction was taken from Llimona (2014/2015) 
31 The R2-value as a returned value of the Matlab function fit was used as determination coefficiant 
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Table 3: Correlation and probability value of 46 acoustic parameters extracted from 453 utterances from movies and talk 

shows along the valence dimension (left) and the arousal dimension (right). 

Valence  Arousal 

Parameter Corr. p  Parameter Corr. p 
HammarbergVocalEffort -0.1530 < 0.001  HammarbergUnstable 0.5184 < 0.001 

HammarbergUnstable -0.1455 0.0013  PeakIntensity 0.5115 < 0.001 

HammarbergHead -0.1428 0.0016  MeanRMS 0.4984 < 0.001 

SpectralRatio400 0.1379 0.0023  HammarbergVocalEffort 0.4962 < 0.001 

HammarbergCoarse -0.1319 0.0035  MaxRMS 0.4503 < 0.001 

MaxRelPitchDifferences -0.1315 0.0045  PitchStandard 0.4393 < 0.001 

PitchFallsAmount -0.1300 0.0058  PitchVariance 0.4356 < 0.001 

ZeroCrossingsRate 0.1291 0.0043  MaxPitch 0.4185 < 0.001 

MeanRelPitchDifferences -0.1274 0.0059  RMSVariance -0.4092 < 0.001 

PitchStandard -0.1222 0.0069  SpectralRatio400 -0.3817 < 0.001 

PitchVariance -0.1136 0.0120  MeanAperiodicity -0.3428 < 0.001 

PitchRisesAmount -0.1134 0.0176  MeanRelPitchDiff. 0.3367 < 0.001 

VarRelPitchDifferences -0.1122 0.0154  PeakDistance 0.3364 < 0.001 

StdRelPitchDifferences -0.1122 0.0154  PitchFallsAmount 0.3314 < 0.001 

HammarbergBreathyV. -0.1109 0.0142  MeanPitchStep 0.3247 < 0.001 

MaxPitch -0.1105 0.0146  MeanPitch 0.3128 < 0.001 

MeanPitchStep -0.1066 0.0190  PitchRisesAmount 0.2915 < 0.001 

SpectralSpread 0.0869 0.0554  VarRelPitchDifferences 0.2806 < 0.001 

SpectralRolloff 0.0865 0.0563  StdRelPitchDifferences 0.2806 < 0.001 

RMSVariance 0.0853 0.0598  MaxRelPitchDifferences 0.2783 < 0.001 

MeanPitch -0.0850 0.0606  MaxProminence 0.2719 < 0.001 

MeanRMS -0.0774 0.0876  VoicedFraction 0.2619 < 0.001 

TonalPowerRatio -0.0738 0.1038  HammarbergHead 0.2463 < 0.001 

SpeechRate -0.0737 0.1045  SpectralRatio3000 0.2419 < 0.001 

MaxProminence -0.0678 0.1362  SpectralCentroid -0.2318 < 0.001 

MaxRMS -0.0608 0.1800  SpeechRate 0.2268 < 0.001 

SpectralFlatness 0.0594 0.1910  PitchRisesDuration -0.1994 < 0.001 

MinPitch 0.0591 0.1926  HammarbergCoarse 0.1903 < 0.001 

VoicedFraction -0.0581 0.1999  SpectralFlatness -0.1799 < 0.001 

PeakIntensity -0.0568 0.2105  MeanRelRMSDiff. -0.1430 0.0020 

PitchRisesDuration 0.0514 0.2832  SpectralSpread -0.1424 0.0016 

SpectralSlope -0.0449 0.3224  PitchFallsDuration -0.1354 0.0040 

MinRelPitchDifferences -0.0416 0.3705  SpectralRolloff -0.1267 0.0051 

SpectralCentroid 0.0414 0.3620  HammarbergBreathyV. 0.1232 0.0064 

MaxRelRMSDifferences 0.0321 0.4888  PitchRisesFrequency 0.1226 0.0067 

MeanAperiodicity 0.0313 0.4899  MinRelRMSDifferences -0.1040 0.0248 

MinRelRMSDifferences -0.0272 0.5587  MinPitch -0.1016 0.0248 

PitchFallsDuration 0.0205 0.6645  ZeroCrossingsRate -0.0957 0.0347 

VarRelRMSDifferences 0.0181 0.6961  VarRelRMSDifferences -0.0902 0.0516 

StdRelRMSDifferences 0.0181 0.6961  StdRelRMSDifferences -0.0902 0.0516 

SpectralRatio3000 -0.0167 0.7121  SpectralSlope 0.0821 0.0701 

PitchFallsFrequency 0.0127 0.7801  PitchFallsFrequency 0.0660 0.1456 

PeakDistance 0.0094 0.8364  TonalPowerRatio -0.0626 0.1675 

PitchRisesFrequency -0.0071 0.8749  MaxRelRMSDifferences -0.0593 0.2010 

MeanRelRMSDifferences 0.0067 0.8861  MinRelPitchDifferences 0.0444 0.3386 

RMSVoiced 0.0050 0.9121  RMSVoiced 0.0419 0.3556 
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Table 4: R²-Coefficiant of determination of quadratic curve fitting for 46 acoustic parameters extracted from 453 utterances 

taken from movies and talk shows along the valence dimension (left) and the arousal dimension (right) 

Despite the fact, that numerous correlations are classified as significant over both dimensions 

(no matter which level of significance is chosen), the measured correlations are quite low. The 

Valence  Arousal 

Parameter R²  Parameter R² 
PitchStandard 0.1364 HammarbergUnstable 0.1690 

PitchVariance 0.1249  HammarbergVocalEffort 0.1377 

PitchFallsAmount 0.1138  PeakIntensity 0.1321 

MaxPitch 0.1069  PitchVariance 0.1196 

PitchRisesAmount 0.0939  PitchStandard 0.1120 

HammarbergUnstable 0.0617  MaxPitch 0.1059 

HammarbergVocalEffort 0.0611  MeanAperiodicity 0.1051 

MeanPitch 0.0556  MeanRMS 0.1038 

SpectralRatio400 0.0540  RMSVariance 0.0867 

StdRelPitchDifferences 0.0390  SpectralRatio400 0.0781 

MeanRelPitchDifferences 0.0385  MaxRMS 0.0771 

VarRelPitchDifferences 0.0378  PitchFallsAmount 0.0673 

MaxRelPitchDifferences 0.0372  MeanPitchStep 0.0587 

PitchRisesDuration 0.0356  MeanRelPitchDifferences 0.0532 

HammarbergHead 0.0356  MeanPitch 0.0498 

MeanPitchStep 0.0324  MaxProminence 0.0440 

HammarbergCoarse 0.0287  PitchRisesAmount 0.0408 

PeakIntensity 0.0284  StdRelPitchDifferences 0.0364 

MinPitch 0.0276  MaxRelPitchDifferences 0.0360 

PitchFallsFrequency 0.0250  VarRelPitchDifferences 0.0314 

HammarbergBreathyVoice 0.0220  PeakDistance 0.0269 

PitchFallsDuration 0.0204  VoicedFraction 0.0269 

MaxProminence 0.0193  SpectralRatio3000 0.0264 

RMSVoiced 0.0164  HammarbergHead 0.0254 

SpectralSpread 0.0120  RMSVoiced 0.0239 

ZeroCrossingsRate 0.0115  PitchRisesDuration 0.0237 

PeakDistance 0.0107  SpectralCentroid 0.0232 

TonalPowerRatio 0.0094  SpectralSlope 0.0194 

PitchRisesFrequency 0.0091  PitchRisesFrequency 0.0166 

RMSVariance 0.0090  SpeechRate 0.0131 

SpectralRatio3000 0.0080  HammarbergCoarse 0.0122 

StdRelRMSDifferences 0.0079  SpectralSpread 0.0102 

MaxRelRMSDifferences 0.0077  SpectralRolloff 0.0095 

MeanRelRMSDifferences 0.0071  SpectralFlatness 0.0056 

SpectralRolloff 0.0068  PitchFallsFrequency 0.0037 

VoicedFraction 0.0065  PitchFallsDuration 0.1690 

SpectralSlope 0.0058  MeanRelRMSDifferences 0.1377 

SpectralCentroid 0.0051  MinPitch 0.1321 

VarRelRMSDifferences 0.0039  MaxRelRMSDifferences 0.1196 

MaxRMS 0.0039  StdRelRMSDifferences 0.1120 

SpectralFlatness 0.0038  HammarbergBreathyVoice 0.1059 

MinRelPitchDifferences 0.0037  TonalPowerRatio 0.1051 

SpeechRate 0.0031  VarRelRMSDifferences 0.1038 

MeanRMS 0.0030  ZeroCrossingsRate 0.0867 

MinRelRMSDifferences 0.0022  MinRelPitchDifferences 0.0781 

MeanAperiodicity 0.0006  MinRelRMSDifferences 0.0771 
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low probability values are seemingly merely a consequence of the large sample size.32 This 

becomes evident when taking a look at the scatter plots. Figure 6 shows the parameter with one 

of the strongest correlations over both dimensions: The Hammarberg Index for Vocal Effort.  

The increasing distribution of values for higher arousal is well-distinguishable, hence the 

increasing mean and the positive correlation. However, taken into account that not all the values 

themselves seem to increase but only the spread of the values, a value distribution as seen for 

the arousal dimension allows no conclusions about the position of an utterance within the 

arousal dimension for small values. Only the range of possibilities towards higher values is 

reduced. 

The distribution of Vocal Effort values seems to decrease with an increase of the valence value, 

yet, the measured correlation of the values themselves is with a coefficient of −0.15 very low. 

The low correlation values for pitch and intensity, which are usually the parameters with the 

highest and most stable correlations across studies, can be explained by two reasons: 

1. Parameters were compared without any normalization. In this context, a normalization 

would mean, that resulting parameter values are first set in relation to the parameter 

values of neutral utterances from the same speaker before comparing parameter values 

of different speakers. The parameter extraction does therefore not take into account the 

personal characteristics of the speakers, e.g. the generally higher voice of a child. 

A normalization could not be provided for this examination, as it was not possible to 

find neutral statements for every speaker with a sufficient signal-to-noise ratio. 

2. As the utterances were taken from soundtracks of movies and talk shows, the audio has 

been dynamically processed, which is why effects of the affective state on the intensity-

related parameters are diminished. 

3.1.2.2 Utterance analysis of Grimaldi’s corpus 

To enable a normalization and examine dynamically untreated speech signals, the same feature 

extraction was computed with the speech recordings made by Grimaldi et al. (2017). More 

                                                 
32 Compare e.g. with the presented study by Schröder (2004, Chapter 11) in section III.3.1.1 

 

Figure 6: Acoustic parameter Hammarberg Vocal Effort of utterances over valence dimension (left) and arousal dimension 

(right). 
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information on these recordings is given in section 2.3.4. 

766 utterances were manually extracted from the recordings using the Sonic Visualiser and 

sorted by speaker. The utterances were also placed manually on the valence-arousal-plane with 

the MATLAB-GUI-application. The extracted features were normalized by subtracting the 

parameter values of a pre-defined neutral utterance (closest to the center of the valence-arousal 

plane) for every speaker. The normalization does not only level specific characteristics of the 

speakers’ voices, but also diminishes effects of different distances to the microphones due to 

different sitting postures during the recordings. The parameters were examined regarding a 

correlation with the two affective dimensions in the same way as for the examination described 

in the previous chapter. The correlation coefficients of a rank correlation after Spearman and 

respective probability values can be seen in Table 5. To examine non-linear relations, a 

quadratic curve fitting was computed on the features. The resulting coefficients of 

determination can be seen in Table 6. The very similar results of a linear correlation can be seen 

in Table C-2 in Appendix C. 

Table 5: Correlation coefficients and p-Values of acoustic features of 766 utterances from the recordings made by Grimaldi et 

al. (2017) for the valence dimension (left) and the arousal dimension (right). 

Valence  Arousal 

Parameter Corr. p-val.  Paramter Corr. p-val. 
HammarbergCoarse -0.3513 <0.0001 MaxRMS 0.7862 <0.0001 

HammarbergBreathyV. -0.3481 <0.0001  MeanRMS 0.7678 <0.0001 

HammarbergHead -0.3284 <0.0001  PeakIntensity 0.7621 <0.0001 

MinPitch -0.2585 <0.0001  RMSVariance -0.6984 <0.0001 

MeanPitch -0.2219 <0.0001  MeanPitch 0.6937 <0.0001 

RMSVariance 0.2216 <0.0001  MaxPitch 0.6690 <0.0001 

MeanAperiodicity 0.2173 <0.0001  HammarbergVocalEffort 0.5966 <0.0001 

MeanPitchStep -0.2152 <0.0001  HammarbergHead 0.5454 <0.0001 

MeanRelPitchDiff. -0.2033 <0.0001  PitchStandard 0.5452 <0.0001 

PitchRisesAmount -0.2024 <0.0001  HammarbergCoarse 0.5288 <0.0001 

PitchFallsAmount -0.1969 <0.0001  PitchFallsAmount 0.5084 <0.0001 

MeanRMS -0.1963 <0.0001  PitchVariance 0.5025 <0.0001 

ZeroCrossingsRate -0.1623 <0.0001  PitchRisesAmount 0.4873 <0.0001 

MaxPitch -0.1487 <0.0001  MeanPitchStep 0.4838 <0.0001 

MaxRMS -0.1455 0.0001  HammarbergUnstable 0.4795 <0.0001 

PeakIntensity -0.1400 0.0001  HammarbergBreathyV. 0.4752 <0.0001 

PeakDistance -0.1400 0.0001  SpectralRatio400 -0.4185 <0.0001 

SpectralCentroid -0.1342 0.0002  MeanRelPitchDiff. 0.3965 <0.0001 

PitchRisesDuration -0.1334 0.0004  PeakDistance 0.3526 <0.0001 

MaxProminence -0.1317 0.0003  MaxProminence 0.3522 <0.0001 

MaxRelPitchDifferences -0.1280 0.0007  StdRelPitchDifferences 0.3314 <0.0001 

SpectralSpread -0.1263 0.0005  VarRelPitchDifferences 0.3213 <0.0001 

RMSVoiced -0.1161 0.0013  MaxRelPitchDifferences 0.3083 <0.0001 

PitchFallsDuration -0.1075 0.0041  TonalPowerRatio -0.2801 <0.0001 

HammarbergVocalEff. -0.1034 0.0042  MinPitch 0.2171 <0.0001 

StdRelPitchDifferences -0.1015 0.0072  MinRelPitchDifferences 0.1822 <0.0001 

SpectralRolloff -0.1004 0.0058  SpectralFlatness -0.1702 <0.0001 

SpectralSlope -0.0980 0.0071  MeanAperiodicity -0.1369 0.0001 

PitchStandard -0.0980 0.0070  PitchFallsFrequency -0.1300 0.0003 

TonalPowerRatio 0.0962 0.0083  SpectralCentroid -0.1288 0.0004 

VoicedFraction -0.0909 0.0119  ZeroCrossingsRate 0.1282 0.0004 

SpectralRatio3000 -0.0895 0.0132  SpectralRatio3000 -0.0968 0.0074 
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The analysis results show a high correlation for RMS- and pitch-related features with the 

arousal dimension, which is also clearly visible in the corresponding scatter plots (see Figure 7 

and Figure 8). This confirms results of previous studies mentioned in section 3.1.1. 

Table 6: Coefficients of determination of a quadratic curve fitting of acoustic features of 766 utterances from recordings 

made by Grimaldi et al. (2017) for the valence dimension (left) and the arousal dimension (right). 

VarRelPitchDifferences -0.0862 0.0225  PitchRisesFrequency -0.0947 0.0087 

MinRelRMSDifferences 0.0794 0.0355  PitchFallsDuration -0.0879 0.0191 

PitchVariance -0.0610 0.0934  SpectralSpread -0.0824 0.0237 

MinRelPitchDifferences -0.0597 0.1145  VoicedFraction -0.0808 0.0254 

PitchRisesFrequency -0.0567 0.1169  SpectralRolloff -0.0624 0.0870 

VarRelRMSDifferences 0.0532 0.1591  MinRelRMSDifferences -0.0624 0.0989 

MaxRelRMSDiff. 0.0530 0.1607  SpectralSlope 0.0431 0.2372 

StdRelRMSDifferences 0.0494 0.1910  SpeechRate 0.0405 0.2673 

SpectralFlatness -0.0452 0.2157  VarRelRMSDifferences -0.0364 0.3360 

MeanRelRMSDiff. 0.0399 0.2917  StdRelRMSDifferences -0.0316 0.4041 

HammarbergUnstable -0.0370 0.3059  MeanRelRMSDiff. -0.0285 0.4507 

SpeechRate 0.0279 0.4440  RMSVoiced 0.0194 0.5925 

SpectralRatio400 0.0210 0.5612  MaxRelRMSDifferences -0.0192 0.6115 

PitchFallsFrequency -0.0170 0.6387  PitchRisesDuration 0.0094 0.8040 

Valence  Arousal 

Parameter R²  Parameter R² 
MaxPitch 0.3168 MeanRMS 0.8093 

MeanPitch 0.3140  MaxRMS 0.8006 

RMSVariance 0.2904  MeanPitch 0.7058 

MaxRMS 0.2853  RMSVariance 0.6934 

PitchStandard 0.2776  MaxPitch 0.6198 

PitchFallsAmount 0.2671  SpectralSlope 0.4964 

PitchVariance 0.2376  HammarbergVocalEffort 0.4856 

MeanRMS 0.2248  PitchFallsAmount 0.4722 

PitchRisesAmount 0.1959  HammarbergUnstable 0.4514 

HammarbergVocalEffort 0.1730  PitchStandard 0.4362 

HammarbergUnstable 0.1609  HammarbergHead 0.4014 

MeanPitchStep 0.1301  MeanPitchStep 0.3824 

PeakIntensity 0.1285  PitchVariance 0.3654 

SpectralRatio3000 0.1087  HammarbergCoarse 0.3489 

MeanAperiodicity 0.1073  PitchRisesAmount 0.3470 

PeakDistance 0.1066  PeakIntensity 0.3469 

VoicedFraction 0.1019  SpectralRatio400 0.3088 

HammarbergHead 0.0979  VoicedFraction 0.2977 

MaxProminence 0.0971  HammarbergBreathyVoice 0.2758 

PitchRisesDuration 0.0895  PitchFallsFrequency 0.2616 

PitchRisesFrequency 0.0852  SpectralRatio3000 0.2248 

HammarbergCoarse 0.0780  MaxProminence 0.2242 

SpectralSpread 0.0778  PitchRisesFrequency 0.2189 

MinPitch 0.0738  PeakDistance 0.1966 

PitchFallsFrequency 0.0672  MeanRelPitchDifferences 0.1886 

SpectralRatio400 0.0663  MeanAperiodicity 0.1842 

SpectralRolloff 0.0538  SpeechRate 0.1742 

HammarbergBreathyVoice 0.0536  MaxRelPitchDifferences 0.1424 

TonalPowerRatio 0.0520  StdRelPitchDifferences 0.1333 

MeanRelPitchDifferences 0.0488  TonalPowerRatio 0.1221 
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According to the correlation coefficient, the values for the mean of the pitch and the RMS 

correlate slightly with a decreasing valence. A look at the scatter plots, however, reveals, that 

this might merely be a consequence of an uneven distribution of the utterances. As Figure 9 

shows, some areas of the valence-arousal plane are not covered by utterances provided by 

Grimaldi et al.’s (2017) recordings and some areas contain more utterances than others: 

Recordings of whispered speech in a bad mood, e.g. had not been made, only few utterances 

with positive valence and high arousal are given. Cheering and joyful shouting, e.g. should have 

comparable RMS values as angry shouting, but utterances with these affective states were not 

available within the recordings. This distribution causes a light correlation of the two 

dimensions with a coefficient of −0.29, which is approximately the same level of correlation as 

the highest correlations found within the valence dimension. The results for this dimension are 

therefore discarded.33 

 

                                                 
33  The correlation between the two dimensions obviously weakens results in both dimensions. Since most 

correlations found for the arousal dimension are much stronger than for the valence dimension, it can be assumed, 

that the arousal dimension results influenced the results for the valence dimension for these parameters rather than 

the other way around.  

SpectralCentroid 0.0354  MinPitch 0.0755 

MaxRelPitchDifferences 0.0350  ZeroCrossingsRate 0.0654 

PitchFallsDuration 0.0340  VarRelPitchDifferences 0.0601 

VarRelPitchDifferences 0.0269  MinRelPitchDifferences 0.0470 

StdRelPitchDifferences 0.0264  SpectralFlatness 0.0420 

SpectralSlope 0.0226  RMSVoiced 0.0342 

ZeroCrossingsRate 0.0219  SpectralSpread 0.0306 

SpectralFlatness 0.0177  SpectralRolloff 0.0216 

SpeechRate 0.0167  SpectralCentroid 0.0206 

RMSVoiced 0.0099  PitchFallsDuration 0.0115 

MinRelPitchDifferences 0.0088  PitchRisesDuration 0.0049 

MinRelRMSDifferences 0.0067  MinRelRMSDifferences 0.0031 

MeanRelRMSDifferences 0.0024  VarRelRMSDifferences 0.0015 

MaxRelRMSDifferences 0.0011  StdRelRMSDifferences 0.0011 

StdRelRMSDifferences 0.0010  MeanRelRMSDifferences 0.0009 
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Figure 7: Values of utterances for parameter Mean of RMS relative to values of neutral utterance over valence dimension 

(left) and arousal dimension (right). 

 

 

Figure 8: Values of utterances for parameter Mean of Pitch relative to values of neutral utterance over valence dimension 

(left) and arousal dimension (right) 

 

 

Figure 9: Positions of utterances from recordings made by Grimaldi et al.(2017) 
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Results of the feature extractions of movie and talk show utterances and of the recordings by 

Grimaldi et al. (2017) as well as the review on previous studies reveal, that an adjustable 

generation of affective states along the arousal dimension should be possible using intensity 

and/or pitch-related acoustic parameters. 

Regarding the valence dimension, the examination of movie and talk show utterances could not 

reveal strong or moderate correlations of examined acoustic parameters and the affective 

dimension. The strongest correlations found are weak negative correlations for the Hammarberg 

Indices Vocal Effort and Unstable. These findings agree with the assumption stated in previous 

studies, that correlations with the valence dimension could be found for parameters describing 

some aspect of voice quality, are, however, presumably not enough to deduce rules for a 

generation of affective states along the affective dimension. 

3.1.3 Implemented models to generate affective states 

Although no evident rules for the generation of different valence positions could be derived 

from the acoustic features of the utterances, the decision was made to test three different 

implementations of the valence-arousal model in the human crowd noise generation. The 

models are explained in the following sections. Figure 10 on page 33 provides an overview on 

the work flow of the three models. 

3.1.3.1 Model A1 

As described as Option A in section 3.1, the grains for the synthesis are mapped to a specific 

position on the valence-arousal-plane. The positions are taken from the manual positioning of 

utterances computed for the phrase analysis described in section 3.1.2.2 and are stored together 

with the audio data of each grain and a respective pitch value to be read by the synthesis 

algorithm. 

3.1.3.2 Model A2 

Model A2 is also an implementation of Option A, but with an automated mapping of the 

utterances to a position on the valence-arousal-plane through machine learning algorithms. A 

combined regression- and classification-model was created for the automatic positioning of the 

utterances: 

The manually placed utterances from Grimaldi et al’s (2017) recordings were split into a 

training set and a test set. From the list of acoustic parameters described in section 3.1.2.1, the 

ones with the strongest correlation coefficients in the respective dimension were used as 

training data for 24 different regression learner models provided by the MATLAB Statistics 

And Machine Learning Toolbox. A cross-validation with ten folds was computed. The 

regression model with the lowest expected error rate was chosen for the respective dimension. 

Parameters used for the valence regression model: Mean of pitch, minimum of pitch, maximum 

of pitch, RMS variance, RMS of voiced parts, peak intensity, peak distance, mean of 

aperiodicity, spectral slope, spectral flatness, spectral rolloff, spectral centroid, spectral spread, 

tonal power ratio, zero crossings rate, Hammarberg Vocal Effort, Hammarberg Breathy Voice, 

Hammarberg Head, Hammarberg Coarse, Hammarberg Unstable, modified Hammarberg 

Index 34 , pivot frequency of modified Hammarberg Index, spectral ratios 35  (with border 

                                                 
34 A Hammarberg Index with flexible pivot frequency as explained by Tamarit, Goudbeek & Scherer (2008) 
35 Spectral energy under the border frequency (which is the number in the name) divided through the spectral 

energy over the border frequency  
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frequencies 300, 500, 1000 and 3000), fraction of voiced parts, VUV ratio36, speech rate37, 

maximum prominence38 and mean of pitch steps. 

Parameters used for the arousal regression model: Mean of RMS, maximal RMS, RMS 

spread39, mean of RMS of voiced parts, mean of aperiodicity40, Hammarberg Vocal Effort, 

Hammarberg Breathy Voice, Hammarberg Head, Hammarberg Coarse, Hammarberg Unstable, 

Modified Hammarberg Index, fraction of voiced parts and speech rate. 

Although the pitch-related parameters had a high correlation with the arousal dimension, they 

were not included into the arousal regression model, as the utterances containing whispered 

speech sometimes resulted in high means of pitch, which reduced the accuracy of the regression 

model. 

For the valence dimension the regression model bootstrap-aggregated ensemble of bagged 

trees was chosen with an RMSE (root-mean-square error) of 30.38 and R² (as coefficient of 

determination) of 0.36. 

An ensemble of regression trees using the LSBoost algorithm was chosen as regression model 

for the arousal dimension with an RMSE of 14.00 and R² of 0.85. 

Since the performance of the valence regression model is quite low (as expected, based on the 

weak correlations described in section 3.1.2), another approach for an automated position 

mapping was implemented:  

The valence-arousal-plane was divided up into three parts in each dimension, resulting in nine 

equally spaced squares. The squares were given a number and the utterances within one square 

were attributed its number representing an affective class (see Table 7 for numbering). 

Table 7: Numbering of affective classes gained by splitting up the valence-arousal dimension into nine fields. 

7 8 9 

4 5 6 

1 2 3 

 

Using the MATLAB Classification Learner41, 27 different classification models were trained 

with the same utterances and acoustic features as used for the training of the two regression 

models. With an estimated accuracy of 70.6%, the Ensemble of Bagged Trees - a “bootstrap-

aggregated ensemble of complex decision trees” (The MathWorks Inc., 2017) – showed the 

best result and was chosen as classification model. A confusion matrix of the classification 

model is illustrated in Table 8. As the utterances are not evenly distributed across the classes, 

it is not surprising, that classes with only few utterances have a lower recognition rate and that 

                                                 
36 The result of dividing the zero crossings per window through the energy of the waveform, which can be used to 

distinguish a degree of unvoicedness in speech (Bachu, Kopparthi, Adapa, & Barkana, 2010) 
37 As the reciprocal of the length of voiced parts 
38 Regarding the progression of the mean of the pitch values for every syllable, the maximal prominence is the 

maximal distance of a pitch peak to the highest neighbouring pitch value 
39 Maximal RMS value minus minimal RMS value 
40 Gained from the YIN pitch estimator by Llimona (2014/2015) 
41 The MATLAB Classification Learner App is available as part of the Statistics and Machine Learning Toolbox 

by The MathWorks Inc: https://de.mathworks.com/products/statistics html 
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The values are stored in an XML-file, which can then be read by the synthesis algorithm. 

Apart from sorting the speech material by speaker, the creation of the corpus for this model is 

fully automated. Figure 10 illustrates the work flow for the three different, implemented models. 

 

Figure 10: Workflow chart of three implemented ways to apply the valence-arousal model to the crowd noise synthesis 

ordered by degree of automation from left to right 
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3.2 Syllable segmentation 

It was decided to use syllables or syllable-like grains as speech units as a compromise between 

naturalness and corpus size. The recordings by Grimaldi (2017), which are used for the 

synthesis presented here, demand for a segmentation of the speech material into these syllables 

or grains, in order to allow a recombination within the synthesis process. Grimaldi (2017) 

himself used a MATLAB-algorithm that modelled a syllable segmentation described by Harma 

(2003).43 

Harma’s segmentation method is aimed at finding syllables within bird songs and seems to 

perform sufficiently well for those purposes.44 An application on the more complex human 

speech, however, is problematic, as the algorithm does not make a distinction between voiced 

or periodic sounds and unvoiced or aperiodic sounds and only regards peaks in the spectrum 

regardless of where in the spectrum they occur. The distinction between voiced and unvoiced 

parts is regarded to be an essential key to finding syllables programmatically, since “it’s mostly 

accepted that a syllable contains a central peak of sonority, called syllable nucleus, and 

consonants surrounding them” (Kalinli, 2011, p. 425). 

As an automated segmentation of human speech into syllables or “syllabic units” (Mermelstein, 

1975, p. 880) is of great interest to linguistic sciences and “speech technologies”(Obin, Lamare, 

& Roebel, 2013, p. 2) it has been subject to numerous studies, some of which are reviewed in 

the following chapter. 

3.2.1 State of research 

Mermelstein (1975) uses a method based only on the progression of the loudness parameter. 

Loudness minima are weighted and sorted by means of a convex hull function and classified as 

syllable borders in dependency of the closeness to other minima and the exceedance of a 

threshold. A detailed explanation is provided in section 3.2.2.1. 

Howitt (2000, Chapter 4) examines Mermelstein’s method and suggests several adjustments. 

Xie & Niyogi (2006) also apply a convex hull function to a parameter called “relevant energy”. 

The resulting minima, however, are used to locate local maxima in between two minima to 

serve as landmarks for syllable units. The syllable borders on the other hand are obtained by a 

periodicity parameter, which is derived from a normalized autocorrelation function. Another 

convex hull algorithm returns periodicity minima, which are used as syllable borders.  

Kalinli (2011) uses a biologically inspired “auditory attention model”. It is based on the 

extraction of four different contrast features within the spectrogram.  

                                                 
43 The MATLAB-implementation of the Harma Syllable Segmentation adapted by Michael Lindemuth is available 

on the MathWorks File Exchange platform: https://fr.mathworks.com/matlabcentral/fileexchange/29261-harma-

syllable-segmentation 
44 To find syllables within an audio file, Harma creates a spectrogram of the audio. Starting from the frame 

containing the overall maximum both in the time and the frequency dimension, he compares the amplitude (but 

not the position) of spectral maxima of left- and right-sided frames. As soon as the maxima drop under a threshold 

of -30 dB, the frame is not considered to be part of the syllable anymore, the previous frame is considered as the 

syllable border and the syllable is cut out of the spectrogram to repeat the calculation with the remaining audio 

(Harma, 2003). 
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The Syll-o-matic-algorithm developed by Obin et al. (2013) uses a voiced/unvoiced estimation 

to find the syllable nuclei. After filtering the audio into 40 Mel-frequency bands, Obin et al. 

(2013) create two audio features called specific loudness and VUV. The specific loudness 

describes the power in each frequency band whereas the VUV describes the “degree of voicing” 

(Obin et al., 2013), which is calculated by dividing power of the “sinusoidal + noise 

representations” (Obin et al., 2013) in each frequency band through the total power in the same 

band. A sonority feature is then obtained by multiplying the specific loudness with the VUVs. 

Local maxima of the sonority parameter and local minima of the specific loudness are summed 

up over the frequency bands for each window. Opposed to Xie & Niyogi (2006), the Syll-o-

matic-algorithm uses the resulting sonority maxima count-vector to distinguish landmark 

positions for syllable nuclei, whereas the other resulting specific loudness minima count-vector 

determines landmarks for syllable borders. 

Formo (2013b) presents several different methods for syllable segmentation algorithms that 

were examined during the development of his Orchestra of Speech. He discusses some simple 

envelope following algorithms that – after having filtered the input speech signal – interpret 

envelope maxima as syllable nuclei and envelope minima as borders. Another approach 

presented is a periodicity estimation as a factor to weight the power of MEL-frequency bands. 

The periodicity estimation is produced as a part of a YIN pitch detection. He also explains a 

rather unusual attempt to split up utterances into syllables using the second of the signal’s mel 

frequency cepstrum coefficients.45 The best results for Formo’s purposes are achieved using the 

glottal activity, extracted by a zero frequency resonator, as a filter for an envelope of the 

bandpassed speech signal. However, Formo’s proposed methods exclude most unvoiced sounds 

from the speech signal and can therefore not be implemented in the same manner for our 

purposes. 

The recordings made by Grimaldi (2017) contain only German speech. A study examining a 

syllable segmentation algorithm with German speech could not be found. As no code was 

published for the studies mentioned above, some approaches of these studies as well as some 

other ideas were remodeled in MATLAB to test the performance on the recordings provided by 

Grimaldi. 

3.2.2 Grain segmentation implementation 

Several different methods for a syllable segmentation were implemented, some of which were 

derived from or represented exact implementations of methods presented in the previous 

section. The most promising ones after a brief view on the results were subject to a performance 

test including a parameter optimization. The best one was chosen for the creation of the corpus 

from the speech material. 

3.2.2.1 Method 1: Mermelstein 

The first method is an implementation of the algorithm presented by Mermelstein (1975). The 

absolute values of the speech signal are low-pass-filtered with a threshold at 40 Hz (below the 

                                                 
45 The ‚Mel Frequency Cepstrum Coefficients‘(short MFCCs) are audio features that are often used for speech 

recognition. They can be a good indication of spectral characteristics that change over time. The coefficients are 

the result of a descrete cosine-transform of a Mel-Frequency-Warping of the signal’s spectrum. (Logan, 2000) 
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lowest pitch of human speech). The resulting envelope is sent to a function that creates a convex 

hull of the envelope: 

Starting at either end of the regarded speech segment and moving towards the total maximum 

position of the segment, the convex hull follows the energy envelope if the envelope values do 

not decrease. If they decrease, the convex hull stays at the same value, therefore creating 

horizontal lines above envelope valleys. The points of the maximal difference between the 

convex hull and the envelope itself on the right and on the left side of the maximum of the 

envelope are compared. The bigger of the two values (right- and left-sided difference 

maximum) is considered as a segmentation point, if both (a) the length of the resulting sub-

segments and (b) the maximum difference (the dip) exceed a threshold. Resulting sub-segments 

are examined recursively until no further segmentation points exceed the thresholds. 

The segmentation points are then passed to the output of the function if the segment’s maximum 

exceeds another threshold. 

3.2.2.2 Method 2: Syll-o-matic 

The second method is based on the Syll-o-matic-algorithm by Obin et al. (2013), which has 

already been discussed in chapter 3.2.1. However, the implementation used here is unlikely to 

be an exact reproduction of the algorithm described by Obin et al. (2013), as many explanations 

in the Syll-o-matic-presentation are rather vague and leave room for interpretation. 

3.2.2.3 Method 3: RMS + VUV 

Method 3 can be regarded as a drastically simplified Syll-o-matic-implementation. 

Segmentation candidates are also extracted from an energy feature, and landmarks are found 

on the basis of a voiced/unvoiced estimation, but the two features are calculated differently: 

The speech signal is split into frames of 1024 samples with an overlap of 512 samples. Silent 

frames with an RMS value below a certain threshold are cut out of the signal. A small fade to 

avoid clicks is added to adjacent frames. For every frame, the pitch or fundamental frequency 

f0 is estimated via a simple autocorrelation function. An FFT calculates the frame’s frequency 

spectrum. The relation between peaks in the spectrum and f0 is examined: The number of peak 

positions within the spectrum that correspond to an expected partial of f0 at the same position 

is summed up. In addition, the peaks are tracked over several frames. The number of peaks that 

have not changed their position more than within a certain range is summed up as well. The 

two sums are multiplied and represent a factor for the VUV-estimation46 of the examined frame. 

For each frame, the RMS value is calculated with the normalized, but unfiltered audio input. 

RMS minima positions that exceed a threshold and a minimal peak prominence are stored as 

segmentation candidates. If the maximum of the VUV factor in between two of those border 

candidates exceeds a threshold, it is regarded as syllable nucleus and the two borders serve as 

syllable borders. 

3.2.2.4 Method 4: Glottal Pulse Envelope 

This method is a similar approach as the one Formo (2013b) decided to use for his Orchestra 

of Speech. A Glottal Pulse or Epoch is extracted from the speech signal using a zero resonance 

frequency filter as proposed by Murty & Yegnanarayana (2008): 

                                                 
46 VUV: Short for voiced/unvoiced. 
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First, the derivation of the speech signal is filtered twice with an “ideal resonator at zero 

frequency”(Murty & Yegnanarayana, 2008, p. 1608): 

 𝑦1[𝑛] =  − ∑ 𝑎𝑘𝑦1[𝑛 − 𝑘] + 𝑥[𝑛]

2

𝑘=1

 (1) 

   

 𝑦2[𝑛] =  − ∑ 𝑎𝑘𝑦2[𝑛 − 𝑘] + 𝑦1[𝑛]

2

𝑘=1

 (2) 

   

with x being the input vector, a1 = -2 and a2 = 1. The result is a filtered signal with an exponential 

trend. To get rid of this, the mean value of a 10ms window around each sample is subtracted 

from the exponential curve, leaving a “zero-frequency filtered signal”(Murty & Yegnanarayana, 

2008, p. 1608). An example for the de-trended, filtered signal can be seen in Figure 11 on the 

right side. 

Minima of the envelope of this signal serve as border candidates. 

 

Figure 11: Example for the glottal pulse extraction. (a) shows a periodic speech signal, (b) shows the glottal pulse of the 

signal in (a), (c) shows an aperiodic part of a speech signal, (d) is the extracted glottal pulse of the signal in (c). The 

dashed lines in (a) and (c) mark the limits between periods calculated from zero crossings of the glottal pulse. 

3.2.2.5 Method 5: Period Differences 

All four beforehand described methods use some manifestation of an RMS feature to 

distinguish syllable borders. The features might be weighted differently (as in 3.2.2.2 with the 



Syllable segmentation  Corpus-Creation 

 

 

 

38 

MEL-frequency bands) or be referred to a filtered version of the speech signal (as in 3.2.2.1 

and 3.2.2.4), but in the end they evaluate the sum of the amplitude over a certain window. 

Method 5 is a different approach: It tries to estimate the difference between two adjacent 

periods. This difference must be – by definition – in average big for random noisy signals 

(which for speech signals would refer to sh and s) and impulsive sounds (like t or p), whilst 

slow changes (as in between two vowels) should produce small values. 

In the same way as for Method 4 in the previous section, a zero frequency filtered representation 

of the signal was created as described by Murty & Yegnanarayana (2008).  

The zero crossings of the result with a positive derivation serve as division points to get single 

periods (see dotted lines in Figure 11). To compare two periods to one another, the mean of 

every period is subtracted from itself and the periods are normalized. 

For all adjacent periods, the shorter period b is adapted to the length of the longer period a by 

Zero Padding. 

For every sample, the difference between the two vectors a and b is calculated. The absolute 

values of the differences are summed up. Since the separation points might not always be at the 

exact correct position, this is repeated after vector b has been circularly shifted by one sample 

until the differences for all combinations of the two vectors were calculated. The smallest 

difference is kept. Noted as equation, for every period T the difference is 

 

𝑑𝑇 =  min
0 ≤ 𝑘 ≤ 𝑃 

{∑|(𝑎[𝑛] − 𝑎̅) − (𝑏0[𝑛 − 𝑘] − 𝑏0
̅̅ ̅)|

𝑃

𝑛=1

} (3) 

   

with P being the length of the longer period and b0 the zero padded shorter period T or T-1, ā 

and ͞b denote the mean of the respective period. 

This way, both differences in period length and sample-by-sample amplitude contribute to the 

overall difference value. 

The maxima of the difference vector are sorted in a descending order and one by one marked 

as segmentation position candidates if the distance to one of the neighboring existing candidates 

exceeds a minimal value of 80 ms. Every segment in between two borders is rendered as a 

syllable if the segment is again longer than 80 ms and if the minimal difference value in between 

the borders is below a threshold to ensure a periodic syllable nucleus. 
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Figure 12: Comparison of grain segmentation methods. Black and grey lines mark the different parameter(s) responsible for 

the segmentation as explained in chapter 3.2.2.1 to 3.2.2.5. Manual borders are displayed as dotted vertical lines, automatic 

border estimates are full vertical lines. From top to bottom: Method 1 (a) with the energy envelope, Method 2 (b) with 

landmark numbers per time window, Method 3 (c) with the RMS envelope (black) and the VUV estimation (grey), Method 4 

(d) with the energy envelope of the filtered signal and Method 5 (e) with the difference between adjacent period estimations.  

3.2.2.6 Performance Evaluation / Parameter optimization 

25 utterances from the recordings that were made for the project described in chapter 2.3.4 were 

chosen as test data for the 5 syllable segmentation methods. Every utterance was manually split 

into syllables using the Sonic Visualiser.  The segmentation positions of the manual 

segmentation were then compared to the positions that were returned by the five segmentation 

methods. A manual border was counted as detected by the algorithm, if the distance to the 

closest automatic border was less than 50 ms. Bigger minimal distances are counted as 

deletions. Automatic borders are counted as insertions, if no manual border was found within 

a 50 ms-distance. 
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Unlike other studies in this field (Narendra & Rao, 2015; Obin et al., 2013), the TER (= Total 

Error Rate) as a sum of the deletions and insertions was not used to evaluate the segmentation 

method. As Grimaldi (2017, p. 7) states, an extraction of “lengthy elements” leads to 

“distinguishable repetitions of syllables”, which are perceived as artefacts. Deletions should 

therefore be avoided as much as possible. Consequently, the performance was evaluated by a 

Score giving more weight to the deletion rate. With N being the total number of manual 

segmentation positions, D the number of deletions and I the number of insertions, the Score S 

is calculated as 

 
𝑆 =

2 ∗ 𝐷 + 𝐼

1,5 ∗ 𝑁
 . 

(4) 

   

The lower the Score value, the closer the algorithm was to the manual segmentation. 

Between 5 and 9 thresholds for every method (e.g. the minimum dip-height and the minimum 

RMS-level in between two border candidates for Method 1) were stepwise, automatically 

altered within a certain range to find the combination of the best performing values for each 

method. This was executed until no further improvement of the Score could be reached. 

The results of the performance evaluations can be seen in Table 9. 

Table 9: Performance evaluations of Method 1 to 5 

After the parameter optimization, the best performance was achieved by Method 1, closely 

followed by Method 3. Whilst the deletion rate of Method 5 is even better than the one of 

Method 1 and 3, this Method tends to split the speech signal up into smaller grains (that could 

correspond to phonemes rather than syllables) than a manual syllable segregation does. 

Method 1 was chosen to execute the syllable segmentation for the creation of the corpus. The 

parameters that delivered the best Score can be seen in Table 10. 

Table 10: Parameters of best Score for Method 1 

  

Method Score Deletion Insertion 

1 33,99 16,07 18,85 

3 35,85 16,47 20,83 

5 47,75 12,30 47,02 

4 51,19 21,23 34,33 

2 64,68 25,99 38,69 

Parameter Value 

Silence Threshold [dB] -20 

Length Threshold [s] 0,07 

Dip-Height Threshold [dB] 0,7 

Low-Pass-Filter Cutoff [Hz] 5000 

Minimum Energy [dB] -21 
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4. Synthesis-Algorithm 

This chapter covers the synthesis part of the crowd noise generation using an algorithm written 

in C++. It gives a brief overview on the software used to implement the algorithm as an audio 

plugin, which can be used with standard DAWs47 as hosts, and presents aspects of some of the 

implemented classes for the three speech-texture-generating models presented in section 3.1.3. 

Figure 13 illustrates some of the most essential processes in the algorithm. A few code snippets 

of some essential functions can be seen in 0. 

4.1 JUCE framework 

The synthesis algorithm was implemented with the JUCE framework, a toolkit for the 

development of low-latency, multiplatform audio applications in the programming language 

C++. The name “’Juce’ stands for ‘Jules' Utility Class Extensions,’ as it was [originally] written 

by one person, Julian Storer” (open‐ephys, 2013/2013, sec. Introduction to Juce). The 

framework is today being maintained and extended by ROLI Ltd. and offers support for 

Microsoft, Apple and Linux systems as well as for Android. The collection of modules works 

as a wrapper around the user’s code and allows them to compile the same code for all supported 

platforms, taking over the communication with the respective environment. The JUCE library 

contains useful classes and functions for handling audio data, which were used for the 

implementation of the crowd noise synthesis for (amongst others) the communication with the 

plugin host, to exchange parameter values from the audio processor to the user interface, to 

                                                 
47 DAW = Digital Audio Workstation 

 

Figure 13: Simplified overview of the synthesis process implemented as an audio plugin 
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store and load plugin states or to handle MIDI or OSC48 input. (See Figure 13 for an overview 

on the communication between different parts of the plugin.) 

The framework comes with an application called the Projucer, a project management tool and 

an application to generate basic code for specified projects, to design interfaces and to organize 

the modules. 

4.2 Syllable object, Pitch shift 

When loading a corpus from within the plugin, the original audio data of every grain is pitched 

up and down by a small factor (approximately corresponding to a semitone) with a linear 

interpolation. The small pitch-modification is supposed to slightly change the sound of the voice 

without making the audio data sound unnatural, thereby extending the overall variety of voices. 

The three versions of the grain are then stored in audio buffers within a Syllable object. The 

object also stores the pitch of the original grain (and for Model B other spectral, acoustic 

parameters describing the voice quality), which was calculated during the corpus creation, and 

an RMS value, which is calculated during the loading process. As only a pitch relative to the 

pitch of the other grains matters to the synthesis algorithm, the pitch of the altered versions does 

not need to be stored separately. 

A very short fade-in is added at the beginning of every audio buffer to prevent clicking noises 

for the case of the syllable being the first one after a pause. 

All Syllables objects are stored in a syllable matrix, sorted by voice. 

Within the next chapters, the term Syllable (written with a capital S) refers to the C++-object 

described in this section. 

4.3 Speaker object 

A Speaker object represents one audio stream, which randomly (but within certain rules) plays 

back syllables from one voice in one of the three pitch versions. The pitch version which will 

be constantly used by the Speaker object is chosen randomly during the creation of the object. 

Every Speaker object contains a buffer holding the indices of the Syllable objects that are to be 

played next. The buffer is implemented as a ring buffer and is filled on runtime by a side thread 

of the audio processor (see chapter 4.6). 

A Speaker state value comprises the information, whether the Speaker is currently in the middle 

of pronouncing a syllable, fading from one syllable to another, pausing or not having any grain 

numbers in its ring buffer.49 

The Speaker can be placed on any available output channels. The level for each channel can be 

chosen by the user, allowing virtual positions in between channels. 

Other values stored by the Speaker object and passed to the audio processor during the render 

process are the original RMS value of the currently played Syllable object, the factor of RMS 

adaption in case an adaption was computed to avoid noticeable jumps in the signal energy, the 

                                                 
48 OSC = Open Sound Control 
49 This can e.g. happen, if an area within the valence-arousal-plane is selected that does not contain grains of a 

voice 
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length of the next pause, the position within the currently spoken Syllable or the position within 

a fade. 

The object offers functions to activate or deactivate the speaker, to generate pause lengths and 

to assert that the grain buffer is not empty. 

4.4 Conversation object 

Since it might be perceived as unnatural to have several Speaker objects persistently generating 

continuous monologues, a Conversation object was implemented. 

The Conversation object consists of a Speaker object, which simulates a conversation by 

switching between different voices. Every available voice can be added once to the 

Conversation. 

A selectable chattiness-factor with values between 0.1 and 1.0 was introduced, which affects 

the behavior of the Conversation in three ways:  

First of all, it is used as a factor to determine the minimal length of an utterance, which was set 

to be twenty times the chattiness-factor without decimals. A higher chattiness means longer 

utterances (in average) and therefore less pauses per time unit. 

The chattiness also determines the probability of a voice change after an utterance, if the 

Conversation contains more than one voices. If a random float value is lower than the chattiness 

factor, the active voice changes to a random voice of the remaining voices in the Conversation. 

A higher chattiness therefore raises the probability of a voice change. 

The third use of the factor is for the calculation of pause lengths. Pauses are separated into short 

pauses (e.g. at the end of a phrase or part of a phrase) and long pauses. The pause length for 

short pauses LS and for long pauses LL in samples is calculated as 

 𝐿𝑠 = 𝑓𝑠(0.1 + 𝑥 (1 − 𝑐)) (5) 

   

and 

 𝐿𝐿 = 𝑓𝑠(1 + 6𝑥(1 − 𝑐)), (6) 

   

where c is the chattiness and x a random value between 0.0 s and 1.0 and fs the sampling 

frequency (of the system, not of the speech material). Short pauses are therefore between 0.1 s 

and 1.0 s long, long pauses are between 1.0 and 6.4 seconds long. Once a pause has to be 

calculated, the choice between short and long pauses also depends on the chattiness. If a random 

floating point number between 0 and 1 is bigger than a limit l calculated as l = 0.5 (1 – c), with 

c being the chattiness, a short pause is triggered. Probabilities for long pauses are low for high 

chattiness values.  
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4.5 Emotion selection 

The calculations to generate an affective state are the same for Model A1 and Model A2 (as 

defined in chapter 3.1) and will therefore both be explained by referring to the Model A. 

4.5.1 Model A 

In Model A, the Syllable objects are attached to fixed positions within the valence-arousal plane. 

The choice of a certain position within this plane effectuated by the user is thus linked to the 

algorithm using Syllables with a corresponding position. However, since the corpus size is 

limited, choosing only a position on a continuous scale would most likely result in no matching 

Syllables. The definition of a range is therefore essential to allow the algorithm to use all 

Syllables falling within the range. For the two Model A implementations, the range width can 

be set by the user. (Figure 14 shows the selection of a range and position on the left.) Another 

possibility would be to calculate the range by increasing its width until a certain amount of 

grains is included. Yet, the implemented method lets the user decide, in which dimension the 

range should be kept small to serve their purposes and in which dimension it can be increased 

to allow a sufficient number of Syllables to be included into the synthesis. 

Model A determines the affective state by only including Syllables with positions that fall within 

the range, which is calculated from the currently chosen position and range width. 

4.5.2 Model B 

Model B generates the affective state by choosing syllables with acoustic parameters that 

correspond to the currently selected position within the valence-arousal plane. 

As results of earlier studies showed (see chapter 3.1.1) and the examinations described in 

chapter 3.1.2 confirmed, the arousal dimension is highly correlated with pitch- and intensity-

related acoustic parameters. Since the highest respective correlation was found for the mean of 

the two parameters, those two means were selected to define the affective position for the 

arousal dimension. To be included in the synthesis, the normalized mean of RMS value and 

mean of pitch value of the Syllable object has to be within a range defined by the intensity limits 

 

Figure 14: GUI of a plugin-implementation of Model A of the crowd synthesis 
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Imin = 0.7 y and Imax = 0.8 y + 0.2 and the pitch limits Pmin = 0.3 y and Pmax = 0.5 y + 0.5, where 

y is the normalized position in the arousal dimension between 0 and 1. 

For the valence dimension, the two parameters with the strongest correlation (see Table 3), the 

Hammarberg Vocal Effort and Hammarberg Unstable, determine which syllables are selected. 

An implementation as for the arousal dimension would have resulted in only very few (less than 

ten) Syllables per voice for many positions, which is why the valence limits are set relative to 

the mean of the values of the grains selected by the arousal dimension. The limits Hmin and Hmax 

for both normalized parameters are 

 𝐻𝑚𝑖𝑛 = 𝑎 − 𝑥 − 𝑡 + 0.5 (7) 

   

and 

 𝐻𝑚𝑎𝑥 = 𝑎 − 𝑥 + 𝑡 + 0.5, (8) 

   

where a is the average value, x the normalized position in the valence dimension and t = 0.2 a 

tolerance value. 

4.6 Stream rendering, RMS adaption, Pauses 

This chapter covers the way of (re-)concatenating the Syllable objects to streams of speech. The 

first issue to address is, whether certain rules have to be implemented in the concatenation of 

syllables to simulate a natural speech rhythm. 

Research on language rhythm has mainly focused on finding features that allow for a 

classification or discrimination of languages, or on differences in speech rhythm between native 

speakers and foreign learners to improve a learning process. 

Kenneth L. Pike (as cited in Arvaniti, 2012, p. 2, and Pfitzinger, 2001, p.147) introduced in 

1945 a classification of languages into syllable-timed (also referred to as machine-gum rhythm) 

and stress-timed languages (also referred to as Morse-code rhythm), attributing an isochronal 

sequence of syllables or beginnings of stressed syllables respectively to the languages. He 

presents the English language as a reference point for a stress-timed language, while Spanish is 

regarded as a typical example of a syllable-timed language (Pike, 1945 as cited in Pamies 

Bertrán, 1999, p. 103). Abercrombie (1967, as cited in Arvaniti, 2012, p. 2) concluded, that all 

languages belong to either of the two classes. German has mostly been classified as a stress-

timed language, meaning that the language has a tendency for a uniform temporal distribution 

of stressed syllables. A stressed syllable would therefore usually be followed by one or two 

unstressed syllables (Pfitzinger, 2001, p. 146). Numerous studies failed to support the theory of 

isochrony (Schmid & Dellwo, 2013, p. 110). 

Newer classification methods use the percentage of vocalic parts %V and the standard deviation 

of the lengths of consonant parts ∆C as introduced by Ramus, Nespor & Mehler (1999) or the 

Pairwise Variability Index (PVI). This lead to further distinctions between languages, but rules 

for a concatenative synthesis that does not allow more advanced changes50  of the source 

material (due to the computational effort of generating a large number of speech streams) can 

hardly be derived from these results. 

                                                 
50 E.g. time stretching or pitch changes considering formants of the speaker during runtime 
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Pellegrino, Coupé & Marsiko (2011, p. 544) examined a syllable rate of 5.97 syllables per 

second for German speakers reading a text in a (subjectively) normal speed, which would 

correspond to an average syllable length of 0.17s. Yang (1998) notes average syllable lengths 

from slightly under 0.1 s until slightly below 0.5 s in his studies of American English. The 

durations of course differ not only for different speakers and situations, but also for languages 

in general (Schmid & Dellwo, 2013, p. 116). Audio segments, which are shorter than 0.08 s or 

longer than 0.8 s are therefore rejected during the loading process. A mere concatenation of the 

original audio segments considers a natural syllable length and leads to a natural syllable beat. 

To gain information on the two parameters that can be influenced in a simple way during the 

synthesis process, notably the RMS (by multiplication) and the pitch (by implementing rules 

for the selection of the next syllable), the pitch and RMS progression as examined in the phrase 

analysis in chapter 3.1.2.1 was repeated with relative values: The factor of the pitch and RMS 

progression from grain to grain was extracted to observe if these factors depend on one of the 

two affective dimensions and which magnitude these factors can generally have. A correlation 

with either of the two dimensions could not be measured, which is confirmed by the 

corresponding scatter plots (see Figure 15 and Figure 16). 

Since no alternative, statistically established theories on the topic of simulating speech rhythm 

could be found, the decision was taken to alter stressed and unstressed Syllable objects in a 

regular way to simulate some kind of speech prosody. The fundamental frequency was chosen 

as stress criterion, since word stress is “almost always realized in German as an increase of F0” 

(Mengel, 1997, p. 12). For future research, this criterion could easily be changed by modifying 

the comparison operator for the Syllable object. 

 

 

Figure 15 : Pitch factor of adjacent grains 
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Regarding the implementation of the C++-algorithm, two different threads manage the 

generation of each speech stream (as illustrated in Figure 13). 

A side thread with a lower priority collects all Syllables that match the current affective position 

according to the rules specified in chapter 4.5 and fills the buffers for each Speaker or 

Conversation with Syllable indices. To do so, the selected Syllables are first sorted by pitch. 

The upper half of the sorted Syllables is regarded as containing the stressed Syllables, the lower 

one as containing the unstressed ones. The Syllable selection now occurs randomly following 

these rules: A stressed Syllable can only occur at the beginning of an utterance (that is after a 

pause, speaker activation or voice change within a Conversation) or if a certain time has passed 

since the last stressed Syllable. 

After the number of Syllables in the utterance exceeds a minimal number of Syllables per 

utterance, which is defined by the Conversation or Speaker object (and influenced by the 

chattiness factor), a random float number decides, if a pause is included. The random number 

has to exceed a probability factor to trigger a pause, which is represented in the grain buffer as 

a −1. If the random number does not exceed the probability factor, this factor is multiplied with 

itself to increase the probability of a pause after the next Syllable has been added to the buffer. 

However, several conditions, which were included to avoid phrase endings with an unnatural 

sound, have to be fulfilled to trigger a pause: The last Syllable has to be unstressed, the RMS 

value of the last Syllable has to be lower than the one of the Syllable before and the Syllable 

has to be longer than 0.15 s. (Pause lengths are calculated by the Conversation or Speaker 

objects themselves.) 

This procedure is repeated until the buffers are full. 

(More advanced conditions and dependencies for the concatenation of grains are imaginable 

and might lead to a higher perceived naturalness, but will also demand for a bigger corpus. Too 

many or too strict rules would result in a repeated concatenation of the same Syllable 

sequences.) 

The audio thread is the one that is called by the host several times per second to fill the output 

buffers. It manages MIDI and OSC input data (e.g. to activate and deactivate a Conversation or 

 

Figure 16: RMS factor of adjacent grains 
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Speaker), updates parameter changed by the host or the GUI and copies the audio data that 

corresponds to the Syllable indices into the respective output channels. If the RMS value of a 

Syllable would cause an audible jump, the amplitude of the Syllable’s audio data is adapted. 

The plugin implementation of the algorithm allows the output channels to be routed to channels 

of the DAW, where they can be connected to loudspeakers or other applications or be recorded 

to render audio files as it was done for the listening test described in the next chapter. 
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5. Listening Test 

5.1 Introduction 

A listening test was conducted to examine, to which extent the different models can simulate 

affective states in the valence- and the arousal-dimension: Are stimuli which were generated 

with a higher or lower input value for the two dimensions also perceived as crowd noise with 

an associated higher or lower value for the respective dimension? In other terms: Does the 

affective position input of the three models correlate with the perceived output of the three 

models? 

5.2 Methods 

5.2.1 Stimuli 

For the generation of the stimuli for the listening test, eight Conversations were created, each 

containing two voices. From the ten available voices, every voice was used at least in one 

Conversation (see Table 11). The Conversations as well as the voices within each Conversation 

were kept the same for all stimuli and across all three models. The chattiness-factor was set to 

0.6 for all stimuli. 

Table 11: Conversation setup and positions in listening test 

For Model A1 and A2, the two dimensions were evaluated separately, via separate stimuli. This 

is due to the fact, that some areas in the affective space were not covered by enough Syllables 

to create a synthesized output. Figure 17 illustrates the ranges for the respective generation of 

stimuli: The stimuli for Model A1 and A2 were created with elongated rectangles as ranges, 

which were moved along the axis in constant intervals. The range was set to the maximum for 

the dimension that was not to be evaluated with the stimulus, and set to a constantly small range 

for the dimension which should be evaluated with the stimulus.  

The output channels, representing the speech stream of one Conversation each, were convolved 

with eight HRTFs51 to be horizontally52, evenly placed around the listener with azimuth angles 

in steps of 45° starting at 0° (which is supposed to be directly in front of the listener). The 

positions of the Conversations were kept the same for all stimuli and across all models. The 

convolved signals were summed up in a stereo audio file. 

Following this procedure, 11 stimuli were created for each dimension for both Model A1 and 

A2. 

For the stimuli generation of Model B, 21 random positions on the valence-arousal plane were 

generated in a way that ensured, that on a grid with 21 lines in each dimension, every line or 

value was used once. The resulting positions can be seen in Figure 17 on the right side. These 

                                                 
51 HRTF = Head related transfer function 
52 With an elevation angle of 0° 

Conv 0 1 2 3 4 5 6 7 

Voices 0, 1 2, 3 4, 5 6, 7 8, 9 0, 5 1, 6 2, 7 

Az-Angle  0° 45° 90° 135° 180° 225° 270° 315° 
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positions were used as input positions for Model B. The output channels were convolved in the 

same way as the outputs of the models A1 and A2. 

Since only one HRTF was used, the binaural perception is evidentially far from being perfect 

for every listener. Yet, this does not constitute a problem, as naturalness of the stimuli was not 

examined and the sole purpose of the convolution was to increase the immersiveness of the 

stimuli, to provide a setting that is comparable to one that could be offered by a VR-application 

(which would be an example for a usage of a crowd noise synthesis) and to simply make the 

participation a little more interesting for the listener. 

 

Figure 17: Stimuli generation, left: Selection ranges for valence stimuli (dark gray) and arousal stimuli (light gray) of 

Model A, right: affective positions as input for rendering stimuli of Model B 

5.2.2 Subjects 

50 participants of age between 20 years and 66 years and an average age of 37.4 years took part 

in the listening test. 31 of the subjects (62%) were male, 19 subjects (38%) were female. The 

majority with 30 total subjects (60%) marked German as their native language, followed by 19 

subjects (38%) with French as native language. 3 subjects (6%) with English as native language, 

one subject with Polish and one with Dutch as native language took part. (Multiple selection 

was enabled here.) 

5.2.3 Setup 

The 65 generated stimuli were included in an online survey and presented to the participants in 

3 question groups, which were each displayed on a separate page. On every page, the advices 

for the evaluation of the stimuli were explained on the top, followed by the list of stimuli 

(presented as a small audio players using the HTML5 audio tag) accompanied by one or two 

sliders with a continuous53 scale from -10 to 10. 

Question Group 1: Contained the stimuli of Model A1 and A2 (11 stimuli each) carrying 

different ranges of the valence dimension. For every stimulus, the participant had to evaluate 

                                                 
53 Not continuous in a mathematical way, the step size was 0.1 
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the perceived, average affective state of the crowd on a scale from “very negative” to “very 

positive”. 

Question Group 2: Contained the stimuli of Model A1 and A2 (11 stimuli each) carrying 

different ranges of the arousal dimension. For every stimulus, the participant had to evaluate 

the perceived, average affective state of the crowd on a scale from “very calm” to “very 

aroused/agitated”. 

Question Group 3: Contained the stimuli for Model B. For every stimulus, the participant had 

to evaluate both the perceived arousal and the perceived valence of the crowd resulting in 21 

different samples per dimension. 

The three groups, as well as the questions within the groups, were presented in a random order. 

5.3 Results 

Participants used the presented scale from -10 to 10 to different extents: Some used the whole 

range, some only a part of it, often – but not always – spread around the neutral, middle value 

0. The perceived valence and arousal values of the presented stimuli were therefore z-

transformed, computing a standardization by subtraction of the mean and division through the 

standard deviation. The z-transformation was chosen, as not a comparison of absolute ratings 

of affective positions across different models, but the differentiation of affective positions within 

each model is of importance here. The original data is illustrated as scatter and box plots in 

Figure C-3 and Figure C-4 in Appendix C. The standardized results are shown as box plots in 

Figure 18 or as scatter plots in Figure C-2 in Appendix C. 

The perceived affective positions were examined regarding a linear correlation with the affective 

position input of each model. Results can be seen in Table 12. 

Table 12: Linear Correlation coefficients and p-Values for the perceived valence and arousal values of each model, for the 

original and standardized data 

 Model Valence Arousal 

Corr.-Coeff. p-Value Corr.-Coeff. p-Value 

original Model A1 0.5741 < 0.0001 0.5968 < 0.0001 

Model A2 0.5610 < 0.0001 0.6297 < 0.0001 

Model B -0.0396 0.1998 0.4670 < 0.0001 

standardized Model A1 0.6262 < 0.0001 0.6814 < 0.0001 

Model A2 0.6161 < 0.0001 0.7153 < 0.0001 

Model B -0.0521 0.0913 0.5024 < 0.0001 
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Evaluations of outputs of Model A1 and A2 show a medium to strong correlation of input values 

and perceived values in the arousal dimension, Model B only shows a weaker, medium 

correlation in the arousal dimension. 

As visible in Figure 18 and Figure 19, the standard deviation for arousal estimates increases 

towards lower arousal input values. Especially evaluations of Model B show a clear decrease 

of the standard deviation with growing arousal input values. The correlation is measurably 

higher when low input values (e.g. under -50) are not included in the analysis (see Table 13). 

 

Figure 18: Standardized perceived valence (left) and arousal (right) values for the three models, the thick, central, 

horizontal line marks the median, bottom and top edges of the boxes indicate the 25th and 75th percentiles, whiskers mark 

the range of the data that is not considered as outlier, outliers are marked as crosses. 
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In all comparisons in the arousal dimension, evaluations of Model A2 show slightly stronger 

correlations than those of Model A1. 

Regarding the valence dimension, estimates of the outputs of Model A1 and A2 show equally, 

medium high correlations with the valence inputs. For Model A1, stimuli with a valence input 

of between -40 and +40 were rated as approximately equally neutral, responses for Model A2 

show an evaluation at roughly the same level for input values between -40 and +80. For both 

models, there is a small gap between the constant evaluations for input values above -50 and 

the lower evaluations for input values below -50 (see Figure 18). Evaluations of Model B show 

no correlation with the valence input (see Table 12). 

For Model A1 and A2, the standard deviation of evaluations in the valence dimension is higher 

for valence input values lower than -50 than for the rest of the input values. 

Table 13: Correlation coefficients and p-Values for arousal dimension without stimuli containing whispering (only stimuli 

with arousal input values higher than -50) 

 Model Corr.-Coeff p-Value 

original Model A1 0.6216 < 0.0001 

Model A2 0.6714 < 0.0001 

Model B 0.5911 < 0.0001 

standardized Model A1 0.7240 < 0.0001 

Model A2 0.7627 < 0.0001 

Model B 0.6521 < 0.0001 

 

As Table 14 shows, for each model, the mean of the standard deviations for arousal estimates 

is slightly higher than for valence estimates regarding the original results. Standard deviations 

are similar for the same dimension across the different models. 

Table 14: Mean of standard deviations of perceived valence and arousal values 

 Model Std. Valence Std. Arousal 

original Model A1 2.9236 3.5451 
Model A2 3.1850 3.7616 
Model B 3.2788 3.6586 

 

Possible differences of the evaluations between participants who marked German as native 

language and participants with French as native language were examined graphically with the 

Figure C-5, Figure C-6 and Figure C-7 in the appendix on pages 95-97, but not further 

statistically analyzed.54  

The results are discussed in the next chapter.  

                                                 
54 No participant marked both languages as native language, only one participant marked neither of the two 

languages as native language, a category other languages was therefore not considered 
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Figure 19: Standard deviations of perceived valence (left) and of perceived arousal (right) of the three models for the 

original (unstandardized) results 
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5.4 Discussion Listening Test 

Regarding the evaluations for the stimuli one by one, participants had generally rather different 

perceptions on how to evaluate the valence and arousal of the affective state of the synthesized 

crowd. Of course this is not only a consequence of the synthetically generated stimuli, but also 

due to the complexity of the task itself and differences in individual perceptions.55 

Looking at the sum of responses, however, for only one examined dimension the input value 

did not have an impact on the perception of the output signal: The valence dimension of 

Model B. It seems that all other dimensions can accurately be modelled with the described 

methods.  

No evident differences in the evaluations could be found between ratings of German and French 

subjects.56  

The following two sections cover the results for each dimension in further detail and suggest 

ways to improve conspicuous characteristics revealed by the listening test. A general discussion 

of methods with propositions for future research follows in chapter 6. 

5.4.1 Valence Dimension 

Although no convincing correlations (with a medium correlation coefficient of 0.5 or higher) 

were found between the examined acoustic parameters and the affective dimension of valence 

in chapter 3.1.2, an automated positioning of utterances of Model A2 leads to a performance of 

the model in the valence dimension that is comparable to the one of the manual placement of 

Model A1. Since the regression and classification models that computed the automatic 

placement were trained with the very same dataset, it is to be examined by future research, how 

well this model performs with new speech data and unknown voices. 

As outputs of both Model A1 and A2 with valence inputs in the range from -50 to +50 were 

judged as roughly containing the same valence, utterances that were judged to fall within this 

range during the corpus creation should be placed in a more compact way around the center in 

the valence dimension, that is, closer to the center. 

The higher standard deviation for low valence input values for Model A1 and A2 indicates, that 

the output of those models is not clearly a crowd with a bad mood to everyone. The Outliers in 

form of positive rankings for those stimuli in Figure 18 confirm, that low valence inputs might 

generate stimuli that can be confused as crowds with a good mood. Yet, the mean of all ratings 

shows, that a concatenation of grains, which were previously mapped with a certain valence 

value, seems to be able to recreate a signal with a perceived valence similar to the one the grains 

were assigned with. One reason for the outliers could be, that the corpus was entirely made up 

of recordings by amateurs acting out scenarios in groups. The authenticity of the acted emotions 

might have suffered from these circumstances. A connection with the native language of 

subjects can be ruled out: Evaluations of both German and French subjects show the same 

disagreement in the discussed valence range (see Figure C-6 and Figure C-7 in Appendix C). 

                                                 
55 When – for example – Schröder (2004, p. 107) let seven subjects place affective utterances in a two-dimensional 

activation-evaluation space, an inter-rater pairwise correlation of the ratings was achieved of between 0.50 and 

0.88, with a generally higher correlation for the evaluation dimension than for the activation dimension. 
56 No statistical method to establish significant differences was computed here, this statement refers only to a mere 

observation of plots of the results for the different native languages (see Figure C-5 to Figure C-7 in Appendix C). 



   

 

 

 

56 

Model B is not able to synthesize affective states of different valences using the Hammarberg 

Indices as criteria for a grain selection as described in chapter 0. In order to enable a grain 

selection or grain concatenation with the ability to synthesize crowd noise with a specific 

valence, a correlation between acoustic parameters or a combination of acoustic parameters and 

the valence dimension comparable to the one existing for the arousal dimension has to be found. 

5.4.2 Arousal Dimension 

All three developed and evaluated models are able to portray the dimension of arousal to a 

certain extent. Model A2 performs best in this dimension, which means that the output created 

by concatenating grains from automatically placed utterances is perceived as slightly more 

coherent with the arousal input value as it is with using grains from utterances that were 

manually placed. This could be due to the fact, that the manual placement was computed by 

only one expert. Letting several persons estimate the position of the original source material 

and taking the mean of these positions could improve the correlation coefficients for Model A1. 

There is a striking disagreement of subjects on the arousal values for low arousal inputs in all 

three models. One problem that all models seem to have is processing whispered speech. The 

concatenation of grains from whispered speech does not seem to be able to preserve the 

affective state of the source material. The whispered utterances used within the corpus were 

calmly spoken explanations of the speakers’ last holidays, thus containing a low arousal and a 

slightly positive valence. Both the manual placement of Model A1 and – as a result of the low 

RMA value – the automatic placement of Model A2 mapped these grains in the low end of the 

arousal axis. Evaluations on the outputs using these grains, however, were spread across almost 

the whole range of the presented scale.57 Whispering is not automatically connected to a low 

arousal. A person can whisper something anxiously or happily (with a medium level of arousal) 

just as well as sleepily (which corresponds to a low level of arousal) or furiously (with a high 

level of arousal). It seems that some subjects perceived the whisper of the synthesized crowd 

as an agitated, maybe even nervous whisper. To avoid this confusion, future synthesis 

implementations can either exclude whispered speech entirely (which could for example be 

done automatically via the proportion of voiced speech within each grain) or further research 

should be done on how to treat whispered speech grains in order to preserve the original 

affective state within a concatenative synthesis. 

The elevated means of the perceived arousal for Model B at input values -70 and -60 can be 

explained by the coincidental, but frequent occurrence of inhaling noises within the two 

generated stimuli, which presumably added a certain tension or excitement to the crowd noise. 

As the generation of grains for all three models is computed automatically, an occurrence of 

more salient grains cannot be ruled out. A manual elimination of problematic grains from the 

corpus would solve this issue. 

To sum up, the listening test reveals, that – with some adaptions – the presented methods for 

Model A1 and A2 seem to be able to offer an effective implementation of a crowd synthesis 

with the valence-arousal model as a handle to choose an affective state. Model B could provide 

this handle over the affective dimension of arousal. The following chapter discusses 

                                                 
57 This refers especially to the unstandardized responses as illustrated in Figure C-4 in Appendix C. 
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improvements for both the implementation of the affective model used here and the 

implementation of the concatenation to generate the crowd noise. 
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6. Discussion 

It is generally arguable, whether placing affective states on a two-dimensional space makes 

much sense. It was chosen here to simplify the user interaction and to allow smooth transitions 

from any affective state to another. In this way, a relatively easy control over a wide range of 

affective states is offered. But the approach might deny and blur the actual complexity of human 

emotions: The affective states anger and fear, for example, can be placed on identical positions 

in this model, yet they feel very different, and most people would probably agree on the 

statement, that a scared person can sound very different from an angry person. This is directly 

linked to the problem, for why Model B failed to illustrate a positive or negative valence: Just 

because humans are able to map utterances to an affective position within a two-dimensional 

space with a high level of agreement by listening to them (Schröder, 2004, p. 107), does not 

necessarily mean, that there are acoustic correlates for the dimensions of this affective space. 

Humans can compute the mapping by (subconsciously) classifying the utterance to a distinctive 

affective state and deriving the affective position from this affective state and not directly from 

acoustic parameters of the utterance. Future research might find a combination of acoustic 

features that convincingly correlates with the affective dimension of valence, but nothing 

indicates up until today, that this correlation exists. Depending on the purpose of the synthesis, 

a different model, e.g. one that classifies utterances as distinctive affective states and lets the 

user select from a list of affective states and a percentage, to which it should be mixed with 

neutral audio material, might make more sense. The presented work shows, however, that an 

implementation of a concatenative synthesis with the valence-arousal model as handle for 

choosing an affective state is possible. 

An improved version of the synthesis with the two-dimensional model of affect as it is presented 

here requires new speech recordings that cover all areas of the given affective space. Grimaldi’s 

(2017) recordings generated a big amount of neutral, natural and spontaneous speech, but 

requests to act out affective scenarios in front of the other group members provoked often 

unconvincingly acted out speech with a noticeable ironic or even sarcastic undertone. The 

resulting incompleteness of the speech material in terms of affective positions had a negative 

impact on both the corpus creation and the extent to which the implemented models of synthesis 

could be tested with a listening test.58 

The use of a different recording setup is therefore proposed: Each (amateur or professional) 

actor59 should be recorded separately in an anechoic chamber. This actor should interact with a 

moderator in the chamber, who plays a counterpart for numerous scenarios. The counterpart 

should be played with a certain level of commitment to the scenario, allowing the actor to be 

more immersed in the scenario and possibly provoking more extreme and more authentic 

reactions of the actor. Having only the actor and the moderator in the chamber reduces cross-

talk and background noise, which increases the percentage of the recordings that can be used 

                                                 
58 The lack of grains in some areas of the affective space forced a range selection as computed in chapter 5.2.1, 

that is the selection of the full range for the dimension other than the one examined. This might not be a range a 

user would normally select to get a natural result, since grains from very different affective states are mixed 

together in the concatenation. An even grain distribution would e.g. allow a stimuli generation with squared 

selection ranges aligned in a matrix, allow to evaluate both dimensions simultaneously and to get a more profound 

insight in which areas of the affective space the synthesis works better or worse 
59 The male version is used here and in following sentences to keep the explanation simple. It is meant to refer to 

actors/actresses of all sexes. 
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for the creation of the corpus. As discussed in section 5.4.2, whispered speech could be 

excluded from the recordings or treated differently during the synthesis process to avoid a 

discrepancy between original affective position and perceived affective position.  

With the new recordings, the examination of a correlation of acoustic parameters with the 

position in the affective space from chapter 3.1.2 should be repeated. A brief manual on how to 

use the existing MATLAB files for the respective examination is given in Appendix A.I .  

To improve Model A2, the regression and classification models of Model A2 should be trained 

again with the more complete set of recordings. 

Attempting to receive a convincing 60  correlation of acoustic parameters with the valence 

dimension, new acoustic features could be included in the study. One possible example could 

be the examination of the utterances in a tense/lax continuum as proposed by Murphy, 

Yanushevskaya, Ní Chasaide, & Gobl (2017), a study that was published too recently to be 

included in the present master thesis. New findings can be applied to a new regression and/or 

classification model for the automated placement for Model A2 or the grain picking algorithm 

in Model B. 

As already mentioned in section 5.4.1, the performance of the regression and classification 

model should be examined for speech data other than the one it was trained with. 

In addition to a general examination of the perceived naturalness of the generated crowd noise, 

numerous aspects of the synthesis allow for future research to examine their impact on the 

perceived naturalness: 

The different syllable segmentation algorithms were evaluated here by comparing positions of 

the automatically generated borders to the actual, manually labelled syllable borders, hereby 

assuming that the manual borders are the best separation points to generate grains for the basis 

of a natural sound of the synthesize crowd noise, which is not necessarily true. This method 

was chosen here for reasons of simplicity. A more output-driven approach would be to have 

subjects rate the perceived naturalness of stimuli generated with different segmentation 

algorithms. 

In the present synthesis, stress was merely imitated by pitch differences. A syllabic prominence 

descriptor that uses more than just the pitch to recombine grains might increase a perceived 

naturalness. E.g. Mengel (1997) states, that the length of vocal parts of syllables plays an 

important role for stress in the German language, values for the lengths could be taken from 

Yang (1998). Characteristics of the prosody of utterances could be examined over different 

affective states to create a more advanced model for the recombination of syllables.  

In order to gain better transitions from one grain to another, a voice quality feature could be 

extracted from the beginning and the end of each grain to only link grains that fit to each other 

from a spectral point of view. 

As already discussed, the density of grains over the affective space varied a lot using Grimaldi’s 

(2017) recordings. At the neutral position, the density was very high. Bringing the other areas 

of the affective space to the same level regarding the grain density would drastically increase 

the corpus size, which in turn leads to a longer loading times and a higher memory and CPU 

usage, as more grains have to be analyzed during runtime. Evidentially, a bigger corpus also 

                                                 
60 With a correlation coefficient comparable to the one for the arousal dimension 



Discussion    

 

 

 

61 

leads to less repetitions of grains and thus improves the naturalness of the crowd noise. An 

optimum has to be found between corpus size or grain density and perceived naturalness. From 

which point on do the improvements of the perceived naturalness gained by the growth of the 

corpus not justify the increase in loading time and memory and CPU usage anymore? 

To increase the variety of voices, each grain was transposed up and down by one semitone. 

Vocals and consonants, or more precisely voiced and unvoiced parts were equally transposed 

with a linear interpolation, which can quickly lead to very unnatural speech sounds. The 

separation between voiced and unvoiced sounds in the loading process and the application of 

the interpolation on voiced parts only could improve the naturalness of the transposed voices 

or allow a transposition by more than a semitone. Filters could be used to attempt a formant 

shift of the original voice to further enhance the variety of voices. 

The parameters used to regulate voice changes within a conversation are not based on scientific 

research. They were solely gained by listening to the output. A handle was then offered to the 

user (via the chattiness parameter) to adjust voice changes within defined limits. Future research 

could extract conversational features from recordings of conversations conducted with different 

affective states and build a conversation model based on the parameters gained. 

Other parameters that had to be predefined but could not be set based on scientific research 

(since no research with an appropriate context regarding this synthesizer could be found) and 

therefore offer room for improvements are the length and type of crossfades between grains, 

the limits and factors of the RMS adaption of grains to avoid audible jumps or minimal and 

maximal grain lengths. 

The mentioned approaches, from gathering new speech material and analyzing it over the 

affective dimensions to examining the naturalness of the synthesis output using different or 

additional concatenation methods could bring about an increase of the synthesis quality that 

allows a use of the synthesis algorithm as an alternative to conventional tools in sound design. 
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7. Conclusion 

Developments in sounds synthesis are slowly turning the artificially produced sounds into a 

serious alternative for conventional recordings, affecting more and more areas in sound design, 

music production and applications for everyday life. 

The work of this master thesis, the implementation of a human crowd noise synthesizer, 

represents a small contribution to the development of sound synthesis. The implementation of 

a concatenative human crowd noise synthesis allows the generation of perceivably different 

affective states along two examined affective dimensions, namely valence and arousal. The 

mere concatenation of random grains previously mapped to a specific range along one of the 

two dimensions of the valence-arousal-plane is able to recreate a human crowd noise with an 

affective state that is judged differently – concerning the respective dimension – from a crowd 

noise using a different range of grains within this dimension, even without applying further 

concatenation rules for different affective positions in the affective space. But only the use of a 

previously defined affective position for every grain as descriptor for the audio unit allows a 

discrimination of affective states along both dimensions. 

For using acoustic properties as descriptors for audio units and an algorithm that picks grains 

with certain acoustic properties corresponding to a requested affective state, current knowledge 

does only allow the generation of different affective states over the dimension of arousal. 

As next steps, it is proposed to acquire more speech material in order to receive an even 

distribution of speech material across the valence-arousal coordinates and to examine the 

perceived naturalness of the synthesis output for different grain segmentation and concatenation 

methods. These and numerous other approaches discussed in the previous chapter could 

improve the quality of the synthesizer to a level that allows its use in audio productions such as 

sound design tasks and (interactive) sound installations. 
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(1) Zero frequency filter part one (Murty & Yegnanarayana, 2008, p. 1608) 37 

 

 

𝑦1[𝑛] =  − ∑ 𝑎𝑘𝑦1[𝑛 − 𝑘] + 𝑥[𝑛]

2

𝑘=1

 

 

 

(2) Zero frequency filter part two (Murty & Yegnanarayana, 2008, p. 1608) 37 

 

 

𝑦2[𝑛] =  − ∑ 𝑎𝑘𝑦2[𝑛 − 𝑘] + 𝑦1[𝑛]

2

𝑘=1

 

 

 

(3) Calculation of differences between adjacent periods 38 

 

 

𝑑𝑇 =  min
0 ≤ 𝑘 ≤ 𝑃 

{∑|(𝑎[𝑛] − 𝑎̅) −  (𝑏0[𝑛 − 𝑘] − 𝑏0
̅̅ ̅)|

𝑃

𝑛=1

} 

 

 

(4) Calculation of Score for grain segmentation evaluation 40 

 

 
𝑆 =

2 ∗ 𝐷 + 𝐼

1,5 ∗ 𝑁
 . 

 

 

(5) Calculation of length of short pauses in samples 43 

 

 𝐿𝑠 = 𝑓𝑠(0.1 + 𝑥 (1 − 𝑐)) 

 

 

(6) Calculation of length of long pause in samples 43 

 

 𝐿𝐿 = 𝑓𝑠(1 + 6𝑥(1 − 𝑐)), 
 

 

(7) Minimal value for respective Hammarberg Index 45 

 

 𝐻𝑚𝑖𝑛 = 𝑎 − 𝑥 − 𝑡 + 0.5 
 

 

(8) Maximal value for respective Hammarberg Index 45 

 

 𝐻𝑚𝑎𝑥 = 𝑎 − 𝑥 + 𝑡 + 0.5 
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VIII. APPENDIX 

Appendix A Manuals 

Appendix A.I  Examination of correlation of acoustic parameters with affective   

positions 

To examine correlations of the same acoustic parameters as shown in chapter 3.1 with the 

affective dimensions for new recorded utterances, the utterances have to be sorted by voice 

and stored in one folder per voice. The affective position has to be marked in each file 

name, e.g. X_10_Y_-70_255.wav for a valence of 10 and an arousal of -70. The algorithm 

specifically looks for X_ and Y_ in the file name to read the numbers after those characters 

as position values. The positioning can be done with the MATLAB GUI_setXYValues.m 

file as described in the next chapter. To start the parameter extraction and correlation 

examination, open the script ParameterExtractionVoiceFolders.m and set the path to the 

parent folder containing the voice subfolders. Set the target path and write the filename of 

one neutral file per voice (from voice 1 to x) in the indicated cell vector. Execute the script. 

The extracted parameters and tables containing the sorted correlation values will be saved 

under the target path. To change the acoustic parameters, rewrite the corresponding parts 

in the functions analyseFolder5.m and analysePhrase5.m 

To extract parameters for the regression and classification model for an automatic mapping 

of grains, do the same as described in the previous paragraph but with the MATLAB script 

DataExtractionForMachineLearning6.m. To change the acoustic parameters here, rewrite 

the corresponding parts in the functions analyseFolder6.m and analysePhrase6.m. 

The resulting table can be used to train or create a new regression or classification model. 

The first three columns of the resulting table are the x-value, y-value and the affective class 

between 1 and 9. 

Appendix A.II  Corpus Creation with MATLAB Scripts 

To create a corpus for Model A1, recordings of utterances from different voices without 

reverb or any kind of room information must first be sorted by voice and stored in folders 

labeled V + voice number, e.g. V01 for voice 1. Every utterance has to be manually mapped 

to a position in the valence-arousal plane. The position has to be stored in the filename. 

Values should be integer values between −100 and 100, with 0 being neutrality. The name 

can e.g. be extended by _X_30_Y_-10 to store a position with an x-value of 30 and a y-

value of −10. 

The manual mapping can be done with the MATLAB GUI-application that was written for 

this task. To use it, open the MATLAB file GUI_setXYvalues.m and run it. Two dialogue 

windows appear to choose the source path (with the audio files of one speaker that should 

be mapped) and the target path (where the grains for the respective speaker should be 

stored). 
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All the audio files found in the source folder are listed on the left. Clicking on the file name 

selects the file and starts the playback of the respective file. The file can then be positioned 

via three ways: 

A click within the coordinate system on the right representing the valence-arousal plane 

assigns the clicked position to the audio file. Two sliders under and on the right side of the 

coordinate system allow a separate evaluation of the x- and y-value. Alternatively, the 

position values can also be entered in two text fields labeled x and y. To register the 

positions entered in the text fields, click on the button Register typed. 

The selected file can be changed via two buttons labeled Previous file and Next file or 

simply by clicking on the name in the list on the left. If the toggle switch Speed mode is 

switched on, the next file is automatically played and selected after a placement via a click 

in the coordinate system. 

Before closing the application, click on Save Positions to add the new positions to the file 

names. Save Positions transfers the file names from the list on the left to the actual file 

names. The button Clear All deletes the positions in the list of file names on the left, the 

button Delete All actually deletes the positions that have previously been saved within the 

file names. In other words, Delete All combines a click on Clear All and Save Positions. A 

pop-up window asking for the confirmation inhibits accidental deletions. 

The button Make it Grain! reads the files in the selected source folder that contain the 

required position information, splits them up into grains and stores them in a subfolder of 

the selected target folder. The subfolder is labeled with a time stamp. The files in the source 

folder are not deleted or changed by this operation. 
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The button Analyse analyzes the length, RMS and pitch values of the grains either in the 

selected target folder or in the subfolder with the newly created grains. A dialogue window 

will ask for which folder to analyze if new grains have been created. Grains with values 

that are outliers in one of the categories or don’t contain one of the required values can be 

deleted. Again, a dialogue window asks if these files should be deleted. The distribution of 

RMS, pitch and length values is plotted in histograms. The toggle button Ignore unpos. can 

be activated to exclude grains without x- or y- values from the analysis. This is only 

important if the grains in the target folder that are analyzed have not been created by the 

function that is triggered by the Make it Grain! button. 

The grain segregation can be done faster (not for each voice individually, but over all 

subfolders representing different voices at once) with the MATLAB function 

createCorpusA1.m. The function expects the path of the source folder (containing all the 

subfolders of all voices) and the target folder as inputs. The finished corpus is stored in a 

subfolder of the target folder labeled with a time stamp. 

The corpus for Model A2 can be created with the function createCorpusA2.m. In addition 

to source and target path, it also expects the filenames of a neutral utterance for each voice 

in a cell vector. So you first have to listen to some utterances and select one that comes 

closest to being in the center (x: 0 y: 0) of the valence-arousal plane for each voice. 

If new utterances are recorded, it is recommended to also train the regression and 

classification model again or to generate new models. To extract the acoustic parameters 

from the new data, the script DataExtractionForMachineLearning6.m can be used. Source 

and target paths, as well as file names of neutral files have to be specified before execution. 

The corpus for Model B can be created with the function createCopusB.m. It stores – 

together with the audio files – an XML-file containing absolute paths of the grains and 

some acoustic parameters that are used later in the synthesis process. The function only 

expects source and target folders. Optionally, it can create graphs showing the parameter 

distributions of the grains. 

Appendix A.III  Use of Synthesizer Plugins 

 

Figure A-1: GUI of Model A Synthesizer Plugin 

The synthesizing part of Model A1 and Model A2 is identical and will thereby be referred 

to as Model A. 

Depending on the DAW or Host used, the first thing to do after loading the Plugin is to 

activate all output channels, since some Hosts only activate one channel by default. For 
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information on how to activate the output channels, look in the manual of the respective 

Host. 

Once the output channels are activated, the audio data for the corpus has to be loaded. To 

do so, click on the button Load. The Model A expects a certain data structure for the audio 

files to be loaded: The grains for each voice have to be stored in a separate folder. After 

clicking on Load, select the parent folder of the folders containing the audio data. Each 

subfolder within this parent folder that contains audio data will be read by the plugin as one 

voice, that is all grains within one subfolder will be stored in one vector and used as source 

material for one voice. 

After selecting the parent folder, the Plugin scans the subfolders and reads all the audio 

files, applies a pitch change upwards and downwards to create three different variations 

(original, higher and lower) of each voice, calculates the RMSs and stores the data in 

buffers. This can take several minutes, depending on the corpus size. During the process, 

the label of the Load button shows Loading. 

If you use Model B, an XML-file has to be selected containing the absolute file paths and 

the corresponding acoustic parameters for all the audio grains. The loading process is about 

as long as for Model A. The window of the Plugin can be closed during the loading process, 

which will continue in the background. It is recommended not to interrupt the loading 

process by deleting the plugin during the loading process. Adding speakers or 

conversations is not possible before or during the loading process. (Before loading, the 

plugin does not know how many voices are available.) 

As soon as the loading process is finished, the buttons for adding speakers and 

conversations can be used. The Load button now shows Load other to indicate that a 

different corpus can be loaded without having to restart the plugin. 

In Model A, the system of coordinates on the left show the affective positions of the grains 

with dots in different colors. Each color represents one voice. With two sliders on the 

bottom and the right of the coordinates, the width and height of the selected range can be 

set. The selected number for the width can be seen in the slider on the bottom. The selected 

height is displayed in a grey font on the bottom left inside of the coordinates, on the right 

side of the currently selected position. The position is indicated in the coordinates by a 

small white square, the selected range for the available grains is shown as a grey square 

around the position. If no grain exists in the selected area for a voice, the speakers and 

conversations with (only) that voice will remain silent. 

In Model B, the system of coordinates is left blank, as the grains are not assigned to a 

position within the system. Only a white square indicates the current position. 

The rest of the user interface is identical for all models. 

To add a conversation, click on the + conv button. An (empty) conversation row will appear 

underneath the buttons. To add a speaker to a conversation, click on a speaker icon on the 

top area of the conversation setup and drag and drop the icon on the middle of the 

conversation area. To add a single speaker without making them part of a conversation, 

drag the icon over the Speaker Panel on the right side of the Conversation Setup. A right 

rectangle indicates a drop-zone. 
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Figure A-2: Drag-and-drop examples to add and delete speakers or conversations. 

To delete a speaker, a voice of a conversation or a whole conversation, click on the 

respective icon and drag and drop it above the bin icon. The grey rectangles within each 

conversation panel serve as handles for selecting or dragging the conversation. 

The +?-button on the left side of every conversation panel allow to add a random voice to 

the conversation. A slider on the right side, marked with a speech bubble, can be used to 

set the chattiness of the conversation. The default value is 0.6. 

Once a conversation or speaker is selected by clicking on it (the background color changes), 

its routing can be adjusted via the panel labeled with out. Every rotary knob represents one 

output channel and sets the level, with which the audio of the selected item will be added 

to the channel. The button on the top of the routing panel places the selected item on a 

random channel. The button below places all speakers and conversations on random 

channels. IMPORTANT: Choosing a random placement deletes previous routing values. 

Each speaker or/and conversation will be placed on only one output channel. 

Apart from the button to load the corpus, the general settings panel contains also two 

sliders: The gain knob allows the control of the main volume, the channel number selection 

sets the number of output channels. With some Hosts, after having adapted the number of 

output channels, the output channels have to be deactivated and activated again to render 

audio.  
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Appendix A.IV  OSC commands for plugin 

Address pattern Argument(s) Description 
/cs/talk 
 

- Starts crowd noise generation 

/cs/stop 
 

- Stops crowd noise generation 

/cs/gain 
 

float Sets gain/volume to float in 

argument, values under 0 (or over 

1) are set to 0 (or 1) 

/cs/load 
 

string Loads grain data stored under 

path given in the string argument 

/cs/setX 
 

float Sets the current x position 

/cs/setY 
 

float Sets the current y position 

/cs/setXSpread 
 

float Sets the current x spread 

/cs/setYSpread 
 

float Sets the current y spread 

/cs/conversation/add 
 

int (optional) If no arguments are passed, one 

conversation is added, if an 

integer value is passed, it sets the 

number of conversations added 

/cs/conversation/delete 
 

int Deletes the conversation with the 

number of the int argument. If the 

conversation doesn’t exist, 

nothing happens 

/cs/conversation/addVoice 
 

int, int Adds voice with number of 

second integer argument to 

conversation with number of first 

integer argument  

/cs/conversation/deleteVoice 
 

int, int Deletes voice with number of 

second integer argument from 

conversation with number of first 

integer argument 

/cs/conversation/setChattiness 

 

int, float Sets the chattiness of the 

conversation with the number of 

the first integer argument to the 

float value of the second 

argument  
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Appendix B Statement Sound Designer Markus Rebholz 

Statement of Markus Rebholz (Sound Designer) regarding the use of Wallas in 

today’s sound design in Germany in a conversation via Facebook Messenger on 

December 12th, 2017: 

Aufgrund von Zeit- und Budgetaufwand werden in Deutschland eher 

Wallas aus Librarys verwendet als explizit aufgenommene. 

Selbstverständlich kommt es immer darauf an, ob das ausgesuchte 

"Stimmengewirr" zur Szene passt (Kinderanteil, Frauen- vs. 

Männeranteile, Stimmung, Stereo vs. Mono, etc.) und tontechnisch 

einwandfrei ist. Manchmal kann man sich mit Universal-Wallas 

behelfen, in denen die Sprecher eine Art Fantasiesprache sprechen, 

die keinesfalls herauszuhören ist. Es können auch Wallas zusätzlich 

rückwärts über das Original gelegt werden. Bei größeren, höher 

budgetierten Produktionen wird jedoch selbstverständlich ein 

passendes Walla für bestimmte Szenen aufgenommen. In Hollywood 

geht man im Gegensatz zu hiesigen Produktionen fast ausschließlich 

immer her und nimmt das benötigte Walla auf. 

(Markus Rebholz, 2017) 
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Appendix C  Figures and Tables 

 

Figure C-1: The developed MATLAB GUI-application to facilitate manual mapping of audio files on a 

two-dimensional plane. Chosen positions are stored in the file name. 

 

Table C-1: Results for linear correlation of utterances from movies and talk shows with valence and arousal 

dimension 

Valence Arousal 

Parameter Corr. p-val. Paramter Corr. p-val. 
HammarbergVocalEff. −0.2106 < 0.0001 HammarbergVocalEff. 0.5061 < 0.0001 

HammarbergUnstable −0.1946 < 0.0001 PeakIntensity 0.5046 < 0.0001 

HammarbergHead −0.1869 < 0.0001 HammarbergUnstable 0.4993 < 0.0001 

HammarbergCoarse −0.1695 0.0002 MeanRMS 0.4377 < 0.0001 

HammarbergBreathyV. −0.1473 0.0011 RMSVariance −0.4307 < 0.0001 

MeanRelPitchDiff. −0.1383 0.0028 PitchVariance 0.4267 < 0.0001 

MaxRelPitchDiff. −0.1359 0.0033 PitchStandard 0.4266 < 0.0001 

PeakIntensity −0.1280 0.0046 MaxPitch 0.4231 < 0.0001 

VarRelPitchDiff. −0.1273 0.0059 MeanAperiodicity −0.4126 < 0.0001 

StdRelPitchDiff. −0.1246 0.0071 MaxRMS 0.4114 < 0.0001 

MeanPitchStep −0.1198 0.0084 SpectralRatio400 −0.3298 < 0.0001 

ZeroCrossingsRate 0.1073 0.0179 MeanPitch 0.3077 < 0.0001 

RMSVariance 0.0938 0.0382 PitchFallsAmount 0.3068 < 0.0001 

SpectralRatio400 0.0917 0.0428 MeanPitchStep 0.2983 < 0.0001 

PitchStandard −0.0878 0.0525 MeanRelPitchDiff. 0.2949 < 0.0001 
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Table C-2: Results of linear correlation for utterances from Grimaldi's (2017) recordings with valence and 

arousal dimension 

MaxProminence −0.0838 0.0655 MaxProminence 0.2885 < 0.0001 

MaxPitch −0.0837 0.0647 PeakDistance 0.2794 < 0.0001 

SpectralSpread 0.0828 0.0678 VoicedFraction 0.2772 < 0.0001 

MeanPitch −0.0823 0.0693 PitchRisesAmount 0.2751 < 0.0001 

PitchVariance −0.0807 0.0750 MaxRelPitchDiff. 0.2682 < 0.0001 

SpectralRolloff 0.0805 0.0760 StdRelPitchDiff. 0.2501 < 0.0001 

TonalPowerRatio −0.0803 0.0766 SpectralRatio3000 0.2439 < 0.0001 

PitchRisesAmount −0.0796 0.0963 HammarbergHead 0.2343 < 0.0001 

PitchFallsAmount −0.0765 0.1055 VarRelPitchDiff. 0.2130 < 0.0001 

PeakDistance 0.0682 0.1323 SpectralCentroid −0.2092 < 0.0001 

MaxRMS −0.0599 0.1865 SpeechRate 0.1834 < 0.0001 

SpectralFlatness 0.0555 0.2212 HammarbergCoarse 0.1763 0.0001 

SpeechRate −0.0551 0.2251 PitchRisesDuration −0.1739 0.0003 

PitchRisesDuration 0.0534 0.2651 SpectralSlope 0.1733 0.0001 

MeanRMS −0.0528 0.2442 SpectralFlatness −0.1576 0.0005 

MinRelRMSDiff. 0.0467 0.3143 PitchRisesFrequency 0.1508 0.0008 

SpectralRatio3000 −0.0414 0.3617 MeanRelRMSDiff. −0.1249 0.0070 

MinRelPitchDiff. −0.0318 0.4941 PitchFallsDuration −0.1187 0.0118 

SpectralCentroid 0.0270 0.5519 SpectralSpread −0.1170 0.0097 

VoicedFraction −0.0249 0.5830 StdRelRMSDiff. −0.1099 0.0176 

RMSVoiced 0.0230 0.6126 HammarbergBreathyV. 0.1097 0.0153 

PitchFallsFrequency 0.0227 0.6168 SpectralRolloff −0.1029 0.0231 

MeanAperiodicity 0.0204 0.6535 MaxRelRMSDiff. −0.0973 0.0357 

MeanRelRMSDiff. −0.0105 0.8214 PitchFallsFrequency 0.0927 0.0407 

VarRelRMSDiff. −0.0104 0.8223 VarRelRMSDiff. −0.0904 0.0510 

MaxRelRMSDiff. −0.0074 0.8731 MinPitch −0.0877 0.0530 

SpectralSlope 0.0051 0.9111 ZeroCrossingsRate −0.0859 0.0582 

PitchRisesFrequency −0.0039 0.9323 TonalPowerRatio −0.0772 0.0889 

PitchFallsDuration −0.0026 0.9555 MinRelRMSDiff. −0.0607 0.1907 

MinPitch 0.0026 0.9545 MinRelPitchDiff. 0.0579 0.2118 

StdRelRMSDifferences −0.0023 0.9607 RMSVoiced 0.0058 0.8982 

Valence Arousal 

Parameter Corr. p-val. Paramter Corr. p-val. 
MeanPitch −0.3203 < 0.0001 MeanRMS 0.8983 < 0.0001 

MeanRMS −0.2906 < 0.0001 MaxRMS 0.8789 < 0.0001 

RMSVariance 0.2881 < 0.0001 RMSVariance −0.7937 < 0.0001 

MeanAperiodicity 0.2833 < 0.0001 MeanPitch 0.7500 < 0.0001 

PitchRisesAmount −0.2730 < 0.0001 MaxPitch 0.6897 < 0.0001 

MinPitch −0.2691 < 0.0001 PitchFallsAmount 0.5834 < 0.0001 

PitchFallsAmount −0.2546 < 0.0001 MeanPitchStep 0.5428 < 0.0001 

HammarbergVocalEff. −0.2529 < 0.0001 PitchStandard 0.5348 < 0.0001 

MaxRMS −0.2419 < 0.0001 PitchRisesAmount 0.5253 < 0.0001 

HammarbergUnstable −0.2418 < 0.0001 PitchVariance 0.4806 < 0.0001 

MeanPitchStep −0.2376 < 0.0001 HammarbergVocalEff. 0.4608 < 0.0001 

MaxPitch −0.2244 < 0.0001 HammarbergHead 0.4582 < 0.0001 

PeakIntensity −0.2165 < 0.0001 SpectralSlope 0.4438 < 0.0001 

HammarbergHead −0.1983 < 0.0001 HammarbergUnstable 0.4383 < 0.0001 

PitchRisesDuration −0.1967 < 0.0001 PeakDistance 0.4359 < 0.0001 

HammarbergCoarse −0.1790 < 0.0001 HammarbergCoarse 0.4351 < 0.0001 

PeakDistance −0.1781 < 0.0001 MeanRelPitchDiffs 0.4264 < 0.0001 

MaxProminence −0.1752 < 0.0001 MaxProminence 0.4202 < 0.0001 

MeanRelPitchDiffs −0.1644 < 0.0001 HammarbergBreathyV. 0.3972 < 0.0001 

VoicedFraction −0.1608 < 0.0001 MaxRelPitchDiff. 0.3666 < 0.0001 
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SpectralSpread −0.1546 < 0.0001 PeakIntensity 0.3662 < 0.0001 

HammarbergBreathyV. −0.1514 < 0.0001 MeanAperiodicity −0.3595 < 0.0001 

PitchFallsDuration −0.1499 0.0001 StdRelPitchDiff. 0.3590 < 0.0001 

SpectralSlope −0.1439 0.0001 TonalPowerRatio −0.3476 < 0.0001 

SpectralRolloff −0.1435 0.0001 SpectralRatio400 −0.2851 < 0.0001 

ZeroCrossingsRate −0.1424 0.0001 MinPitch 0.2703 < 0.0001 

SpectralCentroid −0.1277 0.0004 VarRelPitchDiff. 0.2188 < 0.0001 

MaxRelPitchDiff. −0.1036 0.0061 VoicedFraction 0.2146 < 0.0001 

SpectralRatio3000 −0.0965 0.0076 MinRelPitchDiff. 0.2072 < 0.0001 

PitchStandard −0.0964 0.0080 SpectralFlatness −0.2048 < 0.0001 

SpectralRatio400 0.0908 0.0120 SpeechRate 0.1809 < 0.0001 

RMSVoiced −0.0903 0.0125 ZeroCrossingsRate 0.1702 < 0.0001 

MinRelRMSDiff. 0.0777 0.0398 RMSVoiced 0.1489 < 0.0001 

PitchRisesFrequency −0.0690 0.0564 SpectralCentroid −0.1415 0.0001 

TonalPowerRatio 0.0664 0.0686 PitchRisesFrequency 0.0992 0.0060 

PitchVariance −0.0630 0.0833 PitchFallsFrequency 0.0952 0.0084 

StdRelPitchDiff. −0.0597 0.1143 SpectralSpread −0.0833 0.0222 

SpectralFlatness −0.0572 0.1165 MinRelRMSDiff. −0.0555 0.1423 

VarRelPitchDiff. 0.0548 0.1473 SpectralRolloff −0.0528 0.1481 

MeanRelRMSDiffs 0.0431 0.2547 SpectralRatio3000 0.0290 0.4229 

PitchFallsFrequency −0.0422 0.2439 PitchFallsDuration −0.0189 0.6156 

MinRelPitchDiff. −0.0408 0.2811 PitchRisesDuration −0.0178 0.6370 

StdRelRMSDiff. 0.0303 0.4225 VarRelRMSDiff. 0.0093 0.8062 

MaxRelRMSDiffs 0.0226 0.5495 StdRelRMSDiff. 0.0092 0.8079 

SpeechRate 0.0120 0.7422 MeanRelRMSDiffs 0.0033 0.9297 

VarRelRMSDiff. −0.0002 0.9967 MaxRelRMSDiff. 0.0004 0.9920 
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Figure C-2: Scatter plots of standardized, perceived valence and arousal values for the three models 
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Figure C-3: Scatter plot of original results of the listening test for the three models and both affective 

dimensions 
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Figure C-4: Original results (without normalization) of perceived valence and arousal values 



Appendix Figures and Tables 

 

 

 

95 

 

 

Figure C-5: Comparison of evaluations of participants who indicated German or French as native language 
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Figure C-6: Evaluations of subjects who indicated, that French was their native language 
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Figure C-7: Evaluations of subjects who indicated, that German was their native language 
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Appendix D Code snippets 

Appendix D.I  Function Process Block 

void Cs_plugInAudioProcessor::processBlock(AudioSampleBuffer& buffer, MidiBuffer&  
midiMessages) 

{ 
  /// Function to fill output buffers. For every voice and speaker, respective syllable    
  /// buffers are copied, RMS adapted if necessary and added to the output channels. This  
  /// happens only on a midi or OSC request to play. 
  
  // create some constants to make sure these values don't change during this runtime of   
  // the function 
 
   const int totalNumInputChannels = getTotalNumInputChannels(); 
   const int totalNumOutputChannels = getTotalNumOutputChannels(); 
 
   // clear buffer 
   buffer.clear(); 
 
   // update some parameters 
   checkForUpdatedParams(buffer); 
 
   // if no audio grains are loaded, we can't play anything - so we return 
   if (datastate == Loaded == 0) return; 
 
   // MIDI PROCESSING ======= 
 
   handleMIDIEvents(midiMessages); 
 
   // AUDIO PROCESSING ======= 
  
   // loop through every speaker 
  
   for (int speakerNumber = 0; speakerNumber < speakers.size(); ++speakerNumber) 
   { 
 // get current speaker as constant to allow channel changes during execution 
 SingleSpeaker curr_speaker = speakers[speakerNumber]; 
 processSpeaker(buffer, curr_speaker); 
 speakers[speakerNumber] = curr_speaker; 
   } 
 
   // loop through conversations 
 
   for (int c = 0; c < conversations.size(); ++c) 
   { 
      if (conversations[c].activeVoice >= 0) 
      { 
         NewConversation conv_copy = conversations[c]; 
  processConversation(buffer, conv_copy); 
  conversations[c] = conv_copy; 
      } 
   } 
 
   // apply current Gain (with ramp if necessary) 
  
   const float currentGain = *parameters.getRawParameterValue("gainParam"); 
  
   if (currentGain == previousGain) 
   { 
      buffer.applyGain(currentGain); 
   } 
   else 
   { 
      buffer.applyGainRamp(0, buffer.getNumSamples(), previousGain, currentGain); 
      previousGain = currentGain; 
   } 
} 
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Appendix D.II  Function Process Stream 

template<typename T> void Cs_plugInAudioProcessor::processStream(AudioSampleBuffer& 
buffer, T & curr_speaker) 
{ 
  
  const int totalNumOutputChannels = getTotalNumOutputChannels(); 
  
  int outputSamplesRemaining = buffer.getNumSamples(); 
  int outputSamplesOffset = 0; 
 
  // loop through all output samples to fill 
while (outputSamplesRemaining > 0) 
{ 
 
  // check speaker's state 
  switch (curr_speaker.speakerState) 
  { 
 
    // speaker is saying a syllable 
    case StreamState::PlaySyll:  
    { 
 
     // determine how many samples are copied this time 
        int bufferSamplesRemaining = syllables[curr_speaker.getVoice()] 
                        [curr_speaker.newSyllable].audio[curr_speaker.getPitch()].  
    getNumSamples() - curr_speaker.position - crossfadeLength; 
 
 int samplesThisTime = jmin(outputSamplesRemaining, bufferSamplesRemaining); 
 
     // copy audio data from syllable matrix to copybuffer 

 
copybuffer1.copyFrom(0, 

0,  
syllables[curr_speaker.getVoice()] 

                 [curr_speaker.newSyllable].audio[curr_speaker.getPitch()], 
0, 
curr_speaker.position, 
samplesThisTime); 

 
     // scale audio to currently in Syllable object saved RMS factor (which was determined     
     // in previous run to avoid audible RMS jumps) 
  
  if (curr_speaker.old_RMS_factor != 1.f) 

{ 
  copybuffer1.applyGain(curr_speaker.old_RMS_factor); 

 } 
 
     // get the output channels of the current speaker 
 

Array<int> channels = curr_speaker.channels; 
 
     // loop through every channel of current speaker 
  

for (int channelAddress = 0; channelAddress < channels.size(); ++channelAddress) 
 { 
    if (channels[channelAddress] < totalNumOutputChannels) 
    { 
       // copy audio data from copybuffer to channel of output buffer 
       

 buffer.addFrom(channels[channelAddress], 
   outputSamplesOffset, 
   copybuffer1, 
   0, 
   0, 
   samplesThisTime, 
   curr_speaker.getLevel(channels[channelAddress])); 
    } 
 } 
 
     // subtract copied samples from remaining sample number and update speaker's 
     // position within syllable 
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 outputSamplesRemaining -= samplesThisTime; 
outputSamplesOffset += samplesThisTime; 

 curr_speaker.position += samplesThisTime; 
 
     // if speaker has rached end of syllable, prepare everything for the next syllable or 
     // pause 
     

if (curr_speaker.position == syllables[curr_speaker.getVoice()] 
[curr_speaker.newSyllable].audio[curr_speaker.getPitch()]. 
getNumSamples() - crossfadeLength) 

 { 
    
 curr_speaker.prepareNewState(StreamState::PlaySyll, crossfadeLength, fs); 
 
 // if speaker speaks another syllable after the one that has just been copied, the 
        // RMS of the new syllable has to be verified and maybe adapted 
      

if (curr_speaker.speakerState == StreamState::Crossfade) 
{ 
   // compare rms values, adapt the new grain's rms to the previous one to avoid 
   // jumps 

   
   float rms_fraction = syllables[curr_speaker.getVoice()] 

[curr_speaker.newSyllable].rms / average_rms; 
 
    if (rms_fraction > RMSFACTOR) 
    { 
       curr_speaker.new_RMS_factor = RMSFACTOR / rms_fraction; 
    } 
    else if (rms_fraction < 2 - RMSFACTOR) 
    { 
       curr_speaker.new_RMS_factor = (2 - RMSFACTOR) / rms_fraction; 
    } 
    else 
    { 
       curr_speaker.new_RMS_factor = 1.f; 
    } 
 } 
    } 
 
    break; 
} 
// speaker is changing from one to another syllable 
case StreamState::Crossfade:  
{ 
   int bufferSamplesRemaining = crossfadeLength - curr_speaker.fadePosition; 
   int samplesThisTime = jmin(outputSamplesRemaining, bufferSamplesRemaining); 
 
   // copy data from syllable matrix to temporate buffers for old and new syllable 
    
   copybuffer1.copyFrom(0, 

0, 
syllables[curr_speaker.getVoice()][curr_speaker.oldSyllable].audio
[curr_speaker.getPitch()], 
0, 
curr_speaker.position + curr_speaker.fadePosition, 
samplesThisTime); 
 

   copybuffer2.copyFrom(0, 
0, 
syllables[curr_speaker.getVoice()][curr_speaker.newSyllable].audio
[curr_speaker.getPitch()], 
0, 
curr_speaker.fadePosition, 
samplesThisTime); 

 
   // create fades 
       
   copybuffer1.applyGainRamp(0, 

samplesThisTime, 
(1 - curr_speaker.fadePosition / crossfadeLength) * 
curr_speaker.old_RMS_factor, 
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(1 - (curr_speaker.fadePosition + samplesThisTime) / 
crossfadeLength) * curr_speaker.old_RMS_factor); 
 

   copybuffer2.applyGainRamp(0, 
samplesThisTime, 
curr_speaker.fadePosition / crossfadeLength * 
curr_speaker.new_RMS_factor, 
(curr_speaker.fadePosition + samplesThisTime) / crossfadeLength * 
curr_speaker.new_RMS_factor); 

 
    // loop through every channel 
        
    for (int channelAddress = 0; channelAddress < curr_speaker.channels.size();    
          ++channelAddress) 
    { 

int channel = curr_speaker.channels[channelAddress]; 
 
 if (channel < totalNumOutputChannels) 
 { 
    // copy data from copybuffers to output channel 
    
       buffer.addFrom(channel, 
     outputSamplesOffset, 
     copybuffer2, 
     0, 
     0, 
     samplesThisTime, 
     curr_speaker.getLevel(channel)); 
 
    buffer.addFrom(channel, 
     outputSamplesOffset, 
     copybuffer1, 
     0, 
     0, 
     samplesThisTime, 
     curr_speaker.getLevel(channel)); 
   } 
      } 
 
   outputSamplesRemaining -= samplesThisTime; 
   outputSamplesOffset += samplesThisTime; 
   curr_speaker.fadePosition += samplesThisTime; 
 
   // if speaker has reached the end of the crossfade, the new state (PlaySyll) has to be  
   // prepared 
 
   if (curr_speaker.fadePosition == crossfadeLength) 
   { 
      curr_speaker.prepareNewState(StreamState::Crossfade, crossfadeLength, fs); 
   } 
 
break; 
 
} 
// speaker will have a pause next and fades out current syllable 
case StreamState::Fadeout:  
{ 
   int bufferSamplesRemaining = crossfadeLength - curr_speaker.fadePosition; 
   int samplesThisTime = jmin(outputSamplesRemaining, bufferSamplesRemaining); 
    
   // copy audio data from matrix to temporate buffer and apply fade-out 
     
   copybuffer1.copyFrom(0, 

0, 
syllables[curr_speaker.getVoice()][curr_speaker.oldSyllable].audio
[curr_speaker.getPitch()], 
0, 
curr_speaker.position + curr_speaker.fadePosition, 
samplesThisTime); 
 

   copybuffer1.applyGainRamp(0, 
samplesThisTime, 
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(1 - curr_speaker.fadePosition / crossfadeLength) * 
curr_speaker.old_RMS_factor, 
(1 - (curr_speaker.fadePosition + samplesThisTime) / 
crossfadeLength) * curr_speaker.old_RMS_factor); 

 
   // loop through every channel 
     
   for (int channelAddress = 0; channelAddress < curr_speaker.channels.size();  

++channelAddress) 
   { 
      int channel = curr_speaker.channels[channelAddress]; 
 
      if (channel < totalNumOutputChannels) 
      { 
          // copy data from copybuffer to output channel 
    
          buffer.addFrom(channel, 
   outputSamplesOffset, 
   copybuffer1, 
   0, 
   0, 
   samplesThisTime, 
   curr_speaker.getLevel(channel)); 
      } 
   } 
 
   outputSamplesRemaining -= samplesThisTime; 
   outputSamplesOffset += samplesThisTime; 
   curr_speaker.fadePosition += samplesThisTime; 
 
   // if speaker reaches the end of the fade out, the pause has to be prepared 
 
   if (curr_speaker.fadePosition == crossfadeLength) 
   { 
      curr_speaker.prepareNewState(StreamState::Fadeout, crossfadeLength, fs); 
   } 
    
   break; 
    
} 
// speaker is pausing 
case StreamState::Pausing:  
{ 
   int pauseSamplesRemaining = curr_speaker.pauseLength - curr_speaker.position; 
   int samplesThisTime = jmin(outputSamplesRemaining, pauseSamplesRemaining); 
 
   // no data is copied, position within pause is updated 
 
   outputSamplesRemaining -= samplesThisTime; 
   outputSamplesOffset += samplesThisTime; 
   curr_speaker.position += samplesThisTime; 
 
   // if speaker reaches end of pause, the new state (PlaySyll) has to be prepared 
     
   if (curr_speaker.position == curr_speaker.pauseLength) 
   { 
      curr_speaker.prepareNewState(StreamState::Pausing, crossfadeLength, fs); 
   } 
 
   break; 
    
} 
// speaker is not talking due to missing available grains 
case StreamState::NoGrainsInBuffer:  
{ 
   outputSamplesRemaining = 0; 
   outputSamplesOffset = 0; 
 
   // check if speaker buffer contains syllable numbers; if yes, prepare new state 
     
   if (curr_speaker.isReadyToPlay()) 
   { 
      curr_speaker.prepareNewState(StreamState::Pausing, crossfadeLength, fs); 
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   } 
 
   break; 
 
} 
// speaker is not active, waiting to be activated by MIDI or OSC signal 
case StreamState::Inactive:  
{ 
   outputSamplesRemaining = 0; 
   outputSamplesOffset = 0; 
 
   // check if speaker has been activated 
    
        if (curr_speaker.shallSpeak) 
        { 
           curr_speaker.prepareNewState(StreamState::Pausing, crossfadeLength, fs); 
        } 
      }   
    } 
  } 
} 

Appendix D.III  Function Prepare New State 

void prepareNewState(StreamState oldState, int crossFadeLength, double fs) 
{ 
   switch (oldState) 
   { 
   case StreamState::PlaySyll: 
 
      oldSyllable = newSyllable; 
      fadePosition = 0; 
      --currUtteranceLength; 
 
      if (!grainbuffers[activeVoice].isEmpty() && shallSpeak && currUtteranceLength > 0) 
      { 
         newSyllable = grainbuffers[activeVoice].pop(); 
  speakerState = StreamState::Crossfade; 
      } 
 
      if (grainbuffers[activeVoice].isEmpty() || newSyllable == -1 || !shallSpeak ||  
          currUtteranceLength < 1) 
      { 
         speakerState = StreamState::Fadeout; 
         generatePause(fs); 
      } 
 
   break; 
 
   case StreamState::Crossfade: 
    
      position = crossFadeLength; 
      speakerState = StreamState::PlaySyll; 
      old_RMS_factor = new_RMS_factor; 
    
   break; 
   
   case StreamState::Fadeout: 
 
      position = 0; 
      speakerState = StreamState::Pausing; 
      resetRMS(); 
    
   break; 
   
   case StreamState::Pausing: 
    
      if (currUtteranceLength < 1) 
      { 
         changeVoiceLottery(); 
      } 
    
      position = 0; 
      oldSyllable = newSyllable; 
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      if (!grainbuffers[activeVoice].isEmpty() && shallSpeak) 
      { 
     
         newSyllable = grainbuffers[activeVoice].pop(); 
 
     if (newSyllable < 0) 
     { 
        speakerState = StreamState::Pausing; 
        generatePause(fs); 
     } 
     else 
     { 
        speakerState = StreamState::PlaySyll; 
     } 
      } 
      else if (!grainbuffers[activeVoice].isEmpty() && !shallSpeak) 
      { 
         speakerState = StreamState::Inactive; 
      } 
 else 
 { 
    speakerState = StreamState::NoGrainsInBuffer; 
        } 
 
   break; 
   
   case StreamState::NoGrainsInBuffer: 
    
      position = 0; 
   } 
} 

Appendix D.IV  Function Fill Grain Buffers 

Cs_plugInAudioProcessor::fillNextGrainBuffers(NewConversation & conv) 
{ 
 
   const int voicenum = conv.getVoice(); 
   GrainBuffer & grainbuffer = conv.getBuffer(); 
 
   if (selectedGrains[voicenum].size() > 4) 
   { 
      Array<int> temp_grainVector = selectedGrains[voicenum]; 
 
      while (!grainbuffer.isFull() && temp_grainVector.size() > 4) 
      { 
         int halfIndex = (int)temp_grainVector.size() / 2; 
  int curr_RMS_difference = 0; 
 
  if (grainbuffer.timeUnstressed < minUnstressedTime) 
  { 
     // unstressed syllable 
 
     int nextIndice = random.nextInt(halfIndex); 
     int nextSyllable = temp_grainVector[nextIndice]; 
 
     if (grainbuffer.tryPush(nextSyllable)) 
     { 
        temp_grainVector.removeAndReturn(nextIndice); 
        grainbuffer.timeUnstressed += syllables[voicenum][nextSyllable] 

.audio[conv.getPitch()].getNumSamples(); 
        grainbuffer.lastGrainLength = syllables[voicenum][nextSyllable] 

.audio[conv.getPitch()].getNumSamples(); 
        grainbuffer.lastGrainStressed = false; 
        ++grainbuffer.grains_since_last_pause; 
        grainbuffer.firstGrainRMS = grainbuffer.secondGrainRMS; 
        grainbuffer.secondGrainRMS = syllables[voicenum][nextSyllable].rms; 
        curr_RMS_difference = grainbuffer.firstGrainRMS –  
        grainbuffer.secondGrainRMS; 
     } 
         } 
         else 
         { 
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     // stressed syllable 
     int nextIndice = halfIndex + random.nextInt(halfIndex - 1); 
     int nextSyllable = temp_grainVector[nextIndice]; 
 
            if (grainbuffer.tryPush(nextSyllable)) 
     { 
        temp_grainVector.removeAndReturn(nextIndice); 
        grainbuffer.timeUnstressed = 0; 
        grainbuffer.lastGrainLength = syllables[voicenum][nextSyllable] 

.audio[conv.getPitch()].getNumSamples(); 
        grainbuffer.lastGrainStressed = true; 
        ++grainbuffer.grains_since_last_pause; 
        grainbuffer.firstGrainRMS = grainbuffer.secondGrainRMS; 
        grainbuffer.secondGrainRMS = syllables[voicenum][nextSyllable].rms; 
        curr_RMS_difference = grainbuffer.firstGrainRMS –  

grainbuffer.secondGrainRMS; 
      } 
   } 
          
 
         if (grainbuffer.lastGrainStressed == false && grainbuffer.grains_since_last_pause  

> grainbuffer.min_grains_before_pause && curr_RMS_difference > 0 && 
(float)grainbuffer.lastGrainLength / fs > LASTGRAINLENGTH) 

  { 
     
            // pause lottery 
     
            float pauselottery = random.nextFloat(); 
 
     if (pauselottery > grainbuffer.notPauseProbability) 
     { 
        if (grainbuffer.tryPush(-1)) 
        { 
           grainbuffer.notPauseProbability = default_notPausePropability; 
    grainbuffer.grains_since_last_pause = 0; 
    grainbuffer.lastGrainLength = 0; 
        } 
     } 
     else 
     { 
        grainbuffer.notPauseProbability *= default_notPausePropability; 
     } 
  } 
       
      // refill vector with possible numbers when only x grains are left 
      if (temp_grainVector.size() < 5) 
      { 
         temp_grainVector = selectedGrains[voicenum]; 
      } 
    } 
  } 
} 




