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Abstract

In this thesis a new deep learning method is adapted for frame-wise polyphonic piano
note transcription. It is based on the idea of Residual Learning which is then extended
with Bidirectional Long Short-Term Memory units and a Multitask Learning strategy.
Furthermore, the final transcription system applies an aggregation function to simul-
taneously detect the onset, pitch and offset of the notes. The use of complementary
methods combined into one model enables the transcription system to significantly
improve the note-level detection performance and allows it to produce perceptually
rich transcriptions. The evaluation is performed on frame-level and note-level metrics
and utilizes a common test set on the publicity available MAPS dataset. Thus, the
proposed transcription system is recommended as the new state-of-the-art for this

dataset.



Zusammenfassung

In dieser Abschlussarbeit wird eine neue Deep-Learning-Methode fiir die polyphone
Transkription von Klaviernoten adaptiert. Der Ansatz basiert auf der Idee des Residual
Learning, welches anschliefend um Bidirectional Long Short-Term Memory Einheiten
und eine Multitask-Lernstrategie erweitert wird. Dartiber hinaus wendet das finale
Transkriptionssystem eine Aggregationsfunktion an, um gleichzeitig den Onset, die
Tonhohe und den Offset der Noten zu erfassen. Die Verwendung komplementéarer
Methoden, welche in einem Modell kombiniert werden, ermoglicht es dem Transkrip-
tionssystem, die korrekte Klassifikation auf Notenebene signifikant zu verbessern und
eine perzeptuell iiberzeugende Transkriptionen zu erzeugen. Die Auswertung erfolgt
auf Frame- und Notenebene und verwendet ein verbreitetes Testset auf dem o6ffentlich
zuganglichen MAPS-Datensatz. Das untersuchte Transkriptionssystem wird als neuer

Stand der Technik fiir diesen Datensatz empfohlen.
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Chapter 1

Introduction

The general purpose of Music Information Retrieval (MIR) includes the extraction and
aggregation of information from audio data [1]. A sub area of MIR is the so-called
Automatic Music Transcription (AMT). The transcription of music is the process of
transforming audio recordings into a musical score or similar symbolic representation
(e.g. MIDI). Three sub tasks can be identified as a necessary condition to this process:
multi-pitch estimation, onset and offset detection [2]. These must be established
as meticulously as possible to enable an accurate transcription of the music. More
complex tasks, such as determining the intensity or velocity of a note, are subject to a
greater scope of interpretation. Nevertheless, these basic tasks are a crucial first step in
solving various more abstract MIR problems, such as instrument identification, source
separation and music structure analysis [2|. First attempts in AMT have been already
explored in the 1970s by Moorer [3] and it is only now that the first multi-pitch piano
transcription system has reached a quality where perceptually relevant transcriptions
are possible [4].

Due to the simultaneity of events in music, its transcription is a challenging task,
even for humans and even if only one instrument is considered [5]. It takes a trained
ear and a comparatively long time to translate a piece of music into a symbolic form.
This is even further complicated by the different characteristics and the timbre of an
instrument, introducing ever changing note attack and decay. Therefore, research on
AMT has often focused on a solo instrument with well known properties and a high
representative value - the piano.

In recent years, classical signal processing methods have been replaced by machine
learning techniques, and today the majority of piano transcription systems is based
on this approach [4, 6 9]. Different machine learning strategies now compete for a

few percentage points of accuracy in the respective task. With deep learning, a more
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contemporary branch of machine learning, there is a new candidate for improved results.
Compared to other approaches, the function to be optimized is based upon very long
chains of nonlinear operations called deep neural networks [10]. In particular, the
success of deep convolutional networks in the field of image classification has resulted in
many new innovations within the AMT community, mainly because of the similarities
between images and spectrograms as a representation of audio data.

Up to this point, spectrograms still have a considerable advantage over raw audio
data as a feature input to neural networks [11]. This is mostly due to the considerable
information density of audio data, rather than that a neural network would not be
capable of learning Fourier transformed features from raw audio. Therefore, machine
learning on audio data still requires a certain amount of preprocessing. This step still
demands domain knowledge and is often subject to uncertainty as to which method is
best suited for a task.

Described in more general terms, the task of polyphonic piano transcription is one
of mapping time-ordered frame-wise spectrogram features x® € R¥ to a time-ordered
frame-wise symbolic note representation y* € {0, 1}¥: with F being the number of
frequency bins in a time frame t and K = 88 the tonal range of a piano. This output
can then be converted to a set of tuples describing the pitch, onset and offset of a
piano note.

The following thesis will demonstrate how the application of residual learning in
combination with different deep learning methods achieves a relative improvement of the

note-level F1-Score by 10 % compared to current state-of-the-art piano transcription.

1.1 Current State of Research

Early work on onset and pitch detection mostly relied on signal processing with
spectrograms, using changes in a pitch detector to find note onsets [12] or by simply
applying a magnitude threshold to semitone-filtered spectrograms [13]. A method
that is still popular with AMT today is based upon Nonnegative Matrix Factorization
and has also been successfully applied to polyphonic piano transcription [14]. Current
research on onset and pitch classification tasks extend over a wide range of machine
learning methods. Early experiments use Neural Networks (NNs) to improve a manually
developed onset detection by learning peak picking on piano music [15]. Lacoste
and Eck [16] use NNs with Short-Time Fourier Transforms (STFT) and constant-Q

transform as input to detect onsets, but conclude that CNNs are more promising.
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As mentioned above, many concepts applied by deep learning on spectrograms have
their origin in image classification tasks, due to the similar input data. Particularly
noteworthy are the findings from the work on LeNet [17], which contains the essence of
todays CNNs, and AlexNet [18], a deeper version of LeNet. In 2014 the VGGNet (19
layer CNN) [19] performed very well on the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) and illustrates how an extremely deep, yet simple network
architecture improves image classification.

However, compared to images, the two dimensions in a spectrogram have a funda-
mentally different modality from each other. This is especially acknowledged by 1D
convolutional layers, but recent work by Lostanlen and Cella [20] indicate that 2D
convolution is superior to using only 1D in MIR tasks.

If one considers common audio preprocessing methods, these could also be replaced
by a neural network, as in the end-to-end network developed by Sigtia et al. [8] for
piano music transcription. Although good results can be achieved, this method is still
inferior to state-of-the-art CNNs based on spectrograms as input data [11].

Bock and Schedl [6] applied semitone filterbanks to spectrograms which were
then fed into Recurrent Neural Networks (RNNs) to achieve polyphonic piano note
transcription. In 2014 Schliter and Bock [21, 22] further improved general music onset
detection with a CNN trained on mel-scaled spectrograms. A different approach by
Thome and Ahlback [23] utilized a Convolutional Recurrent Neural Network (CRNN)
trained on constant-Q transform (CQT') excerpts, intended as an online polyphonic
pitch detection system. Similarly, Li [7] adopted CQT to a feed-forward Neural Network
(NN) with two hidden layers as a polyphonic piano onset transcription system.

In an important work, Kelz et al. [9] were able to demonstrate the importance of
choosing a proper representation of the input data and tuning of the learning rate for
transcription systems based on deep neural networks. This was done by analyzing the
impact of spectrograms with linearly spaced bins, spectrograms with logarithmically
spaced bins, spectrograms with logarithmically spaced bins and logarithmically scaled
magnitude, and the CQT, on the performance of a shallow net. Their investigation
was carried out on the widely used MIDI aligned piano sounds dataset (MAPS) [24].

Kelz and Widmer [25] further investigate frame-wise transcription and were able to
identify errors that common deep neural transcription systems make, which lead to
the so-called glass ceiling effect [25] - where improvements have only marginal impact
on the overall performance of the system. Their analysis of a CNN shows that, when
the training data incorporates examples with concurrent notes being played, neural

networks suffer from the entanglement problem.
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The newest and most promising development in polyphonic piano transcription
directly builds upon the findings of Kelz et al. and was suggested by Hawthorne
et al., with a model on the brink of enabling downstream applications such as symbolic
MIR and automatic music generation [4]. The team of Google Brain concludes that
future work on piano transcription systems will need to adopt to more strict evaluation

metrics in order to compare the musically relevant performance.

1.2 Objective and Research Questions

Recent research has shown promising results on using simple frame-wise approaches
for piano transcription [9, 25|, which have then been adapted to be used as a feature
extraction stage in a more complex transcription system [4]. However, the underlying
CNN architecture has not been changed and the application of new system design
strategies leaves room for improvement.

Therefore, this thesis will investigate frame-wise polyphonic piano transcription with
deep learning methods by designing a convolutional neural network using deep residual
learning. This architecture is then extended by employing bidirectional long-short-term
memory in a multitask learning strategy. It is expected that the application of this
architecture will further improve state-of-the-art piano transcription, possibly enabling
more abstract MIR applications downstream. Comparability of the results is ensured
through the usage of the MAPS dataset, which is well established in AMT research.

By also evaluating two different input preprocessing techniques, one of which is
used for the first time in the context of piano transcription, this thesis also aims at
providing a best practice guideline for the preprocessing step.

The stated objective leads to the following questions:

1. Does the adoption of deep residual learning to frame-wise piano transcription

further improve frame-level and note-level metrics?

2. What effect do the associated complementary methods have on creating percep-

tually relevant piano transcriptions from audio recordings?

This thesis will address the questions by conducting a series of experiments which
iteratively add the aforementioned methods. Additionally, the reimplemented CNN
by Kelz et al. [9] will be evaluated and extended to note-level metrics. The different
performance metrics are used to compare the developed transcription systems against
each other and the related systems of recent publications. By further visualizing

individual transcription examples the perceptual quality of the best performing system is
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examined and compared to the state-of-the-art Onset and Frames system by Hawthorne
et al. [4].

The following chapters are divided into three parts. Chapter 2 highlights the
methods used in conducting the experiments and the treatment of the MAPS dataset.
After motivating and documenting the experimental tools, Chapter 3 presents the
specific setup of each experiment and the corresponding results. The discussion in
Chapter 4 compares the findings with other studies, assesses how well the transcription
system will generalize and reviews the strengths and weaknesses of the chosen approach,

before the questions raised in the introduction are answered.






Chapter 2

Method

The aim of this chapter is to outline the steps taken in arriving at the results presented
in Chapter 3. The findings of this thesis heavily depend on methods developed over the
past few years, therefore, it is important to showcase the validity and reliability of those
insights. More so than in other deep learning tasks, input representation matters (see
Section 2.1), since the network architecture operates on filtered spectrograms and not
on raw audio data. In Section 2.2 a brief introduction to the MAPS dataset, followed
by a description of the commonly used performance measures, will help to rank the
results in the context of ongoing research. The key deep learning methods used in this
thesis are presented in Section 2.3, highlighting the residual network architecture as a

new adoption to the task of frame-wise piano transcription.

2.1 Input Features

Two different input representations are used in this thesis, log-magnitude semitone
filtered spectrograms and a self-developed extension to Harmonic Pitch Class Profiles
(HPCPs) [26] dubbed Octave-wise Harmonic Pitch Class Profile (OHPCP). HPCPs are
a form of enhanced chroma features and often used in the context of chord recognition
systems [26]. Both input features are calculated using the madmom library [27] and
are now described in more detail.

The madmom library allows to develop efficient processing pipelines which can be
serialized, saved and re-run, in order to ensure the reproducibility of the results [27].
Furthermore, the library provides a convenient way to directly load audio data and
slice it into (overlapping) frames. Therefore, the spectrogram preprocessing can
be summarized as follows: the discretely sampled audio input signal is sliced into

frames and transformed to the frequency domain by STFT. Hereafter, the logarithmic
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(a) OHPCP features (b) spectrogram features

Fig. 2.1 The two different input representations used to preprocess the audio data. Fig. 2.1a
shows the OHPCP with 88 frequency bins and Fig. 2.1b depicts the log-magnitude semitone
filtered spectrogram with 199 frequency bins.

magnitude spectrograms are filtered with a semitone filterbank using triangular unit
area filters. The same frame resolution of 100 fps was used during the preprocessing
stage for the spectrogram and OHPCP computation.

To the best knowledge of the author, HPCPs have not yet been used in the context
of polyphonic piano note transcription or similar topics. This may be partly because
HPCPs by definition reduce audio information to the twelve pitch classes of the
diatonic scale. The reduction is accomplished by mapping each frequency bin to a
pitch class in addition to applying a frequency weighting and considering the presence
of harmonics [26]. However, by using bandpass filtered spectrograms to calculate
HPCPs, an octave-wise representation can be generated. Stacking HPCPs calculated
per octave on top of each other leads to the OHPCP feature, which is presented against
a spectrogram in Fig. 2.1. Interestingly, OHPCPs closely resemble the note activation
function outputted by the piano transcription model, since each bin of the OHPCP
already corresponds to one of the 88 notes. However, due to the poor resolution in the
lower frequencies it is likely that some notes are only represented by their higher order
harmonics. In some cases the lower keys even produce nearly empty bins as can be
observed in Fig. 2.1a.

Reducing spectrograms to the standard 88 piano keys or semitone spacing may
have several advantages over a more granular frequency representation. In particular,
the lower resolution of the frequency dimension can result in fewer parameters used in

the deep learning model, hence leading to a reduced model complexity. Furthermore,
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it desensitizes the system against learning the timbre or tuning variations of different

piano instruments, hence leading to a better generalization.

2.2 Dataset and Metrics

This section clarifies the origin and composition of the data set used in this thesis,
followed by a short introduction to the generation of frame-wise pitch occurrences,

which motivates the performance metrics used to evaluate the deep learning models.

2.2.1 MAPS

All experiments are conducted using the MAPS dataset created by Emiya et al. [24].
The dataset consists of 270 MIDI aligned classical piano pieces, 30 of which are real
musical piano pieces recorded from a Yamaha Disklavier upright piano. The remaining
pieces are software synthesized from high quality piano sample patches. The Yamaha
Disklavier piano is controlled by a MIDI signal and therefore self-playing during the
audio recording. Arguably, it would improve the validity of the results if the recordings
where performed by a human pianist. On the contrary, since no human pianist was
involved in the creation of this dataset, a high level of accuracy can be guaranteed
in the alignment of audio and MIDI annotations. However, as [4] points out, the
Disklavier fails to correctly play a note if its MIDI velocity drops beneath a certain
threshold. Moreover, Ewert et al. [28] found some cases where audio-midi alignment
errors were up to 100 ms. For the sake of comparability with other publications, this
label-noise will not be addressed any further.

In recent publications [4, 8, 9], a common train-test division has been established
on the MAPS dataset. The exact four train-test folds are taken from [9], which were
published online! and were designed in turn using the methods established by [8],
commonly referred to as configuration II. Since training takes place only on synthesized
audio and performance comparison solely on recorded audio, this configuration is
presumed to be the most realistic setting. Furthermore, the reproducibility and
comparability of the results is improved by adapting to this widely used training

scheme.

Thttps://github.com/rainerkelz/ICASSP18/tree/master/splits /sigtia-conf2-splits, last visited:
Tuesday 14" May, 2019
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2.2.2 Background: Pitch Occurrences

The output layer of most frame-wise piano transcription models is governed by the
sigmoid nonlinearity, mapped to the 88 notes of a typical modern piano, as showcased
in Fig. 2.2. The logistic sigmoid function o(2) is defined as

1

T 2

o(2)
and its main property is to map the input to the open interval (0,1). The usage of the
sigmoid function is justified by the binary nature of pitch occurrences, where class 1
describes an active pitch and class 0 an inactive one. It is therefore only necessary to
determine the probability of one of the classes since the sum over the two probabilities
has to add up to one. Furthermore, the mean of a distribution over a binary variable
has to be between 0 and 1 [10], which again fits the property of the sigmoid nonlinearity.

input output prediction
spec 5 x 229 1 x 88 1 x 88
[0.027] (0]
0.12 0
0.05 0
0.09 0
T 3 :
model ) 0-5 .1
0.43 0
~— )
() _ (t) : :
70 = u (x?) 0.15 0
0.01 0
0.08 0
0.00] 3 0] ¥

x®

Fig. 2.2 A generic frame-wise piano transcription model. The spectrogram is sliced into
overlapping excerpts x® centered on the frame of interest and applied to the model fr (x(t)).
The sigmoid nonlinearity of the model produces the output ¥(), which is then thresholded to
obtain a binary prediction y® =50 > 0.5.

Hence, the output layer is able to present concurrently played notes as independent,

sigmoid activated occurrences, which are then interpreted as probability values in

10
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the closed interval [0, 1]. However, this kind of models are heavily impacted by the
entanglement problem and therefore independence is not guaranteed [25]. In other
words, the note C might be classified correctly when played concurrently with the notes
of Cmaj, whereas it could be missed when played alone. In general it is desirable to build
a model with perfect disentanglement, since this model would immediately generalize
to all piano genres and would not need to implicitly learn the music theoretical patterns
of the training data. However, since music theory is build on an extensive set of rules
which translate to most music genres, even a model which suffers from entanglement
may generalize well enough.

The general process of frame-wise piano transcription is depicted in Fig. 2.2. During
training each spectrogram excerpt is centered on the frame to be classified, surrounded
by an even number of context frames. The model, once trained, can be exposed to
a succession of maximally overlapping spectrogram excerpts of a recording to obtain
a piano-roll like representation from the sigmoid activation function. This is true for
models which use convolutional layers with a neural network as a final layer, since
CNNs are not explicitly designed to handle temporal information. Therefore, it has
to be added artificially by giving a fixed temporal context of frames surrounding the
frame being classified. In contrast, recurrent neural networks are able to operate on
non-overlapping spectrogram excerpts of several seconds of audio data.

In the presented generic model all pitch occurrences are assumed to be of equal
importance. However, in reality some pitch occurrences have more value for a successful
transcription than others, as will be discussed later on. The two most important pitch
occurrences are the onset and offset, when considering a note sliced into frames. In
the context of this thesis, a note onset is the pitch occurrence which has no preceding
occurrence of the same pitch, unless it is an offset and the offset has no following pitch
occurrence unless it is an onset. This simplified definition of the onset and offset is
similar to the one used by [4]. However, their findings suggest that a note onset should

stretch over the first two frames of a note.

2.2.3 DMetrics

Three different metrics will be applied to the predictions of the frame-wise piano
transcription model, which in each case are expressed through Precision (P), Recall (R)
and F1-Score (F1).

A simple frame-wise measure, as adopted from [9], is described in equations (2.2)
through (2.4). The occurrences of true positives (TP), false positives (FP) and false

negatives (FN) are counted on a per frame level ¢ over all 88 MIDI pitches. True

11
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negative (TN) occurrences are neglected for the obvious reason that the total number
of TNs would shadow the important TP /TN count, therefore accuracy will not be

applied as a performance measure.

=y
T 2 T Fpp (2.2)
=TR[]
R =2 T+ N (2.3)
P-R
Fl—2. o o

The following two metrics are implemented using the mir_eval library [29], which
employs a note-wise performance measure. The measure, that only considers the
correctly predicted onset of a note, will be referred to as mote, while the measure
considering onset and offset of a note, will be referred to as note with offset.

The mir_eval library uses a bipartite graph to find note matches between predictions
and ground truth. Since the graph operates on a list of notes described in Hertz with a
start and stop time in seconds, it is necessary to transform the frame-wise predictions
of the transcription model back to this domain.

The onset of a note is considered correct if it is within a +50ms tolerance of
the reference note with a pitch within £50 cent (quarter tone) of the corresponding
reference note. The note with offset measure defines on top of the above criteria, that
the note offset needs to be within 20 % of the reference notes duration around the
reference notes offset, or within 50 ms (whichever is larger) [29]. Thus, a reference
note exceeding a duration of 250ms will always apply the upper bound of +20%
of the reference notes duration. These settings are common ground for many MIR
transcription tasks and are adopted from the 2015 MIREX multiple fundamental
frequency estimation and tracking, note tracking subtask.

The note-wise metric can also be used to incorporate a measure for note velocity
estimation, as has been done by Hawthorne et al. [4]. However, in this thesis the focus
is on note detection with and without offset. Again, Hawthorne et al. also illustrates
how the note-level metrics are perceptually more relevant than frame-level metrics and

encourages to emphasize on these when comparing transcription models.

12



2.3 Neural Network Architecture

2.3 Neural Network Architecture

This section describes the advantages and complementary capabilities of the three
architecture types: residual network, bidirectional long-short-term memory and neural
networks, as well as the method of combining these approaches into a unified architecture

for piano transcription.

2.3.1 Deep Residual Learning

The foundation to ResNets are convolutional neural networks [30], which are a form
of neural networks designed to operate on grid-like input data. As mentioned in
Section 1.1, the most prominent application of CNNs is within the area of image
processing, but since spectrograms can be thought of as a 2-D grid of pixels, many
approaches have been transferred to the domain of audio processing.

As the name suggests, the central aspect of a convolutional network is the mathe-

matical operation called convolution, which is denoted with an asterisk:

f@t) = (zxw)(t). (2.5)

In the terminology of CNNs the function z is referred to as the input, and the second
function w as the kernel. The output f is known as the resulting feature map at index ¢.
The equation above describes the convolutional operation in 1-D. However, in machine
learning applications the input and kernel are usually a multidimensional array of
which the kernel is iteratively adapted by the learning algorithm.

In comparison to a CNN, a simple neural network learns a matrix of parameters
potentially connecting each input value to each output value through the usage of a
matrix multiplication. On the contrary, convolutional layers have a property called
sparse interactions, which emphasizes on local connectivity by making the kernel smaller
than the input data. This aspect is illustrated in Fig. 2.3 and is one of the important
ideas behind CNNs, next to parameter sharing and equivariant representations, which
are explained in more detail by Goodfellow [10]. However, since CNNs may have several
convolutional layers, deeper layers will have a larger receptive field than the kernel size
would suggest, which allows for complex interactions between local features even if
they are far apart in the input data.

Very deep CNNs are difficult to train because of vanishing or exploding gradients,
due to gradient values less than or greater than one being multiplied many times over

through the layers of the network. This opposes the theoretically possible reduction of

13
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Fig. 2.3 A 2-D convolution performed without kernel flipping [10]. The feature map is
computed by taking an equally sized subset of the input and convolving it with the kernel.
This process is repeated by shifting the red window over the input data from left to right
and top to bottom. In this example, the convolution produces a valid feature map, since the
subset always lies entirely within the input data. In contrast to a same sized feature map,

feature map

aw + bx+
ey + fz

bw + cz+
fy+gz

cw + dr+
gy + hz

ew + fx+
iy +jz

fw + g+

jy + kz

gw + hz+
ky + 12

which is accomplished by zero-padding the boundary of the input.

— a[l+2]

ali+1
4 J’ O—1O

| alt+1l Y
all Linear —» ReLLu ———— Linear —{

/ N

’B—> ReLu —» ¢li*2

N\

1] gyl i)

o+l — g (Z[l+1])

(z [i+2] +am)

Fig. 2.4 Composition of a residual block.
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the networks error rate with ever increasing depth. One way to address this problem is
to use skip-connections, which allows to take the activation from one layer and feed it
into a layer much deeper in the network. These ResNets make it possible to train very
deep neural networks, sometimes with up to 1000 layers [31].

ResNets are build from so-called residual blocks, as depicted in Fig. 2.4. Like in
a normal neural network the activation al¥ is passed through the layers on a main

421 The steps of this computation are governed by a linear

path till it becomes a
operator z!Y, composed of the weights W[+ and bias b2, followed by the rectifier
linear unit g(z/*). In residual networks an additional skip-connection takes the
activation al! and injects it in the second layer, right before the rectifier linear unit.
Thus, skipping the first layer and retaining the information of the first activation
in al*2.

Stacking multiple residual blocks on top of each other leads to the architecture of a
deep residual network. The modular design of a residual block makes it easy to use
them as a drop-in replacement for an ordinary convolutional layer. Therefore, it is an
obvious step to use an already successful CNN architecture on the task of frame-wise
piano transcription and replace its convolutional layers with residual blocks. At the
time of this writing, the most effective convolutional architecture was proposed by Kelz
et al. [9], a model with three convolutional layers followed by a dense neural network.
By replacing the second and third convolutional layer with residual blocks, one obtains
the ResNet architecture used throughout this thesis.

A more precise comparison of the composition of this two architectures can be
found in Table 2.1. Note that despite the increased complexity of the ResNet, the total
number of parameters only increases by five percent. Since this measure is proportional
to the computational cost, it is reasonable to assume that the new model will benchmark
similarly in this regard. Both models integrate commonly used best-practice techniques,
such as max-pooling, dropout and batch normalization, the latter also being used
inside a residual block. The following description summarizes the techniques mentioned

above and points to the literature for further studies:

max-pooling Similar to the convolutional layer this operation applies a window with
a stride to the input, with the difference that only the maximum value is passed
to the output. The objective is to make the input units invariant to small

translations and to down-sample the data representation [10].

dropout This technique randomly mutes units by multiplying them with zero and
presents a computationally inexpensive regularization method. The effect is

similar to training a bagged ensemble of exponentially many neural networks [32].
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Table 2.1 Side-by-side comparison of convolutional and residual architecture. Note, instead
of using the convolutional layers to reduce the frame dimension, the ResNet architecture uses
the pooling layers for this task.

(a) The CNN architecture by Kelz et al. [9].

(b) The ResNet architecture.

Layer Output No. of  Layer Output No. of
Type Dimensions Parameters  Type Dimensions Parameters
Input 1x5x229 Input 1x5x229
Conv 32x5x229@3x3 288  Conv 32x5x229@3x3 288
BatchNorm 32x5Hx229 128 ReLu 32x5x229
ReLu 32x5x229 ResidualBlock 32x5x229@3x3 18688
Conv 32x3x227@3x3 9216 ReLu 32x5x229
BatchNorm 32x3x227 128  MaxPool 32x3x114@3x2
ReLu 32x3x227 Dropout, p = 0.25 32x3x114
MaxPool 32x3x113Q@1x2 ResidualBlock 64x3x114@3x3 37376
Dropout, p = 0.25 32x3x113 ReLu 64x3x114
Conv 64x1x111@3x3 18432  MaxPool 64x1x57@3x2
BatchNorm 64x1x111 256  Dropout, p = 0.25 64x1x57
ReLu 64x1x111 Dense 512 1867776
MaxPool 64x1x55@1x2 BatchNorm 512 2048
Dropout, p = 0.25 64x1x55 ReLu 512
Dense 512 1802240 Dropout, p =0.5 512
BatchNorm 512 2048 Dense 88 45144
ReLu 512 Sigmoid 88
Dropout, p=0.5 512 51971320
Dense 88 45144
Sigmoid 88

> 1877880
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2.3 Neural Network Architecture

batch normalization This method provides a way of adaptive re-parametrization
during the back-propagation step, preventing the gradients from proposing an
operation which would only increase the standard deviation or mean of the input
units [33].

ReLu The rectified linear unit applies a piecewise linear operation f(z) = max{0,z}
to the output of the convolutional layer. The usage of this activation function is
motivated from biological neurons and has shown better results than functions

with a two-sided saturation when applied to intermediate network layers [34].

2.3.2 Bidirectional Long-Short-Term Memory

While CNNs are designed to operate on grid-like input data, recurrent neural networks
were invented to process sequential data. Hence, this property is particularly interesting
for audio processing applications, since audio data is a paradigmatically sequential
signal. And although CNNs are able to process a small temporal context, as mentioned
in Section 2.2.2, many challenges in AMT can be addressed by accessing spectrogram
data which lies further in the past than would be practicable for a CNN. RNNs are
able to share information across very long sequences by using cyclical connections,
thereby memorizing previous inputs in their internal state [35]. Furthermore, this idea
can be extended to also incorporate future inputs from a sequence.

The invention of bidirectional recurrent neural networks by Schuster and Paliwal [36]
addresses the need for solving ambiguities, which arise from only looking into past values
of a sequence. For example, when considering speech recognition, the identification of
the present sound as a phoneme could depend on the following or previous phonemes
because of co-articulation. Similarly, extended to piano transcription, the correct
interpretation of a note onset may depend on how the note reverberates over the
following few time steps or may even depend on the next few notes because of music
theoretical dependencies between them.

As the name suggests, Bidirectional Long-Short-Term Memory (BiLSTM) combine
an LSTM network that moves forward through time and another LSTM network
which moves backwards through time. This kind of network architecture is able to
concurrently uncover a time series from the start and the end, thus, making it possible
to output a prediction of y(*) that may depend on the whole input sequence xV, ... x®.
Nevertheless, the output units are most susceptible to input values near ¢, but without
the necessity to define a fixed-size time window around ¢. This is one of the key

advantage of a BiLSTM network over a regular RNN and especially over a pure residual
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Fig. 2.5 Block diagram of an LSTM cell.

network as described in section 2.3.1, which requires a fixed context window to operate
on.

Fig. 2.5 highlights the data flow through one cell of an LSTM recurrent network.
The concatenated values of the input x®) and the output h®=1 of the previous LSTM
cell are broadcast to the sigmoid activated input, forget and output gate, which act
as kill switches for any elements of the input vector that are not required. The gate
units always have a sigmoid nonlinearity while the input unit can be used with any
compressing nonlinearity. The state unit and self-loop form a layer of recurrence which
is controlled by the forget gate, thus, telling the network which state variables to
remember and which to forget. Similar to the idea of ResNets, the delayed state s(¢—1)
is added to s® in order to prevent vanishing gradients. Eventually, the output h® of
the LSTM cell can be shut off by the output gate.

Instead of standard neural network layers the LSTM network uses a succession of
cell blocks to form a recurrent neural network. Subsequently, by stacking two LSTM
networks with opposing recurrence directions on top of each other, a network with
a single output unit that benefits from a summary of future and past time steps is
constructed.
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2.3 Neural Network Architecture

2.3.3 Multitask Learning

The input representations described in section 2.2 would be directly applicable to a
BiLLSTM network, since the spectrogram of a piano piece is a valid time series. However,
recent research has shown that using a convolutional network as a feature extraction
stage provides exceedingly better results across tasks like speech recognition [37],
language models [38] and piano transcription [4]. The combination of these two
network architectures seems to come naturally to audio related tasks, since convolutional
networks are very good at reducing frequency variations in spectrograms, while LSTMs
have been proven to learn long, time-dependent representations better than simple
recurrent networks [10]. Fully connected neural networks are an often used component
of deep learning architectures, and well known for their ability to separate the input
space into an easy to classify output [37]. Hence, the target architecture of this thesis
incorporates all three machine learning architecture types, governed by a multitask
learning paradigm.

intermediate
representation

Fig. 2.6 Abstract view of the multitask learning strategy used in the context of this thesis.
It is assumed that the intermediate representation of h; is more specialized towards the task
of predicting y1, while hy is specialized towards y3. Predicting a combined representation yo
as well, emphasizes on the common pool of factors extracted from x.

In the context of deep learning, the multitask strategy is one of several regularization
methods. It can be described as an prior assumption, in which some of the variance
explained by observations made in the data are shared across multiple tasks. This
strategy can be imposed onto a deep learning architecture by learning tasks in parallel
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on a shared data representation, while exchanging features at a later point in the
network [39]. Fig. 2.6 illustrates the strategy used in this thesis. The loss of three
different prediction tasks, based upon two independent intermediate representations, is
used to train the model for frame-wise piano transcription. The three tasks correspond
to predicting the frame-wise note occurrences, the note onset frame and the combination
of the previous two. The separation of the underlying global task of piano transcription
is well justified, since note onset detection is very similar to detecting any other part of
a note (see Section 2.2.2). Therefore, it is reasonable to assume that these two different
forms of pitch occurrences share common features.

Multitask learning has a similar effect on deep learning models as increased training
data has, insomuch as it helps the model to generalize better to unseen data [10]. The
intuition behind this improvement can be understood as follows: Multiple tasks use the
same intermediate representation of the model, thus, imposing more constraints onto
the representation and therefore leading towards common factors which hold meaning
for each of the tasks.

20



Chapter 3

Experimental Setup and Results

Four different new piano transcription models where trained on the MAPS dataset, as
well as a reimplementation of the CNN proposed by Kelz et al. [9]. The models are
compared to recent publications and in particular to the Onset and Frames system
by Hawthorne et al. [4], forming the state-of-the-art at the time of these experiments.
Starting with the initial ResNet system, several modifications are performed to both
architecture and training, yielding further improvements. These are reported on in
Section 3.2 after explaining the experimental setup (Section 3.1) and the details of the

transcription system (Section 3.1.1) and its postprocessing stage.

3.1 Experimental Setup

Different preprocessing settings have been applied on conducting the experiments,
the final setups are concisely summarized in Table 3.1. Setup I was taken from [25]
and used to train the reimplemented model described in [9], both publications build
on very similar CNNs and it was necessary to cross-reference implementation details.
This was done to ensure evaluation consistency and to test the reproducibility of the
results generated by the CNN architecture and will be discussed further in Chapter 4.
Setup II is derived from I and informed by the observation of many empty frequency
bins above 5kHz. Theoretically these bins could be occupied by note harmonics and
therefore hold information useful for the transcription model. However, preliminary
experiments showed no or very little impact on the overall F1-Score. Therefore, the
upper frequency limit was lowered in favor of fewer frequency bins.

Setup II was used for all experiments involving a ResNet based architecture, except
where noted differently. Setup III describes the preprocessing of Octave-wise HPCP, the

frequency boundaries are taken from the lowest and highest octave. Any intermediate
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octave frequency boundaries are calculated by taking the mean of the frequencies of

the highest and lowest note in two consecutive octaves.

Table 3.1 The different setups used in the preprocessing stage.

Setup I: Kelz et al., reimplementation
Setup II: ResNet - ResNet & BiLSTM - Multitask ResNet & BiLSTM.
Setup III: ResNet w/ OHPCP.

Setup I Setup 11 Setup 111

input features log. Hiag. log. tag. OHPCP
semitone spec semitone spec

fs 44.1 kHz 44.1kHz 44.1kHz
FFT size 4096 4096 12288
frame size 4096 4096 4096
fps 100 100 100
freq. bands 48 48 12
frin 30Hz 10Hz 27.5Hz
fmax 8000 Hz 5000 Hz 6645 Hz
norm filters yes yes no
unique filters yes yes -
circular shift no no no
freq. bins 229 199 88

Hyper-parameter optimization was conducted by a human expert by applying
an informed grid search to the parameter selection of related models [8 10]. The
summarized final parameterization is depicted in Table 3.2 for each of the trained
models. In case of the convolutional models a linear learning rate schedule was applied
by halving the learning rate every three epochs up until epoch 24, while training a
total of 30 epochs. The models using a BiLSTM layer employ a exponential decay on
the learning rate with a decay rate of 0.98, reducing it every 5000 steps. The choice
of a batch size of 128 is within the margin of standard mini-batch stochastic gradient
decent, as it was proposed by [25]. The drastic reduction in batch size with BiLSTM
architectures is motivated by the results of [40], which state that small batch sizes
converge to a flatter minimum due to the noise in the gradient decent. This is desirable
since a flatter minimum is associated with better model generalization.

During training, the frame- and element-wise applied binary crossentropy [9]

£ (y0,50) = — (y9 - log (39) + (1 - y®) -log (1 - 3)) (3.1)
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3.1 Experimental Setup

is used on the networks output, with ¥ being the output of the network and y®
the ground truth of the training data at frame t. The global loss of one training step
is calculated by taking the mean over a batch of training data, which is then passed
to the optimization algorithm to be minimized. The CNN and ResNet architecture
are regularized by clipping the networks output below le~” and above 1 — le~7. The
architectures with a BiLSTM layer employ a Lo-norm penalty term calculated from
the connection weights and added to the cost function. Both approaches help to reduce
overfitting and regularize the network.

All models where trained using the TensorFlow [41] framework. The architectures
without BiLSTM layers were first trained on a GeForce 1060 (6 Gb), but due to the high
memory demand of recurrent networks other models had to be trained on a P5000 GPU
(16 Gb). Therefore, the simpler models were also retrained on the P5000 GPU in order
to compare the computational cost. This hardware configuration allowed to train

models involving BiLSTMs with a maximum batch size of 8.

Table 3.2 Final hyper-parameter choice used to train the models.

Kelz et al., reimp. ResNet ResNet using BiLSTM

batch size 128 128 8

clip L2-norm - - 3

clip output le " le " -

learning rate 0.1 0.1 0.0006
momentum 0.9 0.9 -

input format channels first channels first channels last
optimizer Nesterov, momentum Nesterov, momentum adam

3.1.1 Transcription System

Of the different model architectures developed in this thesis the transcription system
depicted in Fig. 3.1 performed the highest on the note-level metrics. The transcription
system is build upon the ResNet architecture presented in Fig. 2.1b, followed by an
BiLSTM layer and a fully connected neural network with sigmoid activation. The
system consists of two main paths which interact with each other through a third fully
connected sigmoid layer. The right path represents the onset detector while the left
path is trained on predicting general frame activations. The combined loss emphasizes
on the similar properties between detecting pitch occurrences and onset occurrences.

The onset predictions are later used to restrict pitch occurrences in the frame-wise

predictions. This step should be considered part of the postprocessing rather than part
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of the deep learning model, since it does not influence the training process directly. In
other words, the restriction by onset-frames is part of an aggregation function with a
slightly different goal than the frame-wise calculated loss. While the model is trained
on a frame-level logic with a bias for onset-frames, the aggregation function anticipates
a note-level logic by assuming general pitch occurrences are only possible after an onset
occurred. This means that any pitch occurrences are neglected if not preceded by an
onset. Vice versa, if an elsewhere continuous stream of pitch activations, with an onset
at the beginning, is interrupted by a single missing frame, all following frames are
also neglected. While this approach is prone to produce more false negatives it also
alleviates the transcription system of the issue with multiple note reactivations.
Furthermore, the importance of note onsets is emphasized by applying a note
activation heuristic to each onset. This approach shows similarities to the findings
of [4], which state that the prediction quality was improved by assuming an onset takes
up two frames rather than one. However, the proposed heuristic aims at closing gaps of
missing frames between the onset and following pitch occurrences, which would result
in missing notes or multiple reactivations. The underlying assumption is as follows, if
a note onset was detected, it will always be followed by a number of k., active frames
of the same pitch. This heuristic is applied during the postprocessing stage and can be
easily changed at a late point in time, since it is not part of the trained model. The
value of this heuristic was determined empirically to perform best at ke, = 10. This
means, any given onset detection leads to the transcription of a note with a duration of
at least 100 ms, independent of the true duration of the note in question. Naturally, this
heuristic introduces errors of its own by eradicating any note actually played shorter,
or by emphasizing false positive onset detections which otherwise would have been
inaudible. On the up-side, this process ensures audible notes where the deep learning
model was only able to identify the onset frame. This approach can be justified by
the steep attack of piano notes right after the onset, making it difficult to detect the
onset and the following three to five pitch occurrences correctly as compared to the
frames where the maximum note energy is reached. This observation is illustrated in
Fig. 3.2, almost all models reach the highest F1-Score within 30-50 ms after a note
onset, followed by an often equally steep descent up to 100 ms. This second observation
is most likely due to the energy decay in the piano note right after the initial excitation.
The following findings suggest that these two observations explain the performance

improvement of all considered models when applying the onset heuristic.
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Fig. 3.1 Diagram of the final multitask transcription model architecture.
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3.2 Experiments

The following Experiments are observed over different frame- and note-level metrics,
divided by the model architecture and its preprocessing. The ResNet, ResNet with
OHPCP and ResNet & BiLSTM models do not employ an onset detector themselves,
therefore, the piano note onset detector developed by Bock et al. [6] was used to
incorporate onset information during the postprocessing stage. The system applies a
BiLSTM network and was also trained on the MAPS dataset, which makes it the ideal
candidate to compare it against the concurrently trained onset and pitch occurrence
detector of the Multitask ResNet & BiLSTM. The implementation of the onset detector
by Bock et al. used during the experiments is part of the madmom library. However,
the onset detection model was not trained according to configuration II of the MAPS
dataset, but rather configuration I. This train pattern allows pieces of the recorded
piano to be part of the training set and therefore has a data advantage over the
Multitask ResNet & BiLSTM and other models which only use configuration II.

Like with the ResNet model, the ResNet & BiLSTM experiment uses Setup II
for the preprocessing parametrization. Additionally, a further preprocessing step was
applied. The log-magnitude semitone-filtered spectrograms are enhanced by adding
their positive frame-wise and frequency-wise differences to the spectrogram, followed
by normalization and clipping values < 1073, This step is motivated by the idea of the
superflux onset detector designed by [42]. The algorithm applies trajectory tracking to
the positive frame-wise differences of a spectrogram to detect onsets in music. Similarly,
a convolutional architecture could be prompted to extract more relevant features from
this input representation. From an image processing point of view this step is similar
to enhancing the contrast of a picture. However, preliminary experiments showed a
significant increase in frame-level F1-Score of 5 to 6 points and in note-level F1-Score
of 4 to 5 points. Therefore, this improvement was applied in this experiment and its
extension the Multitask ResNet & BiLSTM.

For the Multitask ResNet & BiLSTM experiment the transcription system depicted
in Fig. 3.1 was used. The spectrogram enhancement described above was applied
in addition to the preprocessing Setup II. Due to the multitask learning strategie,
the architecture of this deep learning network is more complex than in the previ-
ous experiments. However, this system is still simpler than the model proposed by
Hawthorne et al. as it only employs two parallel acoustic models, compared to three
parallel strands used in the Onset and Frames system [4].

Frame-level results in Table 3.3 also depict the results of adding onset predictions

and the onset heuristic. The overall effect of adding further postprocessing techniques
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Table 3.3 Frame-wise results on the MAPS dataset, configuration II. Frame-wise scores
calculated as defined in [8], the final measure is the mean of scores calculated per piece.

Frame Frame Frame
onset prediction onset prediction and heuristic
P R F1 P R F1 P R F1
Kelz et al., reimp. 75.15 65.08 69.06 74.74 65.41 69.07 72.18 68.99 69.81
ResNet 75.24  68.68 71.19 T74.87 68.89 T71.13 72.21 71.95 71.38
ResNet w/ OHPCP 74.19 58.17 64.70 73.78 5847 64.75 T71.39 63.35 66.56
ResNet & BIiLSTM 75.50 70.25 7254 75.14 70.39 72.45 72.64 74.55 73.28

Multitask ResNet & BiLSTM 79.70 71.94 75.27 79.53 72.37 75.45 77.62 75.93 76.39

to the transcription systems is modest, the ResNet w/ OHPCP benefits the most
followed by the Multitask ResNet & BiLSTM. Altogether, the Multitask ResNet &

BiLSTM achieves the highest scores on all frame-level metrics.

Table 3.4 Note with offset results on the MAPS dataset, configuration II. Note scores
calculated with the mir_eval library [43], the final measure is the mean of scores calculated
per piece.

Note w/ offset Note w/ offset Note w/ offset
onset prediction onset prediction and heuristic
P R F1 P R F1 P R F1
Kelz et al., reimp. 25.60 40.76 30.94 38.97 36.17 37.32 45.43 41.10 42.91
ResNet 22.66 4558 29.80 4248 39.54 40.73 47.62 43.44 45.18
ResNet w/ OHPCP 25.59 42.18 31.19 40.30 38.20 39.01 46.76 43.32 44.72
ResNet & BIiLSTM 38.67 47.77 4250 49.88 45.12 47.14 54.16 48.17 50.72

Multitask ResNet & BiLSTM 41.61 50.23 45.29 55.57 49.54 52.20 59.03 51.78 55.22

The note-level results are shown in Table 3.4. In contrast to the frame-level metrics
the note-level metrics greatly improve through adding the additional postprocessing
methods. The ResNet even improves its F1-Score by 15 points while the other models
achieve an improvement of at least 10 points. The incorporation of onset predictions to
the output of the transcription systems shows the most significant advance in F1-Scores.
Again, the Multitask ResNet & BiLSTM achieves the best performance in all note-level
metrics.

The computational cost, in time spent training each of the transcription models,
is showcased in Table 3.5. The most efficient model in terms of performance gain
to invested training time is the ResNet & BiLSTM, since the improvement of the
Multitask ResNet & BiLSTM is facilitated by four times the training time of the
baseline CNN architecture. Interestingly, the ResNet architecture only needs half as
much training steps compared to the CNN by Kelz et al., while still slightly increasing

the training time.
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Table 3.5 Comparison of best model F1-Scores, training steps and computational cost. One
training step equals one batch of training examples passing through the network. All models
were trained using the same P5000 GPU.

Frame Note w/ offset Train Steps Train Time
F1-Score F'1-Score

Kelz et al., reimp. 69.81 42.91 1.5M 6h
ResNet 71.38 45.18 850k 7h 30m
ResNet w/ OHPCP 66.56 44.72 850k 7h 30m
ResNet & BiLSTM 73.28 50.72 40k 11h
Multitask ResNet & BiLSTM  76.39 55.22 45k 24h

The Fig. 3.2 illustrates the performance of each model to predict individual pitch
occurrences. The longer a model can maintain a high F1-Score, the better its ability
to uninterruptedly track the progression of a note. The results show that the ResNet
architecture achieves the highest scores in this regard, while it is still able to maintain
a high F1-Score over a long period when combined with the BiLSTM. Nevertheless,
the ResNet architecture also shows the worst performance when trained on OHPCP

instead of spectrograms.

0.9
0.8 _
v 0.7 -
3 \
7 WS
= 0.6 B
CNN by Kelz et al. \\ \
ResNet (semitone Spec) \ N\
0.5 L ResNet (octave-wise HPCP) \
’ ResNet & BiLSTM \
Multitask ResNet & BiLSTM \
0_4 | L L 1 1 1 1 1 1
note onset 100 200 300 400 500 600 700 offset

Time (milliseconds)

Fig. 3.2 Mean F1-Score of a piano note over time, without using onset predictions or onset
heuristic. The score is calculated per frame as the mean over all notes in the test-set and
interpolated linearly. Depicted are the onset frame, the first 70 frames (700 ms) and the offset
frame. Note, the offset is added for better comparison, obviously an individual note offset
might occur before or after 700 ms.
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Fig. 3.3 illustrates the input spectrogram 3.3a to the Multitask ResNet & Bil-
STM, the resulting note activation function 3.3b and the piano-roll transcription 3.3c
generated from the postprocessing stage. The piano-roll is complemented by the
corresponding ground truth which is indicated by the color coding: missed reference
frames in yellow, falsely predicted frames in red and correctly estimated frames in green.
Fig. 3.4 presents an exemplary comparison of the transcription system proposed by
Hawthorne et al. [4] and the Multitask ResNet & BiLSTM. In case of the Onsets and
Frames model the transcribed piano excerpt is generated by the online transcription
service piano scribe!, provided by Google Brain. Both piano-roll representations are
quantized by the frame-wise temporal resolution of 10 ms, used by the transcription

systems.

3.3 Extensions and Dead Ends

Motivated by the idea of the musical onset detector proposed by Schliiter et al. [22]
an attempt was made to compute three semitone-filtered spectrograms using different
frame lengths (23ms, 46 ms and 93 ms, respectively). The spectrograms would be
passed to the network as three channels, similar to the RGB channels of an image.
This approach has shown good results with onset detection and works around the
trade-off between frequency resolution and temporal resolution. The anticipated
improvement for frame-wise piano transcription would be a clear localization of onsets
in the short windowed spectrogram and a sharp distinction between frequency bins in
the spectrogram with a long window. However, this did not improve results, but even
deteriorated them. Possibly, the later adopted multitask learning could provide a new
way to incorporate spectrograms with different frame lengths, for example by using
the short windowed spectrogram only for the onset detector.

The Multitask ResNet & BiLSTM was used in an attempt to investigate how well
the transcription system can generalize to other instruments. For this task, a dataset
for guitar transcription was used called GuitarSet [44]. Surprisingly, the transcription
system performed beyond expectations, even without any retraining of the networks
layers. On the frame-level F1-Score the system scored 56.89 points while it still achieved
10.41 points on the note with offset F1-Score. This result gives hope that a future
transcription system will also be applicable to different instruments and indicates

possible approaches for transfer learning.

Thttps://piano-scribe.glitch.me, last visited: Tuesday 21%* May, 2019
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(a) Input Semitone Spectrogram

(b) Note Activation Function

(c) Estimated and Reference Transcription

Fig. 3.3 Transcription of 10 seconds of MAPS_ MUS-chpn_op25_ e4 ENSTDKkAm.wav,
a recording which is not part of the training set. 3.3a the log-magnitude semitone filtered
spectrogram. 3.3b the activation function from the Multitask ResNet & BiLSTM. 3.3c the
estimated transcription restricted by onset predictions, with missed reference frames in yellow,
falsely predicted frames in red and correctly estimated frames in green.
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(a) Estimated and Reference Transcription from [4]

(b) Estimated and Reference Transcription from the Multitask ResNet & BiLSTM

Fig. 3.4 Comparison of the transcription quality between the Onset and Frames system and
the Multitask ResNet & BILSTM on 4s of MAPS_MUS-chpn_op25_e4 ENSTDkAm.wav.
With missed reference frames in yellow, falsely predicted frames in red and correctly estimated
frames in green.
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Chapter 4
Discussion

The first part of this chapter discusses the specifics of the experiments and compares
them to one another, as well as to recent publications. The second part will open up
to a broader discussion which puts a focus on the Multitask ResNet & BiLSTM, its
strong and weak aspects and directions for improvement. Finally, the conclusion will
answer the questions posed in Chapter 1 and recommend steps for future research.

Through a combination of deep learning methods build upon the ResNet architec-
ture it was possible to significantly advance the state-of-the-art in polyphonic piano
transcription on the MAPS dataset. The experiments applied different preprocessing
routines and where step by step extended from the baseline CNN architecture. This
approach helped identifying complementary postprocessing techniques to supplement
the final transcription system. Furthermore, comparability to other publications was
ensured through the use of frame-level and note-level metrics, as well as by committing
to the widely used configuration II of the MAPS data set.

Table 4.1 Comparison of highest score results on the MAPS dataset with recent publications.

Frame Note Note w/ offset

P R F1 P R F1 P R F1
Sigtia et al., 2016 [8] - - 64.14 - - 54.89 - - -
Kelz et al., 2016 [9] 74.50  67.10 70.60 - - - - - -
Hawthorn et. al., 2018 [4] 88.53 70.89 78.30 84.24 80.67 82.29 51.32 49.31 50.22
ResNet 7221 7195 7138 73.82 67.30 70.01 4762 4344 45.18
ResNet w/ OHPCP 71.39 63.35 66.56 73.73 68.69 70.72 46.76 43.32 44.72
ResNet & BiLSTM 72.64 7455 73.28 7472 66.23 69.85 54.16 48.17 50.72

Multitask ResNet & BiLSTM  77.62 75.93 76.39 81.18 70.94 7543 59.03 51.78 55.22

Kelz et al. reimplementation The frame-level results of the publication have been

replicated with sufficient accuracy, with a negative deviation of the F1-Score by
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one percentage point. The slightly lower score stands in contrast to the results
of the reimplementation by Hawthorne et al. [4], which state a slightly better
score of plus one percentage point compared to the original findings. However,
these small deviations are most likely due to differences in the implementation

and do not dispute the results.

Unsurprisingly, the improvements to the postprocessing stage (onset detection,
onset heuristic) have almost no influence on frame-level results, since the number
of frames with a note onset is very small compared to the total number of frames
in a song (1s = 100 frames). Furthermore, when counting all pitch occurrences
which have already been predicted correctly, the number of newly added pitch
occurrences by the postprocessing stage is diminished even further. This result
illustrates the fundamental problem with frame-level metrics, even though the
exact beginning of a note in a melody is crucial for a successful transcription it

is valued equally to any other frame-wise pitch occurrence of the melody.

On this metric the reimplemented model performed much better than the reim-
plementation by Hawthorne et al. [4], which states a Note with offset F1-Score of
23.14. At this point, it can only be assumed that the deviation is due to differences
in the implementation and training scheme, since the data and note-level evalua-
tion method are the same. However, the results show that the note-level metrics

greatly benefit from adding onset predictions and onset heuristic, respectively.

ResNet The ResNet model is in direct comparison to the CNN by Kelz et al. [9],
since it builds upon a similar architecture as described in Section 2.3.1. By
examining Table 3.3, one can observe a slight overall improvement in frame-level
metrics of about one point due to a better recall score of the ResNet. This
could be explained by the use of skip connections in the ResNet. The inevitable
energy decay of a note in the spectrogram may be compensated for by reinforcing
deeper layers with previous ones and therefore keeping the note energy above the
detection threshold, leading to a better frame-wise recall. This is also illustrated
by Fig. 3.2, the ResNet and CNN scores are almost perfectly aligned over time,

wherein the ResNet is continuously better with an offset of about five points.

The note-level metrics of the ResNet architecture in Table 3.4 demonstrate
considerably better recall scores but a slightly worse precision score compared
to the CNN. Hence, the ResNet model benefits far more from adding onset
predictions, since these contribute mainly to the precision of detecting a note.

Together with its better recall performance the ResNet architecture is able to
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outperform the CNN in the note F1-Score, by 3.41 points when adding onset

predictions and 2.27 points when adding the onset heuristic.

ResNet with OHPCP In contrast to the ResNet experiment described above, this
time OHPCPs were used as input data while the model architecture remained
largely the same. Due to the lower frequency resolution of OHPCPs it is possible
to transfer a wider time context of 15frames to the ResNet, without having
to considerably increase the number of parameters in the model. Despite of
this advantage, the ResNet with OHPCP performed poorly on most frame-
level metrics, except when considering the precision. Unsurprisingly, this also
coincides with the F1-Score progression in Fig. 3.2. However, when considering
the note-level metrics in Table 3.4 there is only a minimal difference between this
model and the ResNet model using spectrogram representation. Nevertheless,
the present findings indicate that OHPCPs in their current form are inferior to

semitone-filtered spectrograms.

ResNet & BiLSTM Similar to the previous experiments, the frame-level metrics are
not much influenced by the additional postprocessing steps. Overall, this model
shows the second best results on frame-wise scores and a healthy ratio between
precision and recall. Furthermore, by evaluating the results in tabel 3.4, this
architecture showcases an impressive advancement in note F1-Score of 5 to 11
points compared to the previous experiments. In case of the score adapting the
onset heuristic it even performs on par with the current state-of-the-art model,

as can be seen in Table 4.1.

Compared to the transcription system presented in [4] this combination of
convolutional and recurrent architecture is much simpler. It uses only a single
path to train frame-wise pitch occurrences and incorporates onset information
only from the separate onset detector during the postprocessing stage. When
observing Fig. 3.2, it seems the model is considerably better in detecting pitch
occurrences of notes with a long sustain. Most likely, this is due to the addition
of the BiLSTM layer, which enables the model to incorporate more temporal
information and thereby exceeding the narrow time window of five frames used
in the ResNet model.

Multitask ResNet & BiLSTM In terms of the mean frame-wise F1-Score of the
average note, depicted in Fig. 3.2, the Multitask ResNet & BiLSTM also demon-
strates positive properties. While the score of all other models starts to rapidly

decrease past the 300 ms mark, the score of this model is able to maintain a
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comparatively shallow decrease. Furthermore, the note offset frame detection
does not sink below an F1-Score of 50 as is the case for the ResNet & BiLSTM
model, which indicates a better ability to correctly detect notes with a long

sustain.

The concurrent training of onset detection and general pitch occurrence detection
proves a significant improvement of the note with offset metric over the previous
experiments and existing piano transcription systems. Furthermore, this system
outperforms the frame-level and note-level metrics in every aspect when comparing
the results of all experiments conducted. The findings show that training a model
in a multitask fashion is superior to using separately trained models for onset
detection and frame-wise detection. Compared to the baseline reimplementation
of the CNN model this system improves note with offset transcription by 78 %
and advances the current state-of-the-art piano transcription system by 10 % (see
Table 4.1).

The presented results in Table 4.1 showcase that high frame-level scores do not
necessarily indicate better note-level scores, which emphasize on the importance
of the onset and offset frame. In this context, the note with offset metric has
been deemed one of the more perceptually relevant scores in describing the
quality of an automatic piano transcription system [4]. However, it is difficult
to truly represent the audible differences of a transcription system in a printed
form, Fig. 3.3 is an attempted in doing so, using an exemplary piece from the
test-set. The final transcription illustrates the reference and estimated frame-wise
occurrences, thereby revealing that the transcription system produces only very
few false positive predictions but still misses many notes completely. Furthermore,
by comparing the note activation with the final transcription, one can identify
many cases where a note is present in the activation function but is not conveyed
to the piano-roll. This indicates that there still is a mismatch between the
performance of the onset detector and the pitch occurrence detection which leaves

room for improvements.

It is apparent that the Multitask ResNet & BiLSTM performs much better in the
example chosen in Fig. 3.4 than the Onset and Frames system, since it produces
fewer false positive predictions and at the same time is able to detect most of

the frames present according to the ground truth.

The ability of the Multitask ResNet & BiLSTM to generalize to new data is

remarkable, since it was trained on synthetic audio data and successfully tested on
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recorded audio. However, the dataset still limits the validity of the results, as the
piano pieces are in their majority from classical genres, posing the question if other
genres (e.g. solo jazz piano) could be transcribed in equal quality. This weakness of
the dataset is directly related to the need for more data with accurate labels.

Obviously the note-wise measures provide a more realistic performance metric,
since the human reception of music does not compare to frame-wise note activations.
Furthermore, the frame-wise metric weights all pitch occurrences equally, although
some are more important than others, like the onset frame of a note. This problem
is partly addressed through the incorporation of an additional onset detection, which
shows even better results when trained jointly with a general pitch occurrence detection.
However, the impact of the onset heuristic postprocessing step indicates that it is
not enough to only focus on the onset of a note. The variations in energy of a tone
over time is a complex function, especially when also considering other instruments.
Therefore, it might be necessary to advance the current frame-wise loss functions to a
form more capable of describing the note-level loss of a transcription model.

The task of correctly predicting the offset of a note still remains the greatest
weakness of all considered transcription systems, since adding the offset condition to
the evaluation scheme leads to a 20 to 30 points decrease in the F1-Score (Table 4.1).
However, the detection of offsets still has not been addressed to the same extent as
the task of detecting note onsets. More precisely, offsets in the proposed transcription
system are only determined implicitly by assuming the last of a progression of pitch
occurrences is the offset. In many cases this approach seems to be a good approximation
of the actual note offset and it may even produce a pleasing transcription. Nevertheless,
this aspect of the transcription system leaves much room for improvement and should be
addressed more thoroughly in future work. A obvious approach would be to implement
a third task in the mutltitask transcription system trained to detect the offset frame.

Using an onset heuristic might be considered an anti-pattern in the context of deep
learning, since the goal is to let the model learn all necessary features to achieve a
good solution. In addition to the already mentioned limitations (see Section 3.1.1) the
usage of this heuristic further restricts the ability of the model to generalize, since
other piano recordings most likely will have a different attack and decay ratio. A
possible solution would be to let the model individually learn the appropriate value for
the onset heuristic. However, completely omitting the onset heuristic still leaves the
Multitask ResNet & BiLSTM to perform better on the note with offset score than any

previous piano transcription systems.
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An attempt has been made to further describe the quality of a transcription model
by evaluating its ability to, on average, predict individual frames of a note, see Fig. 3.2.
The illustration greatly helps in assessing the performance of a model but also reveals
the lack of statistical knowledge on the training data (e.g. shortest note duration,
highest /lowest note played, etc.). For example, there is a distinct inflection in the
F1-Score of all models around 440 ms (Fig. 3.2), which most likely is caused by a
peculiarity of the underlying data and which in turn might be explainable by its
statistical properties. This kind of supplementary statistical analysis of the data seems
to be neglected throughout recent publications and should be undertaken as future

work.

4.1 Conclusion

In order to answer the questions posed in Section 1.2 a succession of experiments
was conducted to investigate the impact of residual learning and complementary deep
learning methods on the task of polyphonic piano transcription. Two main topics were
addressed during the investigation of the newly developed transcription systems, do
the application of these new deep learning methods advance frame-level and note-level
metrics and are the advancements in numbers also perceptually relevant.

Without the additionally investigated methods, the ResNet achieves a barely
significant improvement over the original CNN architecture. However, there is an
overall better recall performance and the complementary methods allow the ResNet
to achieve much greater improvements than is possible with the CNN, both in frame-
level and note-level metrics. Overall, the Multitask ResNet & BiLSTM achieves an
improvement of 76 % over the baseline CNN and an improvement of 10 % over the
current state-of-the-art transcription system in the note with offset score.

The answer to the second topic is twofold, in order to describe the perceptual
relevance it is necessary to define a metric which to a reasonable extend can capture
this vague property. This has been done by concentrating on the note-level metric,
since it has been found to correlate better with the perceptual quality of a transcription.
Therefore, the Multitask ResNet & BiLSTM indeed produces perceptually relevant
piano transcriptions. Furthermore, an exemplary investigation has been made by
directly comparing the excerpt of a transcribed piano recording. The results show that
the proposed system in some cases is able to outperform existing transcription systems

by detecting more notes correctly and producing fewer false positive predictions.
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4.1 Conclusion

The success of deep learning in speech, computer vision and natural language
processing is mainly build on large high quality datasets being available to the research
community. In AMT there still is a lack of high amounts of data, especially for
instruments other than the piano. However, even the MAPS dataset is comparatively
small and future work on deep learning transcription systems is in dire need for more
data.

The findings of this thesis showcase the importance of the onset detection in
producing convincing transcriptions. However, the discrepancy between the note
activation function and the actual transcription illustrates, how the current aggregation
of onsets and the following pitch occurrences still is flawed, leaving many notes
undetected. Therefore, a great improvement could be made by further developing
postprocessing methods or by integrating the aggregation process into the deep learning
model. Similarly, this can be extended to the correct detection of note offsets.

Since comparing single excerpts is not a reliable method and single metrics are not
able to describe a property as complex as perceptual relevance, future research should
also incorporate listening tests to evaluate the transcription quality of a model. After
all it should be the human perception determining if the transcription of a musical

piece is able to grasp its essence.
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