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Abstract 

Music listening behavior has changed by means of the latest technological advances like widespread 

use of smartphones, streaming-services, and headphones. This allows for the active selection of music 

in any situation to accomplish personal goals. Still, it is not well understood what implications that might 

have on the selection of music with certain objective characteristics (audio features). This work aimed 

at investigating relationships between music-selection behavior and its corresponding functional and 

situational context of music listening as well as person-related factors. Therefore, a dataset was 

evaluated that included 1021 real-life listening situations of 101 participants assessed in an Experience 

Sampling Method. For each listening situation the audio features valence, energy, danceability and 

loudness of the corresponding song were retrieved from the Spotify Web API. Various model selection 

procedures (protocols) all based on the percentile-Lasso were assessed by Nested Cross-Validations. 

Finally, the best generalizing protocols were used to select the L1-penalized Linear Mixed Effects Models 

to predict the audio features. Replicating several related works, the results suggested that the music-

selection behavior is highly situational and music listening functions play an important role in predicting 

musical properties of self-selected music. Implementing these findings in context-aware music 

recommendations could benefit users’ satisfaction and also enable the assessment of the real-life 

significance of personal and situational factors and the functional use of music listening. 

 

Keywords: Music-Selection Behavior, Experience Sampling Method, Linear Mixed Effects Models, Percentile-Lasso, 

Nested Cross-Validation, Spotify Audio Features, Context-Aware Music Recommendation  
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Zusammenfassung 

Das Musikhörverhalten hat sich durch den technologischen Wandel von Smartphones, Musik-

Streamingdiensten und Kopfhörern stark verändert. Es ist nun möglich, Musik in jeder erdenklichen 

Situation aktiv auszuwählen, um persönlichen Bedürfnissen gerecht zu werden. Bis jetzt ist jedoch noch 

nicht klar, welche Auswirkungen dies auf die Auswahl von Musik mit bestimmten objektiven 

Charakteristika (Audio Features) hat. Diese Arbeit zielte darauf ab, Beziehungen zwischen dem 

individuellen Musikauswahlverhalten und dem dazugehörigen funktionalen und situativen Kontext und 

persönlichen Eigenschaften des Hörers zu untersuchen. Dafür wurde ein Datensatz mit 1021 

Alltagssituationen des Musikhörens von 101 Teilnehmern analysiert, der mittels einer Experience 

Sampling Methode erfasst wurde. Für jede Situation wurden die Audio Features Valence, Energy, 

Danceability und Loudness des dazugehörigen Liedes von der Spotify Web API abgerufen. Verschiedene 

Modellauswahlverfahren (Protokolle), die alle auf dem Perzentil-Lasso basierten, wurden mit Hilfe von 

verschachtelten Kreuzvalidierungen auf ihre Generalisierbarkeit hin untersucht. Das jeweils beste 

Protokoll wurde für die Erstellung der L1-penalisierten Linearen Gemischten Modelle ausgewählt, um die 

Audio Features vorherzusagen. Die Ergebnisse replizierten vorherige Erkenntnisse aus anderen 

Untersuchungen und zeigten, dass das Musikauswahlverhalten stark von situativen Variablen abhängt 

und Musikhörfunktionen in der Lage sind, objektive Musikeigenschaften vorherzusagen. Diese 

Ergebnisse können in kontext-basierten Musikempfehlungen eingesetzt werden, um die 

Nutzerzufriedenheit zu erhöhen, sowie die hier gefundenen Zusammenhänge auf ihre Alltagsrelevanz 

hin zu überprüfen. 

 

Schlüsselwörter: Musikauswahlverhalten, Experience Sampling Methode, Lineare Gemischte Modelle, Perzentil-

Lasso, Verschachtelte Kreuzvalidierung, Spotify Audio Features, Kontextbewusste Musikempfehlung 
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1 Introduction 

The existence of music is a very fascinating reality and its implications go far beyond current human 

understanding. Theories about the origin of music are highly speculative but evolutionists generally 

agree on the importance of music in the development process of humanity. To date, there is no doubt 

about the immense value that music has for all people’s lives across the world and in all different 

cultures. The omnipresence of music in all aspects of human history and present therefore is the 

ultimate manifestation that musicality is a fundamental human property. Shedding light into all those 

implicit questions regarding the nature of music involves the profound understanding of the nature of 

mankind and will always continue being a thriving research area in various disciplines. Music 

consumption has considerably changed throughout the time and nowadays it is increasingly controlled 

by modern technological developments. In contrast to the past, people are now able to listen and select 

music in any imaginable situation. Thus, questions regarding aspects of music-selection behavior have 

never been more relevant than they are now. Considering the trends of our modern digital way of living 

and the consequential constant information flow we are exposed too, intelligent applications for 

supporting our personal needs are about to become more and more valuable. Investigating the factors 

of modern music-selection behavior and deriving models to accurately determine and predict our music 

listening goals are the next steps to an adaptive, intelligent music recommendation that supports 

modern technological challenges and fulfills our ever changing existence.  

This work considers research findings regarding contextual and psychological aspects of everyday music 

listening to build prediction models of objective musical characteristics (audio features) based on 

person-related, situational and functional factors of music-selection behavior. The following sections 

present the theoretical background regarding the motives and goals of music listening as well as 

predictive factors that describe our everyday music-selection behavior. Afterwards, facets of musical 

content are discussed by explaining the discrepancy of modern music information approaches and 

psychologically relevant effects in the course of music listening. This discrepancy is generally referred 

to as the semantic gap. In the end, state-of-the-art statistical modeling procedures as well as best 

practices of music recommendation systems are presented. All those aspects build the foundation of 

the pursued modelling process of this work and hint to future directions. 

1.1 Predictors of Music-Selection Behavior in Everyday Life 

As Mithen (2005) argues, musicality has probably already appeared in very early human evolution stages 

as part of a pre-linguistic multi-modal communication style, the so-called Hmmmmm (holistic, 

manipulative, multi-modal, musical and mimetic). In accordance with his theories, Neanderthals and 

other hominin ancestors might have used their musicality for emotion expression and induction as well 
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as for social communication and especially for mother-infant communication (Mithen, 2005). This 

theory is in line with a lot of other (theoretical) evolutionary and anthropologic explanation approaches 

about the functionality of music listening as being a parallel way of communication besides proper 

language (Huron, 2001; Bicknell, 2009; Falk, 2004; Longhi, 2008) and its emotional and cognitive use 

(Schubert, 2009; Hargreaves & North, 1993). The referenced works only constitute a fraction on the 

amount of theories about the origin and development of musical functions, which are partly based on 

vague speculations. Notably though, they are not very far off from some empirical findings about 

modern music listening functions. Probably the most comprehensive overview of possible musical 

functions was laid out by Schäfer, Sedlmeier, Städtler, & Huron (2013) - ranging from theoretical 

explanation approaches to empirical listening behavior studies. Since their work integrated the most 

important empirical findings, specific research is not named here individually, but special focus is put 

on the outcome conveyed by their study. After aggregating all possible functions of music listening that 

were found in the existing literature, Schäfer and colleagues asked 834 people to rate on the 

functionality of music by 129 items. The principal component analysis (PCA) that was conducted 

afterwards suggested that three dimensions mainly accounted for the variance (40%) in the level of 

agreement with those items that were rated by the participants. Those are namely the regulation of 

arousal and mood, achievement of self-awareness and expression of social relatedness. Potentially, 

those functionalities of music listening are either person-related or situation dependent (Greb, Schlotz, 

& Steffens, 2017). Based on technological trends like widespread use of smartphones, headphones, 

portable speaker devices and music streaming services, it seems plausible to say that people are more 

than ever before able to select and listen to music in just any kind of situation. While the situational 

influences have considerably changed following the modern technological trends (North, Hargreaves, & 

Hargreaves, 2004), evolutionary explanation approaches still account to a certain extend for the person-

related functional use of music listening, considering the results of Schäfer et al. (2013). Despite the fact 

that modern everyday music listening takes place in nearly any situation of the modern life, so far most 

research has focused on personal factors. Less research has investigated situational impact and almost 

no studies have combined both dimensions at the same time, as stated by Greb and colleagues (2017). 

Summing up, so far the list of investigated personal factors on the functional use of music includes basic 

variables like age, gender and nationality, more complex concepts like personality traits, intelligence, 

physical and mental health as well as more music specific factors like musical expertise, musical 

preferences and strength of preferences for style and genre (Schäfer, 2016). Situational variables of 

interest have been the location of music listening, the core activity besides music listening, the presence 

of others, the level of choice, the mode of presentation, the momentary mood, and time of day (North, 

Hargreaves, & Hargreaves, 2004; Greasley & Lamont, 2011; Krause, North, & Hewitt, 2016; North & 

Hargreaves, 2000; North & Hargreaves, 1996). 
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From investigating person-related and situational factors separately it does not become clear how much 

those facets actually contribute to the functional use of music. Thus, to quantify the relative impact of 

individual differences of listeners and situational variables on the functionality of music listening, Greb 

and colleagues (2017) asked participants about three typical listening situations they could remember. 

Person-related questions (gender, Big Five, musical taste and others) and items describing the situation 

and functionality of music listening were answered. Explained more in detail, the situation was meant 

to be described by each individual first in an open response format in retrospective. After the initial 

open description of three typical listening situations, participants answered situational questions 

regarding the presence of others, the level of choice of selecting the music, the location where this 

situation would usually occur, the momentary mood and the importance of this mood for the decision 

to listen to music, the time of day, the attention paid to the music in this situation, and finally the 

frequency of occurrence of this listening situation in everyday life. Musical functions were mainly 

derived from the work of Schäfer et al. (2013) and were rated by twenty-two items on a 7-point rating 

scale for each situation (“I listen to music because… “ 1 = Not at all, up to 7 = Completely). In contrast 

to most other researches, this work resulted in an integrated survey in which situational, person-related 

and functional variables were investigated at the same time. The open responses were evaluated in the 

following manner: at first, listening situations were classified by 11 activity categories (e.g. being on the 

move, housework, working & studying…). Listening locations were assigned to seven categories (e.g. at 

home, workplace, transportation vehicle…). Activities and locations were then found to be highly 

correlating, therefore listening locations were excluded from further analyses. A factor analysis on the 

22 items of functions of music listening finally yielded a five-factor solution. Those factors were labeled 

respectively as: intellectual stimulation, mind wandering & emotion involvement, motor synchronization 

& enhanced well-being, updating one’s musical knowledge, and killing time & overcoming loneliness. The 

hierarchical data structure containing three distinct measurements of listening situations nested in each 

participants also allowed the analyses of within-subject (W-S) predictors and between-subject (B-S) 

predictors for different functions of music listening. W-S differences can be referred to as situational 

influences, whereas B-S differences arise from personal differences between the participants. Intra-

class correlation coefficients (ICC) based on random intercept-only models delivered insights on the 

proportion of variance of music listening functions explained by the grouping factor (participants) with 

the result that in average, between-subject differences accounted for 36% of the variance of the 

functions of music listening. Accordingly, in average 64% of variance was explained by within-subject 

differences, meaning that the functions of music listening are mainly controlled by situational factors. 

The explained variance by W-S predictors and B-S predictors varied across the different factors, 

therefore different functions might be influenced more or less by the situation or personal factors. 

These findings strongly indicate that functions of music listening are highly situational and need to be 
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considered in future experiments. Finally, all variables were fitted in a Linear Mixed Effects Regression 

Model and the most important variables were selected by a variable selection procedure based on a 

backward elimination procedure to predict the five functionalities. The contribution of the different 

predictors is explained thoroughly for each factor in Greb et al. (2017). The models explained on average 

34% of the variance components of the functionalities, which differed between 29% and 42% for the 

different functions. It is important to note that the most important within-subject predictors were the 

core activity in the course of music listening, the possibility to choose the music and the corresponding 

degree of attention paid in this situation to the music. For each factor, at least one activity was shown 

to have an individual effect. The results of Greb and colleagues supported different earlier findings, e.g. 

as conveyed by Greasley and Lamont (2011). They found out that music is very differently used by 

individuals in the context of different activities. Some people, such as engaged music listeners, would 

chose music to enhance certain activities, while others would never listen to music to accompany 

another activity. This certainly indicates personal differences in the functional use of music, but as Greb 

and colleagues as well as earlier findings of Krause and colleagues (2016) and North et al. (2004) suggest, 

the functionality of music listening is also significantly controlled by the situation, leading to the 

conclusion that more work is needed to investigate the situational influences of music listening behavior 

and the functionality of music listening.  

Knowing about the functions of music listening behavior does not directly incorporate the knowledge 

about the implications different listening functions have on the selection of music. And so far, little 

research has shed light in the complex interactions of functional use of music listening considering 

situational and person-related variables and the proper music-selection behavior. Most prominently, 

the works of Krause and North (2017), Randall and Rickard (2017) and Greb and colleagues (2018; 2019) 

may be named to have investigated both aspects. Krause and North (2017) tried to predict music 

listening situations and different judgments of the music, such as level of choice, liking, engagement 

and experienced arousal from the music, by personal and situational variables. Those aspects were 

related to the PAD dimensions (pleasure, arousal and dominance) of Mehrabians and Russels (1974) 

interaction and interpretation theory of contextual parameters by people and were now applied in the 

music listening context. Krause and North (2017) revealed connections of personal and situational 

variables with the presence of music in contrast to be not present (e.g. music importance ratings, 

average listening hours, music education level, time of day, location, and activities). Also judgements of 

the current listening situation were found to be dependent on personal and situational variables. 

Different locations, activities and also listening devices were associated with different properties of the 

music listening situation and influenced the liking, level of choice, engagement and arousal in the 

situation. The results gave evidence to the notion that contextual and personal features are playing an 

important role in everyday listening situations and its perception, and therefore also might contribute 
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to the music-selection procedure. Most prominently mentioned by Krause and North (2017) is the 

importance of the dominance dimension that was tested according to Mehrabian and Russel (1974) and 

showed relations in peoples experiences with music listening situations. This can be related to modern 

technological use of playback devices that support the active choice of music at any imaginable place 

and time and therefore supports the perception of dominance in the situation. Randall and Rickard 

(2017) have investigated the personal music listening behavior rather with regard to its emotional 

functionality by listener-related and contextual predictors. As many researches have shown before, 

people use music for emotion regulation purposes and mood enhancement (Schäfer, Sedlmeier, 

Städtler, & Huron, 2013; Greb, Schlotz, & Steffens, 2017), but the factual outcome of the intended use 

might have diverse implications. Investigating how situational and person-related variables manipulate 

the emotional response to music was one important goal of Randall’s and Rickard’s work. They found 

out that the initial affective state was the strongest predictor for a corresponding emotional state 

regulation towards a neutral position, both for valence as well as arousal of the mood1. While in the 

case of arousal those results supported the theories of arousal regulation as a listening function, it was 

rather surprising that people also seek towards neutral valence although being initially more positive. 

Randall and Rickard therefore argued that personal music listening behavior generally is rather being 

used to return to an emotional state of equilibrium. They could also show that selected music had mostly 

congruent properties to the initial mood state and those properties were able to reduce the effect of 

neutralization while music listening. This mood-congruency principle has already found other 

theoretical support (Skånland, 2013; Thoma, Ryf, Mohiyeddini, Ehlert, & Nater, 2012). In some critical 

cases this might also sustain a negative initial mood in the short term but potentially provide mood 

enhancement in longer terms, which would require more time-dependent research to clarify this theory 

(Randall & Rickard, 2017). Furthermore they found that a higher cognitive functionality of music 

listening was negatively related to the perceived musical valence (negative valence), which indicates 

that listening behavior follows certain music listening functions. As a critical conclusion of the research, 

Randall and Rickard showed that the emotional outcome of music listening is mostly determined by 

contextual factors, which is in line with Greb et al. (2017). Again, this supports the need for more 

ecologically validated research methods capturing contextual and person-related variables at the same 

time. Probably the most comprehensive approach of predicting music listening and selection behavior 

was recently conducted by Greb, Steffens and Schlotz (2018). They asked participants to report three 

typical music listening situations and answer questions regarding the situation (e.g. presence of others, 

level of choice, time of day, initial mood), functions of music listening (as defined by Greb and colleagues 

                                                           
1 The terms valence and arousal refer to the dimensional emotion representation by Russel (1980). Valence 
indicates the pleasantness (positive versus negative) and arousal describes the intensity of an emotion (low versus 
high). 
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(2017)), musical characteristics and person-related items (e.g. gender, age, Big Five, musical taste etc.). 

Seven musical characteristics were rated on a 7 point bipolar rating scale by the following qualities: 

calming vs. exciting, less melodic vs. melodic, less rhythmic vs. rhythmic, slow vs. fast, sad vs. happy, 

simple vs. complex, and peaceful vs. aggressive. In the course of predicting music-selection behavior, 

they only investigated situations that indicated an active music-selection. A variable selection method, 

the percentile-Lasso (Roberts & Nowak, 2014), was used to select the most important contextual and 

person-related predictors for the subjectively rated music properties. Again, Greb and colleagues were 

able to show a bigger impact of within-subject differences on music-selection behavior than for 

between-subject differences (in average 77% versus 23%), underlining the crucial importance of 

situational characteristics on the music listening behavior. Similar to the previous research that Greb et 

al. presented, they found varying relative impact of situational and person-related predictors on musical 

properties as well as different numbers of predictors, meaning some perceived characteristics were 

mainly affected by situational variables, others by personal variables. Because functions of music 

listening were part of all prediction models, the results underlined their importance as predictors for 

music-selection behavior. With varying impact, the most important situational predictors were the 

degree of attention to the music, current activity and presence of others, similar to Randall & Rickard 

(2017). A relevant person-related predictor was the musical taste as an important one, while personality 

traits (Big Five) were rather underrepresented in the prediction models. Greb et al. (2019) then went 

on investigating music-selection behavior by firstly, developing an Experience Sampling Method (ESM) 

to generate real-life data as generally largely unbiased in ESM and which delivers a nested data structure 

to evaluate situational and person-related factors by using multilevel models. Secondly, they 

investigated the mediating role of functions of music listening on situational and person-related 

predictors of music-selection behavior. In this course, replication of earlier research was intended. The 

questionnaire therefore remained very similar with the inclusion of specific questions to the current 

listening situation (e.g. artist and name of the song, playback volume, liking of the song, familiarity, vocal 

vs. instrumental). Also the statistical learning procedure, the percentile-Lasso was used for variable 

selection. Intra-class correlation measurements again showed that the music-selection behavior was 

mainly influenced by situational factors (accounted in average for 84 % of the variance for all musical 

characteristics), while functions of music listening were almost equally explained by person-related and 

situational predictors (44 % versus 56 % explained variance). In accordance with earlier research, music-

selection was mostly explained by the function of music listening, the initial arousal state and degree of 

attention paid to the music in the current situation. Only a few person-related variables remained in 

some prediction models for the different music characteristics, which was again not the case for 

personality traits or musical sophistication scores. In addition, the mediation analysis revealed aspects 

that had not been discovered before. Certain functionalities worked as mediators for situational and 
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person-related predictors. This also revealed indirect associations of variables through functions of 

listening that did not have any direct effect on the music-selection. Considering the different 

measurement techniques (ESM vs. retrospective reporting), the results Greb et al. (2018) and (2019) 

were still mostly consistent. Most differences were explained by Greb and colleagues due to response 

biases in retrospective reports. For example in the case of simple and complex music people would 

generally tend to report listening to more complex music to appear to be more intellectual. Also musical 

taste was found to be less important in the latest research. Furthermore, it stands out that mediation 

analysis should be put emphasize on in future studies. As Greb et al. interpreted the results for happy 

versus sad music, the direct positive effect of an initial positive mood (valence) would be interpreted as 

a mood-congruent selection, similar to Randall and Rickard (2017). The indirect negative mediation of 

valence through the function of intellectual stimulation that was found indicates a mood-incongruent 

selection behavior. Those aspects clearly underline the complex interactions involved in music-selection 

processes. 

As it was laid out in this section, the music-selection behavior in everyday life is highly dependent on 

the situational circumstances and additionally on person-related differences. It is argued that music 

listening fulfills certain functions, such as emotion and arousal regulation, and it was shown that music-

selection is prominently driven by the pursued function of listening. What is already clear to this point 

is that mostly situational variables are able to predict music-selection behavior, which is contrary to the 

effort that was put into research of those aspects. Furthermore, music-selection behavior to this date 

has only been assessed by subjective measurement procedures. However, now it is adequate to move 

prediction tasks from subjective music ratings towards objective characteristic predictions. Those also 

would be more handy to implement in commonly used applications (e.g. music recommendation) and 

also would reduce rating biases of participants and therefore produce more reliable results.  

1.2 Musical Content – Subjective and Objective Characteristics 

The research area concerned with retrieving the aforementioned objective musical characteristics as 

data units is the Music Information Retrieval (MIR) domain. It can generally be assumed that responses 

to music partially mirror perceived musical content (Husain, Thompson, & Schellenberg, 2002). Hence 

assuming the functional use of music, those characteristics take part in the daily music-selection 

behavior. Music comprises a wide range of properties which can primarily be divided into subjective and 

objective characteristics. They can be derived from the audio signal itself by signal processing techniques 

or exist in the form of metadata. Metadata refers to external information given by intentional tags that 

cannot directly be concluded from the signal, such as artist name or the year of publishing. Audio signal 

content is described by various taxonomies covering the multiple facets that are integrated in MIR 

research (Downie, 2003; Yang & Chen, 2011; Peeters, 2004; Manjunath, Salembier, & Sikora, 2002). 
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Those are partly congruent but differ in some of their categories and perspectives. So far, there is not a 

unique taxonomy available for MIR which is most likely due to the fact that it is a huge and relatively 

young research area (Schedl, Gómez, & Urbano, 2014). But in all aspects is seemingly implied, that 

properties of music can have different levels of complexity and/or abstractness, either computational 

or interpretational. Thus, it makes sense to organize those properties by means of their complexity 

levels. On one hand there are the very objective low-level audio features (e.g. zero-crossings of the 

audio signal), in Gouyon et al. (2008) referred to as “signal-centered descriptors” (p.88). On the other 

hand there is a very subjective high-level human perception (e.g. perceived positive emotions of a song), 

“user-centered descriptors” (Gouyon, et al., 2008, p.88), and in between yawns the so-called semantic 

gap (Yang & Chen, 2011). Closing this gap remains one of the most pursued endeavors in the MIR 

research society. Therefore, mid-level descriptors are increasingly developed to combine objective 

signal processing techniques of low-level features with semantic information by implementing musical 

and perceptual knowledge in the feature construction process (Dittmar, Bastuck, & Gruhne, 2007). 

Considering the different levels of complexity, this work proposes to distinguish musical properties 

semantically by means of their measurement procedure. Measures of the signal properties are called 

features. Those can be computed by clear mathematical operations or transformations. Audio features 

contribute to a corresponding subjective higher order perception, determined by a descriptor. Different 

features might contribute to the same descriptor. Features and descriptors can vary in their semantic 

complexity. It is assumed that complexity rises to a certain extent with higher subjectivity.  

A second dimension for characterizing musical characteristics refers to the temporal scope that is 

depicted by a descriptor or feature (Schedl, Gómez, & Urbano, 2014). At each complexity level, 

characteristics can be measured by overall/global qualities, such as the overall mood of a song or the 

overall averaged loudness. In contrast, properties can be calculated periodically based on a frame rate 

or sample rate which results in a discrete stream of values and allows for other statistical and 

interpretational models, such as analyzing the change of arousal from the beginning of a song to its end, 

or the perceived loudness of different parts of a song. Instantaneous properties can add additional 

complexity, computational wise as well as from its level of abstraction. For instances, the globally 

measured mood of a song is interpretational wise very different from a time dependent emotion 

measure throughout the song. The same applies for subjective descriptions of music properties. Having 

participants annotate emotional values on valence and arousal scales results in very different 

interpretations for global and continuous ratings.  

Additionally, low-level features are often categorized by their perceptual dimensions into energy, 

rhythm, temporal, spectrum and melody (Yang & Chen, 2011). It is out of the scope of this work to 

provide a complete overview of low- to high-level characteristics of musical content. In general, low-
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level features become very useful in big sets of features contributing to the same 

prediction/classification task of subjective high-level or mid-level descriptors. It is noted that music 

perception is mostly determined by a combination of several low-level features. Therefore, statistical 

learning, classification or regression approaches are usually used on big sets of processed features to 

find a perceptual correlate. Significant importance in MIR research was achieved by features like the 

root-mean-squared energy (RMS level) of the signal, onset-rate of events, zero-crossings, spectral 

features like spectral centroid, roll-off or flux that are derived from the frequency transformed signal by 

STFT (Short Term Fourier Transformation) or FFT (Fast Fourier Transformation) and MFCC (Mel-

Frequency Cepstral Coefficients). Perceptual correlates were found for perceived valence and arousal 

by energy and tempo measures of songs (Gabrielsson & Lindström, Gabrielsson, Lindström 2001 – The 

Influence of Musical Structure, 2001). MFCCs are often used in timbre related tasks, such as speech 

recognition or instrument identification and also genre recognition (Humphrey, Bello, & LeCun, 2012) 

just to mention a small selection of features and their application in MIR to fill the semantic gap by 

predicting high-level music perception. 

1.3 Prediction of Music Perception 

Music and audio perception imply many different individual tasks that can also differ substantially in 

their complexity levels. In principle, music perception is subjective to the individual but most tasks 

underlie certain physiological and psychological factors (e.g. perception of loudness) and are 

additionally influenced by acquired knowledge of the listener (e.g. in the case of musicians) and 

situational cues. The research area of music perception includes facets as pitch perception, instrument 

classification, genre recognition but also musical emotion recognition, music quality perception as well 

as music similarity perception. As described earlier, basic low-level audio features are often used in MIR 

to model and predict high-level music perception but conventional methods have often reached their 

maximal performance already years ago. As pointed out by Humphrey and colleagues (2012), content-

based MIR has mainly been making use of hand-crafted audio features built on specialists domain-

knowledge and applied relatively simple processing procedures. They argue for advanced feature design 

and deep learning architectures to further improve music perception tasks. But methods for content-

based predictions of music perception should remain less important in the context of this work for now. 

Particular focus should be raised on the fact that music perception is not exclusively determined by 

objective musical characteristics. According to Schedl, Flexer and Urbano (2013), understanding music 

perception rather requires the inclusion of a second approaches in MIR research, besides a systems-

based also a user-centric approach. This implies the merging of the mostly separated research areas MIR 

and music psychology by means of current statistical learning procedures. As it is depicted in Figure 1, 

music perception and recognition are not only functions of musical content descriptors but also musical 

context in form of metadata impacts the individual perception process, for example as it was shown in 
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of the listener context and properties. Subsequently, several aspects of emotions in regards to music 

are considered. 

1.4 Music and Emotion 

Because this work aims at predicting several objective musical characteristics and especially includes 

emotional representations, the complex interactions between music and emotions shall be expounded 

in the following. Despite many high-level recognition tasks of musical properties, the understanding and 

prediction of musical emotions, perceived as well as felt emotions, seem to be very appealing, 

considering the amount of research that was done during the last decades. All those very promising 

results are supporting the researchers with a lot of good reasons to proceed. At this point, this work 

aims on giving an introduction in general emotion theory. After that, special phenomena of musical 

emotions are depicted before state-of-the-art emotion recognition techniques are presented.  

Many theories try to explain the foundation and development of emotions in mankind. Nothing can be 

stated with complete confidence, but certain theories seem to be convincing and have been the bases 

for many ways of argumentations and investigations in recent research. In the context of music listening, 

often stated are evolutionary approaches considering emotions to be an integral component of the 

survival instinct of hominin ancestors that provided the individual with fast responding underlying 

mechanism to produce a fast and reliable reaction on certain events (Juslin, 2013). This can be closely 

related to evolutionary theories about the origin of music, in the sense of music being an emotion 

expression tool in very early prelinguistic development stages, as it was mentioned before (Mithen, 

2005). The complexity of emotions has certainly overwhelmed researchers ever since but supported the 

creation of various emotion models, interested in dimension reduction and finding the principal 

components of emotions. The two most common approaches are the categorical and the dimensional 

emotion representations. Affective terms are used to denote the corresponding emotion in categorical 

approaches. Despite the fact, that people use those affective terms in everyday situations and therefore 

the concept is easily understood, difficulties in research scenarios lie in selecting the right terms and the 

necessary number of distinct terms to describe the emotional space, which is referred by Yang and Chen 

(2011) as the ambiguity and granularity issue of categorical emotion taxonomies. Paul Ekman has 

arguably been one of the most influential emotion researchers by proposing the six basic emotions 

(anger, disgust, fear, happiness, sadness and surprise). Many researchers, also in music sciences, have 

used the basic emotions to avoid ambiguity but never overcame the granularity issue (Yang & Chen, 

2011). However, dimensional approaches do not have the dilemma with finite emotion classes. 

Therefore, ambiguity and granularity issues are less prominent. Most commonly used is the two-

dimensional space of emotions in the valence-arousal-plane (positive/negative - exciting/calming) 

(Russell, 1980). Notably, Ekman discarded his prior dimensional approach that described emotions on a 
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basic emotions in soundtracks (happiness, sadness, tenderness, anger and fear) onto a three 

dimensional space containing valence, activity and tension. This was based on the findings of Schimmack 

and Reisenzein (2002) and considered the notion of Bigand and colleagues (2005) that especially musical 

emotions are not mirrored completely in just two-dimensional models. Eerola and colleagues (2009) 

had experts rating 360 soundtrack excerpts using the basic emotions categories and the dimensional 

representation. By mapping the dimensional ratings onto the corresponding basic emotions, Eerola and 

colleagues realized that the three-dimensional model could not significantly explain more variance of 

most of the affect terms, except of anger, than the two-dimensional VA-model. To sum up, valence and 

arousal are in certain ways always included in dimensional approaches and seem to be two principal 

dimensions to describe emotions, which should not generally exclude other possible dimensions.  

The distinction of everyday emotions and musical emotions has already been part of many 

considerations. Often, music listening is assumed to create an aesthetical context. Since emotions are 

highly situational and subjective, music listening also owns its proper emotional response pattern, so-

called aesthetic emotions (Juslin, 2013). It is argued, that the basic emotions, by having an evolutionary 

origin, do not explain emotional responses to music to their full extend (Zentner, Grandjean, & Scherer, 

2008). Therefore, a theory of Juslin (2013) combines evolutionary emotions and aesthetic emotions to 

a unified concept of musical emotions. This theory also attempts to explain the existence of mixed 

emotions as a result of different interacting mechanisms reacting on the same event. A good example 

for mixed emotions is the existence of a sort of positive sadness like sweet sorrow. While sadness 

generally is considered to be a rather negative emotion, sweet sorrow also carries positive aspects 

within. In 2008, Zentner, Grandjean and Scherer presented a 9-factor model (Geneva Emotional Music 

Scale, GEMS) for induced musical emotions. Part of their studies was investigating the often discussed 

divergence between perceived and felt emotions in the course of music listening (Gabrielsson, 2001) 

and drawing the line between everyday emotions and musical emotions. Results showed that the 

domain-specific model was able to measure emotions induced by music better than the basic emotion 

model and dimensional emotion models. The outstanding finding in their study however, is the 

discrepancy of negative emotions being perceived as opposed to those being felt by music listening. The 

scale also shows proportionally few negative affect terms compared to positive ones. This might indicate 

that music usually induces more positive associated emotions, which could explain the emotional value 

of music in terms of mood enhancement and regulation. This view also is in line with a study of 

Kawakami et al. (2013). They presented results that indicate that perceived sad music makes people feel 

more romantic, more blithe and less tragic than the music would actually imply. However, other studies 

also supported the contrary point of view that negative musical emotions (grief, melancholia and sweet 

sorrow) indeed are often induced by sad music and contextual aspects contribute to their specific form 

(Peltola & Eerola, 2016). In this context, personality traits are often considered to have an individual 
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impact on the appreciation of sad music. For example trait empathy and openness to experience were 

encountered to support preferences for sad music (Vuoskoski & Thompson, 2012; Garrido & Schubert, 

2011; 2013). All these aspects that were now examined on negative musical emotions but of course 

exist in a certain way for all musical emotions, like complex mixed emotions, discrepancy of perceived 

and felt emotions and paradox interpretations of affect terms, lead to the conclusion that the emotional 

perception of music is highly situational and person dependent and emphasizes the need for more 

ecologically validated research about affective music use and consequently selection behavior in 

everyday life situations. 

Using one or another emotion representation has implications on the actual emotion recognition 

prediction task. In categorical approaches this is referred to as a classification task (e.g. positive versus 

negative emotion). Dimensional approaches imply a regression prediction of the outcome variables on 

each dimension (e.g. value of valence on a continuous scale). There are several comprehensive state-

of-the-art reviews that summarize the efforts of the last decades (Kim, et al., 2010; Yang & Chen, 2012). 

It is out of the scope of this work to give a complete overview of the research area but some main 

findings shall be shared now. Generally researchers would collect ground truth data, which means 

collecting subjective ratings of emotional qualities of music (categorical or parametrical). Collecting this 

kind of data remains a big challenge but a variety of solutions have been found to overcome this issue, 

such as listener surveys, using social tags (e.g. from Last.fm) or data collection games (Kim, et al., 2010). 

Despite the fact that the distinction between perceived and felt emotions is well noted by MIR 

researchers, emotion recognition tasks have mainly focused on perceived emotions, which are argued 

to be less prone to contextual factors (Yang & Chen, 2012). This obviously is a critical point with regard 

to investigating the functional use of music as an emotion regulator, which would benefit from 

information about the actually induced emotions, too. Reading through several MIR related works, it 

quickly becomes obvious that mood and emotion are mostly treated synonymously (Yang & Chen, 2012), 

in contrast to common psychological taxonomies that distinguish the different affect terms precisely 

(Juslin, 2013). As it was already pointed out, different MIR approaches to music emotion recognition 

might also have very different interpretations. This leads to the fundamental distinction of music 

emotion recognition (MER, c.f. Prediction of Music Perception) systems in static ones and dynamic ones. 

Static approaches would apply a single-label (affect term, or parameter value) accounting for the 

emotional content of the whole song, whereas in dynamic MER systems continuous emotion values are 

set on a frame rate or time rate. The latter approach also is considered as music emotion variation 

detection (Aljanaki, Yang, & Soleymani, 2017). Aljanaki and colleagues started to create a benchmark 

framework including a dataset with dynamic emotion annotations. It is understood that pieces of music 

vary in their emotional content changing with time which gives reason to support the dynamic 

approaches. But it remains particularly difficult to obtain a large and meaningful dataset of continuous 
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emotion annotations. Categorical approaches are even more difficult to assess dynamically. The most 

obvious approach would be to create continuous annotations for example on a valence-arousal scale. 

Additionally to ratings or annotations of emotional properties via surveys, emotion tagging etc., 

contextual information sometimes is used to support analyses. These information include artist 

biography, album reviews, but also social tags (Kim, et al., 2010). Strategies collecting those music-

context information are referred to the area of web mining. Especially social tags are gaining increased 

attention due to their high ecological validity and accessibility on platforms like Last.fm. Still mostly used 

for music recognition tasks is the processing of musical content properties, so-called audio features. In 

accordance with earlier sections (c.f. Musical Content – Subjective and Objective Characteristics, 

Prediction of Music Perception), MER seeks to predict musical emotions by low-level audio features. 

Being able to assess musical moods computationally is from great economic importance for many 

current services since the world wide music content is increasing drastically and content-based 

approaches are quite scalable. MIREX, already introduced earlier, is a benchmark platform for MIR 

researchers and is also involved in content-based MER classification tasks. Classifications are made on 

five different clusters of mood adjectives (Hu, Downie, Laurier, Bay, & Ehmann, 2008) as displayed in 

Table 1.  

 

Table 1 - Mood clusters of MIREX classification task and corresponding mood adjectives (Hu, Downie, Laurier, 
Bay, & Ehmann, 2008). 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

Rowdy 
Rousing Confident 

Boisterous 
Passionate 

Amiable/Good 
natured 
Sweet 

Fun 
Rollicking 
Cheerful 

Literate 
Wistful 

Bittersweet 
Autumnal 
Brooding 
Poignant 

Witty 
Humorous 
Whimsical 

Wry 
Campy 
Quirky 

Silly 

Volatile 
Fiery 

Visceral 
Aggressive 

Tense/anxious 
Intense 

 

Typical classification algorithms are Support Vector Machines (SVM), Gaussian Mixture Models (GMM), 

Neural Networks (NN) and k-Nearest Neighbors (k-NN), just to mention some (Yang & Chen, 2012). 

Generally, performances of content-based classification tasks remained relatively low in the past. As 

Humphrey (2015) mentioned it is a general trend in content-based music recognition tasks, such as 

chord estimation or genre recognition, that performances are reaching their limits, which has never 

been very high for music emotion recognition with best classification rates of around 70% in the MIREX 

Music Mood Classification Task. However, it has been argued recently that classification tasks are usually 

outperformed by regression tasks, which is not due to different feature selection. Also methods like 

Support Vector Regression (SVR) or Gaussian Mixture Model Regressions are very similar approaches to 
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the classification approaches. The granularity and ambiguity issue seems to hold up for this tendency. 

However, typical audio features are summarized in Table 2. Those features belong to different 

complexity levels, very basic low-level features (e.g. RMS energy, spectral shape) but also higher level 

features incorporating musical and psychoacoustical knowledge (e.g. rhythm, MFCC’s). Again this 

collection uses a slightly different taxonomy for the different categories of audio features in contrast to 

earlier descriptions. It should be considered to be a small fraction of audio features that are used. 

 

Table 2 - Collection of typical audio features for content-based music emotion recognition (Kim et al., 2010). 

Dynamic Timbre Harmony Register Rhythm Articulation 

RMS energy MFCC’s, 
Spectral shape, 

Spectral 
contrast 

Roughness, 
Harmonic 
change, 

Key clarity, 
Majorness 

Chromagram, 
Chroma 
centroid,  
Chroma 

deviation 

Rhythm 
strength, 

Regularity,  
Tempo, 

Beat 
histograms 

Event density, 
Attack slope, 
Attack time 

 

With high advances in the signal processing and machine learning community another musical property 

has become very valuable for MER systems, namely song lyrics. Lyrics exist somewhat in between the 

fields of content and context and are still generally assumed to be highly complex, in both steps 

generating ground truth and feature design. As many comparisons showed, using multi-modal 

approaches with audio content and lyrics has improved most emotion recognition tasks (Kim, et al., 

2010). A very recent research has shown that in the case of valence, a combined approach 

outperformed single content or lyric prediction tasks with a middle fusion model of a Convolutional 

Neural Network (content input) and a SVM (lyrical input) (Delbouys, Hennequin, Piccoli, Royo-Letelier, 

& Moussallam, 2018). That was not the case for arousal, which was not improved by combined modal 

approaches compared to a content-only Convolutional Neural Network.  

In summary, trends indicate that multi-modal prediction techniques, combining lyrics, content, 

metadata, tags etc. can still improve system-based recognition tasks, also machine learning advances in 

deep learning and increased efforts for dynamic MER systems support this direction. As this overview 

showed, it is still poorly recognized to implement the user in such systems. Thus, MER systems continue 

to lack individuality, interpretability and real-life situation accuracy. The user properties and user context 

need to be considered in the future MIR approaches because it is widely acknowledged that emotion 

perception and induction by music is highly situational (North, Hargreaves, & Hargreaves, 2004; Juslin, 

Liljeström, Västfjäll, Barradas, & Silva, 2008; Sloboda, O'Neill, & Ivaldi, 2001), and person-related 

(Vuoskoski & Thompson, 2012; Garrido & Schubert, 2011). User-centric MER approaches would 

definitely support contextual music recommendation approaches. Since the frequent emotional use of 
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music is highly evident, such approaches would be very valuable to model music listening and selection 

behavior. As the next section shows, music recommendation systems incorporating contextual 

information have also not reached wide attention so far, and are almost not existent in commercial 

solutions, despite the contextual importance for the music listening behavior.  

1.5 Music Recommendation 

Since the everyday listening behavior is changing by means of technological trends (North, Hargreaves, 

& Hargreaves, 2004) and people are confronted with a tremendous amount of music, it makes sense to 

provide listeners with music recommendations on their playback devices for easy access and practical 

use. The relevance of recommendation systems (RS) is increasing dramatically. Streaming services for 

music and audio content became global players in the last decades. Most prominently named by 

Spotify2, Pandora3 or Last.fm4 just to mention three out of a wide range of music streaming applications 

that would also recommend music from their large music data bases. Music listening is not determined 

by the choice of the radio station, concerts and discos or the limited amount of physical media one holds 

at hand like CD’s or vinyl anymore. On the other hand it has almost become impossible to handle the 

amount of possibilities a user gets. People suffer from constant information overload. A system that 

provides an accurate music recommendation to fulfill the listeners needs, however could overcome 

some aspects of modern technological stress factors.  

Music recommendation systems (MRS) are approached in very different ways nowadays but 

collaborative filtering (CF) and content-based filtering (CBF) are still the most commercially common 

techniques. Those traditional methods would make use of user ratings towards specific items and 

recommend other, unseen items according to the users’ preferences. Thus, the recommendation results 

from previous behavior and is based on a rating function that describes a two-dimensional matrix: Users 

x Items - - > Ratings (Ricci, Rokach, Shapira, & Kantor, 2011). CF refers to the user in comparison to its 

social environment. Ratings or preferences are compared and they provide a prediction or 

recommendation of items that are unknown to the user but known in the “neighborhood” by similar 

users and possibly turn out to be favorites (Kaur & Kumari, 2017), whereas CBF considers specific 

properties of items that were rated positively or were actively chosen by the user. Therefore, a content-

based recommender provides items with similar characteristics (Aucouturier & Pachet, 2002). In music 

recommendation, MIR would provide this musical content, namely audio features like tempo, mode, 

timbre, rhythm etc. (Li, Kim, Guan, & Oh, 2004). Both approaches, CF and CBF, have complementary 

properties with obvious drawbacks, which makes it highly recommended to use hybrid versions 

                                                           
2 www.spotify.com 
3 www.pandora.com 
4 www.lastfm.com 



18 
 

combining different recommendation approaches (Yoshii, Goto, Komatani, Ogata, & Okuno, 2008). CF 

recommender suffer from cold-start problems, which means, new items that no one ever rated before 

have little chances to be encountered. Another problem is the popularity bias, meaning popular items 

constantly remain being likely to be recommended. Both effects result in a sparsity problem, meaning 

only a fraction of possible items do have a rating and therefore can possibly be recommended by 

collaborative filtering approaches. Many researches have tried to overcome those problems, e.g. (Chen, 

Wu, Xie, & Guo, 2011). However, CF turned out to be quite effective (Yoshii, Goto, Komatani, Ogata, & 

Okuno, 2008) and CBF can overcome cold-start problems and popularity bias but instead suffers from 

accuracy problems since similarity of song properties has not been proven to correspond with musical 

preferences and is contrary to other quality metrics of recommendation systems, such as novelty and 

diversity (Song, Dixon, & Pearce, 2012; Ricci, Rokach, Shapira, & Kantor, 2011). Thus, hybrid approaches 

that combine different methods usually outperform the single conventional approaches (Song, Dixon, 

& Pearce, 2012; Kaur & Kumari, 2017). More recently, other techniques were also considered in 

different recommendation tasks. Those seem to make sense especially in the context of music 

recommendation. Emotion-based recommendation (EBR) is similar to CBF by using calculations of 

emotional content of music for recommendation (e.g. valence/arousal values) which is applied by the 

online recommendation services Musicovery5 as well as Sourcetone6. This refers to the widely 

investigated emotional value and functionality of music and is based on the progress in computational 

emotion recognition (Schäfer, Sedlmeier, Städtler, & Huron, 2013; Greb, Schlotz, & Steffens, 2017; Yang 

& Chen, 2011). Another, very promising approach is the use of context-aware recommendation systems 

(CARS). Context can be distinguished into user-context and music-context. Music-context refers to all 

information relevant to the music that is not directly available in the data, such as political background 

of the artist, specific meanings of songs, etc. (Schedl, Flexer, & Urbano, 2013). The user-context was 

categorized by Göker and Myrhaug (2002) in five categories: environment context, personal context, 

task context, social context and spatio-temporal context. In music listening, the task context refers to 

the main activity during and even functionality of music listening, which are considered to be integral 

components in the process of music-selection (Greb, Steffens, & Schlotz, 2018) and consequently must 

be contemplated in a MRS. The personal context is also highly related to the functionality of music 

listening and music-selection and considers the physiological and mental context of the individual. 

Knowing about the physiological and psychological state of the user can for example be useful for mood 

and arousal regulation purposes, since research found associations supporting mood-congruent music-

selection and arousal regulation functions of music listening (Randall & Rickard, 2017). CARS scan result 

in a hierarchical recommendation data structure, where recommendations are based on groups of 

                                                           
5 http://b2b.musicovery.com/ 
6 http://www.sourcetone.com/ 
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contexts and can be represented by trees (Ricci, Rokach, Shapira, & Kantor, 2011). Another, often 

parallel implemented approach is demographic based recommendation helping by initial groupings in 

hybrid approaches by age, gender, nationality etc. (Liu, Lai, Chen, & Hsieh, 2009). 

Contextual recommendation systems for music have by far not been as popular as conventional 

approaches. But considering the results of Greb and colleagues (2017; 2018; 2019), CARS for music 

would improve several key quality factors of recommendation systems, such as accuracy, coverage, 

confidence, serendipity, diversity, utility and adaptivity, as defined in Ricci et al. (2011). While the 

commercial successful recommendation systems use collaborative filtering (Last.fm) and content-based 

models (Pandora), there are already some academic context-based recommenders. It can be said that 

music recommendation research on context-effects had provided many useful insights on the 

contextual use of music, but certainly from a very practical point of thinking. Su and colleagues (2010) 

integrated different physiological dimensions (heartrate, body temperature), weather information (air 

temperature, humidity) and additional contextual information (time, location, motion etc.) into one 

context-aware music recommender, called uMender. By conducting an experiment using semi-real data 

and a prototypical real-life application, they achieved results indicating that the inclusion of contextual 

parameters outperformed user-based and item-based recommendation approaches. This is underlining 

the real-life significance of contextual factors in the music recommendation processes, thus also 

supporting the relevance in music-selection behavior. Wang et al. (2012) collected contextual data 

about daily activities (walking, relaxing, running, sleeping, shopping) with smart-phones and 

implemented a probabilistic model to integrate contextual-data with musical content for 

recommendation. Dias et al. (2014) presented the hybrid recommender Improvise that associates 

musical content with the same daily activities from Wang and colleagues using an initial generic system 

to overcome the cold-start problem and improving accuracy by user feedback. Other contextual 

recommenders incorporated parameters like time of day, seasons, locations, urban environment 

information (traffic), weather, temperature and motions (Reddy & Mascia, 2006; Lee & Lee, 2007; Liu, 

Lai, Chen, & Hsieh, 2009). Baltrunas and Amatriain (2009) introduced the micro-profiling technique to 

implement contextual parameters. Each user receives several sub-profiles corresponding to different 

contextual parameters. This is an extension to CF or user-based approaches and acts as a context filter. 

Baltrunas et al. (2011) implemented a context-aware music recommender for driving situations. 

Different context variables (e.g. landscape, sleepiness, mood, traffic conditions) were shown to have an 

impact on the propensity for different music styles, implying the relevance of those factors.  

Similar to music recommendation is playlist generation. It is usually a rather static approach, since 

playlists are sets of pre-selected music. Also in this community, aspects of context dependencies have 
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been considered. For example Oliver and Kreger-Stickles (2006) introduced an automatic playlist sorting 

principle considering physiology and purpose of music listening while working out.  

This short introduction into music recommendation systems shows, that there are academic research 

approaches existing also integrating contextual information of the listener. But as Zheng (2017) argues, 

that despite being quite effective, most contextual systems were created in the spirit of machine 

learning strategies, and therefore lack of interpretability and relevance assessment of the different 

contextual parameters. Making more use of current behavioral research that clearly indicates relevant 

contextual predictors of music-selection behavior would therefore beneficially support CARS for music. 

Thus, this work argues to support the creation of contextual music recommendation systems by 

identifying the statistically most relevant functional, situational and person-related predictors of audio 

features of self-selected music supported by state-of-the-art statistical learning procedures as 

introduced further in the next section. However, implementing a context-aware music recommendation 

system can reversely be object to a real-life relevance and significance assessment of theoretical and 

statistical models about music listening and selection behavior. 

1.6 Statistical Learning of Selected Musical Properties 

Combining the fields of psychology and machine learning inevitably evokes the controversial discussion 

about choosing explanation or prediction as main objective in the statistical analysis. As earlier chapters 

showed, music psychology has rather intuitively chosen explanatory approaches. Complex theories 

were supported by findings of statistical relationships giving insights into the present data but usually 

lack to explain unseen data or predict potential future behavior. This is stated in the well-known 

replication crisis of psychological research (Open Science Collaboration, 2015). Despite the fact that 

results of explanatory research often were not able to be held up in similar assessments, they were 

generalized to explain human behavior. Machine learning contrary to that, usually focuses on prediction 

tasks. The goal is predicting the outcome of unseen input variables. Potentially, every measure of input 

data underlies certain measurement errors introducing noise. This notion is generally acknowledged, 

but models that accurately fit sample-specific noise components ignore this fact in the spirit of 

evaluating the model’s performance by the goodness-of-fit. This problem is known as overfitting. But 

also potentially noise-free data can be overfitted by applying fits of very high order. Those models would 

not generalize well on unseen data. By reducing the overfit, the prediction accuracy of present data 

decreases but increases drastically for out-of-sample data. The outcome allows a more reliable 

generalization, which has actually always been the main objective of psychological research. In fact, 

prediction tasks would contribute to the understanding and explanation of psychological phenomena 

on the long term and therefore complement explanation approaches (Yarkoni & Westfall, 2017). 
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The machine learning community has presented some very effective methods to overcome under- and 

overfitting problems. Three main aspects can help to control the total error in statistical learning 

procedures, a) using an adequate sample size (n) (aims on increasing the n to p ratio by increasing n), b) 

constraining or regularizing the complexity of models (aims on increasing the n to p ratio by decreasing 

p or decreasing the effect of p), and c) assessing trained models by their predictive performance on 

unseen data, for example by cross-validation the most common technique (supports the best model 

selection to prevent overfitting) (Yarkoni & Westfall, 2017).  

Big data, as a buzzword, refers to point a) and has been one of the hot topics in recent years for data 

scientists but has surprisingly gotten little attention in psychological research. By giving an “Introduction 

to the Special Issue” (Harlow & Oswald, 2016, p. 1) only in 2016, it is obviously implied that big data is 

still stuck in its infancy regarding psychological applications, despite the fact that a reasonable amount 

of data would substantially improve the model building process and validation of theories. Of course, 

acquiring data is highly cost intensive, which is a major drawback, but it is required to produce models 

that are generalizable and do not suffer from overfitting. Also, modern technologies allow for the 

acquisition of data better than ever by using smart-phone apps, web applications or tools like Amazon 

Mechanical Turk7 to hire human intelligence and measure human behavior. The assessment of sufficient 

data is a necessity in modern psychological research. 

 

Big data science can be instrumental in collaboratively working to uncover and illuminate 

cogent and robust patterns in psychological data that directly or indirectly involve human 

behavior, cognition, and affect over time and within sociocultural systems. 

Harlow & Oswald (2016, p. 448) 

 

Reducing the complexity of models is still a more cost efficient way to improve the prediction accuracy 

for unseen data and should be applied besides collecting much data. Complexity can be handled by 

means of the number of contributing variables, referred to as regularization. The regularization of 

model parameters that have very limited predictive value reduces the variance component of the total 

error but introduces a more biased prediction. By finding the best compromise, it results in a better fit 

for out-of-sample data, the data that has not been part of the modeling process. A relatively recent 

developed method became a more and more popular approach to intentionally bias the model fit, the 

so-called Lasso (least absolute shrinkage and selection operator). Introduced by Tibshirani (1996), the 

                                                           
7 https://www.mturk.com/ 
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Lasso regression seems to be very suitable for the needs of psychological research and concurrently 

makes use of a modern machine learning technique. By controlling dense structures (low n to p ratio) 

(Yarkoni & Westfall, 2017), the linear Lasso regression still provides the, by psychologists so much 

pursued, interpretability of the model. In general, linear regression predicts the outcome variable 𝑌 by 

𝑝 input variables given as a transposed vector 𝑋𝑇 =  (𝑋1, 𝑋2, … , 𝑋𝑝) by solving the equation (1): 

 

 

𝑌̂ =  𝛽̂0 +  ∑ 𝑋𝑗

𝑝

𝑗=1

𝛽̂𝑗 

 

 
(1) 

𝛽̂0 is called the intercept and is the estimated value where the regression line crosses the ordinate. 𝛽̂𝑗 

is the estimated coefficient of the independent variable 𝑋𝑗. The equation can simultaneously be written 

in vector form by including a constant variable 1 in 𝑋 and 𝛽̂0 in the coefficient vector 𝛽̂:  

 𝑌̂ =  𝑋𝑇𝛽̂ (2) 

To fit the linear model, each coefficient 𝛽 is selected by minimizing the residual sum of square between 

the estimated value and the real value of the output variable. This approach is called least squares and 

minimizes the following equation: 

 
𝑅𝑆𝑆(𝛽) =  ∑(𝑦𝑖 −

𝑁

𝑖=1

 𝑥𝑖
𝑇𝛽)² 

 

(3) 

where 𝑁 denotes the number of observations. The least squares method can also be regulated by a 

penalty term 𝑃.  

 𝑃1 =  ∑|𝛽𝑗|

𝑝

𝑖=1

 

 

(4) 

The Lasso would make use of a penalty term considering the absolute value of the coefficient 𝛽. This 

property supports the selection of sparse models by the L1-norm (used in Lasso) and is therefore able 

to perform a variable selection by shrinking coefficients of meaningless variables to zero. Another 

regularization technique is the ridge regression. It uses another penalty term (L2-norm) that shrinks 

coefficients towards zero but never exactly to zero.  

 
𝑃2 =  ∑ 𝛽𝑗

2

𝑝

𝑖=1

 

 

( 5) 
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Both terms can also be mixed in a more generalized approach called elastic net.  

 
𝑃𝛼 =  ∑ [

1

2
(1 − 𝛼)𝛽𝑗

2 + 𝛼|𝛽𝑗|]

𝑝

𝑖=1

 

 

(6) 

In the case of Lasso, 𝛼 is equal to one. Ridge regression would mean to have an 𝛼 = 0. Finally, the 

penalty terms can be controlled by a tuning parameter 𝜆. The Lasso coefficients 𝛽̂𝑙𝑎𝑠𝑠𝑜 can then be 

estimated by minimizing 𝜆𝑃1(𝛽) and 𝑅𝑆𝑆(𝛽). 

 

 
𝜷̂𝒍𝒂𝒔𝒔𝒐  =  𝐚𝐫𝐠𝐦𝐢𝐧

𝜷
 (𝑹𝑺𝑺(𝜷) +  𝝀𝑷𝟏(𝜷)) 

 

(7) 

 

Besides regularization, a second technique contributes crucially to the model’s success in predicting 

unseen data. Cross-validation (CV) is the attempt to estimate the generalized performance of a model 

and can be used to select a model that generalizes the best. Applying CV means simply assigning 

different observations of the dataset into a training-set and validation-set and test-set. Thus, the model 

is trained and tested repeatedly on different samples. The model’s performance can be assessed by 

measuring the test error (e.g. average mean-squared-error over all folds) and not by the training error 

itself which can be manipulated in the spirit of the goodness-of-fit. One of the most common CV 

techniques is the k-fold cross-validation that applies a pseudo-random assignment of the data into k 

almost equally sized folds. Each fold is iteratively being used to test the prediction error of the model 

that has been trained in the remaining folds. A generalized performance can be estimated by averaging 

over all prediction errors (e.g. mean-square-error). Effects that are by chance existing only inside the 

test or training set do not survive in the model selection process. CV is often used as model selection 

technique and for hyperparameter tuning applying a grid-search, which applies a range of values in each 

cross-validation loop to find the best parameter. For example in the case of the Lasso, different values 

for the shrinkage parameter λ could be cross-validated and in the course of model selection the best 

tuning parameter is chosen by the smallest prediction error over all cross-validation folds.  

Cross-validation can substantially improve the modeling process in regards of making better predictions 

on unseen data by selecting the optimal model but does not allow to assess the performance of the 

model selection procedure on large sample at the same time. According to Stone (1974), CV techniques 

need to be separated into two different processes, one for model selection and one for model selection 

procedure assessment. The model selection procedure usually refers to the classifier or regression 

approach that was used. A modelling procedure assessment can potentially be done on a completely 
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different dataset that had no impact on the modelling process itself. This again requires an adequate/big 

sample size or a second dataset. Another possibility is the implementation of a nested cross-validation 

(NCV). The NCV performs two cross-validation loops whereas the inner CV loop is nested in the outer 

CV loop. The optimal model for the corresponding prediction task is selected in the inner loop, the 

assessment of the selection procedure takes place in the outer loop. In the case of Lasso, it was pointed 

out in different papers (Roberts & Nowak, 2014; Krstajic, Buturovic, Leahy, & Thomas, 2014) that the 

selection of the optimal tuning parameter is sensitive to the fold assignment made by cross-validation, 

which requires a repeated model selection procedure. Roberts and Nowak (2014) approached the 

percentile-Lasso, which suggests the selection of a certain percentile value (e.g. 95th-percentile) out of 

all optimal tuning values generated in a repeated model selection process. As they showed, this 

procedure is more consistent in selecting optimal hyperparameters (λOpt). Krstajic et al. (2014) suggested 

a slightly different technique where the mean loss function of each tuning parameter is calculated over 

all repeated grid-search cross-validations. Consequently, the optimal cross-validated tuning parameter 

is selected by the average prediction errors over all repetitions. Either way, the complete procedure in 

the inner loop for selecting the optimal model should be considered as a protocol (Krstajic, Buturovic, 

Leahy, & Thomas, 2014). The task of the outer loop is to assess the performance of the model selection 

protocol (Krstajic, Buturovic, Leahy, & Thomas, 2014). As in model selection, the protocol assessment is 

sensitive to the fold assignment. Therefore, Krstajic and colleagues also recommend a repeated protocol 

assessment. Finally, the exact modelling protocol can be used to make a cross-validated model fit. The 

model fit gives insights about possible predictors, supported by knowledge about the large-sample 

performance of the protocol.   

As this section shows, concepts of machine learning are still very new to the psychological research 

domain despite the fact that statistical learning procedures can substantially improve the quality of the 

outcome. Choosing a statistical procedure for the sake of minimizing the prediction error of a model 

can give very valuable insights about the generalization qualities of the result. Creating models that 

generalize well is the objective of this work to predict Spotify audio features by situational, person-

related and functional variables.  
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2 Method 

2.1 Participants 

Greb et al. (2019) collected the data of 119 participants (~55% women; mean = 24.4 years; SD = 4.4) 

recruited via the participant database of the Max Planck Institute for Empirical Aesthetics in Frankfurt 

am Main (Germany). The dataset only included participants with an indicated daily music consumption 

of at least two hours a day on five days per week. Participants were rewarded depending on the number 

of valid answers with up to 25€. In the course of this work, only 101 participants were included in the 

modeling process due to restrictions explained in the next sections (~53% women; mean = 24.4 years; 

SD = 4.6).  

2.2 Measures 

First, a pre-screening was set up by Greb and colleagues to evaluate the frequency of music listening of 

each participant (weekly and daily). Two items were rated on a nine-point scale, referring to the 

questions: 1) How often do you listen to music during the week?; and 2) How long do you listen to music 

on average? Additionally, participants shared information about their smartphone systems if they 

owned one. 

2.2.1 Predictor Variables – Determinants of Music-Selection Behavior 

Typical person-related variables were collected for each participant regarding age, gender and 

educational level. Additionally, participants answered questions about their musical sophistication 

(German version of the Gold-MSI (Schaal, Bauer, & Müllensiefen, 2014)), the intensity of music 

preferences (Schäfer & Sedlmeier, 2009), musical taste (Greb, Schlotz, & Steffens, 2017), and Big Five 

personality traits (German version of the IPIP-NEO-120 (Johnson J. A., 2014)). 

Various items were measured repeatedly to describe the situation in which the music listening took 

place, the functionality of music listening and the properties of the currently consumed music. For more 

details and exact wording, see further Greb et al. (2019) and the Appendix. The complete questionnaire 

only started if participants positively answered the initial question, whether they were listening to 

music. The situation was described by the main activity that was done during the course of listening. 

Those categories were described in Greb et al. (2017) and included e.g. housework, coping with 

emotions and relaxing. Participants should also indicate if other people were present and in 

communication with them, if they actively chose the music, as well as about how much control they had 

over the music. The personal situation was assessed through ratings of the current mood and 

excitement at the beginning of the music listening by valence and arousal ratings (Russell, 1980). 

Additionally, participants should rate how important they thought their mood might have been in 

driving the decision to listen to music and if they were paying attention to the music. In the second 
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section of the questionnaire, participants were asked to name the currently playing song, artist and/or 

musical style and rate it by eight musical characteristics each on a bipolar rating scale with seven scale 

points (calming-exciting, slow-fast, sad-happy, less melodic-very melodic, less rhythmic-very rhythmic, 

simple-complex, peaceful-aggressive, less intense-very intense). Furthermore, familiarity (unknown-

known) and type of music (vocal-instrumental) were rated and information about the playback volume 

and liking of the song were asked for. The second section was not evaluated in this work, only the data 

of the songs’ names and artists were processed and playback volume and liking were used. The third 

section included questions regarding the functionality of music listening. A subset of questions was 

generated from the functions of music listening in Greb et al. (2017), each of them covered by three 

questions. The corresponding functions were intellectual stimulation, mind wandering & emotional 

involvement, motor synchronization & enhanced well-being, updating one’s musical knowledge, and 

killing time & overcome loneliness. The corresponding items delivered sum scores for each function as 

described in Greb et al. (2017). 

2.2.2 Outcome Variables – Spotify Audio Features 

Besides the person-related variables and the variables measured repeatedly in the Experience Sampling 

Method by Greb et al. (2019), musical properties for each actively chosen song (N=1021) were retrieved 

from the Spotify Web API8. The API (application programming interface) endpoints of Spotify return 

information encoded as JSON (JavaScript Object Notation) including the following audio features:  

 

Table 3 – Spotify Audio Features. Descriptions of the Spotify audio features were taken from the Web API website 
(Spotify, 2019)) (https://developer.spotify.com/documentation/web-api/reference/tracks/get-several-audio-
features/) 

Acousticness A confidence measure from 0.0 to 1.0 of whether the track is acoustic. 1.0 represents 

high confidence the track is acoustic. 

Danceability Danceability describes how suitable a track is for dancing based on a combination of 

musical elements including tempo, rhythm stability, beat strength, and overall 

regularity. A value of 0.0 is least danceable and 1.0 is most danceable. 

Duration The duration of the track in milliseconds. 

Energy Energy is a measure from 0.0 to 1.0 and represents a perceptual measure of intensity 

and activity. Typically, energetic tracks feel fast, loud, and noisy. For example, death 

metal has high energy, while a Bach prelude scores low on the scale. Perceptual features 

contributing to this attribute include dynamic range, perceived loudness, timbre, onset 

rate, and general entropy. 

                                                           
8 https://developer.spotify.com/ 
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Instrumentalness Predicts whether a track contains no vocals. “Ooh” and “aah” sounds are treated as 

instrumental in this context. Rap or spoken word tracks are clearly “vocal”. The closer 

the instrumentalness value is to 1.0, the greater likelihood the track contains no vocal 

content. Values above 0.5 are intended to represent instrumental tracks, but confidence 

is higher as the value approaches 1.0. 

Key The key the track is in. Integers map to pitches using standard Pitch Class notation. E.g. 

0 = C, 1 = C♯/D♭, 2 = D, and so on. 

Liveness Detects the presence of an audience in the recording. Higher liveness values represent 

an increased probability that the track was performed live. A value above 0.8 provides 

strong likelihood that the track is live. 

Loudness The overall loudness of a track in decibels (dB). Loudness values are averaged across the 

entire track and are useful for comparing relative loudness of tracks. Loudness is the 

quality of a sound that is the primary psychological correlate of physical strength 

(amplitude). Values typical range between -60 and 0 db. 

Mode Mode indicates the modality (major or minor) of a track, the type of scale from which its 

melodic content is derived. Major is represented by 1 and minor is 0. 

Speechiness Speechiness detects the presence of spoken words in a track. The more exclusively 

speech-like the recording (e.g. talk show, audio book, poetry), the closer to 1.0 the 

attribute value. Values above 0.66 describe tracks that are probably made entirely of 

spoken words. Values between 0.33 and 0.66 describe tracks that may contain both 

music and speech, either in sections or layered, including such cases as rap music. Values 

below 0.33 most likely represent music and other non-speech-like tracks. 

Tempo The overall estimated tempo of a track in beats per minute (BPM). In musical 

terminology, tempo is the speed or pace of a given piece and derives directly from the 

average beat duration. 

Time Signature An estimated overall time signature of a track. The time signature (meter) is a notational 

convention to specify how many beats are in each bar (or measure). 

Valence A measure from 0.0 to 1.0 describing the musical positiveness conveyed by a track. 

Tracks with high valence sound more positive (e.g. happy, cheerful, euphoric), while 

tracks with low valence sound more negative (e.g. sad, depressed, angry). 

 

Not all features were used in this work. Valence, energy, danceability and loudness were selected for 

the modeling process. Loudness was additionally transformed by a simple mathematical operation to 

have output values normally distributed between 0.0 and 1.0 (𝑙𝑙𝑖𝑛𝑒𝑎𝑟 =  10
𝑙𝑙𝑜𝑔𝑎𝑟𝑖𝑡ℎ𝑚𝑖𝑐

20 ).  
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2.3 Design 

As described in Greb et al. (2019) after the pre-screening participants rated on the person-related 

variables in a laboratory session using a tablet (Samsung Galaxy Tab A1.7). The app movisensXS9 Version 

1.0.1 was used to measure the situational, functional and music-related variables in the course of the 

ESM. Participants with Android systems were able to use the app on their own device, others got a loan 

device (Motorola Moto G3). The whole measurement time window was 10 days from Friday to Sunday. 

Within that time period each participant received 14 random alarms per day (in an individual 14 hour 

time frame per day). This number was tested before and found to be acceptable. The alarms occurred 

within a minimum time span of 20 minutes between each other and were able to be postponed by 5, 

10 or 15 minutes or just rejected by the participant. Besides the time-based sampling plan also an event-

based plan was implemented in the way that participants were able to start the questionnaire 

proactively by starting the app. 

2.4 Procedure 

Greb et al. (2019) collected people’s music-selection behavior in everyday life situations with an 

Experience Sampling Method (ESM). As described in Beal & Weiss (2003), the ESM delivers less biased 

results compared to common psychological techniques like retrospective reports for measuring 

dynamic behavior. Besides between-person differences it additionally measures the within-person 

differences for different situational settings. The data structure acquired in ESM studies is usually 

unbalanced and hierarchical (Fisher & To, 2012), which means that many observed datapoints (samples) 

are nested within the corresponding group (e.g. the individual or participant) but are not necessarily 

equally distributed to the different classes of output variables. Strong imbalance could possibly affect 

the outcome of statistical methods. Find the exact steps of the ESM described in Greb et al. (2019). 

Subsequent to the ESM, audio features were retrieved from the Spotify Web API for each actively chosen 

song. A playlist was created including all songs that were identified uniquely in Spotify. Due to not 

specific naming or ambivalent search results in Spotify, some data points were discarded at this stage, 

which was one reason, why only 101 participants remained in the modelling process. A Python script 

based on the software development kit (SDK) Spotipy10 retrieved all Spotify audio features. In specific, 

the code used the audio_features(tracks=[]) function of the Spotipy package which returned a JSON file 

including all Spotify audio features that were consequently parsed in the Python script. 

2.5 Data Analysis 

The data measured in the ESM was filtered by three rules. First, not complete cases were excluded, 

second, measurements of songs that could not be identified unambiguously in Spotify were excluded 

                                                           
9 https://xs.movisens.com/ 
10 https://spotipy.readthedocs.io/en/latest/# 
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and lastly, only cases with active music-selection behavior were used for further investigation, leaving 

101 participants and 1021 listening situations. Prior to modeling, input variables were scaled and 

centered. There was one main analysis objective approached by this work:  

Predict Spotify audio features of actively selected music by measured person-related and situational 

variables and the functional use of music listening. 

The data used for the prediction task had a hierarchical data structure accounting for between-subject 

and within-subject differences. To make this valuable in the modeling process, average values for each 

functional and situational variable were calculated to explain between-subject differences. Additionally, 

the deviation of each measurement from the person’s mean value was calculated to account for the 

within-subject (situational) differences. Those values were originally assessed on the complete dataset 

from Greb et al. (2019), to prevent the analyses from outliers due to smaller sample size after removing 

several data points in consequence of the three data filtering rules as described before.  

The implemented learning algorithm is based on the L1-penalized regression (Lasso regression), 

proposed by Tibshirani (1996). In specific, the glmmLasso R-package from Groll and Tutz (2014) was 

used to solve the Lasso regression task on the outcome variables (audio features) valence, energy, 

danceability and loudness. The glmmLasso() function conducts a Generalized Linear Mixed Effects Model 

(GLMM) assuming a normal distribution and applies the Lasso shrinkage hyperparameter λ. A repeated 

5-fold nested cross-validation procedure was implemented. This procedure, firstly, selected optimal 

tuning parameters for λ by grid-search cross-validation corresponding to different protocols (model 

selection procedures). All protocols were based on different versions of the percentile-Lasso. In the 

second step, a protocol assessment took place to make conclusions about the estimated generalization 

qualities of each protocol. These two steps were repeated several times. All protocols were compared 

to a reference model, the corresponding random intercept-only model, which is the model with the λ 

value that shrinks all variables to zero. The protocol with the least estimated generalized prediction error 

was finally used for a new cross-validated model selection and a final model fit on the complete dataset 

with the lmer() function of the lme4 package of R by REML estimates (restricted maximum likelihood). 

All steps are explained in more detail in the following. 

Step A: Nested Cross-Validation – Protocol Assessment and Estimation of Generalization Qualities 

The NCV was repeated 20 times in total which resulted in 100 cross-validated prediction error values 

(20x5-folds). This number was found to be reasonable in means of computational effort and expected 

test power. Each repetition conducted an individual nested cross-validation with five outer folds and 

five inner folds. The decision for five folds (instead of ten) was driven by the number of observations, 

respectively the number of participants in the remaining dataset. Furthermore, different researches 



31 
 

treat 5- and 10-fold cross-validation as equally powerful (Krstajic, Buturovic, Leahy, & Thomas, 2014). 

To avoid leakage, the fold assignment was done at the level of the participants (nParticipant=101). 

Generally, a fold-split at the grouping level of nested data also delivers information about the estimated 

generalization qualities of models on unseen individuals. 101 participants were assigned to kOut=5 folds 

in the outer loop, which means in average approximately 20 participants were assigned to the test set 

and 81 participants were assigned to the training set of the outer loop. The outer training set then was 

used in the inner loop to run several model selection protocols.  

 

 # Pseudo Code: Nested Cross Validation, outer loop 

# repeat nested cross-validation by rep times (rep=20) 

 for r in 1:rep  { 

   outer_folds  = create kout-outer folds 

   for k in 1:kout  { 

     outer_training_set = create set from outer_folds – foldk 

     outer_validation_set = create set with foldk 

 cross-validate protocols (inner loop) ---> optimal_lambda = model selection (outer_training_set, kin)  

     optimal_model = train(outer_training_set, optimal_lambda) 

     optimal_model_quality = test(outer_validation_set, optimal_model) 

} 

} 

 

The remaining ~81 participants were assigned to kin=5 inner folds, resulting in approximately 65 

participants for each inner training set. The inner training sets were then trained on a grid of 100 λ-

values. The sequence started with the maximal λ value. In general, the λmax-value of Lasso regression 

models is supposed to shrink all regression coefficients to zero, meaning predictions are only made by 

the model’s random intercept value. Consequently, 100 different linear distant λ-values between λ=0 

and λmax were trained and tested for each kin fold. The resulting 100-by-5 matrix delivered the average 

mean-squared-error for each λ over each inner fold (also known as cross-validation error). The best λ 

with the smallest CV-error was selected for the trained outer fold. Following the suggestions of Roberts 

& Nowak (2014), the model selection was stabilized against variances in the fold assignment during 

cross-validation by repeated inner fold assignments (per=100), resulting in 100 optimal tuning 

parameters for each outer training fold. Afterwards, ten different percentile values were chosen from 

those optimal tuning values (50th-, 55th-, 60th-, 65th-, 70th-, 75th-, 80th-, 85th-, 90th- and 95th-percentile). 

Each percentile selection refers to its own protocol and was then trained on the outer training set and 
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tested on the outer test set in the course of protocol assessment, returning the prediction errors for 

each λOpt(percentile). The same was done with a λmax-model for each outer training set.  

 

 # Pseudo Code: Nested Cross Validation, inner loop or protocol 

# repeat inner loop many times and select percentile values to stabilize model selection (per=100) 

 for p in 1:per { 

   inner_folds  = create kin-inner folds  

   for i in 1:kin  { 

     inner_training_set = create set from inner_folds – foldi 

     inner_validation_set = create set with foldi 

     for lambda in sequence(maximal_lambda:0, by= -maximal_lambda/100) { 

      model_lambda = train(inner_training_set, lambda)  

      model_lambda_quality = test(inner_validation_set, model_lambda) 

     } 

     optimal_lambda = append lambda with best CV-error 

} 

percentile_lambda = select the 95th or 85th – percentile (and so on) from optimal_lambda 

# each percentile_lambda is used as the optimal_lambda of the corresponding protocol in the 
#outer_loop 

} 

 

Step B – Model Selection with Best Protocol 

The final cross-validation followed the exact protocol that was chosen by the protocol assessment in the 

nested cross-validation and finally selected the tuning parameter. The choice of the best protocol was 

driven by the smallest estimated generalized prediction error and by inspection of a stable model 

selection. A model was finally fitted on the complete dataset using the optimal λ. The final re-fit with 

the lmer() function (using REML=TRUE) delivered the estimates and the corresponding p-values. The 

typical significance level of α=0.05 was considered. Conditional and marginal R2 values were computed 

of the final models with the r.squaredGLMM() function of the MuMin package of R according to 

Nakagawa et al. (2017).  

 
𝑅𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙

2 =
𝛿𝑓

2

𝛿𝑓
2 + 𝛿𝛼

2 + 𝛿𝜀
2 

 

(8) 

 𝑅𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙
2 =

𝛿𝑓
2 + 𝛿𝛼

2

𝛿𝑓
2 + 𝛿𝛼

2 + 𝛿𝜀
2 (9) 
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Additionally ICC (Intra-class correlation coefficients) values for each random intercept-only model were 

calculated to observe the relative amount of variance explained by the models. 

 
𝐼𝐶𝐶 =

𝛿𝛼
2

𝛿𝛼
2 + 𝛿𝜀

2 

 

(10) 

Note:  

𝛿𝑓
2 – denotes the variance calculated by the fixed effects components of the model 

𝛿𝛼
2 – denotes the variance calculated by the random effects components of the model 

𝛿𝜀
2 – denotes the residual variance  
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3 Results 

The results of the NCV are shown in the Figure 4, Figure 5, Figure 6 and Figure 7. Each figure consists of 

two boxplots. The upper one shows the distribution of the 100 cross-validated prediction errors of each 

outer test fold. The averaged prediction error of each protocol is indicated by a circle and the averaged 

error of the reference model (λmax-model) is indicated by a dashed line. Those values are corresponding 

to the estimated generalized prediction error of each protocol. The lower boxplot shows the distribution 

of the cross-validated optimal λ values of each outer training fold indicating the stability or instability of 

each protocol in regards of model selection. 

As Figure 4 shows, each percentile-Lasso protocol in average had a worse generalized prediction error 

for valence than the reference model. Additionally, all protocols tended to switch randomly between 

high and low λ values. The best protocol was the reference (random intercept-only model). The variance 

of selected λ values was very high for all protocols. The variance of the estimated generalized prediction 

error got higher the more predictors were included. In general saying, models that tended to not include 

any predictors had a lower prediction error. Still, there was also a decent chance that the best percentile 

protocol, the 95th-percentile-Lasso, would select some predictors by means of an unfavorable fold 

assignment. The high variance in the model selection and worse prediction errors in average of all 

protocols indicate strongly that the investigated predictors do not have an effect on the selection of 

values on the valence dimension measured by Spotify. The random intercept-only model was selected 

for the final modelling. Still a complete CV was done for all models to achieve similar representations of 

the results. 

In contrast, the NCV of the variable energy showed that all protocols were improved by the inclusion of 

predictor variables. The perfect tradeoff was achieved by the 70th-percentile-Lasso. Low percentile-Lasso 

protocols (50th to 65th) selected too many variables which did not generalize well, therefore the 

prediction error on unseen data tended to be worse. From the 80th to the 95th-percentiles, the protocols 

also switched between low and high λ values. High λ-values (low indices) indicated that the exclusion of 

variables yielded to worse predictive performances. It can be assumed that the inclusion of certain 

predictors generally improves the prediction. The protocol chosen for the final CV of the optimal tuning 

parameter was the 70th-percentile-Lasso. This protocol had the lowest estimated generalized prediction 

error, the smallest variance of prediction errors and a well-defined range of optimal tuning parameters 

chosen during the NCV, thus acted very stable.  

Danceability was in average predicted the best by the 50th-percentile-Lasso. However, all protocols 

improved the estimated generalized prediction accuracy. As Figure 6 shows, the plot of indices of the 

selected tuning parameter indicates that the exclusion of variables yielded to a worse performance. It 
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is possible that a protocol with a lower percentile value of optimal tuning parameters (e.g. the 45th 

percentile) would have yielded a better result. But the 50th-percentile-Lasso was stable and therefore 

an adequate choice for the final CV. Compared to all other percentile protocols, the 50th-percentile-

Lasso did not choose an outlier λ value by chance due to the fold assignment. Despite the fact that the 

55th- and 60th-percentile-Lassos had a similar average prediction error, those protocols tended to be 

unstable.  

 

Figure 4 - Protocol Assessment: Valence. The upper boxplot shows the distribution of cross-validated MSE values 
for each protocol. The red circles indicate the average MSE for each protocol over all repeated NCVs. The 
horizontal dashed line indicates the average MSE of the random intercept-only model (or λmax-model) which is 
the reference. The nested cross-validation shows that no protocol improves the estimated generalized prediction 
error in comparison to the reference. This indicates that no variable has any generalized predictive power. The 
random intercept-only model was selected for the final model selection/fit. 
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and also jumped between high and low λ values. Lower percentiles seemed to be too passive in shrinking 

and included too many variables. 

  

Figure 6 - Protocol Assessment: Danceability. The upper boxplot shows the distribution of cross-validated MSE 
values for each protocol. The red circles indicate the average MSE for each protocol over all repeated NCVs. The 
horizontal dashed line indicates the average MSE of the random intercept-only model (or λmax-model) which is 
the reference. The nested cross-validation shows that each protocol improves the estimated generalized 
prediction error compared to the reference. The 50th-percentile-Lasso was selected as best protocol achieving 
the minimal estimated generalized prediction error in average and a stable range of selected tuning parameters. 

 

All results show that the choice for the optimal λ value was highly sensitive to the fold assignment but 

mostly stable for the selected protocols. Still it can be assumed that the average prediction error 

supports a very reasonable choice of the best protocol, since this value indicates the estimated 
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generalized prediction error on unseen data. High variance in MSE values can be explained by 

unfavorable fold assignments. Still this is simultaneously valid for all protocols and does not have an 

impact on the relative comparison. Both attributes, stable selection and lowest estimated generalized 

prediction error, were considered in the course of protocol selection for the next step (B): cross-

validated model-selection with the best protocol. 

  

Figure 7 - Protocol Assessment: Loudness. The upper boxplot shows the distribution of cross-validated MSE 
values for each protocol. The red circles indicate the average MSE for each protocol over all repeated NCVs. The 
horizontal dashed line indicates the average MSE of the random intercept-only model (or λmax-model) which is 
the reference. The nested cross-validation shows that each protocol improves the estimated generalized 
prediction error compared to the reference. The 80th-percentile-Lasso was selected as best protocol achieving 
the minimal estimated generalized prediction error in average and a stable range of selected tuning parameters. 
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Table 4 - Summary of Linear Mixed Effects Models after cross-validated model selections.  

 Valence Energy Danceability Loudness 

Selected Protocol Random Intercept- 
Only Model  

Repeated 70th –  
Percentile – Lasso  

Repeated 50th –  
Percentile – Lasso  

Repeated 80th –  
Percentile – Lasso  

λmax 39 53 33 37 

Index of λopt 1 68 78 67 

λopt 39 17.13 7.33 12.33 

Estimated generalized MSE 0.061 0.051 0.031 0.024 

R²marginal 0.000 0.104 0.151 0.087 

R²conditional 0.186 0.292 0.196 0.305 

ICC 0.186 0.251 0.159 0.296 

 
Fixed Effects 

 

Parameter Estimate (StdErr) Estimate (StdErr) Estimate (StdErr) Estimate (StdErr) 
 

Intercept 
 
0.4570 (0.0140)*** 

 
0.6659 (0.0131)*** 

 
0.6258 (0.0459)*** 

 
0.5636 (0.0551)*** 

Age   -0.0029 (0.0018) -0.0045 (0.0022)* 

Gender (Women)   0.0241 (0.0159) 
 

 

Personality Traits 
 

Extraversion (Big5)   0.0082 (0.0079)  
 

Functions of music listening (Level 1: Situational) 
 

Intellectual Stimulation  -0.0179 (0.0075)* -0.0159 (0.0052)**  

Mind Wandering & 
Emotional Involvement 

 -0.0252 (0.0076)***   

Motor Synchronization 
& Enhanced Well-Being 

 0.0501 (0.0065)*** 
 

0.0139 (0.0053)** 
 
 

0.0250 (0.0042)*** 

Mood (Level 1: Situational) 
 

Valence   0.0074 (0.0052)  
 

Functions of music listening (Level 2: Person-related) 
 

Intellectual Stimulation   -0.0357 (0.0087)***  

Motor Synchronization 
& Enhanced Well-Being 

 0.0139 (0.0168) 0.0042 (0.0110)  

Updating One’s Musical 
Knowledge 

  0.0139 (0.0079).  

Killing Time & 
Overcoming Loneliness 

 0.0289 (0.0163). 
 

0.0020 (0.0101). 
 
 

0.0224 (0.0097)* 

Mood (Level 2: Person-related) 
 

Valence  0.0284 (0.0139)* 0.0180 (0.008)**  
 

Musical Taste 
 

Techno & EDM   0.0206 (0.007)**  

Volksmusik &  
Schlager 

  0.0079 (0.008)  

Rock & Metal   -0.0175 (0.007)* 
 

 

Presence of others (Level 1: Situational) in reference to being alone 
 

Others Present &  
No Communication 

  0.0031 (0.005)  
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Energy was finally predicted by several functions of music listening with statistically significant effects. 

On the situational-level, intellectual stimulation and mind wandering & emotional involvement had 

negative effects on energy, whereas higher values for motor synchronization & enhanced well-being also 

resulted in higher output values for energy. The two functions on the personal-level killing time & 

overcoming loneliness as well as the initial valence state both had a significant positive effect on the 

energy level of the selected music. Additionally, motor synchronization & enhanced well-being as 

person-related predictor also survived the model selection procedure and showed a positive effect on 

energy, but not significantly. R²marginal indicates that around 10.4% of the total variance was explained 

only by the fixed effects of the model, while 29.2% of the total variance was explained by the complete 

model (random and fixed effects). The ICC value considering the random intercept-only model indicated 

that around 25.1% of the total variance was explained by the grouping factor (participants), supporting 

the need for a Mixed Effects Model. Considering the case that 18.8% of the total variance was explained 

by the model by means of the random effects, this indicates that a certain amount of explained variance 

by the grouping factor of the random intercept-only model was absorbed by the fixed effects of the 

model. 

The model of danceability showed the most interactions between predictors and the outcome variable. 

While age showed a tendency towards a negative effect (p=.11), meaning older people tended to select 

less danceable music, gender showed a tendency towards a positive effect (p=.13). This indicates that 

women selected more danceable music than men. Danceability was the only model that included a 

personality trait, namely the Big Five dimension of extraversion. The effect was positive but still not 

significant. The tendency indicates that more extraverted people tend to select more danceable music. 

Situational-wise, two functions of music listening and the initial mood (valence) showed effects. 

Corresponding to intuitive thinking, situations in which music was selected for intellectual stimulation 

had a significant negative effect on the danceability, while music selected in situations for motor 

synchronization & enhanced well-being was significantly more danceable. A person being initially more 

positive in the specific situation than in average also had a positive effect on the selection of more 

danceable music, although not a significant one. Person-related factors additionally influenced the 

selection of danceable music: while persons that generally tended to use music for intellectual 

stimulation selected less danceable music, other between-person differences of functional music usage 

also had positive effects on the selection of more danceable music, although those were only tendencies 

and did not show significant effects (motor synchronization & enhanced well-being (p=.70), updating 

one’s musical knowledge (p=.08) and killing time & overcoming loneliness (p=.05)). A significant person-

related effect was found for positive initial mood on the selection of more danceable music. Danceability 

was also the only model that included musical taste factors. High ratings for Techno & EDM had a 

significant positive effect on the selection of more danceable music. The same tendency was existent 
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for high liking ratings of Volksmusik & Schlager, although not significantly (p=.32). People rating high on 

Metal & Rock selected significantly less danceable music. Lastly, the presence of others also had a 

positive effect on the selection of more danceable music. Those predictors are compared to the 

reference being alone. The presence of others accompanied by communication had a stronger 

(significant) effect than presence of others without communication. Still both effects were positive. 

Comparing the ICC and R² values indicates that the fixed effects of the model explained some of the 

differences incorporated in the initial grouping factor of the random intercept-only model. The initially 

calculated 15.9% of explained variance by the grouping factor only, was reduced in the model to 4.5% 

explained variance of the random effects, while fixed effects accounted for 15.1% of the variance. 

The model of loudness included only three predictors, but all had a significant effect on the selection. In 

situations when individuals selected music rather for the function of motor synchronization & enhanced 

well-being people selected music with higher loudness levels. Person-related, people that in average 

listened more to music in the course of killing time & overcoming loneliness also selected louder music. 

Similar to danceability, the loudness model included a negative age effect on the selection of less loud 

music. The ICC value indicates that approximately 29.6% of the total variance was explained by the 

grouping in participants. While 8.7% of the variance was explained by the fixed effects only, 30.5% were 

explained by the model including random and fixed effects. Thus, the random effects in the model 

explained around 21.8% of the total variance. Again, some random effects of the random intercept-only 

model were explained by the included fixed effects in the model. 

Differences in estimated generalized prediction errors (Table 4) also need to be considered in regards 

of the variance of the outcome variable itself. While valence had a very spread value range between 0.0 

and 1.0 (VarValence = 0.059), the outcome variable energy, danceability and loudness had less variance 

(VarEnergy = 0.052; VarDanceability = 0.031; VarLoudness = 0.024). That the selected protocols still provide 

prediction improvements can be seen in relation to the random intercept-only models (references) as 

shown in the boxplots above, of course except for the valence protocol.  
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4 Discussion 

This work investigated the prediction of Spotify audio features of actively selected music in the daily life 

by situational, person-related and functional variables of music listening. The data was measured by an 

Experience Sampling Method by Greb and colleagues (2019) and the corresponding audio features were 

retrieved from the Spotify Web API. Different statistical learning protocols based on the percentile-Lasso 

were evaluated by their estimated generalized performance in a nested cross-validation. The best 

protocol for each outcome variable was chosen for the final cross-validated model selection of the most 

important predictors of Spotify audio features. The final model-fits showed several statistically 

significant effects on the audio features energy, danceability and loudness. The feature valence could 

not be predicted reliably by any variable. Those results are further discussed in comparison to existing 

related works. Afterwards, methodological challenges and limitations are considered and future 

directions are outlined.  

Predictors of Audio Features and Music-Selection Behavior 

The prediction of objectively computed audio features by contextual, functional and person-related 

variables has not been addressed before. Related works have so far considered the prediction of 

subjectively rated music characteristics by contextual, functional and person-related predictors (Greb, 

Steffens, & Schlotz, 2018), and possible mediating roles of music listening functions on situational and 

person-related predictors of music-selection (Greb, Steffens, & Schlotz, 2019). The prediction of music 

listening situations and corresponding subjective judgements of music and the situation (Krause & 

North, 2017), as well as the prediction of selected music by their emotional functionality (Randall & 

Rickard, 2017) were also investigated. Still, all works have assessed subjective music perception 

characteristics and not objective audio features. In this conglomerate, the works of Greb and colleagues 

(2018; 2019) are the closest related to this one, methodologically as well as from an analysis point of 

view. The latest work additionally used the same data assessment technique, the ESM, and collected 

the behavioral and personal data used in this work. The outcome variables can also be related to each 

other in several aspects, as described in the following. The Spotify audio feature valence that was 

evaluated in this study, corresponds to Greb and colleagues’ subjective dimension of sad-happy music. 

Energy refers to the calming-exciting and in some perspectives also to the less intense-very intense 

dimensions of Greb et al. (2019). Greenberg and colleagues (2016) showed that intensity as a 

psychological attribute was highly correlated with one principal dimension that people use to describe 

music, namely arousal. It was not scoring high on the valence and depth dimensions they found. Still, 

intensity might be understood differently in different contexts. As Ali and Peynircioǧlu (2010) described, 

either listening to familiar or unfamiliar music changes the intensity of perceived emotions. Reversely, 

this might also result in an emotionally biased rating of the perceived intensity of self-selected music (as 
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in Greb et al. (2019)) in contrast to unfamiliar music listening as in Greenberg et al. (2016). Thus, the 

small amount of intensity loading onto the valence and depth dimensions in Greenberg’s and colleagues’ 

study might not hold up in Greb et al. (2019), and might explain differences between energy values in 

this work and intensity ratings in Greb et al. By Spotify’s explanation, high energetic values also 

correspond to the feeling of fast songs, which is congruent with the slow-fast dimension in Greb et al. 

(2018). In line with that, effects on the perceived arousal of a song were found by altering the tempo 

(Husain, Thompson, & Schellenberg, 2002). According to Spotify, both variables (valence & energy) are 

perceptual parameters and correspond to the well-established V-A emotion model. Danceability might 

be comparable to the less rhythmic-very rhythmic dimension as described by Greb and colleagues. As 

Spotify states, also tempo is considered in this measure. Thus, this variable might also be closely related 

to the energy feature of Spotify. Lastly, loudness is a subdomain of energy and corresponds to the 

loudness perception of humans. This is a lower-level representation of energy and can also be related to 

the less intense-very intense dimension according to Greenberg et al. (2016) but might be different for 

reasons of familiarity bias as explained before. 

Valence 

Starting with the most divergent results between this work and the related works, the analyses revealed 

no predictive power of contextual, functional and person-related variables for the audio feature valence. 

A decent proportion (18.6%) of the total variance was explained by the grouping factor (random 

differences between participants), which is very similar to the results of Greb et al. (2018: ICC = 18%; 

2019: ICC = 17%). In contrast, Greb and colleagues (2018; 2019) found several significant predictors for 

the subjective ratings on the sad-happy dimension. Those included activities during music listening like 

relaxing & falling asleep or coping with emotions, both having a negative effect. And functions of music 

listening like motor synchronization & enhanced well-being and updating one’s musical knowledge 

positively predicted happier music, while higher values on the function mind wandering & emotional 

involvement predicted more sad music. Greb and colleagues as well as Randall and Rickard (2017) 

additionally found a mood-congruent selection behavior, which would have implied that the initial mood 

possibly would have been predicting the feature valence in this study, which was also not the case. The 

divergence of those results might have very different reasons. They are mostly explained by different 

facets of the semantic gap of emotion recognition tasks and also include the inherent problem of 

confusion between perceived and induced emotions. 

First, valence as an audio feature and sad-happy as a subjective measure of the perceived valence seem 

to be semantically very closely related, though in fact they are not the same. While subjective measures 

always depend on personal differences and situational dependencies of perception, a single value of 

the emotional quality of a song does not cover aspects of inter- and intra-rater differences. Also, people 
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might not select music by its perceived emotional value, as measured by Spotify, but by its implications 

on the intentional emotional use, incorporated in the induced emotions. Additionally, this is in 

accordance with the view that the induction of emotion by music is not properly described by commonly 

used emotion representations as the categorical one using basic emotions (Zentner, Grandjean, & 

Scherer, 2008) and immanent critics on the simplifications of a two-dimensional V-A model, as described 

earlier. As the sad-happy ratings would be considered more personal and biased by induced emotions, 

the Spotify feature delivers an objective measure of the perceived valence. Notably, the notion saying 

that perceived emotions are more consistently rated by subjects in contrast to induced emotions (Song 

Y. , Dixon, Pearce, & Halpern, 2016) cannot necessarily be supported following this argumentation, since 

both models showed similar proportions explained by the grouping factors.  

Second, also the exact computation of the valence feature is not clear at all. A tiny hint is given on The 

Echonest Blog11 about how valence is computed in the current Spotify API (formerly The Echonest API): 

 

One key aspect: We have a music expert classify some sample songs by valence, then use 

machine-learning to extend those rules to all of the rest of the music in the world, fine tuning 

as we go. 

The Echonest Blog (2019) 

 

This procedure is certainly not very well defined and leaves a lot of room for speculation. So far there is 

no comparison of Spotify audio features and other approaches of feature computation in terms of 

accuracy and consistency with subjective ratings. Previous studies also suggested that especially the 

dimension of valence shows less consistency for predictions (Huq, Bello, & Rowe, 2010; Song & Dixon, 

2015). Since recent works figured that the performance of valence prediction could be substantially 

improved by the inclusion of multi-modal criteria (Delbouys, Hennequin, Piccoli, Royo-Letelier, & 

Moussallam, 2018) typical approaches that do not include e.g. lyrics in the prediction process of the 

perceived emotion usually underperform, since aspects of valence are not sufficiently mirrored in audio 

properties. Thus, it also needs to be considered that those valence values do not exactly indicate the 

perceived emotional value, not even on a global level. However, it cannot be generalized that people do 

not select music by perceived or induced emotional qualities in the dimension of valence. It can only be 

concluded that the feature valence, the way Spotify calculates it, cannot be predicted. A closely related 

                                                           
11 http://blog.echonest.com/post/66097438564/plotting-musics-emotional-valence-1950-2013 
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consideration arises from the results of the context-based recommendation approach of Dias et al. 

(2014). After retrieving The Echonest audio features of songs that were clustered by subjects into 

corresponding activity categories, they performed a discriminative analysis to find the most important 

features fitting into those categories. Respectively, acousticness, energy, loudness and tempo were the 

most discriminative features for the different activities. It showed that the feature valence was not able 

to sufficiently differentiate the categories of different activities. Again, this does not necessarily imply 

that people do not choose music by its emotional value, simply the representation could not be suitable 

or discriminative enough.  

Third, that mood-congruent music-selection was not present for the valence dimension in this study 

also puts the assessment of subjectively rated music characteristics up to discussion. Subjective reports 

are potentially biased and stereotypical. This can also lead to ratings of music characteristics that do 

actually just mirror the personal situation or socially expected answers. In this regard, the distinction 

between perceived and induced valence becomes very fuzzy. Subjects might mix up the distinction 

unconsciously and project induced emotions onto the perceived emotions. In Greb et al. (2019), the 

mood congruent selection behavior was also already partially revised by showing a mediating role of 

functions of music listening on the initial mood of music listening, which implied a mood-incongruent 

selection behavior. People would select more negative music although being in a positive mood 

mediated via intellectual stimulation. Finally, it needs to be considered that people do not select music 

by perceived valence characteristics but by expected induced emotional value. 

Energy 

The protocol for the model selection of energy showed an improved estimated generalized performance 

assessed by the NCV. Additionally the final protocol was very stable and the cross-validated λoptimal index 

also turned out to be in the range of the indices that were found in the NCV, therefore the result is 

statistically reliable. The predictors that survived the cross-validated model selection most likely 

generally influence the music-selection in regards of the energy dimension. The ICC value of the random 

intercept-only model computed in the current work indicated that 25.1% of the total variance were 

explained by the grouping factor. This is somewhat different from the results of Greb et al. (2019) with 

an ICC for calming-exciting of 10%, but similar to the dimension of less intense-very intense with ICC = 

22%. Still, all three dimensions are closely related but certainly not the same and can therefore may 

differ in their individual perception. In regards of Greb et al., the situational differences of functional 

use of music are very consistent for energy and calming-exciting. In both studies people selected less 

energetic/exciting music for intellectual stimulation and mind wandering & emotional involvement. 

Following the intuition, music with higher energetic or exciting characteristics was selected for motor 

synchronization & enhanced well-being. In the present study, personal differences between the 
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functional use of motor synchronization & enhanced well-being were additionally found. The results 

showed a positive effect of the function killing time & overcoming loneliness with higher energy values. 

This can be related to the investigations of Randall & Rickard (2017). They found out that people would 

reach a higher arousal state by music listening coming from initial low arousal. This might be the reason 

why people select energetic music. Those listeners, generally using this function more often might tend 

to be under-stimulated or bored in general and therefore use energetic music to keep busy and pass 

time. It would seem to be plausible that the initial state of arousal would correspond to the same notion. 

But in fact, Randall & Rickard also showed convergent effects of music listening coming from high and 

low initial arousal towards a neutral arousal state. Thus, both effects might level out overall. The 

function killing time & overcoming loneliness might indicate effects of low initial arousal states. 

Despite many replications of earlier studies, the inverse behavior of the dimension of intensity from 

Greb and colleagues and the feature energy are particularly notable. The same tendency compared to 

calm-exciting was already present in their work. Despite the fact that the musical attribute intense was 

found to highly load on the dimension arousal (Greenberg, et al., 2016), there still seem to be different 

understandings of both categories in real-life situations. In Greenberg and colleagues, participants rated 

mostly unknown music. Perceived emotion ratings are potentially less biased by the properly induced 

emotion for unknown songs, since the intensity of emotions is less for unfamiliar music (Ali & 

Peynircioǧlu, 2010). This can be connected to the big factor loading of intense on the arousal dimension 

and little loading on valence and depth in the work of Greenberg and colleagues (2016). Therefore, the 

perception of intensity of unfamiliar music would refer to classical arousal components, such as higher 

loudness, faster tempo etc. But in Greb et al. (2019) and this work, people actively selected music to 

accomplish certain goals. The meaning of intensity ratings might differ substantially. Despite the fact, 

that participants were asked to rate the perceived intensity in the questionnaire of Greb and colleagues, 

those ratings might be biased by induced emotions due to the high degree of familiarity and emotional 

involvement. Thus, intense as music characteristic rated on familiar music might be under the influence 

of the intensity of emotional characteristics, such as valence. This part of the theory would support the 

results of the work of Vuoskoski & Eerola (2011). They investigated music-induced emotions and 

correlations to intensity ratings of emotions, indicating that valence components in music, such as 

sadness, were also related to intense music emotions. However, energy (Spotify) and calming-exciting 

(in Greb et al.) seem to be much more semantically congruent in this case than energy (Spotify) and 

intensity (in Greb et al.), since intensity is most likely being understood from a more engaged and 

emotional perspective. The influence of the initial mood (valence) predicting more energetic music 

intensifies the difficult relationships presented here. People selected music with higher energetic values 

when they in general tended to have a more positive initial mood than the average of participants. This 
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might indicate connections between emotional and physiological processes that might closely relate to 

findings of the feature danceability. 

Danceability 

Danceability was certainly less treated than valence and energy/arousal  in this work so far. On first 

sight, this feature might seem somewhat unrelated to the high emphasize on emotional and mood 

aspects of music listening, but in fact dancing is strongly related to emotion expression and dance 

movements of individuals were shown to highly depend on the emotional state (van Dyck, Maes, 

Hargreaves, Lesaffre, & Leman, 2013). Additionally, dancing and music listening go often hand in hand. 

As the R² values show, 15.1% proportion of the total variance of the outcome variable can be explained 

by the fixed effects of the model and a considerable amount of the initially explained variance by the 

grouping factor (ICC = 15.9%) was absorbed by the model leaving only 4.5% of how much the random 

effects of the model explained the total variance. People certainly differed in the selection of danceable 

music and that was explained by several person-related predictors. The initial mood (valence) showed 

a tendency for situational differences and a significant effect on the personal level to be positively 

influencing the danceability of the selected music. This is largely in line with findings about the emotional 

expression of states of happiness by dancing. Van Dyck and colleagues (2013) investigated the effect of 

initially induced positive and negative emotions on the dancing of participants. They found out that 

people would move faster, more accelerated, more impulsive and more expanded by initial happiness 

compared to initial sadness. Those attributes are also considered by Spotify in the computation of the 

danceability value. Thus, people use music to express positive valence and would select music for that 

cause. Consequently, this dimension seems to fit the notion of positive emotion expression very well 

and supports a mood-congruent music-selection behavior in that sense. This is similar to Greb et al. 

(2019), suggesting a mediating role of the function motor synchronization & mood enhancement on a 

positive initial mood for the selection of more rhythmic, more exciting and faster music. An effect 

tendency was also found for gender, resulting in women selecting more danceable music. This can be 

well referred to earlier reports that indicate that women are interacting much more intense with 

emotions in both aspects, experiencing and expressing those (Kring & Gordon, 1998). Thus, danceable 

music might be much more frequently used by women to express positive emotions. Further 

investigations of a possible mediation of gender and the positive influence of the initial mood on the 

selection of more danceable music might be beneficial to support or discard this theory. Personality 

traits were also considered in the context of danceable music and showed an effect on different dance 

styles and emotion expression through dancing (Luck, Saarikallio, & Toiviainen, 2009). In this study, 

extraversion as one of the Big Five personality traits showed a tendency towards predicting higher values 

of the Spotify feature. This is partly in line with existing reports. Again, the results need to be closely 
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related to the nature of the feature. Corresponding connections to the related literature might explain 

better what a high value of danceability by Spotify actually implies. Luck et al. (2009; 2014) observed 

that extraversion was related to people dancing with higher speed of movements. They argued that 

their result mirrors the notion that extraverted people tend to express positive emotions more strongly 

and are more energetic overall. This certainly underlines the idea that a higher value of the Spotify 

danceability incorporates the capacity of the song to work as a positive emotion expression tool and 

stimulates the act of dancing. It should not be assumed that people with different traits and taste do 

not select danceable music. Those styles might simply not match the characteristics incorporated in the 

Spotify feature. However, this work is additionally supporting the notion presented by Rentfrow and 

McDonald (2009). They considered people scoring high on extraversion having preferences for pop 

music and dance genres (besides other genres). In accordance, this study revealed that also the musical 

preference for Techno & EDM was a significant predictor of the danceability feature. So did the 

preference of Volksmusik & Schlager (German folk-music). This style is generally acknowledged to 

convey positive emotions and tends to be party music. That higher ratings of the musical taste for Rock 

& Metal had a negative prediction effect on the value might imply that Rock & Metal has less 

characteristics of danceability. Still, people might dance to it also to express emotions. So far, there is 

no proper reason to believe that people do not select Rock & Metal music to dance to, neither that this 

music is not danceable just because the music does not incorporate the properties reflected in this 

feature. The assumption finally is that people indicating preferences for Techno & EDM also listened to 

a considerable extend to this style. Characteristics of Techno & EDM might be incorporated highly in the 

danceability value. Thus, the selection of this feature is highly reflected by the taste and its 

corresponding relations to personality, gender and emotion expression goals. 

Functions of music listening predicted danceability in ways that someone would suggest intuitively. In 

situations when individuals listened to music for intellectual stimulation people selected less danceable 

music. Also, people who tended to listen for intellectual stimulation reasons more than others did in 

average also select less danceable music. This is according to the relations between the features 

danceability and energy, both representing aspects of fast tempo perception, which seems to be less 

beneficial for intellectual purposes. Furthermore, it was also shown by Greb and colleagues (2018) that 

people selected considerable slower music for intellectual stimulation purposes. The reports from 

Greenberg and colleague (2016) pointed in a similar direction but are more controversial compared to 

this work. Attributes negatively loading onto the description of intellectual depth of music were 

danceable attributes and party music. Consequently danceable music was not positively related to 

intellectual cognitive processes. So far, this is in line with the relations towards intellectual stimulation. 

But what they additionally reported is higher preferences for depth in music for women than for men. 

This is implicitly divergent to the present results which indicated that women selected more danceable 
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music, which was argued to convey less depth. Again, it could be explained by differences between 

listening to self-selected (familiar) music and listening to unfamiliar music. While unfamiliar music might 

be preferred by women if it carries intellectual properties, it might be the emotional value that is 

stronger preferred in the case of familiar music. Those effects should be further investigated. Motor 

synchronization & enhanced well-being (on a personal and situational level) as a function of music 

listening is closely related to the explanations before. Clearly, people would select more danceable 

music in the course of dancing. Furthermore, it is the only congruence to the dimension of rhythmic 

music in Greb et al. (2019). Initially it was assumed that both dimensions would be treated very similar. 

But apparently rhythmical properties, as rated subjectively by the participants, are not the main 

emphasis in the danceability feature which gives even more support to the idea that it mostly 

incorporates characteristics of fast and energetic music, which should be further investigated. On the 

personal level, two other listening functions showed positive tendencies to interact with the selection 

of more danceable music, namely updating one’s musical knowledge and killing time & overcoming 

loneliness. Related findings can be found in Greb et al. (2019) for the dimension intensity. Again they 

showed an inverse behavior predicting less intense music by higher ratings of people updating their 

musical knowledge. This could also be explained by previously mentioned differences between the 

perception and selection of familiar versus unfamiliar music. People seeking for new music more than 

the average, would tend to use music less for emotional reasons than others, since unfamiliar music 

that is most likely selected in the course of knowledge updating was shown to have less emotional 

effects. Activating and arousing characteristics of music might be more rewarding when listening to 

unfamiliar music, while the emotional value is bigger for familiar music. The age effect in the present 

work is according to the findings of Greenberg et al. (2016). There was a tendency that older people 

would select less danceable music, although this effect did not reach statistical significance. Greenberg 

and colleagues found higher preferences for depth in music positively associated with age, while the 

dimension of depth was generally negatively associated with danceable attributes. Whether this is 

actually related to the different musical taste between older and younger people remains unclear. 

Research investigating musical preferences indeed suggest that younger people would prefer faster and 

more rhythmic music (Drake, Jones, & Baruch, 2000). Further investigations on the nature of the Spotify 

features are needed to reveal more specific interpretations. As the last variables, the presence of others 

with and without communication were positively related to the selection of more danceable music on a 

situational level (in comparison to being alone). That the effect was considerable stronger for presence 

of others with communication could be explained by means of technological trends. People listen to 

music in any kind of situation nowadays, for example also in public transportation where emotion 

expression by dancing is generally less common. The results indicate that the selection of danceable 
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music also follows social circumstances and the selection of more danceable music is also a social related 

action. 

The Spotify feature for measuring the danceability of songs seems to have several meaningful 

predictors. However, it might be possible that it mostly covers aspects of arousing and positive dance 

music according to its relations to extraversion and certain musical tastes. Still there may be other types 

of danceable music that serve the expression of other emotions or are favorites to people with another 

personality or taste. It would be of great interest how the feature danceability corresponds to the 

human perception and how different genres are treated by that feature. It is clear that different music 

styles like Hip Hop, Techno, or classical dancing music like Tango, Salsa and Waltz have very different 

musical and acoustical properties. Thus, it would be of interest how this is handled by the Spotify audio 

feature. Comparing the results of the features valence, energy and danceability leaves many questions 

unanswered. Although the selection of danceable music might be driven by taste and personality, 

people indeed use this music for physical activation on a personal and situational level. Additionally it 

seems to involve emotional processes by means of communication and expression. People seem to 

react on a positive emotional state by physical activation. In this way, aspects of the selection of music 

with different intrinsic valence levels are still incorporated in this work, even if not directly through the 

valence model. 

Loudness 

The model of loudness only included three predictors but all of them showed a significant statistical 

effect. The effect directions are in line with findings for energy and danceability, suggesting the close 

relationships. The R² and ICC values indicate high person-related differences in the selection of music 

on the dimension of loudness. 21.8% of the total variance was explained by the random effects of the 

model and only 8.7% were covered by fixed effects. Still, the model absorbed some of the proportion 

explained by the grouping factor indicated by the ICC. Similar to the danceability model, age also showed 

a negative effect on the selection of louder music. Thus, older people would select less loud music than 

younger people. This is in line with findings concerning musical preferences indicating that older people 

would listen to less intense/loud music due to hearing losses. Consequently this implies an adjusted 

perception of music changing with age (Smith, 1989). The age effects for loudness and danceability 

support recent findings from Bonneville-Roussy and Eerola (2018) indicating age trends for changing 

musical preferences moderated by intrinsic music characteristics. Contemporary and intense music, 

which is comparable to louder and more distorted music, was increasingly disliked by older people. They 

concluded that musical preferences can be explained by age-related perception differences of 

dynamics, timbre, and pitch. Thus, this notion is relevant in the context of music-selection, too. On the 

situational level the function of motor synchronization & enhanced well-being showed a positive effect 
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on the selection of louder music, on the personal level the function of killing time & overcoming 

loneliness also showed a positive effect. This is in line with the models of energy and danceability and it 

might explain partly, that those effects rely on the loudness perception of music. Further investigations 

on features like tempo need to be compiled to distinguish the impact of several lower to mid-level 

representations on the high-level perception of arousal and danceability.  

Several patterns indicated the close relationships of the three dimensions energy, danceability and 

loudness. Still, those features act on different complexity levels. The loudness feature contributes to the 

higher level features energy and danceability. But both also imply associations on other perceptual 

correlates like tempo. Additionally, danceability seems to feature several aspects of positive, arousing 

and activating music. That valence was not predicted reliably by any variable shows that it is inherently 

difficult to make generalizations of the emotional perception of unknown participants. Comparing this 

NCV approach that made use of a fold assignment strategy at the level of the participants with another 

approach that randomly splits the observations and intentionally creates leakage of participants in all 

folds, could investigate whether predictions can be improved by knowing about the listener. However, 

as the NCV indicated the results of the model selection procedures can explain differences in the music-

selection behavior, also of unseen participants. The most diverse functionalities were investigated for 

the selection of danceable music related to physiological activation, emotion expression and social 

associations. Still, listening functions were prominently included in three out of four models, underlining 

the capability of functional variables to predict music-selection behavior on the personal and situational 

level. 

Further Considerations on Situational, Functional and Person-Related Variables 

Activities were generally not included in any model. This is different to previous works (Greb, Steffens, 

& Schlotz, 2018; 2019). They found activities predicting the sad-happy, fast-slow, peaceful-aggressive, 

and less intense-very intense dimensions. However, activities were treated by the glmmLasso() function 

as grouped variables, with the implication that all or none of the activities would have been included in 

the model. This selection behavior might be too rigorous. Other investigations should consider to treat 

those activities individually to gain specific information about individual activities. Wang et al. (2012) 

and Dias et al. (2014) already investigated the effect of incorporating activities in CARS and the results 

indicated that they may have real-life relevance. There were no effects regarding time, neither time of 

day nor weekday/weekend differentiation. This is also largely in line with the findings by Greb et al. 

(2019). They found an effect for the sad-happy dimension (not statistically significant), which was not 

replicated in this research. It should be mentioned again, that active music listening behavior was 

investigated. This would not generalize to situations were music is not selected actively. For example 

someone could imagine that people listen to more danceable and arousing music on the weekend in 
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the course of going to a party or club. Those situations were certainly not investigated in this work 

because they were not considered to be active choices of music-selection. In line with Greb et al. (2019), 

musical sophistication had no predictive value for any model. The initial arousal state has not been part 

of any model. Mediation analysis might explain more about the different interactions between music 

listening functions and person-related and situational initial arousal differences. Another consideration 

might also explain the not prominent effect of the arousal state on the selection of music: according to 

Thoma et al. (2012), individual emotion regulation styles, such as hedonistic, distress-augmenting, and 

emotional moderation, might modulate people’s selection behavior in different situations. Therefore, 

complex person-situation interactions might have compensated the overall effects. Still there might be 

specific effects for different levels of the initial state. Notably, the valence of the initial mood showed 

overall positive person-related effects on the selection of energetic and danceable music. That 

personality traits were not included in most models does not necessarily give reason to believe that 

music is not selected according to traits. As also different investigation showed, within each factor of 

personality traits, different facets tend to be divergent (Greenberg, et al., 2016). Thus, the overall effects 

of trait factors as the Big Five could have been leveled out.  

This work, in line with the quoted research, showed that the situational impact on the music-selection 

behavior was much bigger than person-related differences. ICC values indicated that in average only 

22.3% of the total variances of the models were explained by the grouping factors (participants). Thus, 

situational differences might account for most of the rest of the proportion. It should be investigated 

whether different complexity levels of audio features show different behavior of explained variances. 

For example, there was the tendency that loudness, by having the lowest level of all features, was 

explained to the highest proportion by the grouping factor (participants). Valence and danceability, by 

being much more complex seemed to be much more situational dependent. It supports the need for 

more situational investigations of objective characteristics of music listening and selection behavior 

using ecologically validated assessing tools like the ESM.  

Methodological Considerations and Limitations 

In the course of this work the fields of music psychology and machine learning were combined to create 

reliable prediction models of audio features and being able to make generalizable conclusions about 

situational, person-related and functional predictors of music-selection behavior. Still, all 

interpretations of the results need to be viewed in the context of the dataset that was used. The sample 

was a convenience sample mostly consisting of German students. Cultural differences may influence 

the effects. Also age effects might be more prominent in more general samples. However, this work has 

especially put methodological emphasize on assessing the quality of the performed model-selection 

procedures for the sake of generalizability. It resulted in a complex and computationally expensive 
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approach but the outcome was finally very powerful and reliable. The choice of the broad protocol 

assessment procedure by nested cross-validation was driven by the complexity of the data structure. To 

the author’s knowledge, there are no considerable studies on Linear Mixed Effects Models (LME) 

showing the exact effects of selection procedures like Lasso and different protocol assessment 

procedures but performing the NCV was an intuitive way to gain more information about the protocols 

used in this work. The percentile-Lasso protocol introduced by Roberts & Nowak (2014) is certainly able 

to perform stable selections but as the NCVs showed, the present Mixed Effects Models acted differently 

than the simulation studies that only used Fixed Effects Models. Their suggestion using the 95th-

percentile-Lasso was never the best choice in terms of estimated prediction errors and model selection 

stability. This shows the need for further investigations on LMEs and model selection procedures. Also 

the influences of 5-fold or 10-fold CV on the percentile-Lasso is not quite clear for Mixed Effects Models. 

Splitting the data on the participant level of the clustering gave insights about the generalization of the 

models on unknown participants but in some cases having enough participants to create a NCV might 

be a critical aspect. This brings up a consideration of Krstajic et al. (2014) who proposed averaging the 

error rates of the tuning parameters over all repeated cross-validations in the inner loop. This would 

also allow for having more but smaller folds and still less sensitivity to the fold assignments. A 

corresponding protocol could easily be compared by repeating the current NCV technique with a 

different inner loop. Especially in regards of stable model selection, this protocol is expected to be less 

prone to unfavorable fold assignments and produces less outlier values of tuning parameters. A 

considerable drawback of the current approach is the high variance of the prediction errors due to the 

NCV. There are two possible adjustments that could be made: One, applying a version of stratified cross-

validation in the outer loop, as proposed by Krstajic and colleagues (2014). This might avoid unfavorable 

distributions of outcome variables and the overall prediction errors might be lower and less variable, 

making results more comparable. Two, the approach of NCV is not the only technique to estimate the 

generalized prediction error of classifiers. Although it is argued to assess generalization qualities of 

model selection protocols by NCV (Cawley & Talbot, 2010), this approach is highly computationally 

expensive. In Ding et al. (2014) different bias correction techniques were compared in terms of 

estimation accuracy and variability of the estimated error. Similar to the results of this work, NCV 

returned highly variable error estimates and additionally overcorrected the bias. The latter was not 

much of a problem in this work because all protocols were similar, thus, the relative comparison was 

still given. However, further investigations should compare different bias estimation techniques 

especially in the spirit of LMEs, such as Tibshirani’s procedure (TT) introduced in Tibshirani & Tibshirani 

(2009), weighted mean correction (WMC/WMCS) as proposed by Bernau, Augustin and Boulesteix 

(2013), and bias correction by the inverse power law (IPL) as presented by Ding and colleagues (2014). 

This would be more methodological work. More practical implications of the results that were shown 
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here should definitely be accomplished. One way of applying the findings of this work would be the 

implementation of a context-aware music recommendation system. 

Towards Context-Aware Music Recommendations 

This work certainly has found several statistical relationships between audio content characteristics of 

actively selected music and the intentional use of music depending on person-related variables and the 

situation. The NCV additionally indicated that the models improve the estimated generalized prediction 

performance. This corresponds to the notion that people perceive diverse musical properties as 

beneficial to accomplish certain goals. Still, content-based music recommendation has generally been 

underperforming in agreeableness and satisfaction by users. This problem is not primarily related to the 

incapacity of signal processing and machine learning techniques to create meaningful audio content 

descriptors, much more to the little attention paid to contextual and personal differences in music 

perception and selection so far. The music recommendation community has certainly made efforts to 

correspond to the obvious effects contextual parameters have on the accuracy of recommenders, but 

a comprehensive assessment of meaningful predictors has lacked interpretable conclusions in the past. 

This work argues to present a solution to overcome the “major initial issue” (Baltrunas et al., 2011, p. 

90) of not knowing which contextual factors are possibly important in context-aware music 

recommendation systems. This might still have different implications on different recommendation 

techniques. It can help in content-based recommenders to directly predict musical descriptors by 

context. But it can also help implementing a context-based filtering in addition to collaborative filtering. 

Additionally challenging will be the practical assessment of the factual context factors but technological 

trends indicate that solutions are about to become more reliable. People use smartphones delivering 

contextual information about location and activity as provided by the Google Awareness API12, 

physiological signals measured by smartwatches can be used for increasingly reliable emotional state or 

physiological state assessment (Jaimovich, Coghlan, & Knapp, 2013) and social information provided by 

social media platforms can form a comprehensive picture of different facets of taste, activities, and 

trends of active users. How those factors might interact with music listening, selection, functionality etc. 

is still open to further investigation. Still, the theoretical models presented in this work show 

generalizable effects of contextual and personal variables on the music-selection behavior. This should 

now be tested in terms of real-life practicability and user satisfaction implemented in a proper CARS. 

Statistical significance may still deceive from lacking real-life significance of certain factors due to small 

practical effect. In the spirit of Johnson (1999), the author wants to encourage assess the model 

significance in the real world by real applications based on the results presented in this work.  

                                                           
12 https://developers.google.com/awareness/ 
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Appendix 

This is the questionnaire used by Greb and colleagues (2019) to assess the music-selection behavior of 

participants in an Experience Sampling Method. The questionnaire was originally presented in German. 

The questionnaire included items that were not evaluated in this work but maintained below. 

 

1) Do you currently listen to music? 

- Yes, I currently listen to music. 
- No, I currently do not listen to music. 

Section 1 [Situation] 

2) For how long have you been listening to music already? Please indicate the duration in minutes: Free 

response  

3) Please choose your current main activity [Activity]. 

- Pure music listening 
- Housework 
- Working/studying 
- Coping with emotions 
- Exercise 
- Social activity (e.g. eating or playing with friends) 
- Party 
- Making music 
- Relaxing/falling asleep 
- Being on the move (bus/train/car) 
- Personal hygiene 
- Other (none of the activity listed is appropriate) 

4) Are there currently any other persons present? [Presence of others] 

- No, I am alone. 
- Yes, I am surrounded by others but do not interact or communicate with them. 
- Yes, I interact/communicate with other people. 

5) Did you choose the music? [Choice] 

- Yes 
- No 
- Radio 
- Club 
- Concert 
- Playlist 

6) How much control do you have in what you hear? [Control] 

Any control  1-2-3-4-5-6-7   Full control 



69 
 

7) How was your mood at the moment you decided to listen to music? [Valence] 

Bad   1-2-3-4-5-6-7   Good 

8) How awake did you feel at the moment you decided to listen to music? [Arousal] 

Tired   1-2-3-4-5-6-7   Awake 

9) How important was your mood for your decision to listen to music? [Importance of mood] 

Not at all  1-2-3-4-5-6-7   Very important 

10) How much attention are you paying to the music? [Attention] 

Little   1-2-3-4-5-6-7   A lot 

Section 2 [Music] 

11) How loud is the music? 

Quiet   1-2-3-4-5-6-7   Loud 

12) How much do you like the music? 

I like it less  1-2-3-4-5-6-7   I like it a lot 

13) Please name the composer/artist if known: Free response 

14) Please name the title of the piece if known: Free response 

15) Please name the musical style if known: Free response 

16) Which characteristics does the music have? [Musical characteristics] 

Calming   1-2-3-4-5-6-7   Exciting 
Slow   1-2-3-4-5-6-7   Fast 
Sad   1-2-3-4-5-6-7   Happy 
Unfamiliar  1-2-3-4-5-6-7   Familiar 
Less melodic  1-2-3-4-5-6-7   Very melodic 
Less rhythmic  1-2-3-4-5-6-7   Very rhythmic 
Simple   1-2-3-4-5-6-7   Complex 
Peaceful   1-2-3-4-5-6-7   Aggressive 
Less intense  1-2-3-4-5-6-7   Very intense 
Instrumental  0-1    Vocal 

Section 3 [Functions of music listening] 

17) Why do you currently listen to music? [Functions of music listening] 

… because it gives me intellectual stimulation. (I) 
Not at all   1-2-3-4-5-6-7   Fully agree 
… because it mirrors my feeling and moods. (II) 
Not at all   1-2-3-4-5-6-7   Fully agree 
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… because it makes me feel fitter. (III) 
Not at all   1-2-3-4-5-6-7   Fully agree 
… because it addresses my sense of aesthetics. (I) 
Not at all   1-2-3-4-5-6-7   Fully agree 
… because it puts fantastic images or stories in my head. (II) 
Not at all   1-2-3-4-5-6-7   Fully agree 
… because I can learn about new pieces. (IV) 
Not at all   1-2-3-4-5-6-7   Fully agree 
… because it enables me to kill time. (V) 
Not at all   1-2-3-4-5-6-7   Fully agree 
… because it helps me learn about myself. (I) 
Not at all   1-2-3-4-5-6-7   Fully agree 
… because it reminds me of certain periods of my life or past experiences. (II) 
Not at all   1-2-3-4-5-6-7   Fully agree 
… because it makes me feel connected to all people who like the same kind of music. (IV) 
Not at all   1-2-3-4-5-6-7   Fully agree 
… because I can move to the music. (III) 
Not at all   1-2-3-4-5-6-7   Fully agree 
… because I need it in the background while I do other things. (V) 
Not at all   1-2-3-4-5-6-7   Fully agree 
… because I want to inform myself about hits and trends. (IV) 
Not at all   1-2-3-4-5-6-7   Fully agree 
… because it enhances my mood. (III) 
Not at all   1-2-3-4-5-6-7   Fully agree 
… because it makes me feel less lonely. (V) 
Not at all   1-2-3-4-5-6-7   Fully agree 
… because I do it out of habit (not included) 
Not at all   1-2-3-4-5-6-7   Fully agree 

 

Note: roman letters indicate the corresponding music listening function, they were not shown to 

participants. 

I – Intellectual Stimulation 

II – Mind Wandering & Emotional Involvement 

III – Motor Synchronization & Enhanced Well-being 

IV – Updating One’s Musical Knowledge 

V – Killing Time & Overcoming Loneliness 




