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Chapter 1

Introduction

The Virtual Electronic Poem (VEP) project is a joint effort of several Euro-
pean institutions aiming at the reconstruction of the Poème électronique –
one of the first and most influential pieces of media art and electroacoustic
music – by means of virtual reality presentation techniques.

Funded by the EU commission under the Culture 2000 programme, the
project was carried out as a collaboration between five institutions and indi-
viduals, each responsible for a different aspect of the reconstruction: VRMM
Park and Università di Torino Italy (visual reconstruction), Department of
Computer Science University of Bath (reconstruction of the score), Insty-
tut Informatyki Politechnika Slaska Gliwice (web presentation), Kees Taze-
lar of Institute of Sonology The Hague (musical and historical expertise)
and Fachgebiet Kommunikationswissenschaft Technische Universität Berlin
(acoustical reconstruction).

The project started in September 2004 and was presented at the ICMC in
Barcelona in October 2005.

This thesis presents a binaural rendering engine developed for the VEP
project and a method for dealing with large impulse sets by means of an
impulse response cache. The engine was presented together with a visual
rendering for head-mounted display as an integrated, immersive installation,
providing spectators with an experience as closely to the original performance
as possible with today’s technology.

Chapter 2 introduces the original Poème électronique and documents the
methods used in the reconstruction project.
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8 CHAPTER 1. INTRODUCTION

Chapter 3 provides an overview of binaural room impulse responses and their
use in virtual room simulation, describes various convolution algorithms in
the time and frequency domains and examines existing impulse response
partitioning schemes for latency reduction.

Chapter 4 describes the architecture of SuperCollider, the software environ-
ment used for realization of the binaural rendering engine.

Chapter 5 presents the components of the rendering application, describes the
low-latency convolution algorithm used and introduces the impulse response
cache.

Chapter 6 finally discusses possible enhancements to the rendering engine
indicated by performance measurements carried out in the preceding chapter.



Chapter 2

The Virtual Electronic Poem

Project

The Virtual Electronic Poem Project is an attempt to reconstruct the peculiar
impression of a multimedia presentation in the Philips pavilion at the world
exposition of 1958 by means of virtual reality techniques. The following
sections introduce the conception of the historic pavilion and present the
reconstruction efforts carried out by the team of researchers taking part in
the VEP project.

2.1 The Historic Pavilion

The Philips pavilion at the 1958 world exposition was dedicated not so much
to the presentation of commercial products, but to the impressive use of
Philips technology in a piece of multimedia art [16].

Louis Kalff, then art director at Philips, proposed the idea of designing a
pavilion to renown architect Le Corbusier, who immediately accepted and
developed the notion of an “electronic poem” inside a building without ob-
vious facades. The piece would be comprised of elements in different media,
such as sound, visual projections and color and be of about ten minutes in

9



10 CHAPTER 2. THE VIRTUAL ELECTRONIC POEM PROJECT

length, including an interlude of two minutes composed by Iannis Xenakis,
then Le Corbusier’s assistant.

Le Corbusier directed the project and also provided the images for the visual
projections, while the sound composition was developed by composer Edgard
Varèse and the building itself was designed by architect and composer Iannis
Xenakis (Figure 2.1).

Figure 2.1: The Philips pavilion at the Brussels World Exposition in 1958

In order to accommodate the large number of visitors that were expected at
the exhibition each day, the pavilion had to provide a separate entrance and
exit, located at opposite sides of the building. Xenakis’ design resembles a
stomach, that digests the spectators and lets them out transformed by the
performance in the inside. Two almost vertical walls facing each other were
required for visual projections; Xenakis’ solution involved the use of curved
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surfaces with varying radius, that also helped with acoustical inhibition of
echoes and standing waves.

According to an original sketch by Xenakis in [26], about ten loudspeaker
“routes” can be identified, comprising about 350 loudspeakers in total. The
use of sound routes, either linear stretches or clustered segments, were es-
sential to the realization of Varèse’s objective of “sound masses” that should
not blend into one another, but form disparate entities, identified by different
timbres and sound intensities [30].

The Poème électronique was a unique and unprecedented synthesis of diverse
media, which attracted around two million visitors during its existence. De-
spite the visionary nature of the project, the pavilion was destructed at the
end of the exposition and only fragments of the original design remain, such
as photographs, handwritten drafts, videos and tape recordings.

2.2 The Reconstruction

Although there have been other attempts to reconstruct the experience of
the Poème électronique either in software or physically, the VEP follows a
novel approach by use of immersive technologies (Figure 2.2).

Visually, the reconstruction provides a complete view on the scenery inside
the pavilion, as well as a realistic and historically accurate virtual rendering
of the original performance through a head-mounted stereoscopic display.

The aural reconstruction is based on a binaural rendering model for a pre-
defined listener position, that combines the accurate computation of room
impulse responses for 350 loudspeakers with the reconstructed score and the
original sound material.

The room modeling – starting from a CAD model for the visual reconstruc-
tion – and impulse response rendering based on the reconstructed loudspeaker
positions was realized by Sebastian Benser in the commercial software EASE
[1] (Figure 2.3). The 350 individual loudspeaker binaural impulse responses
could, after a thorough investigation of the reconstructed control score, be
combined into groups of simultaneously sounding loudspeakers, thereby re-
ducing the number of required BRIR sets to 204. Each set is comprised of
9720 separate binaural impulse responses for 360 horizontal degrees and 27
vertical degrees (−40◦ to 90◦ in 5◦ steps) of resolution (Fig. 2.4).

Mainly due to the necessity of reducing the overall computation time for
the BRIR sets, only the first 0.13s of early reflections were computed with a
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Figure 2.3: CAD model of the pavilion with reconstructed loudspeaker posi-
tions

route for two channel headphone realization. The convolution process for
each track should respond to head tracker input induced by listener head
movements and score events triggering the transition to a new loudspeaker.

Due to the large number of loudspeaker groups and the corresponding amount
of BRIR data (about 75 GB), the engine should be able to load impulse
responses from disk on demand, depending on score and head tracker input.

Score input for switching loudspeakers should be possible either from the
graphical rendering application, for visualization of currently sounding loud-
speaker groups, or separately from a text file.

Finally, the tracker interface should be reasonably general in order to inter-
face either with the head tracker of the head-mounted display or another
standalone tracking device.





Chapter 3

Fast Convolution

Convolution is a method of imposing the “quality” of a linear system onto
an arbitrary input signal, thereby creating a filtered output. In the following
a review of the use of impulse responses in binaural rendering applications
shall be made and an overview given over different methods for convolution.

3.1 Binaural room impulse response and con-

volution

Localization in the human auditory tract in the horizontal and median plane
is based on the effects of interaural time differences and interaural level dif-
ferences as well as diffraction phenomena in the proximity of the head, that
are evaluated by the human brain for clues about the three dimensional angle
of incoming sound events [32, p.26].

These frequency dependent linear distortions can be modeled as a linear time-
invariant (LTI) system, where input signals are filtered with a different FIR
filter response depending on their direction. The filter response is called head
related transfer function (HRTF) and is represented in the time domain by a
head related impulse response (HRIR). HRIRs can be measured for different
directions by means of a dummy head and corpus in an anechoic room; it
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16 CHAPTER 3. FAST CONVOLUTION

turned out to be beneficial to measure a set of impulse responses with fine
horizontal resolution of at least 1◦ [21].

According to the principle of superposition, LTI systems can be fully de-
scribed by delayed and appropriately scaled unit impulses [24, p.24]. The
impulse response denotes the system response to a single unit impulse input.
Discrete time filtering is then the superposition of one scaled version of the
impulse response for each input sample.

Due to the linearity of convolution, room response information can be com-
bined with HRTFs into binaural room impulse responses (BRIRs). This
process can involve measuring HRTFs in a room that is non-anechoic in or-
der to directly obtain BRIRs for convolution [15]. The method employed
in the VEP project – as carried out by the EASE modelling software – is
convolving discretized response histograms with the HRTF corresponding to
the direction of each modeled mirror sound source [32, p.66]. Both meth-
ods generate sets of impulse responses for each possible listener position -
sound source combination with one impulse response for each listener head
orientation in the horizontal and the vertical plane.

Room impulse responses can generally be divided into three parts: direct
sound, early reflections and reverb tail (Fig. 3.1). Since the reverb tail ex-
hibits only statistical features of the energy distribution in the room impulse
response, and does not contribute to binaural localization, it can be processed
separately from the early reflections.

3.2 Time Domain Convolution

Convolution is the process of “combining” the impulse response of a linear
system with an input signal to obtain the filtered output of the system and
is denoted by the ∗ operator.

The discrete time operation of convolving input signal x[n] with the impulse
response h[n] is defined as follows [24, p.24]:

x[n] ∗ h[n] =
inf∑

k=− inf

x[k]h[n− k] (3.1)

When processing an infinite signal on a block by block basis, 3.1 can be
rewritten as
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Figure 3.1: Schematic impulse response diagram

x[n] ∗ h[n] =
L−1∑
k=0

x[k]h[n− k] (3.2)

where L is the length of the impulse response. When the input signal block
size is N , then the convolution result has the length N + L − 1, or equiva-
lently N +M , where M = L− 1 is the FIR filter order [25, p.108]. The filter
decay tail of length L− 1 must be handled specially in block-based time do-
main convolution, in what is usually called the overlap-add block convolution
method [25, p.146]. Each tail Mi resulting from the convolution operation in
block i is saved in memory until processing of block j = i + 1 and added at
the beginning of the convolution result yj of length N (Fig. 3.2).

The complexity of time domain convolution in O notation – counting the
number of multiply-adds per output sample – is O(N), where N = L is the
length of the impulse response and block size.
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Figure 3.2: Overlap-add block convolution

3.3 Frequency Domain Convolution

It can be shown that the convolution of two signals in the time domain
corresponds to a multiplication of their DFT coefficients in the frequency
domain [24, p.632]

y[n] = h[n] ∗ x[n]⇔ Y [k] = H[k]X[k] (3.3)

where the DFT is defined as

X[k] =
N−1∑
n=0

x[n]e−j 2π
N

kn (3.4)

The convolution result can be recovered by transforming Y (k) back into the
time domain with the inverse DFT (DFT−1) operation

x[n] =
1

N

N−1∑
n=0

x[n]ej 2π
N

kn (3.5)

Thus, frequency domain convolution can be expressed symbolically as
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y[n] = DFT−1(DFT(h[n])DFT(x[n])) (3.6)

Care must be taken when interpreting the result, because due to the period-
icity of the Fourier transform in the frequency domain and discretization of
the spectrum by the DFT, the inverse DFT computes the modulo-N wrapped
output signal, a property that is referred to as circular or cyclic convolution
[24, p.656] [25, pp.524-529]. When undersampling in the frequency domain,
part of the output signal appears to be wrapped back into the beginning of
the current output block.

As mentioned in 3.2 the convolution of an input sequence block of length N
and an impulse response of length L produces a result of length N + L − 1
and thus leads to aliasing after conversion of the convolution result to the
time domain, unless constraining the size NDFT of the transform to

NDFT ≥ N + L− 1 (3.7)

3.4 Fast Convolution

Convolving two input sequences in the frequency domain was not feasible
until 1965, when the Fast Fourier Transform (FFT) was developed by Cooley
and Tukey [3]. Replacing the DFT by the FFT in Eq. 3.6 yields a form of
frequency domain convolution usually referred to as fast convolution.

The FFT is an efficient implementation of the DFT, based on a divide and
conquer approach that decomposes the problem into smaller subproblems
and constructs the final DFT from the sub-DFT results. Subdivision of the
initial DFT into smaller DFTs works well when NDFT is highly factorisable
and many efficient implementations require the size of the FFT NFFT be a
power of two, i.e.

NFFT = 2B (3.8)

where B ≥ 0.

In order to satisfy Eq. 3.8 in frequency domain convolution, the input block
and the impulse response is usually padded with zeros to the next power of
two. The resulting padded blocks of length N are then padded with zeros
to obtain the size of the FFT NFFT = 2N to satisfy Eq. 3.7. The aliased
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components in the block of length NFFT are zero and thus not audible after
the inverse transformation.

The cost of single block frequency domain convolution is composed of the
cost of the FFT and FFT−1

O(NFFT ) = O(NFFT log2(NFFT )) (3.9)

and the complex multiplication in the frequency domain with 4N real multiply-
adds per block and can be derived from 3.9 by substituting NFFT = 2N and
normalizing with 1

N
to obtain the complexity per output sample:

O(N) = O(2
2N log2(2N)

N
+

4N

N
)

= O(4(log2(N) + 2))
(3.10)

When the overlap-add scheme as in 3.2 is used, another N adds and stores
have to be taken into account for mixing the previous convolution tail of
length N into the current output block.

3.5 Partitioned Convolution

Using convolution techniques in interactive systems usually imposes upper
bounds on the acceptable output latency of the system, where latency in this
context means the time passing between a change of state in the input – e.g.
head tracker data – and the instant this change is reflected in the output.

Time domain convolution has the desirable property of providing zero latency
when realized in a DSP system but it doesn’t scale well with increasing
impulse response lengths. Single block frequency domain convolution, on the
other hand, scales extremely well with larger problem sizes, but it’s latency
is equal to the length of the impulse response padded to the next power of
two, which is unacceptable for room impulse responses.

Following the linearity property of the convolution however, it is possible to
partition the time-domain impulse response in separate blocks, convolve these
blocks with the input signal and delay the convolvers’ outputs according to
the start of the respective partition in the impulse response.
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3.5.1 Uniform partition sizes

First proposed by Stockham in 1966, partitioning the impulse response into
blocks of uniform length is one possibility of reducing the I/O delay of the
convolution process [29].

Each block is first transformed into the frequency domain, multiplied with
the frequency domain representation of the corresponding input block and
accumulated into a frequency domain buffer, that finally is converted to the
time domain with the FFT−1 operation.

Because all blocks have the same lengths, instead of delaying the time domain
outputs, the delay line can operate on frequency domain input blocks, and
only one FFT−1 is needed per output block. The time domain output buffer
is then overlap-added into the output stream, as described in 3.4. Fig. 3.3
shows the process of convolution with uniform partition sizes the spectral
domain input delay line and accumulator and the overlap add procedure at
the output.

According to Torger [29], using uniform partition sizes has the benefit of
shifting the load of the algorithm from the FFT to the complex multiply-add
operation, which is more easily optimized by using SIMD vector instructions.
Partitioning the impulse response not only makes sense when intending to
reduce I/O latency, but also to improve caching of data and instructions on
the processor.

Given a target latency of D = N
fs

and an impulse response of length L, the
partition size needs to be N and the cost of the algorithm is comprised of the
costs for the FFT operations (see Eq. 3.10) and 4N complex multiply-add
steps for each of the d L

N
e partitions

O(N) = O(2(
2N log2(2N)

N
) +

4N

N

L

N
)

= O(4(log2(N) +
L

N
+ 1))

(3.11)

Garćıa [10] shows by setting the derivative of the cost function to zero and
solving for N , that the optimal blocksize can be calculated directly:

Nopt =
L ln(2)

k
(3.12)

where k is a constant derived from the efficiency of the particular FFT imple-
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Figure 3.3: Partitioned convolution with uniform partition sizes

mentation. Conservatively assuming k = 1, the optimal block size for large
impulse responses is too large for realistic latencies in interactive use – the
algorithmic complexity increases linearly with L when N drops below the
optimal block size, and thus doesn’t scale well with combinations of small N
and large L.

3.5.2 Non-uniform partition sizes

Gardner [11] proposes a scheme that partitions the impulse response into a
number of non-uniform blocks and provides zero I/O delay at a reasonable
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cost.

Fulfilling the constraints of providing latency N and ensuring that each par-
tition of size Ni must start at least Ni samples into the impulse response
in order to be able to collect enough input data and reconstruct the output
without disruptions, a minimum cost partitioning scheme is starting with
two partitions of size N0 = N1 = N and doubling the size of each following
partition, i.e. N2 = 2N , N3 = 4N and so forth (Fig. 3.4). By convolving
the first input block in the time-domain, zero latency can be achieved in
a dedicated DSP environment, where interrupts are serviced at the sample
level.

N N 2N 4N 8N

Latency

Figure 3.4: Non-uniform minimum cost partitioning scheme

Since the individual convolution processes have a processing period of Ni and
each partition starts only Ni into the impulse response, in order to satisfy
the constraint of uninterrupted reproduction at the output, the convolution
results for each process must be made available instantly, leading to a non-
uniform load on the processor.

A uniform load partitioning scheme doubles the partition sizes only every
other partition (Fig. 3.5), i.e. each convolution process is allowed as much
time for computation as it takes to collect input data, thus making the
scheduling of the individual processes more flexible. Direct process schedul-
ing, as described in [11], is not immediately applicable to general purpose
operating systems, and shall not be repeated here. A detailed description of
the algorithm used in the VEP application is given in 5.1.

N N 2N 4N

Latency

2N 4N

Figure 3.5: Non-uniform uniform load partitioning scheme

With Eq. 3.10 the cost for the uniform load algorithm is the sum of the cost
for I processing modules, each processing a single partition size:
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O(N) = O(
I−1∑
i=0

4(log2(2
iN) + 2))

= O(
I−1∑
i=0

4(i + log2(N) + 2))

= O(
4I(I + 1)

2
+ 4I log2(N) + 8I)

= O(2I2 + 2I + 4I log2(N) + 8I)

= O(2I2 + I(4 log2(N) + 10))

The length of the impulse response is L = 2
∑I−1

i=0 2iN and thus I = log2(
L

2N
),

which yields

O(N) = O(2[log2(
L

2N
)]2 + log2(

L

2N
)[4 log2(N) + 10]) (3.13)



Chapter 4

The SuperCollider Architecture

The VEP audio rendering application is realized within the comprehensive
SuperCollider synthesis and composition environment. SuperCollider pro-
vides a general purpose framework for generating and processing sound, as
well as a general purpose programming language tailored to realtime appli-
cations.

4.1 SuperCollider Server

SuperCollider was originally developed by James McCartney on MacOS 9. Its
predecessors Synth-O-Matic, a standalone synthesis application, and pyrite,
a MAX/MSP object were the basis for the release of SuperCollider 1 in 1996
[17] and its successors SuperCollider 2 in 1998 and SuperCollider 3d5 in 2000
[18].

Up to this point SuperCollider was proprietary software, but in 2002 Mc-
Cartney decided to port SuperCollider 3, or SuperCollider Server, to MacOS
X and release the program under the GPL, an open source license that per-
mitted further development of the application in a community of users and
developers [19]. Between 2002 and 2003 the author of this thesis ported the
SuperCollider environment to the Linux operating system [13] – today Su-
perCollider can be used on all three major platforms, MacOS X, Linux and
Windows.

25
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In the following, an overview of the SuperCollider Server architecture will be
provided, as far as it is related to the VEP application.

4.2 Client-Server Architecture

Previous versions of SuperCollider were based on a single process model,
where the SuperCollider language was executed in the same interrupt that
is responsible for providing the audio hardware with new sample data [17].
This had the distinct possibility of providing the synthesis with control data
from a higher level language synchronously and, more importantly, to be able
to create new synthesis patches on the fly.

With version 3, SuperCollider Server, the architecture was changed to a
client-server model (Fig. 4.1).

A small, efficient and portable synthesis engine – scsynth – is responsible for
managing synthesis nodes and other resources such as audio and control sig-
nal communication buses and data buffers. At the same time it functions as
a network server, exporting all the necessary commands for resource alloca-
tion and management, synthesis node control and state information through
a specific protocol, OpenSoundControl (OSC, see 4.3) – the most impor-
tant server commands are listed in Tab. 4.1. Currently, transport protocols
supported by the synthesis engine are UDP and TCP.

The SuperCollider language sclang runs in a separate address space from the
server and controls its operation by the use of OSC. The object oriented lan-
guage is based on an efficient byte-coded interpreter with realtime execution
semantics. It is close to Smalltalk, but also borrows from Lisp, J, Ruby and
other programming languages, featuring a single-inheritance object model
and introspection facilities.

Although sclang code has a byte-code representation interpreted by a virtual
machine, many important methods are implemented as so called primitives,
written in C. The virtual machine provides constant-time method lookup and
a realtime gargabe-collector, allowing the use of the language environment
in contexts with soft-realtime requirements, such as realtime musical compo-
sition, analysis and control.

The language core is comprised of classes for character strings, symbols,
numbers and a comprehensive container data structure hierarchy inheriting
from Collection. High level scheduling facilities are provided by instances
of TempoClock and subclasses of Stream, allowing detailed control over the
evolvement of processes in time on a high level of abstraction. A large hi-





28 CHAPTER 4. THE SUPERCOLLIDER ARCHITECTURE

Command Description

/s_new
Creates a new synth from a synth definition and adds it
to the tree of nodes.

/g_new Creates a new group and adds it to the tree of nodes.

/n_free
Stops a node abruptly, removes it from its group and
frees its memory.

/g_freeAll Frees all nodes in the group.

/n_set

Takes a list of pairs of control indices or keys and values
and sets the controls to those values. If the node is
a group, then it sets the controls of every node in the
group.

/b_alloc
Allocates a zero filled buffer with the specified number
of channels and samples.

/b_free Frees memory allocated for the specified buffer ID.

/cmd

Takes the name of a plugin defined command and passes
any number of arguments to the appropriate command
handler.

Table 4.1: Important OSC commands for scsynth

the transmitting and the receiving applications are able to use the same
transport layer.

The most prominent transports used by OSC-enabled applications are UDP,
TCP and in some cases serial protocols such as RS232. The VEP application
uses UDP throughout, because packet loss turned out to be not an issue in
a dedicated local network and UDP has far less bookkeeping overhead than
TCP.

OSC, unlike MIDI, doesn’t have a fixed namespace for commands supported
by applications. Each application, or set of applications, must define their
own command set tailored to the problem at hand. OSC commands are
strings adhering to a virtual hierarchy similar to the Unix file system tree,
where components are separated by forward slashes:

/synth/oscil/freq

OSC messages begin with a command string, followed by an argument tag
string denoting the types of the arguments supplied with the message and
the corresponding arguments encoded in binary form. Supported argument
types are strings, 32 bit integer and floating point numbers and containers for
arbitrary binary data, so called blobs (Tab. 4.2). For reasons of backwards
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compatibility, the tag string starts with the character “,”. The protocol spec-
ification makes sure that any numerical data is aligned to 4-byte boundaries,
making it efficiently readable from memory on most architectures.

Type tag Type description
i 32 bit integer (network byte order)
f 32 bit IEEE float (network byte order)
s null-terminated character string,

padded to 4-byte boundary
b 32 bit integer byte count

followed by 4-byte padded binary data (blob)

Table 4.2: OSC argument type tag encodings

Messages can be grouped into bundles, starting with a 64 bit integer time
tag and followed by any number of messages, where each message is preceded
by a 32 bit integer byte count denoting the message length (Fig. 4.2).

Time tags are in standard Network Time Protocol (NTP) format [20], with
the high 32 bits counting seconds from January 1st 1900 and the low 32 bits
denoting the fractional part with more than picosecond precision.

4.4 Synthesis Graph

Signal processing tasks on the server are organized in a tree, that defines the
order of execution of synthesis modules, while the vertices define containment
relationships (Fig. 4.3).

Groups are nodes in the tree that can contain other nodes. They are mainly
used for resource management, e.g. freeing all nodes contained in a group
with the /g_freeAll OSC command, or controlling a group of nodes as an
entity with the /n_set OSC command.

Synths, on the other hand, form the leaves of the tree and are the actual
sound production entities. A synth is an instantiation of a SynthDef, a com-
piled binary representation of unit generator (UGen) synthesis graphs, quite
similar to a Csound [31] instrument. A synth definition abstractly defines in
the manner of a template which unit generators will be used and how they
are to be interconnected. When a definition is instantiated, the actual pro-
cessing units are initialized and connected through internally allocated buffer
space that is used for communication of time domain sample data between
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order to avoid feedback the In unit checks the bus write timestamp and ze-
ros any data remaining from the previous cycle. Thus, a node n0 reading
from a bus written to by node n1 must be placed later in the node execution
hierarchy. This can either be achieved by an argument to the /s_new com-
mand, explicitly specifiying the placement of the new node in the containing
group, or by allocating n0 and n1 in different groups, that already are in the
correct order of execution. If audio feedback through buses is desired, the
unit InFeedback can be used to read data of the current or the last cycle
from an audio bus.

4.5 Unit Generator Plugins

The actual sound synthesis and signal processing routines in scsynth are
written in the C++ programming language and are loaded from compiled
plugin modules.

Plugin modules export a single initialization function with the signature

void load(InterfaceTable *inTable );

that is called when the plugin is loaded and is used to define new unit gen-
erators and OSC plugin commands. Plugin code can in general not direct-
loy call functions defined in scsynth, but must use the function pointers
exported in the InterfaceTable structure in headers/plugin interface/

SC InterfaceTable.h that is passed to the load function and must be stored
in the static variable static InterfaceTable *ft during plugin initializa-
tion. In the course of the thesis, interface table functions will be given with
their full signature as well as the signature of their corresponding preproces-
sor wrapper macro, that depends on the previous declaration of ft.

Each plugin defines one or more classes derived from the common base class
Unit that mainly holds pointers to input and output buffers and to a sample
calculation function with the signature

void (* UnitCalcFunc )( struct Unit *unit , int n);

that is called to produce one block of n samples2.

2The DSP graph block size in scsynth is adjustable through the commandline argument
-z. Typically it is 64 samples, while the actual hardware buffer size can be larger and
depends on driver backend and host environment settings.
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New unit definitions have to be registered with the synthesis engine by a call
to one of

// Interface table function pointer

bool (* fDefineUnit )(char *className ,

size_t allocSize ,

UnitCtorFunc ctor ,

UnitDtorFunc dtor ,

uint32 flags);

// Wrapper macros

#define DefineSimpleUnit(name)

#define DefineDtorUnit(name)

#define DefineSimpleCantAliasUnit(name)

#define DefineDtorCantAliasUnit(name)

While the interface table function provides full control over the addresses of
the constructor and destructor functions, the convenience macros rely on the
naming convention <UnitName>_Ctor and <UnitName>_Dtor, respectively.

Unit constructors and destructors are declared to have the signatures

typedef void (* UnitCtorFunc )( struct Unit* unit);

typedef void (* UnitDtorFunc )( struct Unit* unit);

and are needed to initialize a unit after instance creation and to release any
resources (e.g. memory) before the unit is freed.

One architectural property that scsynth shares with e.g. Csound is to not
implement a fixed size synthesis “voice” structure and rely on preallocated re-
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sources, but to allow new synthesis node instances to be created dynamically
and in response to realtime data input. For this reason, unit constructors
and destructors are called from the realtime audio processing thread and
are required to adhere to strict realtime requirements, i.e. their complexity
should – if at all possible – not be a function of a variable but be constant.
This means for instance that only specialized memory allocation functions
– provided by the scsynth runtime environment – should be used, no po-
tentially blocking operating system calls should be utilized and that data
initialization costs should be amortized across several callback cycles.

In order to produce audio samples written to the output buses, scsynth tra-
verses the graph of nodes present at the instant of a specific audio hardware
callback or interrupt and calls each node’s calculation function. Container
nodes continue by traversing their child nodes, whereas leaf nodes in turn
call the sample calculation function of each unit contained in their body of
execution.

The sample production callback must obey the same realtime constraints as
the unit constructor and destructor functions and eventually writes audio
samples to the output buffers of the owning unit.

4.6 Asynchronous Commands

OSC commands that don’t meet the realtime requirements, such as those
allocating memory from the operating system or reading data from disk,
are executed asynchronously by a separate thread provided by the scsynth

runtime environment.

Asynchronous commands are initiated from the realtime audio thread (Fig.
4.1) by calling the interface table function (and corresponding macro)

int DoAsynchronousCommand

(

World *world ,

void* replyAddr ,

const char* cmdName ,
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void *cmdData ,

AsyncStageFn stage2 ,

AsyncStageFn stage3 ,

AsyncStageFn stage4 ,

AsyncFreeFn cleanup ,

int completionMsgSize ,

void* completionMsgData

);

where the stage callbacks have the signatures

bool (* AsyncStageFn )(World *inWorld , void* cmdData );

void (* AsyncFreeFn )(World *inWorld , void* cmdData );

After having passed a command data structure – through a lockfree ringbuffer
– to the non-realtime helper thread, the stage2 function is executed and
may do any work that is not realtime-safe. When this function returns,
the command structure is passed back to the realtime thread, where the
stage3 function is executed. When stage3 returns true, an artbitrary OSC
message usually passed by the network client that initiated the operation, is
executed. Finally, stage4 is executed in the non-realtime thread and sends a
/done OSC message back to the requesting client (Fig. 4.5). The optional
cleanup callback is executed as a last stage in the realtime thread in order to
release resources allocated from the realtime memory manager.

4.7 Sample data buffers

Another important resource on the server, apart from synthesis nodes, are
sample data buffers. Buffers are allocated by the /b_alloc and /b_allocRead

OSC commands and can be freed with the /b_free OSC commands. They
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are, just as nodes, indentified by globally unique integers.

The sample data held by buffers is defined to have a 32 bit floating point
representation, but the exact interpretation is largely up to the unit generator
accessing the buffer. The data structure includes fields for sample rate and
number of channels, in order to accomodate the most common use for time
domain audio data.

Fig. 4.6 shows the structural sharing of buffers between the realtime thread
and the non-realtime thread (see Fig. 4.1). The buffer data strutures accessed
from the realtime thread are held in a copy in the non-realtime thread. Oper-
ations involving asynchronous updates to a buffer structure first modify the
mirror copy in the non-realtime thread and afterwards synchronously update
the original in the realtime thread from the stage3 callback function executed
in the same thread (see 4.6). The assumptions in this update strategy are
that

• asynchronous commands are executed and completed sequentially, i.e.
no concurring updates of the same buffer from different commands take
place,

• the respective buffer mirror image is only modified from the associated
thread.

4.8 Plugin Commands

In addition to the set of OSC commands built into scsynth plugins may
define their own custom commands. This is done by a call to the interface
function

bool DefinePlugInCmd

(

char *cmdName ,

PlugInCmdFunc func ,

void* userData
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);

Plugin command functions are executed in the realtime thread, but they may
spawn an asynchronous command (see 4.6) for non-realtime processing.

Plugin commands can be executed by sending the /cmd OSC command to
scsynth (see Tab. 4.1), passing the plugin command name and any number
of arguments.
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5.1 Convolution Unit Generator

The convolution unit generator VEPConvolution1 utilizes a non-uniform par-
titioning scheme as described in 3.5.2 and is implemented as a subclass of
Unit in src/VEP.cpp.

5.1.1 Partitioning scheme

The partitioning scheme employed is based on the uniform load scheme pro-
posed in [11], with two notable differences. First, since samples coming from
the analog to digital converter (ADC) and moving to the digital to analog
converter (DAC) are buffered by the hardware and the underlying driver,
interrupts are not delivered per sample but per blocks of samples, implying
a non-zero latency inherent to the buffering – thus the first partition is not
convolved by time domain convolution but in the frequency domain. Sec-
ond, in order to reduce the amount of internal buffering logic, the first four
partitions are of length N0, making the output delay line a multiple of the
partition size Ni for each partition. Partition sizes start with N0 equal to the
SuperCollider DSP block size, which is an integral subdivision of the hard-
ware buffer size and denotes the lowest achievable latency. Apart from the
first four partitions, partition sizes are doubled every other partition, until a
maximum partition size Nmax is reached (Fig. 5.3).

N N 2N 4NN N 2N 4N

N
min

 = Latency Nmax

Convolver 1 Convolver 2 Convolver 3

4N

Figure 5.3: Impulse response partitioning scheme of the VEP application

5.1.2 Partition modules

Each partition size as shown in Fig. 5.3 is processed by an instance of
VEPConvolver, that implements one binaural convolution operation for two
or more partitions in the impulse response as described in 3.5.1.
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Instances of VEPConvolver are initialized by a call to the method VEPConvolver::init:

bool init(

// Interface function table

InterfaceTable *ft,

// scsynth handle

World *world ,

// Smallest partition size N0

size_t binSize ,

// Number of bins in this partition size

size_t numBins ,

// Number of partitions in this convolver

size_t numPartitions ,

// Offset in partitions from beginning of IR

size_t partitionOffset ,

// Offset in frames from beginning of IR

size_t irOffset ,

// Crossfade mode

CrossfadeMode cfMode=CrossfadePartition );

Input samples are are passed to a convolver instance by a call to the method

void VEPConvolver :: pushInput(float *src , size_t size);
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size is assumed to be smaller or equal to the smallest partition size N0,
in this context also called “bin size”. The input block is written to a
circular buffer implemented by the template class VEPRingBuffer<T> in
src/VEPRingBuffer.h. In order to avoid unnecessary copying of data, the
ringbuffer is of size 4Ni where Ni is the partition size handled by the con-
volver. When the ringbuffer write pointer reaches an integer multiple of the
partition size Ni, another Ni zeros are appended to the buffer for in-place
consumption by the forward FFT routine.

The method

void VEPConvolver :: compute(

bool crossfade ,

fftwf_complex *ir,

fftwf_complex *ir1 ,

size_t irSize ,

size_t binIndex );

is performing the actual convolution operation for the partition size of the
convolver. Depending on whether the convolver is currently scheduled for
execution (see 5.1.4, VEPConvolver::computeOneStage is called to execute
one of the two convolution stages.

The first stage includes computing the forward FFT with the current input
buffer contents and performing the multiply-accumulate operation for the
first half of the convolver’s partitions.

The FFT transform used is provided by the highly efficient yet portable
FFTW library [9] and expects frequency domain data to be in “half-complex”
format. Spectra of real-valued input signals exhibit the Hermitian symmetry,
making half of the spectrum redundant. Moreover, the coefficients at k = 0
and k = N

2
can be shown to be purely real, so that the spectrum can be stored

in the same amount of space as the real input buffer. The half-complex format
stores the real and imaginary parts of the spectrum separately

X[k] = r0, r1, r2, ..., rN
2
, iN+1

2
−1, ..., i2, i1

such that the real part rk of a coefficient is in X[k] and the imaginary part
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in X[N − k], with the exception of the purely real coefficients at DC X[0]
and Nyquist X[N

2
]. Input and output FFTs in VEPConvolver are performed

in-place, overwriting the input array.

In order to increase cache efficiency when computing the complex multiply-
accumulate and to make it easier to vectorize the MAC operation with
SIMD instructions of the target CPU, the half-complex formatted data is
shuffled into something more suitable by the routine VEPFFT::shufflehc

in src/VEPFFT.h, storing sequences of four real values followed by the four
corresponding imaginary values such that

XSIMD[k] =r0, r1, r2, r3, rN
2
, i1, i2, i3, ...,

rN
2
−4, rN

2
−3, rN

2
−2, rN

2
−1, iN

2
−4, iN

2
−3, iN

2
−2, iN

2
−1

(5.1)

The converted input spectrum is directly written to the spectral delay line
ringbuffer and the position of the current input spectrum is stored for later
use by the complex multiplication.

After computing the forward FFT on the input block and clearing the accu-
mulation buffer, the complex multiply-accumulate operations are performed
for each partition handled by the convolver instance. The first partition is
multiplied with the most recent input spectrum and later partitions are mul-
tiplied with the correspondingly delayed input spectra in the delay line. The
complex multiplication itself is optimized by using SIMD vector instructions
on platforms that support it, i.e. AltiVec and SSE2 [8] [12] in the routine
vep_vcmac_hc in src/VEPDSP.h. The reorganized spectral data maps well
to current vector unit layouts, and the implementation looks much like scalar
code without unnecessary vector permutations. The multiplication is done
for both binaural channels of the impulse response and accumulated into one
buffer for each channel.

The last step in performing the convolution in VEPConvolver::compute in-
volves execution of the inverse FFT on the spectral accumulation buffer.
First, VEPFFT::unshufflehc in src/VEPFFT.h converts the accumulation
buffer contents from SIMD to half-complex format into a temporary buffer,
then the FFT is performed in-place. According to the overlap-add scheme in
Fig. 3.2, the first half of the temporary buffer is mixed with the previously
saved overlap tail into the output ringbuffer; the second half is then saved
into the overlap buffer.

The overlap-save method for frequency-domain convolution would be slightly
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more efficient, since the steps of saving the new overlap tail and mixing
the old one into the currently process block are not needed [25, p.531], but
overlap-save doubles the latency to 2N0, because the first N0 samples of the
convolution result have to be discarded due to aliasing effects and the input
has to be delayed accordingly [25, pp.532]. The overlap-add method has
the additional benefit with regard to non-uniform partitioning of not being
encumbered by software patents [14].

As mentioned above, computation of input spectra, complex multiply-accu-
mulate and output transform is split into two stages in VEPConvolver. Only
convolvers with Npartition = Nbin, i.e. those with a computation period equal
to the DSP processing block size, are handled specially in that all the steps
above are performed in a single method call.

Finally, the method

void pullOutput(float* dst1 , float *dst2 , size_t size);

is called to transfer samples from the output ringbuffer to the calling unit.
Convolvers with Npartition = Nbin simply copy the output buffer data to the
destination buffers, while convolvers with later partitions mix their output
into previously stored content.

5.1.3 Impulse response buffer format

Impulse responses used by the convolution plugin are stored in scsynth buffer
objects (see 4.7) and are expected to be pre-converted to the frequency do-
main according to the partitioning scheme employed. Partition spectra are
stored in the same order as in the impulse response; each spectrum for par-
tition size Ni takes Ni complex or 2Ni real values and is in the SIMD format
specified in Eq. 5.1. The two channels of the binaural impulse response are
stored non-interleaved, i.e. the partitions of the left channel are followed by
those of the right channel (Fig. 5.4).

N N 2N 4NN N 2N 4N 4N N N 2N 4NN N 2N 4N 4N

Channel 1 Channel 2

8N real values
SIMD format

Figure 5.4: Impulse response buffer layout of transformed partitions
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5.1.4 Partition scheduling

The uniform load algorithm described in [11] and the related process sched-
uler for a DSP implementation are not immediately mappable to a general
purpose operating system context. None of the mainstream modern operat-
ing systems in use provide means of directly scheduling processes, but rely
on higher-level abstractions. Müller-Tomfelde describes a portable imple-
mentation of non-uniform partitioned convolution based on multiple pro-
cesses; unfortunately such a scheme doesn’t map well to the SuperCollider
process model, where sample buffers in particular are designed to be only
ever accessed from one of two threads: the realtime audio thread and the
non-realtime thread (Fig. 4.1). Instead of implementing a buffer manage-
ment scheme on top of the SuperCollider API, it was decided to implement
the convolution in a single process model.

Finding an optimal schedule online with a greedy algorithm is in general not
possible. The process scheduler described by Gardner could theoretically be
mapped to block based, single process convolution, but the main problem is
apparent: every convolution operation is executed “in one go”, i.e. it must
complete within the time slot of one audio processing interrupt or callback.
Priority scheduling based on the partition sizes and the corresponding dead-
lines produces a schedule that effectively needs to compute convolutions for
many partition sizes in one processing period, because the convolution period
boundaries are integral multiples of the smallest partition size N0.

Instead it is desirable to interleave the computations in such a way, that the
processing load is spread over periods as much as possible, while still meeting
the deadlines of each convolution process.

Since the number of FFTs per convolution process is fixed – one forward
and one backward transform is needed – and the number of complex MAC
operations is limited to two spectra in the simplest case, each convolver
processes its input in two stages (see 5.1.2). Since each convolver i needs to
provide output every Ni = BiN0 samples, where Ni is the partition size, and
Bi the number of bins in partition i, its computeOneStage method needs to
be called twice every Ni samples.

The experimentally determined scheduling rule used in the VEP convolver is

(j − B̃i

2
) mod B̃i = 0 (5.2)

where B̃i = B
2

is the scheduling frequency of the convolver i and j ∈
[0, Nmax−1] is the index of the currently processed input block. The modulo
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operation with argument B̃i ensures that each convolver is scheduled twice

within its respective output period of Ni. The subtractive term B̃i

2
spreads

the computation of larger partitions apart from each other in such a way, that
the maximum number of partition sizes processed in one period is three.
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Figure 5.5: Convolver schedule for Nmax = 32N0

A schedule generated by Eq. 5.2 for a maximum partition size of Nmax =
32N0 is shown in Fig. 5.5. As can be seen, the convolver with partition
size Ni = N0 is handled specially in that it is scheduled in every block –
the other partition size convolvers are scheduled twice within their respec-
tive processing period, once for each stage of the computation. Within one
processing block, at most three convolver stages have to be executed, two for
the partition sizes N0 and N1 = 2N0 and one for another partition size Nj

with j > 1. Because larger partition sizes are integral multiples of smaller
ones, the whole schedule has a periodicity of 32N0.

5.1.5 Coefficient exchange and crossfade

Binaural rendering in a virtual reality environment usually involves dynamic
update of FIR coefficients in response to user or other external input, trans-
forming the LTI convolution system into a linear time variant system.

In order to avoid artifacts when switching between FIR coefficient sets or
impulse responses, one possible approach is to compute two LTI systems
corresponding to the two impulse responses that should be exchanged, and
crossfade in the time domain between the filter outputs.

The computational cost of the convolution is doubled, but the increase in
load can be reduced to just the time of the crossfade [23].

Due to the block based processing in frequency domain convolution, filter
coefficients for a particular convolver i that handles partitions of size Ni can
only be exchanged with a minimum delay di of
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The crossfade logic is encapsulated in the utility class VEPCrossfade in
src/VEPConv.cpp, so that different exchange strategies can be integrated
relatively easily.

During the time of the crossfade in VEPConvolver, two LTI systems1 have
to be computed, but the input spectra can be shared by both filters, so
that only the costs of the output FFT and the complex MAC operations are
doubled. The overall increase in load is automatically distributed in time
across processing blocks by the partition scheduling algorithm (5.1.4).

VEPConvolver implements two linear crossfade functions, termed full fade
and primary block fade in [23], so that different triggering and cross fading
strategies can be combined.

5.1.6 Computational complexity

The cost of the partitioning scheme employed is that of the uniform load
scheme described in 3.5.2, with the additional cost of two partition sizes of
N (see Eq. 3.11):

O(N) = O(8(log2(N) + 3)+

2[log2(
L

2N
)]2 + log2(

L

2N
)[4 log2(N) + 10])

(5.4)

Research carried out by Garćıa in [10] indicates that the modified uniform
load scheme does not necessarily lead to the most efficient partitioning possi-
ble, because the cost function can have several minima in between, that can
be found with dynamic programming techniques, when brute-force search is
not feasible.

In the context of the VEP application, however, with a maximum impulse
response size of 1.6s for the reverb tail, the system load was found to be
sufficiently low even at small block latencies of 64 samples at 44.1kHz.

Tab. 5.1 shows the measured runtime and CPU load obtained on the instal-
lation system, a dual Xeon 3.2GHz, for different impulse response sizes and
a single convolution process. The runtime of the convolution was measured
in the processing function of the VEP plugin and includes the costs for data
copying, FFT and frequency-domain multiplication. The CPU load denotes

1Four, in fact, counting two convolutions per binaural channel.
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IR length Nmax = 64 Nmax = 8192
time µs load % time µs load %

8192 46 5.3 47 5.2
32768 227 17.9 72 7.3
65536 607 45.5 78 7.6

131072 1211 85.0 81 7.9

Table 5.1: Convolution runtime measurements for N0 = 64

the overall system load as displayed by the top command and should only
be regarded as a qualitative approximation.

Uniform partitioning with N0 = Nmax = 64 is compared with the non-
uniform partitioning scheme from 5.1.1 with N0 = 64 and Nmax = 8192.
In both cases the latency is set to 2N0

fs
= 128

44100
s = 2.9s. Impulse response

lengths are varied between 8192 frames (0.186s) and 131072 frames (2.97s)
and are constrained to powers of two to avoid processing overhead arising
from partitioning2.

For small impulse response lengths the two partitioning schemes perform
almost equivalently, but for increasing impulse response lengths, non-uniform
partitioning performs significantly better. The measured runtime and load
of uniformly partitioned convolution increases almost linearly with impulse
response length L, which coincides with Eq. 3.11, where the dominating term
is L

N
for large L. In the case of non-uniform partition sizes, the runtime cost

increases approximately logarithmically with L, because O(N) in Eq. 5.4 is
dominated by [log2(

L
2N

)]2 for large L.

A near optimal partitioning for large impulse responses can be found through
experimentation, by varying the two constraining parameters latency d = N0

and maximum partition size Nmax. Specifically by changing Nmax the trade
off between the cost for the FFTs, that largely depends on the implementa-
tion used, and that of the complex multiply-add can be adjusted.

5.1.7 Impulse response tail

Due to restrictions in computing time for the simulated impulse responses
of a few weeks, only the first 0.13s of each binaural impulse response were
actually rendered, while the statistical reverb tail was computed only once.

2Impulse responses are zero-padded to fit the sum of partition sizes dictated by the
partitioning scheme.
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The impulse response head is faded out at the end within 20ms using a
half-cosine window, the reverb tail is faded in appropriately (Fig. 5.7).

Head

Tail

Delay

0.13s 1.6s

Figure 5.7: Separation of impulse response head and tail

A monophonic sum signal of all three input tracks is appropriately delayed
(according to the start of the tail in the impulse response) and fed to the
reverb tail convolver synth. The binaural stereo output is then mixed into
the final output stream with an adjustable amplitude level.

5.2 Disk access plugin

The disk access plugin is implemented as an asynchronous server command
that loads binaural impulse responses from sound files on disk and has the
following arguments:

/cmd "vep" "read"

BUFFER_INDEX int32

FILE_NAME string

FILE_OFFSET int32

NUM_FRAMES int32
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CROSSFADE int32

Sound files are accessed using the ubiquitous libsndfile library [5]. Impulse
response files are expected to be stereo file in any of the formats libsndfile
can read, e.g. 16 bit PCM files or 32 bit floating point files. No resampling
is provided – the files should match the sampling rate of the audio hardware.

Asynchronous commands (see 4.6) start in the realtime audio thread, are
then transferred to the non-realtime thread to do their work and deliver a
notification of their completion back to the realtime thread.

The class VEPReader encapsulates the process of reading the sound file, dein-
terleaving and partitioning its contents according to the global parameters
Nmin = N0 (derived from the scsynth block size) and Nmax (passed to the
init) command) and transforming the individual partitions into the fre-
quency domain, according to the scheme shown in Fig. 5.4.

To maximize throughput and disk utilization the relatively small impulse
response files – of about 40kb in size – are read into memory in a single
call to sf_readf_float. The optimal reading block size remains to be de-
termined for bigger files, although it is to be expected, that in the case of
non-competing access, the whole-file approach is the most efficient in relation
to operating system buffering and scheduling strategies.

The two SATA harddisks used on the installation machine are attached to a
hardware RAID controller, that is configured for RAID-0 where disk blocks
are stored interleaved (“striped”) on alternating disks. The file system used
is XFS [28], which is optimized for streaming multimedia data, but the per-
formance was not compared to other filesystems, such as ReiserFS.

In order to evaluate impulse response load times, impulse responses of 0.13s
were loaded randomly from a single speaker BRIR set and the time between
initiating the load request and receiving the request notification (overall load
time), as well as the times to load the impulse response from disk and to
perform the frequency domain transformation were measured. The measure-
ments were averaged over a 50 runs of 1000 iterations and for the transfor-
mation non-uniform partitioning was used with N0 = 64 and Nmax = 8192.

The average worst case overall load time determined is 0.036s, while the
average overall load time is 0.0058s. The average amount of time spent in
reading the file from disk (sf_readf_float) is 60 · 10−6s and the average
time needed for converting the impulse response to the frequency domain is
520 · 10−6s.

The measurements indicate that during impulse response loading the vast
amount of time is spent in network and inter-thread communication as de-
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scribed in 4.6 necessary for maintaining cache consistency in the SuperCol-
lider language client, i.e. for ensuring that buffers are only added to the
impulse response cache when they are already filled with valid data. Actual
disk load times are significantly lower for the impulse response length used.

5.3 Impulse Response Cache

Since the amount of impulse response data used by the VEP application –
about 75GB – is too large to fit into the main memory of current main-
stream computers, impulse response files need to be loaded from disk on
demand. Disk loads are both relatively slow and also non deterministic in
their completion time, so it is desirable to keep as many impulse responses in
main memory as possible, based on the listener’s current head position and
possible future head movements.

For this purpose the VEP application maintains a least-recently-used-cache
that caches impulse response buffer contents for future use.

The sclang class VEPBufferCache maintains a pool of integer indexes of
buffer objects that are preallocated on the synthesis server. The cache is
indexed by position keys, 32 bit integers composed from the horizontal and
vertical head orientation angles ϕx and ϕy and quantized to 1◦ steps:

(int(x) % 360) << 16) | (int(y) % 360)

VEPBufferCache delegates the cache logic to an instance of VEPLRUCache,
that maintains an identity-hashed associative array (IdentityDictionary)
and a doubly linked list of cache nodes. When a key-value association is
inserted into the cache, the dictionary holds to the mapping of key to cache
node while the cache node itself holds the actual object to be cached. When
inserting a key or accessing the cache, the cache node corresponding to the
key is unlinked and transferred to the beginning of the queue – due to the
doubly linked list a constant time operation. The pop method removes the
last element from the cache node queue and removes its associated key from
the cache.

Because of the asynchronous communication with scsynth a buffer id in
VEPBufferCache can be in one of three states: free, reserved and used. When
a particular impulse response, uniquely identified by ϕx and ϕy, is not cached,
a new buffer id is allocated from the pool or popped from the cache and enters
the reserved state. As soon as the corresponding sound file has been read by
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the disk access plugin, the buffer id is entered into the cache and assigned
the used state.

Instances of the class VEPTrack, an abstraction of one individual tape track,
hold to an instance of VEPBufferCache, which is updated regularly in re-
sponse to head tracker input.

Apart from the current user input comprising head rotation and elevation,
VEPTrack asynchronously spawns new impulse response read requests in or-
der to increase the cache hit rate for head positions in the proximity of the
current position.

Currently, a simple algorithm is used: based on the current head orientation
p = (ϕx, ϕy), the quantization step size d = (dx, dy) and a range parameter
Nr the state space around p is explored to yield a set of prospective positions
to load into the cache:

p̃ = {(ϕ̃x, ϕ̃y)← ϕ̃x ∈ [−Nrdx, Nrdx], ϕ̃y ∈ [−Nrdy, Nrdy]} (5.5)

By disregarding those positions already present in the cache, only positions
in the direction of the listener’s head movement are explored (Fig. 5.8).

Current head orientation

Previous head orientation

range

ra
n
g
e

cached positions

new positions

E
le
v
a
ti
o
n

Rotation

Figure 5.8: Asynchronous exploration of listener head orientations
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Experimentation shows that the disk load process is congested with rather
low values of Nr, which can be attributed to the time of almost 6ms it
takes from initiating an impulse response load and getting the completion
notification (see 5.2). New requests are queued sequentially in scsynth’s
asynchronous command queue and cannot be processed before completion of
earlier requests. Since every head movement potentially triggers new asyn-
chronous requests, user induced head movements face an increasing and non-
deterministic latency until they are actually performed.

5.4 Tape player and LFE signal

VEPPlayer encapsulates the three tracks of the original reconstructed tape
transferred to digital audio files. The tape tracks are loaded into memory and
played back simultaneously to three adjacent audio buses on the server. The
buses are read by the convolution synth (see 5.1) and the synth node respon-
sible for generating the low frequency effects (LFE) signal, that is derived
from the mono sum of all tracks fed into a lowpass filter with configurable
cutoff frequency.

5.5 Score Player

The control score in the VEP application specifies the time instants each
track should be rendered on another speaker or speaker group.

The score file is a file containing sclang statements, and consists of five
parts: one control score for each track and one LFE score.

Score lines are arrays of the form

onset time onset duration speaker category speaker group

Currently the parameters onset duration and speaker category are ignored
for tape tracks, because each track is assumed to be audible on exactly one
speaker or speaker group at a time.

In the LFE score however, the duration parameter is interpreted; the LFE
signal is audible only at the times and for the duration specified in the score.
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Upon application startup the score file is read, interpreted by sclang and
compiled into a schedule, an instance of the library class Routine, that can
be played back directly on a TempoClock.

Tape track score entries are passed at the appropriate times to the respec-
tive VEPTrack instance, which clears the buffer cache and subsequently uses
impulse responses from the set of the new speaker group.

5.6 Tracker Interface

The tracker interface in the VEP application is based on UDP/IP networking
and the OpenSoundControl protocol (see 4.3). The message used is /tracker
and expects two arguments, ϕx and ϕy in degrees.

The application is adaptable to different tracking devices, by assigning the
class variable trackerMessageHandler, that gets passed the OSC message
as an argument, and returns a two-element array with the appropriately
converted head orientation coordinates.

One tracker device used in the installation is an InterSense Inertia Cube3
with an update frequency of 60Hz. The example program contained in the
distribution was used to send the tracker data to one or more network ad-
dresses passed to the program on the command line, with a configurable
maximum update rate.
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Discussion

In the preceding chapters a binaural convolution engine has been presented
that addresses particular constraints encountered in the VEP reconstruction
project, such as handling sets of binaural room impulse responses for a large
number of sources.

The partitioned convolution algorithm used is suited in performance to the
impulse response lengths used in the VEP application, as indicated by the
measurement results determined in 5.1.6. Still, in order to accommodate
for a larger number of simultaneously sounding sources or longer impulse
responses, the convolution process can be improved in various ways.

In [10] an algorithm for finding an optimal non-uniform impulse response is
presented, that can reduce the number of multiply-adds of the convolution
to one third in comparison to Gardner’s uniform load scheme (which is very
similar to the one used in the VEP application), depending on the particu-
lar FFT implementation used. The computational complexity of the Viterbi
search algorithm used in [10] might be too high to be useful in a realtime
context, but in the VEP application an optimal partitioning could be com-
puted once during initialization, because the impulse responses are all of the
same length. The impact of a different partitioning scheme on the two-stage
load distribution model described in 5.1.4 is unclear, however.

A further improvement would be to abandon the single-process partition
scheduling strategy and distribute the different convolvers among several
processes. Meeting the scheduling deadlines needs to be enforced by careful
assignment of thread priorities to the different convolver tasks according to
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their computation period, as described in [2] and [23], a method that can
be regarded as a mapping of Gardner’s process scheduler for DSP platforms
presented in [11] to general purpose operating systems.

Improving buffer cache performance is crucial when the complete set of im-
pulse responses does not fit into main memory. The measurements obtained
in 5.2 indicate, that the main source of overhead in overall impulse response
load time is in the round-trip communication needed in order to ensure cache
coherence in the SuperCollider client application.

Putting the buffer cache in the same address space as the convolution and
disk access processes should help minimize delays induced by network com-
munication. Optionally, impulse response load time can be further reduced
by transferring the frequency domain transformation into the realtime audio
thread, thereby trading parallelism in execution for lower disk thread re-
sponse times. By using a lossless compression format such as FLAC [7] disk
load times could be reduced especially for larger impulse responses – a single
set of impulse responses can be compressed to 40 percent of the original size
with the most aggressive setting.

It became evident in 5.3, that the fine granularity of asynchronous cache
updates based on a resolution of (∆ϕx , ∆ϕy) = (1◦, 5◦) in combination with
the sequential handling of asynchronous requests by the scsynth engine poses
a restraint on background prefilling of the buffer cache with nearby head
positions.

Asynchronous cache updates need to be prioritized according to their rele-
vance to the current listener head orientation and must be removable from
the command queue to be able to discard obsolete requests.

The fine granularity of cache prefilling is unsuitable for very fast head move-
ments to diverse positions. In [27] various possibilities for interpolation of
binaural room impulse responses are examined, and it seems beneficial to
combine the impulse response cache with a method of interpolating between
cached positions. The asynchronous prefill granularity could be coarser for
fast head movements by only preloading some nearby locations as grid points
for interpolation and refining the cache resolution as time permits.

In summary, the work presented is an integral part of the VEP reconstruc-
tion effort, with a new approach to handling large sets of binaural impulse
responses in virtual acoustics. The impulse response cache in particular helps
reducing the memory requirements of binaural room simulations with many
sources and provides a promising foundation for future developments.
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Appendix A

Glossary

ADC Analog to Digital Converter
API Application Programming Interface
BRIR Binaural Room Impulse Response
DAC Digital to Analog Converter
DFT Discrete Fourier Transform
DSP Digital Signal Processor
FFT Fast Fourier Transform
FIR Finite Impulse Response
GNU GNU is Not Unix
GPL GNU General Public License
HRIR Head Related Impulse Response
HRTF Head Related Transfer Function
ICMC International Computer Music Conference
LFE Low Frequency Effects
LRU Least Recently Used
LTI Linear Time-Invariant
MAC Multiply ACCumulate
MADD Multiply ADD
MIDI Musical Instrument Digital Interface
NTP Network Time Protocol
OSC OpenSoundControl
RAID Redundant Array of Independent Disks
RS232 Recommended Standard 232 (serial data interface)
SIMD Single Instruction Multiple Data
TCP Transmission Control Protocol
UDP User Datagram Protocol
UGen Unit Generator
VEP Virtual Electronic Poem



Appendix B

Program Structure

B.1 Hardware and Software requirements

The VEP application currently runs only under Linux, but should be eas-
iliy portable to MacOS X, since the synthesis engine and the SuperCollider
language already run on both platforms. As soon as SuperCollider matures
on Windows, there will also be the option of porting the application to that
platform.

On Linux, SuperCollider requires the following programs and libraries for
operation:

• the libsndfile library [5]

• the JACK audio connection kit as the main audio driver backend [4]

Additionally, the VEP plugin requires the FFTW fast fourier transform li-
brary [9].

The VEP application was developed on a dual Intel Xeon 3.2 GHz machine,
with 4GB of RAM and a hardware RAID-0 configuration with two 400 GB
SATA disks. Processor speed was found to be a minor issue with the relatively
short impulse responses used, but disk subsystem throughput is crucial for
the operation of the impulse response cache.

67



68 APPENDIX B. PROGRAM STRUCTURE

The operating system used is a 64 bit Debian Linux distribution; due to
the workings of the sclang interpreter, however, the SuperCollider language
application has to be built in a separate 32 bit subsystem (chroot).

Although Linux kernel support for realtime applications has improved quite
a bit since the 2.6 series, the situation is still not optimal, especially with
regard to concurrent use of realtime threads and disk access. On the VEP
development machine, Ingo Molnar’s realtime-preempt kernel patch [22] has
been applied; it modifies certain kernel code paths to be preemptable by real-
time processes and thus reduces interrupt scheduling latencies considerably.

B.2 Components

Tab. B.1, Tab. B.2 and Tab. B.3 list the various files encompassed in the
VEP distribution.

B.3 Configuration file format

The configuration file is comprised of standard sclang statements, and shall
be exemplified in the following.

B.3.1 Literals

Character strings are enclosed in double quotes:

"Example string"

Numbers can be written in any of the common formats:

1

1.5

1e3
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1e-9

Literal lists or arrays are enclosed by square brackets, where the elements
are separated by commas:

[1, "string element", 2]

B.3.2 Configuration variable assignment

Configuration variables are class variables in the class VEP, and are accessed
with the dot notation. Assignment to a left hand assignable expression is
done with the assignment operator =. Statements, including assignment
statements, are terminated by a semicolon:

VEP.configVariable = "string value";

B.3.3 Expressions

Since the configuration file contains plain SuperCollider code, more advanced
uses of the configuration file involve more complex expressions. Although
the language is quite transparent and very similar in syntax to Java or C,
the user is referred at this point to the extensive documentation provided
in the SuperCollider distribution, particularly the help files Literals.rtf,
Method-Calls.rtf and Classes.rtf.

B.4 Configuration variables

The following table provides a list of configuration variables that control the
behavior of the VEP application.

Variable Type Description
binSize Integer Minimum partition size, determines la-

tency
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Variable Type Description

maxPartSize Integer Maximum partition size
headReponseFrames Integer Number of frames to read from the be-

ginning of impulse response head
tailResponseFrames Integer Number of frames of the impulse re-

sponse tail
tailSoundFile String Path to the impulse response tail sound

file
soundFileDir String Path to the base directory containing

impulse response files
soundFilePrefix String String prefix for sound files (concate-

nated with the encoded position)
sampleFiles Array Array of paths to the input sound files
scoreFile String Path to the control score file
xSpec ControlSpec Specification of horizontal head orien-

tation range and quantization
ySpec ControlSpec Specification of vertical head orienta-

tion range and quantization
numBuffers Integer Size of the impulse response cache for

each track
explore Boolean Wether cache should be filled asyn-

chronously
explorationRange Integer Number of horizontal and vertical steps

to explore asynchronously
trackerMessageHandler Function Filter function for converting head

tracker input
recordTrackerEvents Boolean Wether tracker events should be

recorded and written to disk
speakerMap Dictionary Dictionary for optional speaker name

remapping
debug Dictionary Dictionary mapping debugging sym-

bols to boolean flags, valid symbols are
\osc, \tracker, \score
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src/VEPConv.h

src/VEPConv.cpp Declaration and implementation
of VEPResponse, VEPConvolver,
VEPCrossfade and VEPReader

src/VEP.h Utility template and inline func-
tion implementations

src/VEP.cpp Unit and plugin command imple-
mentations

src/VEPDSP.h Scalar and vectorized implemen-
tations of the complex multiply-
add operation

src/VEPFFT.h

src/VEPFFT.cpp Declaration and implementation
of FFTW interface functions and
data shuffling routines

src/VEPRingBuffer.h Ringbuffer template implementa-
tion

tracker/main.c Serial-to-OSC tracker interface

lib/VEPBufferCache.sc Buffer cache implementation
lib/VEPConvolution.s Unit generator interface classes
lib/VEPLFE.sc LFE signal synth abstraction
lib/VEPLRUCache.sc LRU-cache implementation
lib/VEPPlayer.sc Tape playback synth abstraction
lib/VEPProgressDisplay.sc Console progress display
lib/VEPResponse.sc Impulse response and partitioning

abstraction
lib/VEP.sc Main entry point and application

logic
lib/VEPTail.sc Reverb tail convolution synth ab-

straction
lib/VEPTrackerEventRecorder.sc Recorder for OSC tracker events
lib/VEPTrack.sc Tape track convolution abstrac-

tion

Table B.1: Source file index
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bin/scsynth.sh scsynth wrapper script
bin/vep Main VEP application script
bin/vep-init VEP initialization script (needs superuser priv-

iledges)
etc/hdsp.mix Configuration file for the HDSP soundcard mixer

application
scripts/app.sc Main VEP configuration file

Table B.2: Script and configuration file index

scores/score_full.txt Raw reconstructed text input score
scores/score.sc Compiled input score for the VEP applica-

tion
scores/split_score.rb Compiler script for score preprocessing
sounds/pe_track1.wav

sounds/pe_track2.wav

sounds/pe_track3.wav Soundfiles of digitized original tape record-
ings

Table B.3: Sound file and control score index




