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Abstract. Any design activity starts from sketching. In the visual domain, sketches

e↵ectively communicate verbal and non-verbal expressions as writings and draw-

ings, whereas in the sonic domain, they are conveyed as speech and imitations.

In order to create novel interaction paradigms for sound designers, it is crucial

to understand and exploit the potential of vocal imitations. This Master’s thesis

contributes to the academic research by investigating the automatic extraction of

articulatory parameters from audio files of everyday sounds vocally imitated by

actors. In particular, three such parameters, namely myoelastic, phonation and

turbulent are introduced. Thus, the overall goal of the work at hand is to create a

classification system which is able to automatically determine whether or not an

audio file exhibits aforementioned parameters. At first, an overview of the subject

matter is given. Subsequently, the program is explained and its results presented.

Eventually, problems are discussed and potential improvements are put forward.

Zusammenfassung Jede Design-Aktivität beginnt mit einer Skizze. In der vi-

suellen Domäne können Skizzen erfolgreich verbale und non-verbale Ausdrücke

wie Schriftstücke und Zeichnungen vermitteln. In der sonischen Domäne werden

diese wiederum als Sprache und Imitationen ausgedrückt. Um neue Interaktions-

Paradigmen für Sound-Designer zu scha↵en, ist das Wissen und die Ausschöpfung

des Potenzials stimmlicher Imitationen äußerst wichtig. Diese Masterarbeit trägt

durch die Untersuchung der automatischen Extraktion bestimmter Artikulations-

Parameter aus Audiodateien, welche von Schauspielern imitierte Alltagsgeräusche

enthalten, zur akademischen Forschung bei. Drei solcher Parameter, nämlich myo-

elastic, phonation und turbulent, werden vorgestellt. Die allgemeine Zielsetzung

der vorliegenden Arbeit ist hierbei die Erscha↵ung eines Klassifikations-Systems,

welches automatisch erkennt, ob eine Audiodatei obige Parameter enthält oder

nicht. Zuerst wird ein Überblick über die Thematik gegeben. Anschließend wird

das Programm genauer erläutert und dessen Resultate präsentiert. Schlussendlich

werden Probleme diskutiert und eventuelle Verbesserungen vorgestellt.
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1

1 Introduction

Any design activity starts from sketching. By means of sketches the designer produces,

verifies, selects, communicates and refines ideas [14]. Much like visual sketching yields

a draft of the concept to be devised (e.g. the drawing of an elephant), sound sketching

too strives to create an approximation of the desired sound (e.g. the imitation of an

elephant’s trumpeting). While the former relies heavily on the hand and the pencil, the

latter is ideally represented by the acoustic equivalent of its visual counterpart: the human

voice. Both “tools” allow their users to produce verbal and non-verbal expressions in a

natural way [19]. In the visual domain, these expressions are communicated as writings

and drawings, whereas in the sonic domain, they are conveyed as speech and imitations.

It might therefore not be surprising that academic research is currently trying to inves-

tigate and exploit the potential of vocal imitations. The EU project SkAT-VG1 (Sketch-

ing Audio Technologies using Vocalization and Gestures, 2014-2016), which this Master’s

thesis is part of, aims at finding ways to exploit voice and gestures in sonic interaction

design [12, 18, 20]. Its goal is threefold: (i) improve the understanding of how sounds are

communicated through vocalizations and gestures, (ii) look for physical relations between

vocal sounds and sound-producing phenomena, (iii) design tools for converting vocaliza-

tions and gestures into parametrised sound models [14]. In order to attend to such an

extensive workload, three universities (KTH2 in Stockholm, IRCAM3 in Paris as well as

IUAV4 in Venice) and one company (Genesis Acoustics5 in Aix-en-Provence) cooperate

with each other.

In particular, the project’s aim is to bridge the gap between utterances and sound

models so that designers can start using the rich domain that is their voice as naturally

and fluidly as when drawing with aforementioned pencil [18]. If so, sonic interaction

ideas can thus be quickly and painlessly produced, compared and evaluated, ultimately

leading to a smoother design process. Moreover, sonic sketches do not require particular

skill and are both readily available and highly performative, irrespective of locality and

situation [14].

In fact, the recognition of the human voice’s remarkable applicability for sound sketch-

ing might even enable novel human-machine interactions, allowing users to communicate

with software in a more natural way [3]. If a machine understood vocal imitations, users

could, for example, set parameters in music production applications, program a synthe-

siser or even look for sounds in audio search applications using solely their voice. Other

areas of operation include films and multimedia shows (sound e↵ects), games (sound-

mediated sense of agency), everyday products, environments and vehicles [20].

1 http://skatvg.iuav.it
2 http://www.kth.se/en
3 http://www.ircam.fr/?&L=1
4 http://www.iuav.it/English-Ve/About-Iuav/Iuav-profi/index.htm
5 http://genesis-acoustics.com/en
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Since the thesis was created while researching at KTH, the student’s e↵orts were

focused on the university’s assigned goal of improving the understanding of the commu-

nication of sounds through vocalizations. Specifically, the work at hand will investigate

the automatic extraction of articulatory parameters from audio files of everyday sounds

(e.g. animal sounds, mechanical sounds) vocally imitated by actors.

In order to collect the necessary data, the recording of four actors (equally distributed

by gender) has been undertaken at KTH before the arrival of the student. Each subject

was asked to imitate a number of sounds that were played to them. The resulting sound

files were then annotated by the department’s phonetic experts, following the array of

parameters introduced by Helgason [7]: myoelastic, phonation and turbulent. Applying

these annotations on the raw data, a large number of short audio files (i.e. fragments)

are eventually extracted using an algorithm developed by the student. These fragments

are either marked as positive or negative, depending on their possession of the respective

parameter or the lack thereof.

Subsequently, a set of features is created using di↵erent criteria and statistical mea-

surements of the fragments in question. At the core of the program lies the auto-correlation

method introduced by Cheveigné and Kawahara [2]. Note that all the features are cal-

culated using only the time domain, thus hypothesising that good performance can be

obtained without examining the frequency domain. In fact, the final results of the clas-

sification only slightly fall behind the performance of the classification operating on the

same files’ spectrograms, which is simultaneously developed by Friberg and his team

at KTH [5]. This points out a promising alternative approach to some kinds of speech

processing, in which the use of the Fourier transformation is rendered unnecessary [24].

That being said, the overall goal of the program lies in the correct classification of

as many fragments as possible according to their parametric characteristics. The ground

truth is hereby provided by aforementioned human annotation of the fragments. Two

types of prediction models are used to forecast the results of the classification: Partial

Least Squares (PLS) regression [6,22] and Support Vector Machine (SVM). Both models

use the built-in functions of MATLAB6, the programming environment which the code

is written in. To ensure flexibility and applicability in real-world scenarios, N-fold and

leave-one-out cross-validation are additionally performed on the data sets.

The remainder of the Master’s thesis is organised as follows: Section 2 gives an overview

of the subject matter’s background, dealing with both the topic of sound sketching in

general and the specific academic work carried out as part of the SkAT-VG project in

particular. Section 3 introduces the methodology of the project, accompanied by di↵er-

ent parts of the source code. Subsequently, Section 4 presents the results revealing good

performance of the algorithm in question, and comments on di↵erent parameter combina-

tions thereof. Eventually in Section 5, problems are discussed and potential improvements

are put forward. Section 6 contains concluding remarks on the topic.

6 http://www.mathworks.com/products/matlab
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2 Background

Whereas a fair amount of papers are available in the research community dealing with

sound analysis (feature extraction), machine learning (classification) and sound synthesis

(parameter mapping and control) in general, the topic of vocal imitations being used

for sonic interactions has only recently been given attention. Nevertheless, some notable

publications in the field are still worth mentioning. In order to structure the subject

matter’s background, four subsections have been chosen:

1. Vocal imitations and verbal descriptions as well as their applicability as sketch-

ing tools for sounds

2. Classification frameworks for vocal imitations and verbal descriptions

3. Sound analysis and feature extraction, in particular concepts used in the pro-

gram at hand

4. Sound sketching parameters and their pivotal role in this thesis

Each subsection will introduce its respective concepts by presenting and drawing on

a number of publications. Cross-references to other subsections will be made when nec-

essary.

2.1 Vocal imitations and verbal descriptions

Although both vocal imitations and verbal descriptions are ways to mimic sounds, their

paradigms are rather di↵erent. On the one hand, verbal descriptions use words to depict

a sound, which are usually associated with a certain language. For example, the word

commonly used to paraphrase a dog’s bark in the English language is “woof”, whereas in

German the same sound might be denoted as “wu↵” or “wau”. This process of defining

sounds with language is called onomatopeoia, stemming from the Greek words for “name”

and “I make”7. Naturally, verbal descriptions are linked to a person’s spoken languages

and generally work best in their native tongue [11]. On the other hand, vocal imitations are

identified by the actual reproduction of sounds (like a dog’s bark), which are not associated

with any language in particular. In fact, vocal imitations are constrained solely by the

vocal ability of the speaker due to their lack of symbolic conventions. Since the human

voice is a surprisingly versatile instrument, vocalizations are well-suited for mimicking all

kinds of non-linguistic sounds.

Delle Monache et al. [14] even argue that, in order to sketch sonic interactions, vocal

imitations could play a role as pivotal to the sound designer as the pencil does to its visual

counterpart. In order to gain initial insight into the vast potential of vocal imitations, the

researchers describe in their paper a workshop aimed at investigating the e↵ectiveness

of these sketches [14]. Twenty-four students of sound and music technologies are thus

gathered to become familiar with the basics of sound sketching as well as be engaged in

7 http://en.wikipedia.org/wiki/Onomatopoeia
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a corresponding design session. In particular, two vocal techniques are introduced during

the workshop [14]:

1. Inhaled fry technique: used to produce friction sounds

2. Palate grind technique: used to produce grinding and scraping sounds

Interestingly enough, the participants not only employ vocalizations but also gestures

and movements when imitating the referent sounds (i.e. the sound-producing events),

especially when familiarity with the latter is low. In general, dense and irregular temporal

patterns are rather di�cult to reproduce for the students, whereas direct and clearly

defined actions yield better imitations [14]. However, limitations of their own voices are

also noticed by the participants, in particular when sounds do not frequently occur in

their everyday lives.

In order to further address the question of how e↵ectively vocal imitations and verbal

descriptions are able to communicate referent sounds to a listener, Lemaitre and Roc-

chesso [11] conduct and explain in their paper an adequate experiment. The researchers

hypothesise that correct recognition of sounds would be better for vocal imitations than

for verbal descriptions, and that the former would be a↵ected by the identifiability of the

sounds to a lesser extent than the latter. To start with, a total of 58 sounds are recorded

in the following four predefined categories:

1. Identifiable complex events: very easy to recognise (e.g. coins dropped in a jar)

2. Elementary mechanical interactions: possible to recognise (e.g. tapping on a

surface)

3. Artificial sound e↵ects: di�cult but not impossible to recognise (e.g. FM synthesis

signal)

4. Unidentifiable mechanical sounds: nearly impossible to recognise (e.g. rubbing a

pen against an umbrella)

Next, participants are asked to indicate how confident they feel about imitating each

sound. A confidence score is derived from this classification, which is in itself negatively

correlated with the causal uncertainty of the corresponding sound [11]. Nine sounds are

subsequently selected from each category, with regard to maintaining both a large range

of and a smooth distribution over the confidence score values. The resulting 36 sounds are

then played to the participants, all of which have no expertise or prior training in either

audio engineering, acoustics or auditory perception. Afterwards, participants are asked to

record descriptions of each sound by both vocally and verbally imitating what they are

played, bearing in mind the necessity of communicating the referent sounds to another

person. In total, 576 sound files containing vocal imitations and verbal descriptions are

thus recorded.

Thereupon, participants are asked to judge descriptors in terms of their adequacy to

describe referent sounds. Not surprisingly, perhaps, vocalizations and verbalisations are

judged less adequate for less identifiable sounds. Overall, the adequacy does not vary
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between the two descriptors. In detail, however, verbal descriptions are more e↵ective

when the referent sounds are identifiable, whereas the e↵ectiveness of vocal imitations is

not a↵ected by the type of sound they refer to [11].

Finally, Lemaitre and Rocchesso aim to test how well the descriptors can communi-

cate corresponding sounds. The participants thus have to correctly identify the referent

sound from a list of nine sounds per group (nine-alternative forced choice), based on the

vocalizations and verbalisations recorded previously [11]. Although overall accuracy is

good, the former fare much better than the latter in terms of correct sound identification.

Again, vocal imitations are not a↵ected by the type of sound they refer to, whereas verbal

descriptions are indeed. The authors assume that the lower recognition accuracy found for

verbalisations may result from participants not being able to reproduce either the spectral

information (e.g. pitch, energy spectrum, resonance modes) or the temporal information

(e.g. temporal envelope) of the signal, or both. In fact, highest recognition accuracies are

reached when both content patterns are communicated correctly. Furthermore, being able

to identify the cause of the sounds greatly improves recognition by the participants.

The same approach is taken by Lemaitre et al. [10] in their paper about the iden-

tification of sound events based on vocalizations. Essentially, participants are required

to sort a set of sound imitations into clusters according to their spectral and tempo-

ral properties. In the best-case scenario, these clusters coincide exactly with the sound

categories previously defined by the researchers. The aforementioned everyday referent

sounds are imitated prior to classification, yielding a total of 72 imitations. Participants

are indeed able to classify the imitations with convincing accuracy, suggesting that vocal-

izations alone can e↵ectively explain referent sounds by conveying the features necessary

for their identification [10]. This insight reinforces the assumption that vocal imitations

are a promising way of communicating non-verbal expressions (including, but not limited

to sound design [12]).

Drawing on the papers presented above, Cartwright and Pardo [3] create a similar

system for studying the connection between imitations and their descriptions. Much like

Lemaitre and Rocchesso [11], the researchers create four distinct groups of sounds, albeit

leaning towards the musical aspect of sounds:

1. Everyday sounds: wide variety of everyday acoustic events (e.g. brushing teeth)

2. Acoustic instruments: especially of orchestral nature, all playing musical note C

(e.g. plucked violin)

3. Commercial synthesisers: basic synthesiser sounds derived from factory presets in

Apple’s Logic Pro8 music production software (e.g. resonant clouds synthesiser)

4. Single synthesisers: more complex synthesiser sounds with FM and AM capabilities,

all playing musical note C

Again, participants are given both imitation and recognition tasks. The first group of

participants is asked to imagine sounds simply by looking at a label (e.g. “barking dog”)

8 http://www.apple.com/logic-pro
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before recording their imitation of the respective sound (e.g. audio file of a dog barking).

Contrarily to [11] though, they are not allowed to use verbal descriptions. Subsequently,

the second group has to describe randomly played vocal imitations of aforementioned

referent sounds and identify them from a list of ten audio files (ten-alternative forced

choice) [3]. Not surprisingly, the subset of everyday sounds again yields the most accurate

results. According to the authors, this may be due to the familiarity but also reproducibil-

ity of these sounds. In fact, the harder to imitate a sound seems to be, the less likely is it

to be recognised correctly by the participants.

While all of the above publications deal with the connection between descriptions and

sounds as well as the manual categorisation thereof, the automatic classification of audio

files by an algorithm ultimately is the goal the Master’s thesis at hand is contributing

to. Even though the referenced papers give invaluable insight into the characteristics

of vocalizations and verbalisations, the novel paradigms in collaborative audio design

can only be fully exploited when the notions driving the human classification can be

transferred onto an algorithm. This is why in the next subsection, frameworks for the

classification and retrieval of audio files are discussed, eventually leading to the phonetic

parameters used for algorithmic categorisation of audio files.

2.2 Classification frameworks

After examining both vocal imitations and verbal descriptions of sound events, one follow-

up step might be their distribution into distinct groups according to their characteristics.

Cartwright and Pardo [3], amongst others, deal with the task by asking participants

to assign labels to the referent sounds played to them. This classification, however, is

solely performed by humans, without attempting at automating the process. Dessein and

Lemaitre [4] therefore introduce an experiment which, similar to the previous publica-

tions, requires participants to imitate given sounds and subsequently classify them into

groups. Additionally though, the researchers introduce an algorithm able to divide the

corresponding audio files into clusters by analysing their acoustic properties. The goal of

their work is to emphasise the characteristics which allow listeners to classify the imita-

tions into groups, only to employ these properties for automatic classification.

First of all, the authors introduce a total of 12 environmental sounds, evenly grouped

into liquid, solid, gas and electric types. Each sound is imitated by all of the experiment’s

six participants (equally distributed by gender). Eventually, the following distance matrix

D is computed for all imitations x and y [4]:

D
x,y

=

(
0 if x and y are of the same type

1 else
(1)

The participants are subsequently asked to divide the imitations into groups, receiving

no limitations on how to do so. Naturally, this free classification is performed using rather

di↵erent strategies. Nevertheless, the majority of participants’ descriptions exhibit causal
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and semantic similarities (i.e. the cause and meaning associated with the identified source)

[4]. This backs the assumption that spectro-temporal properties are indeed essential for

the imitation and recognition of sounds. In order to process the classification data, both

pairwise and between-participant similarity coe�cients are calculated from the descriptive

results, which have been classified into similarity groups prior thereto.

Next, the imitations are converted into a tree by means of the distance matrix and

similarity coe�cients computed before. The distance between two nodes (i.e. two imita-

tions) is called height of fusion h. This parameter gives rise to the computation of the

inconsistency coe�cient i, calculated as follows. Parameters µ
d

and �
d

thereby denote the

mean and standard deviation of the height of fusion of the d highest non-leaf subnodes,

respectively [4]:

i =
h� µ

d

�
d

(2)

Using i, the participants’ classifications are divided into seven distinct clusters. Note

that these clusters do not necessarily have to correspond to the natural types of the

sounds specified above. In fact, the imitated sounds are clustered by common acoustic

invariants rather than source [4]. In general, the clusters serve as the ground truth which

the classification algorithm will, in the best case, comply with. A two-level hierarchy is

established over the clusters by considering the height of fusion. Each level is explained

by a set of descriptors, corresponding to the imitations’ acoustic features. The first two

descriptors are chosen for the first level of hierarchy, whereas the latter four are applied

to the second [4]:

1. Modulation amplitude: repetitive pattern or one-block sound

2. Mean of spectral centroid: unvoiced with high-frequency noisy part or voiced with

low-frequency fundamental part

3. Temporal increase of energy envelope: brutal attack or smooth attack

4. E↵ective duration of energy envelope: short duration or long duration

5. Standard deviation of spectral centroid: varying timbre or constant timbre

6. Mean of zero-crossing rate: high pitch or low pitch

All of the above descriptors enable clear distinction of sounds based on their acoustic

features. Thus, the clusters can be formed automatically depending on their respective

imitations exceeding or falling below a certain descriptor threshold, arbitrarily determined

by the researchers. The discussion of the paper points out that flawless discrimination of

the imitations into clusters can be achieved using solely the descriptors mentioned above,

thus supporting the assumption that sound files can indeed be classified by analysis and

parameter extraction. Moreover, the acoustic similarities overlap with the similarities used

by the participants, further backing the approach taken by Dessein and Lemaitre [4].

Rocchesso and Mauro [19] also focus on the clustering of sound samples by inves-

tigating their acoustic similarity. In fact, their paper already constitutes a preliminary
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study on the notions dealt with in the EU project SkAT-VG. The authors make use of

several features that, although introduced here, will be thoroughly discussed in the next

subsection. Contrarily to [4] though, the human categorisation of sound events plays a

subordinate role in their experiment.

First of all, a total of 152 audio segments are gathered, each representing a single

sound event exactly 500 milliseconds of length. Subsequently, the dimensionality of the

sonic space is reduced by applying Principal Component Analysis (PCA) on the signals’

magnitude Fourier spectra. Thus, the data set can be reduced to 95 segments, which

nevertheless account for 90 % of the energy. By doing so, however, invertibility has to be

given up, thereby conceding the possibility of reproducing each sound by inverse transfor-

mation [19]. With this reduced sonic space at hand, the researchers then extract several

features from each audio file, taken from the toolboxes in [13] and [16]. In particular,

mean and interquartile range values of the signals’ spectral flux, spectral centroid, rough-

ness, flatness, entropy, skewness and Root Mean Square (RMS) energy are considered.

Additionally including temporal characteristics of the signals, a total of 18 features are

defined [19].

After selecting two principal components for the distribution, the following clusters

are computed using aforementioned features. Exemplarily, Figure 1 shows these groups

plotted in a two-dimensional space (with one component on each axis). The larger circles

denote the cluster representatives (i.e. their spectral centroids).

1. First cluster: pitched or intonated sounds

2. Second cluster: continuous sounds

3. Third cluster: impulsive or temporally evolving sounds

Fig. 1. Color-coded clusters plotted against their principal components’ values [19].
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Whereas Rocchesso and Mauro [19] mostly concentrate their e↵orts on the automatic

classification based on feature extraction, they nevertheless conduct a small human ver-

ification experiment. Three subjects who are not familiar with the project are asked

to categorise the sound files into aforementioned clusters. Their classification accuracies

amount to 48 %, 53 % and 65 %, respectively, while a random assignment would return

33.33 % [19]. Despite this rather inadequate accuracies, the fact that the signals cor-

responding to the cluster representatives (i.e. the clusters’ spectral centroids) all sound

perceptually di↵erent from each other supports the idea put forward by the authors.

Furthermore, Blancas and Janer [1] present a paper that introduces the idea of incor-

porating vocal imitations as input queries for content-based systems. In particular, the

Application Programming Interface (API) of the freesound.org

9 collaborative database,

whose content is uploaded by registered users, is chosen for the task. According to the

authors, the aim of the work is to fill the gap between voice interaction and sound re-

trieval [1]. Therefore, an experiment is conducted by extending the approach taken in [10]

with a machine learning algorithm. Once more, a number of features from the toolbox

in [13] is extracted, and Support Vector Machine (SVM) is chosen as the classification

algorithm due to its high accuracy. Additionally, 10-fold cross-validation is performed on

the data [1]. Figure 2 depicts the well-arranged workflow of the researchers’ experiment,

the concept of which will also be applied to the Master’s thesis at hand.

Fig. 2. Exemplary workflow of the imitation and classification of sounds [1].

Subsequently, referent sounds are selected from the freesound.org database, divided

into the categories cat, dog, car and drums. Note that not the researchers themselves, but

rather the users of this collaborative system are responsible for defining the categories’

names, suggesting a promising approach to transferring this rather theoretical domain

onto real-life applications. A total of 17 participants are asked to vocally imitate the

selected sounds, thereby refraining from using onomatopeoia. As a matter of fact, cat and

9 http://www.freesound.org
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dog sounds are rather easily imitated by the participants, whereas car and drum sounds

seem to be more di�cult [1].

It might therefore not come as a surprise that the training data of the machine learning

algorithm reveals very good accuracy for these cat and dog sounds, while still retaining

good accuracy for car and drum sounds. This suggests that participants are able to

convey both spectral and temporal information of the referent sounds in their imitations.

Moreover, the integration of the algorithm into aforementioned collaborative database

yields promising results as well. Whereas nearly 700 sounds are presented when searching

for the category “cat meowing”, and a little over 200 when using the category name plus

a specific tag (e.g. an action or entity inside the category), only five sounds are displayed

when combining the name with the corresponding imitation. The same holds true for

the category “drums hihat”, which yields just over 16.000 sounds when looking solely

for the name, around 600 when combining the name with a specific tag, and merely 20

when querying with the name and the corresponding imitation [1]. These numbers clearly

highlight the potential of vocalizations when it comes to facilitating the search for suitable

sound samples in content-based systems.

Kwon and Kim [9] too recognise the importance of easy-to-use search and editing

tools for content authoring systems based on vocal imitations. The authors propose a

novel method that modifies both the time scale and energy of sound samples simply by

processing sound-imitation words [9]. It is thus possible for the user to create, search and

edit content more easily and naturally, using solely one’s voice. Specific knowledge of or

experience in the field of audio technology is not required, therefore making the retrieval

of sound files suitable for non-experts as well. Four kinds of sound samples are used in the

experiment: car horns, doorbells, coughs and dog barks. Similarly to [1], analysis of the

signals strongly encourages the possibility of using spectro-temporal features for sound

classification tasks.

2.3 Sound analysis and feature extraction

When performing the automatic classification of audio files discussed above, the sounds’

acoustic characteristics are analysed and features thereof are extracted. Two relevant

publications are briefly introduced in this subsection, namely the MATLAB Toolbox for

the extraction of musical features from audio by Lartillot and Toiviainen [13] and the

Timbre Toolbox for the extraction of audio descriptors from musical signals by Peeters

et al. [16].

In the former, an overview of a number of features related to timbre, tonality, rhythm

or form of a sound signal is given. The authors especially highlight the ease of use and

adaptability of their toolbox, which is able to support multiple input types due to a

backend object-oriented architecture. In order to thereby retain computational e�ciency,

frequently used components as well as musical features are interdependently assembled,

much like building blocks of a larger structure [13]. Thus, redundancy is avoided while
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giving rise to flexibility. Interestingly enough, each musical feature is related to one of the

many dimensions traditionally defined in music theory [13]. Figure 3 gives an overview

of the toolbox’s vast feature extraction possibilities. The components related to pitch,

tonality and dynamics appear in bold, whereas the features associated with timbre are

highlighted by italics. In addition, bold italics denote the components related to rhythm.

The acronym SOM stands for Self-Organising Maps.

Fig. 3. Overview of the features which can be extracted by the toolbox described in [13].

Another feature extraction system worth mentioning is the Timbre Toolbox by Peeters

et al. [16]. According to the authors, it is an instrument for the measurement of the acous-

tical structure of complex sound signals. Various input representations (including Fourier

transformation) are put forward, wherefrom a number of audio descriptors capturing

temporal, spectral, spectro-temporal as well as energetic properties of the referent sounds

are selected [16]. These features are divided into ten groups determined by hierarchical

clustering. Similar features are employed by Peeters [15] in the EU project CUIDADO10

(Content-based Unified Interfaces and Descriptors for Audio/Music Databases available

Online, 2001-2003). In particular, the latter aims at developing new applications by em-

ploying audio/music content descriptors, including, amongst others, the design of appro-

priate description structures and the development of extractors for deriving high-level

information from audio signals [23].

All of these publications and the features introduced by them should ultimately serve

as a starting point to the methodology of the thesis at hand. At the core of the program

lies the auto-correlation function, used for the extraction of its most important features.

Thereby, periodicity and pitch of a signal are determined, eventually leading to the dis-

crimination of the sound sketching parameters discussed in the following subsection. The

10 http://anasynth.ircam.fr/home/english/projects/cuidado
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theoretic sketch of this function is presented as part of a paper by Cheveigné and Kawa-

hara [2], who put forward a fundamental frequency estimator for speech and music. The

corresponding equation - which serves as the foundation for the student’s MATLAB im-

plementation - is in turn introduced in a PhD thesis about vocal melody extraction by

Rao [17]:

d
t

(⌧) =
N�1X

n=0

(x(n)� x(n+ ⌧))2 (3)

Described with words, the auto-correlation vector d
t

is defined as the cumulative sum

of all squared di↵erences between every value x(n) and x(n+ ⌧), whereas n = 0...N � 1

denotes the index of a signal with N samples and ⌧ an o↵set which the resulting vector

is a function of. It is important to bear in mind that N needs to be at least twice as long

as one period of the smallest frequency to be detected.

Depending on the fundamental frequency F0 of an analysed signal, the smallest value

(i.e. di↵erence between two samples) of the resulting vector indicates a possible periodicity.

In fact, when dividing a signal’s sampling frequency F
s

by the index ⌧0 of this value, the

result directly corresponds to the sound’s assumed fundamental frequency:

F0 =
F
s

⌧0
(4)

This rather straightforward calculation serves as the first step of the feature compu-

tation in the program at hand. Based on their sonic characteristics, the input audio files

are analysed by a machine learning algorithm, which determines whether or not they

contain aforementioned parameters. Further illustrations of the equations as well as the

classification method are given in Section 3 by means of the corresponding source code.

Note again that all computations are executed merely on the time domain, without the

need of performing Fourier transformation. However, Friberg and his team [5] develop

the same classification system in the frequency domain, thus additionally covering the

spectral characteristics of signals. Combined with the temporal features put forward in

this work, a robust and versatile classification system is created.

2.4 Sound sketching parameters

The aim of the EU project SkAT-VG is to understand and exploit human vocalizations.

The researchers at KTH in particular focus their attention on extracting the primitives

of vocal production, as they emerge from non-linguistic tasks [20]. For this reason, four

voice artists (equally distributed by gender) were asked to imitate a number of every-

day sounds. Thereafter, the recordings were studied and annotated by phonetic experts,

utilising articulators specially created for this purpose. While these annotations and the

resulting database of imitations are presented in more detail in Section 3, the parameters

leading to the creation thereof are introduced in the following paragraphs.
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In order to understand how these parameters are defined, it is crucial to first o↵er a

brief overview of the mechanisms responsible for speech production. In general, humans

generate sounds by driving an airstream past one or more obstacles [7]. The nature of the

produced sound is thereby defined both by its initiation mechanism and its source (i.e.

obstacle). Figure 4 depicts a simplified model of the human throat, with the airstream

represented by arrows pointing upwards and the obstacle (in this case the tongue arching

on the soft palate) denoted by a red circle [14]. Drawing on the origin of this airstream,

Helgason [7] introduces the following types of sound initiation:

1. Pulmonic: airstream is initiated from the lungs

2. Glottalic: airstream is initiated from the glottis11 (i.e. the opening between the vocal

folds)

3. Velaric: airstream is initiated from the tongue

All three types can be used with air flowing either inwards (ingressive) or outwards

(egressive). Thus, a total of six sound initiation types are defined. Conversely, when

discussing the obstacles which the airstream has to pass, Helgason [7] and Friberg et

al. [5] agree on the following types of sound sources:

1. Myoelastic: muscle and elastic tissue (i.e. vocal folds) are made to oscillate in an

airstream

2. Phonation: muscle and elastic tissue (i.e. vocal folds) are also made to oscillate in

an airstream, albeit with faster frequency

3. Turbulent: airstream is channelled through a constriction in the glottis or the vocal

tract

Fig. 4. Model of the human throat while making a sound [14].

11 http://en.wikipedia.org/wiki/Glottis
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While the latter type is perceived as fricative noise, the former two usually mani-

fest themselves as periodic sounds or intermittent vibrations, with the myoelastic type

exhibiting lower frequencies than the phonation type (around 20-70 Hz and 70-140 Hz,

respectively). Interestingly enough, it is possible for all three types to appear in the same

signal. This might lead to problems in the algorithmic classification concerning myoelastic

and phonation signals, especially if one frequency is a multiple of the other (e.g. 50 Hz

for myoelastic and 100 Hz for phonation).

Aforementioned initiation and source types can be combined in multiple ways. The

most frequently used combinations in both speech and vocal imitations are by far pulmonic

egressive myoelastic and pulmonic egressive phonation. This is due to the vocal folds being

a highly versatile instrument when it comes to controlling the onset, o↵set, timbre and

oscillation frequency of a sound [7]. In general, everyday sounds are almost exclusively

created with air flowing outwards (egressive initiation). Prominent exceptions thereof are

emotive sounds, e.g. sucking in air through one’s teeth to indicate pain [7].

Before examining the annotation tiers constituting the three source types, a couple of

sounds are exemplarily specified for each. Myoelastic and phonation types usually make

use of the pulmonic egressive initiation mechanism to create animal sounds (e.g. cat me-

owing, cow mooing, elephant trumpeting) and engine noises (e.g. motor rumbling). The

pulmonic ingressive initiation mechanism also produces animal sounds (e.g. dog barking,

pig squealing, crow cawing) as well as imitations of squeaky noises (e.g. wiping a window

pane) [7]. Surprisingly, both glottalic and velaric initiation mechanisms exhibit no vocal-

izations whatsoever for myoelastic and phonation source types in the recordings compiled

at KTH.

Turbulent sources are, on the other hand, used for more “basic” sounds. For exam-

ple, the pulmonic egressive initiation mechanism is common when imitating interactions

with solid materials (e.g. knocking, scraping) and the sounds of gases in motion (e.g.

blowing, pu�ng, hissing) [7]. Pulmonic ingressive initiation, although rather scarce in im-

itations, is nevertheless employed for aforementioned emotive sounds. Much like before,

glottalic turbulent sounds barely manifest themselves in vocalizations. However, while

velaric egressive initiation is common in the imitation of sputtering liquids as well as

spray cans, velaric ingressive initiation is used in the production of click-like sounds (e.g.

trickling water).

With these definitions of sound initiation and source types (henceforth referred to as

parameters) in mind, the team at KTH analysed the voice artists’ recordings in terms

of the articulatory and aerodynamic conditions involved in their production [7]. The

data was annotated using the ELAN software12 by the Dutch Max Planck Institute for

Psycholinguistics13. Figure 5 shows a screenshot of the software during the process of

annotating the sound of a ringing alarm clock imitated by one of the female performers [8].

Eight layers (or rather the acronyms thereof), clearly visible as the rows’ labels on the

12 http://tla.mpi.nl/tools/tla-tools/elan
13 http://www.mpi.nl
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left side, denote the annotation tiers that are created in the database. In the retrieval of

the source types, the following combinations of four of those tiers are used:

1. Myoelastic: Supraglottal layngeal vibration, Nasality, Lip manner, Tongue manner

2. Phonation: Vocal fold phonation, Nasality, Lip manner, Tongue manner

3. Turbulent: Vocal fold phonation, Nasality, Lip manner, Tongue manner

Each layer can feature one of many variables at a time, whose allocations in the afore-

mentioned screenshot are recognisable in the respective rows below the signal’s waveform

(e.g. modal, oral, open, flat and so on). It is thus possible to extract several di↵erent

subsets for each combination of annotation layers, depending on which variables are used.

However, only two subsets are derived from the raw data files for each of the three source

types listed above: one exhibiting the respective parameter, and one lacking it. There-

fore, the corresponding variable values have been determined by KTH’s phonetic experts

during the annotation process. These subsets are ultimately used as ground truth in the

program at hand, which is examined more closely in the following section.

Fig. 5. Screenshot of the ELAN software used for the annotation process [8].
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3 Methodology

This section deals with the individual concepts employed in the Master’s thesis at hand,

explaining each in more detail and inserting small pieces of source code if needed. The

recorded audio files are discussed first, followed by the annotations based on the layers

introduced above. Subsequently, the annotated audio samples extracted from the raw

data are described. These samples (henceforth called fragments) will serve as input to the

auto-correlation function, ultimately leading to the creation of features using di↵erent

statistical measures thereof. Eventually, two prediction models are introduced to fore-

cast the results of the feature-based classification: PLS regression [6, 22] and SVM. To

ensure flexibility and applicability in real-world scenarios, N-fold and leave-one-out cross-

validation are additionally performed on the data sets. Even though each subsection will

introduce its respective concepts rather individually, cross-references to other subsections

will be made when necessary.

3.1 Audio files

The sound imitation files, which serve as the source for fragment extraction further down

the line, were recorded at KTH in the wake of the EU project SkAT-VG [5]. Four voice

actors (equally distributed by gender) were asked to imitate a number of sounds that were

played to them. The subjects, between 20 and 40 years of age and native speakers of the

Swedish language, were recruited through an agency and paid for their participation in

the experiment [21]. The recordings were carried out in a sound-proof booth, with audio

and video tracks taped separately by microphones and cameras. Instead of permanently

starting and stopping the recording, the whole session was recorded in one take, thus

including potential errors and mishaps in the imitation process. Participants were not

revealed the source of the sound (e.g. by means of a label indicating its origin), as they

should concentrate solely on its imitation.

Upon consideration of the di↵erent sound categories put forward in Section 2.1, it

becomes evident that the selection of referent sounds was a rather challenging task. Even-

tually, the team at KTH decided on a total of 60 sounds, thereby striving to reach a good

balance between the use of voiced and fricative articulations in an attempt to provide

the same number of referent sounds for each source parameter (myoelastic, phonation,

turbulent) [21]. The sounds, none of which were longer than 10 seconds, were available in

the WAV file format.

Supported by the partnering researchers at IRCAM, four groups of sounds were sub-

sequently drafted. Table 1 lists all groups and their respective sounds in alphabetical

order. For the final classification, however, the mechanical interaction sounds were split

into three subgroups (gases, liquids, solids), thereby yielding a total of six groups. Since

the files bear slightly cryptic titles in the reference literature, the sources of the sounds

rather than their file names are mentioned in the table.
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Table 1. Referent sounds used in the imitation task.

Abstract: 13 sounds Animals: 10 sounds

– Android 1 (Popup)

– Android 2 (Tweeters)

– Game 1 (Alice, car)

– Game 2 (OLO, main menu)

– Game 3 (Tiny Thief, robot magnet loop)

– Game 4 (Super Brothers, marker)

– iOS 1 (mail sent)

– iOS 2 (message received)

– iOS 3 (code typed)

– Pica concha

– Plastic pipe

– Wii (item selected)

– Windows Phone 7 (menu)

– Common raven

– Cow (mooing)

– Dog (barking, growling)

– Donkey (braying)

– Elephant (trumpeting)

– Horse (whinnying, blowing)

– Lion (growling)

– Mosquito

– Pig (snorting)

– Songbird (singing)

Machines: 20 sounds Mechanical interactions: 17 sounds

– Alarm (ringing)

– Blender

– Bulldozer

– Car door

– Clock

– Co↵ee (perking)

– Door (squeaking)

– Drill hammer

– Electric shaver

– Fog horn (whistling)

– Honda 650

– Honda Accord

– Large pepper mill

– Lawn mower

– Motorbike

– Siren (wailing)

– Smoke detector

– Tractor

– Wood (lathing)

– X-ray buzzer

– Air (flowing)

– Anvil (struck)

– Bubbles (boiling)

– Can (crushed)

– Cloth (ripped)

– Cold gusts (howling)

– Container (filled)

– Egg (cracked)

– Explosion

– Flame thrower

– Glass (scraped)

– Glass vase (sloshed)

– Jet of water

– Knife sharpener

– Match (struck, ignited)

– Paper (ripped)

– Sanding
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As mentioned above, the whole imitation session was recorded in one take. To ensure

good sound quality, the resulting files were stored in the WAV file format using 24 bit sam-

ple resolution and 48 kHz sampling rate, thus leading to rather large file sizes. However,

since ELAN can only support up to 16 bit, the files were truncated to this smaller resolu-

tion prior to annotation, with the sampling rate staying the same [21]. The imitations were

subsequently named according to their imitator’s acronym, sound group, type of recording

and sample resolution, resulting in names such as F01 Animals Audio 16bit trim.wav for

the animal sound group imitated by the first female performer. Table 2 o↵ers an overview

of all the resulting files, including their length in the format mm:ss as well as their size

in megabytes. Note that for the first male performer, some files are split into two parts.

Table 2. Audio files resulting from the imitation task.

# File name Subject Group Length

(mm:ss)

Size

(MB)

1 F01 Animals Audio 16bit trim.wav Female 1 Animals 24:20 140.20

2 F01 Grupp1 Audio 16bit trim.wav Female 1 Group 1 16:03 92.50

3 F01 Grupp2 Audio 16bit trim.wav Female 1 Group 2 19:31 112.50

4 F01 Grupp3 Audio 16bit trim.wav Female 1 Group 3 24:36 141.80

5 F01 Grupp4 Audio 16bit trim.wav Female 1 Group 4 17:58 103.50

6 F01 Grupp5 Audio 16bit trim.wav Female 1 Group 5 11:42 67.50

7 F02 Animals Audio 16bit trim.wav Female 2 Animals 14:35 84.10

8 F02 Grupp1 Audio 16bit trim.wav Female 2 Group 1 13:33 78.10

9 F02 Grupp2 Audio 16bit trim.wav Female 2 Group 2 15:18 88.20

10 F02 Grupp3 Audio 16bit trim.wav Female 2 Group 3 25:08 144.80

11 F02 Grupp4 Audio 16bit trim.wav Female 2 Group 4 25:08 144.80

12 F02 Grupp5 Audio 16bit trim.wav Female 2 Group 5 22:05 127.30

13 M01 Animals-1 Audio 16bit trim.wav Male 1 Animals 10:28 60.30

14 M01 Animals-2 Audio 16bit trim.wav Male 1 Animals 05:42 32.90

15 M01 Grupp1 Audio 16bit trim.wav Male 1 Group 1 16:24 94.50

16 M01 Grupp2 Audio 16bit trim.wav Male 1 Group 2 09:36 55.40

17 M01 Grupp3 Audio 16bit trim.wav Male 1 Group 3 10:55 62.90

18 M01 Grupp4 Audio 16bit trim.wav Male 1 Group 4 10:48 62.30

19 M01 Grupp5-1 Audio 16bit trim.wav Male 1 Group 5 01:56 11.20

20 M01 Grupp5-2 Audio 16bit trim.wav Male 1 Group 5 11:54 68.50

21 M02 Animals Audio 16bit trim.wav Male 2 Animals 11:13 64.60

22 M02 Grupp1 Audio 16bit trim.wav Male 2 Group 1 22:41 130.70

23 M02 Grupp2 Audio 16bit trim.wav Male 2 Group 2 34:01 196.00

24 M02 Grupp3 Audio 16bit trim.wav Male 2 Group 3 21:42 125.00

25 M02 Grupp4 Audio 16bit trim.wav Male 2 Group 4 19:49 114.20

26 M02 Grupp5 Audio 16bit trim.wav Male 2 Group 5 17:06 98.50
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In total, 114 minutes of imitations are available for the first female performer, and

nearly 116 minutes for the second. For the first male performer, however, only a little over

77 minutes are on hand, whereas for the second, as much as 126 minutes are available.

Moreover, the cumulated file sizes of the recorded imitations are impressive in their own

right: for the first female actor, a total of 658 MB are on record, and a little over 667 MB for

the second. For the first and second male actor, all files amount to 448 MB and 729 MB, re-

spectively. Considering this immense repository of more than 7 hours and 2.5 GB of imitations,

it is perhaps not surprising that the program put forward in the thesis at hand takes some

time to extract samples, compute features and classify fragments. Before these processes

are explained in more detail though, it is crucial to first understand how fragments can

be extracted from the files introduced above.

3.2 Annotations

In order to extract short sound samples containing the three source types in question,

knowledge of their temporal location in the recordings is of the essence. Since the algo-

rithm needs to be tuned according to a ground truth before being able to automatically

extract fragments from input files, initial annotations were carried out manually by the

phonetic experts at KTH, thereby employing the ELAN software introduced before. In

particular, the annotation process dealt with the eight layers discussed in Section 2.4,

which - using di↵erent combinations - form the source parameters of interest and - using

di↵erent values of these combinations - also yield the parameters’ subsets.

It is surely understandable that the manual annotation of amounts of data as vast

as the source files discussed in the previous subsection was a rather time-consuming

undertaking. In particular, the researchers assigned to the task had to listen carefully to

the audio files represented as wave forms, all the while studying the corresponding video

files in order to further understand the actor’s motions leading to specific annotation tiers

(for an example consult Figure 5). It was thereby crucial to keep the amount of human

errors to a minimum, since the resulting annotations serve as ground truth for both the

student’s and Friberg et al.’s classification algorithms.

Upon finishing the annotation process of a source file, its results were exported from

ELAN into a text file. Each subset of every parameter was treated separately, thus re-

sulting in a total of six annotation files, named after their respective parameter followed

by a su�x indicating the type of subset. For example, the file myoelastic-0.txt contains

all imitations which the myoelastic parameter is missing from, whereas myoelastic-1.txt

includes every imitation exhibiting the same. Table 3 gives an overview of these annota-

tion files. Note that the amount of annotations varies between parameters and subsets.

In particular, the respective number is always lower in the subsets marked with “1” than

in those marked with “0”. This is not surprising given the fact that one parameter “holds

against” two others when it comes to appearances in imitations. Theoretically assuming

perfect distribution of parameters (and ruling out overlapping), each imitation exhibiting

a certain parameter would be matched by two others which do not.
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Table 3. Text files resulting from the manual annotation task.

# File name Parameter Subset Number annotations

1 myoelastic-0.txt Myoelastic lacking parameter 894

2 myoelastic-1.txt Myoelastic exhibiting parameter 232

3 phonation-0.txt Phonation lacking parameter 676

4 phonation-1.txt Phonation exhibiting parameter 501

5 turbulent-0.txt Turbulent lacking parameter 633

6 turbulent-1.txt Turbulent exhibiting parameter 592

After completion of the human annotation task, the next step is to study the resulting

files’ patterns in order to properly extract samples containing the parameters in question.

Following are the first ten positive myoelastic occurrences, annotated with ELAN and

exported into the file myoelastic-1.txt. Note that the last column, namely the path to the

data file, is missing. This is simply due to the lack of space in the horizontal dimension

of the document at hand, yet not of importance in the discussion of the subject matter.

Annot1 Annot2 Annot3 Annot4 Duration Begintime Endtime

L-open oral open ventricular 126 165228 165354

lip_occlusion velic TM# LS# 32 165378 165410

myoelastic_lax oral myoelastic LS# 331 233680 234011

lip_occlusion nasal TM# aryepiglottal 83 294234 294317

L-open nasal open aryepiglottal 97 294432 294529

lip_occlusion nasal TM# aryepiglottal 274 295024 295298

L-open nasal open aryepiglottal 16 295673 295689

lip_occlusion nasal TM# aryepiglottal 115 295689 295804

L-open nasal open aryepiglottal 80 296110 296190

lip_occlusion nasal TM# aryepiglottal 184 296190 296374

Although the structure might look confusing at first, it is actually rather straightfor-

ward. Respectively, the columns denote the variables of the four annotation tiers men-

tioned before, in addition to the duration of the occurrences in milliseconds as well as

their beginning and end. Since the thesis at hand focuses on the extraction of annotated

fragments rather than their phonetic origin, a thorough discussion of the latter is not

o↵ered at this point. However, interested readers are referred to the reference literature,

in particular to the publication by Helgason [8].

Regardless of these annotation values, the most crucial consideration point is the

exact temporal locality of the parameters’ occurrences, referenced by their start and end

times in milliseconds. For example, the first such sample, barely 0.13 seconds of length,

is recorded around minute 2, second 45 of the file. It will later be demonstrated that

imitations as short as this one might not be able to be classified correctly. Slightly longer

occurrences, however, can be processed by the program without problems.
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3.3 Fragments

3.3.1 Extraction

With audio and annotation files both available, it is now possible to apply the latter

to the former in order to extract annotated audio fragments. This is the first of three

core steps in the program at hand, the others being the computation of features and the

classification of fragments. Before starting the extraction process, aforementioned files

have to be prepared using array structures in MATLAB, which are shown in Tables 4 and

5. However, for the sake of clarity, not all annotations are listed at this time. In fact, only

the first ten annotations of the positive myoelastic parameter are specified (cf. Section

3.2). Note that this only serves the purpose of exemplarily demonstrating the way the

data is structured in MATLAB. Naturally, the actual program utilizes all annotations in

the extraction process.

Table 4. Array structure of the audio data in MATLAB.

‘F01 Animals Audio 16bit trim’ 70083979x1 double 48000

‘F01 Grupp1 Audio 16bit trim’ 46232652x1 double 48000

‘F01 Grupp2 Audio 16bit trim’ 56246940x1 double 48000

‘F01 Grupp3 Audio 16bit trim’ 70879522x1 double 48000

‘F01 Grupp4 Audio 16bit trim’ 51763049x1 double 48000

‘F01 Grupp5 Audio 16bit trim’ 33739137x1 double 48000

‘F02 Animals Audio 16bit trim’ 42037970x1 double 48000

‘F02 Grupp1 Audio 16bit trim’ 39044684x1 double 48000

‘F02 Grupp2 Audio 16bit trim’ 44093995x1 double 48000

‘F02 Grupp3 Audio 16bit trim’ 72395727x1 double 48000

‘F02 Grupp4 Audio 16bit trim’ 72417002x1 double 48000

‘F02 Grupp5 Audio 16bit trim’ 63629716x1 double 48000

‘M01 Animals-1 Audio 16bit trim’ 30167931x1 double 48000

‘M01 Animals-2 Audio 16bit trim’ 16440765x1 double 48000

‘M01 Grupp1 Audio 16bit trim’ 47272392x1 double 48000

‘M01 Grupp2 Audio 16bit trim’ 27684505x1 double 48000

‘M01 Grupp3 Audio 16bit trim’ 31457520x1 double 48000

‘M01 Grupp4 Audio 16bit trim’ 31129927x1 double 48000

‘M01 Grupp5-1 Audio 16bit trim’ 5577338x1 double 48000

‘M01 Grupp5-2 Audio 16bit trim’ 34274974x1 double 48000

‘M02 Animals Audio 16bit trim’ 32304912x1 double 48000

‘M02 Grupp1 Audio 16bit trim’ 65360137x1 double 48000

‘M02 Grupp2 Audio 16bit trim’ 97987668x1 double 48000

‘M02 Grupp3 Audio 16bit trim’ 62502718x1 double 48000

‘M02 Grupp4 Audio 16bit trim’ 57098498x1 double 48000

‘M02 Grupp5 Audio 16bit trim’ 49257380x1 double 48000
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Table 5. Array structure of an excerpt of the annotation data in MATLAB.

‘F01 Grupp1’ 10 ’165228’ ’165354’

‘F01 Grupp1’ 10 ’165378’ ’165410’

‘F01 Grupp1’ 10 ’233680’ ’234011’

‘F01 Grupp1’ 10 ’294234’ ’294317’

‘F01 Grupp1’ 10 ’294432’ ’294529’

‘F01 Grupp1’ 10 ’295024’ ’295298’

‘F01 Grupp1’ 10 ’295673’ ’295689’

‘F01 Grupp1’ 10 ’295689’ ’295804’

‘F01 Grupp1’ 10 ’296110’ ’296190’

‘F01 Grupp1’ 10 ’296190’ ’296374’

The MATLAB arrays presented above only contain the most important data in order

to avoid overhead. In Table 4, the audio files’ respective names are depicted in the first

column. The second column contains the actual signal as a sequence of amplitudes, with

its sampling rate (in Hz) o↵ered in the third column. Conversely, the annotation data

in Table 5 contains in the first column the name of the file wherein the occurrences

have been found. The second column includes the length (i.e. amount of characters)

of aforementioned name. The last two columns denote the start and end times of the

occurrence as specified before. Note that these have not yet been converted into samples,

which will however be done before extracting the fragments.

Eventually, the extraction algorithm is executed, operating as follows. First, the name

of each audio file is matched against every annotation’s target file identifier (denoted by

the first columns in Tables 4 and 5, respectively). In order to ensure equal length of both

strings, only the leading n characters of the former are considered, with n corresponding to

the respective length of the latter. For example, the string F01 Grupp1 Audio 16bit trim

is truncated to F01 Grupp1, thus corresponding to aforementioned target identifier. Con-

versely, a string such as M01 Animals-1 Audio 16bit trim is shortened to M01 Animals-1.

Whenever the comparison yields a positive result (i.e. both strings are equal), a fragment

is found and can be extracted. This is done by converting the annotation’s start and end

times into samples and subsequently copying the corresponding file section into a newly

created array. Besides the actual audio data, both the fragment’s name and its sampling

rate are transferred from the annotation and audio data, respectively.

The following piece of MATLAB code executes the extraction process as described

above, thereby writing all annotated occurrences of a specific subset into an array en-

titled “fragments”. The input arrays, already introduced before, are called “files” and

“annotations”. Note that two nested loops are used to systematically compare each an-

notation with every audio file. Moreover, the functions strncmp and str2double are built

into MATLAB, guaranteeing maximum speed.



23

f ragments = c e l l ( l ength ( annotat ions ) , 3 ) ;

f o r i = 1 : l ength ( annotat ions )

f o r j = 1 : l ength ( f i l e s )

i f ( strncmp ( annotat ions { i , 1} , f i l e s { j , 1} , annotat ions { i , 2 } ) )
fragments { i , 1} = annotat ions { i , 1 } ;
startTime = st r2doub l e ( annotat ions { i , 3} ) ⇤ ( f i l e s { j , 3}/1000 ) ;
endTime = st r2doub l e ( annotat ions { i , 4} ) ⇤ ( f i l e s { j , 3}/1000 ) ;
f ragments { i , 2} = f i l e s { j , 2} ( startTime : endTime ) ;

f ragments { i , 3} = f i l e s { j , 3 } ;
end

end

end

After the fragments have successfully been stored in an array, they are saved as short

audio files in the WAV file format, divided into separate folders according to the names of

their parameters. Since two subsets are available for each source type, a value identifying

the respective set by either “0” or “1” is included in the fragments’ names, alongside a

running identifier and the corresponding source file’s description. The exact nomination

procedure is described in the following MATLAB code. Note that the variable index

identifies an o↵set factor used to correctly arrange the fragments. Depending on the

running identifier, a variable number of prefix zeros are used. Similarly to the previous

piece of code, isempty, num2str and audiowrite are native MATLAB functions.

j = 0 ;

f o r i = 1 : l ength ( fragments )

i f (˜ isempty ( fragments { i , 1 } ) ;
f i leName = [ num2str ( i+index�j ) ‘ ’ name{2} ‘ ’ f ragments { i , 1} ex t ens i on ] ;

i f ( ( i+index�j ) < 10)

fragments { i , 1} = [ f o l d e r ‘/000 ’ f i leName ] ;

e l s e i f ( ( i+index�j ) >= 10 && ( i+index�j ) < 100)

fragments { i , 1} = [ f o l d e r ‘/00 ’ f i leName ] ;

e l s e i f ( ( i+index�j ) >= 100 && ( i+index�j ) < 1000)

fragments { i , 1} = [ f o l d e r ‘/0 ’ f i leName ] ;

e l s e

fragments { i , 1} = [ f o l d e r ‘/ ’ f i leName ] ;

end

aud iowr i t e ( fragments { i , 1} , f ragments { i , 2} , f ragments { i , 3 } ) ;
e l s e

j = j +1;

end

end
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3.3.2 Files

With the fragments stored as WAV files, it is now possible to process and manipulate them

in a myriad of ways. However, before the algorithm is discussed any further, it is perhaps of

interest to once more revisit the extraction process introduced in the previous subsection.

In particular, a runtime improvement is put forward which a↵ects the program’s speed

as a whole.

The basic idea is that, since the annotation data is not usually altered after having

completed the corresponding manual task, the extraction process need not be executed

every time the program is launched. In fact, only when the annotation data changes it

becomes mandatory to re-extract the fragments from their source files. This is why the

student has included in the algorithm a query by means of which the users can choose

for themselves whether the fragments should be extracted anew (thereby overwriting the

old batch) or the results of the initial extraction be loaded instead. Naturally, this option

only applies if the fragments have already been extracted before. If no previously stored

fragments are found, the program proceeds without this query.

Whatever the user’s choice, the loaded data is subsequently stored in a revised version

of aforementioned array. The first ten annotated fragments of the positive myoelastic

parameter, previously extracted by applying the annotations listed in Table 4 to their

corresponding audio files, are demonstrated in Table 6. Whereas the first column contains

the names of the fragment files (not including the extensions), the second and third

columns feature the actual signals as well as their sampling rates (in Hz). Moreover, in

order to be allocated correctly in the course of the program, the fragments’ parameters

and types as well as their imitators are included in columns four and five. Although this

data is essential duplicated from the file name in the first column, redundancy is hereby

condoned in favour of easier processing.

Table 6. Array structure of an excerpt of the fragment data in MATLAB.

‘0001 1 F01 Grupp1’ 6049x1 double 48000 ‘myoelastic-1’ ‘F01’

‘0002 1 F01 Grupp1’ 1537x1 double 48000 ‘myoelastic-1’ ‘F01’

‘0003 1 F01 Grupp1’ 15889x1 double 48000 ‘myoelastic-1’ ‘F01’

‘0004 1 F01 Grupp1’ 3985x1 double 48000 ‘myoelastic-1’ ‘F01’

‘0005 1 F01 Grupp1’ 4657x1 double 48000 ‘myoelastic-1’ ‘F01’

‘0006 1 F01 Grupp1’ 13153x1 double 48000 ‘myoelastic-1’ ‘F01’

‘0007 1 F01 Grupp1’ 769x1 double 48000 ‘myoelastic-1’ ‘F01’

‘0008 1 F01 Grupp1’ 5521x1 double 48000 ‘myoelastic-1’ ‘F01’

‘0009 1 F01 Grupp1’ 3841x1 double 48000 ‘myoelastic-1’ ‘F01’

‘0010 1 F01 Grupp1’ 8833x1 double 48000 ‘myoelastic-1’ ‘F01’
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The exact process of importing the fragment files sorted by parameter and subse-

quently creating an array structure such as in Table 6 is explained by the following piece

of MATLAB code. Once more, fileparts, audioread and strsplit are built-in functions.

Note that the variable “parameter” needs to be selected by the user at the beginning of

the program. Although this ultimately restricts the algorithm to dealing with just one

parameter at a time, it is a decision consciously made in order to clearly separate the

three source types from each other.

paths = loadPaths ( [ ‘ Fragments / ’ type ] ) ;

j = 1 ;

f o r i = 1 : l ength ( paths )

[ ˜ , name , ex t ens i on ] = f i l e p a r t s ( paths{ i } ) ;
i f ( strcmp ( extens ion , ‘ . wav ’ ) )

[ y , f s ] = audioread ( paths { i } ) ;
partsPath = s t r s p l i t ( paths { i } , ‘ / ’ ) ;

partsName = s t r s p l i t ( partsPath {3} , ‘ ’ ) ;

f ragments { j , 1} = name ;

fragments { j , 2} = y ;

fragments { j , 3} = f s ;

f ragments { j , 4} = [ partsPath {2} ‘� ’ partsName { 2 } ] ;
f ragments { j , 5} = partsName {3} ;
j = j +1;

end

end

Before concluding this discussion of fragments and their extraction, it is perhaps help-

ful to take a look at the overall distribution thereof. Thus, Tables 7-9 illustrate the

quantity of positive and negative fragments for every subject individually as well as in

total. Note that the amount of fragments for all subjects (located in the first column)

correlate with the number of annotations in Table 3. While all imitators exhibit roughly

the same quantity of fragments, the positive and negative groups deviate from each other

more strongly. The reason for the latter is explained in Section 3.2.

Table 7. Number of extracted fragments for the myoelastic parameter.

All subjects Female 1 Female 2 Male 1 Male 2

Negative 894 243 250 224 177

Positive 232 82 30 88 32

Total 1126 325 280 312 209
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Table 8. Number of extracted fragments for the phonation parameter.

All subjects Female 1 Female 2 Male 1 Male 2

Negative 676 211 150 183 132

Positive 501 132 135 143 91

Total 1177 343 285 326 223

Table 9. Number of extracted fragments for the turbulent parameter.

All subjects Female 1 Female 2 Male 1 Male 2

Negative 633 200 152 165 116

Positive 592 151 142 177 122

Total 1225 351 294 342 238

3.4 Auto-correlation

Whereas the theoretical background of the auto-correlation function has already been

briefly discussed in Section 2.3, this subsection introduces an algorithmic implementation

thereof. Before presenting the corresponding code, however, it is perhaps of interest to

examine the algorithm’s input variables, namely ⌧
min

, ⌧
max

, hop and block, more closely.

On the one hand, the former two are calculated by means of the upper and lower limits

of the frequency range which the auto-correlation is due to operate in:

⌧
min

=
F
s

F
max

(5)

⌧
max

=
F
s

F
min

(6)

On the other hand, the hop size defines how far the algorithm should “jump” ahead in

the signal after finishing one iteration, while the block size specifies a window (i.e. small

section of the signal) which the computation is executed for. Note that the two variables

do not necessarily need to exhibit identical values. For example, while an algorithm jumps

ahead 100 samples at a time, the computation is simultaneously performed on a window

of 200 samples. Thus, the first iteration would see the processing of samples 1-200, with

the second treating samples 101-300 and so on. In fact, it is advisable for block to adopt

a value corresponding to two times the value of hop. Moreover, since both variables are

specified in milliseconds rather than samples, a conversion is performed as follows:

hop
samples

= hop
ms

⇤ F
s

(7)

block
samples

= block
ms

⇤ F
s

(8)

All these inputs are used in the following MATLAB implementation of the auto-

correlation function, which is based on a code segment taken from the book by Zölzer [25].
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Its core computation corresponds to Equation 3, with the exception of signal name x being

replaced by window and running index n by j. The variable window thereby denotes

aforementioned section to be processed, whose length is specified by the block size. The

auto-correlation is subsequently computed for each sample in this window and each value

of ⌧ at a time, thus yielding a one-dimensional result matrix running along the index of the

latter. However, since the algorithm periodically jumps ahead after finishing one iteration,

it becomes inevitable to include a second dimension in the output array, specified by a

constantly increasing value k. In particular, this index denotes di↵erent parts of the signal

(henceforth called frames), whose lengths are defined by the hop size.

k = 0 ;

f o r i = 1 : hop : ( l ength (y)�( b lock+tauMax ) )

window = y( i : i +(block+tauMax ) ) ;

k = k+1;

f o r j = 1 : b lock

f o r tau = tauMin : tauMax ;

r e s u l t s ( tau , k ) = r e s u l t s ( tau , k)+(power (window( j )�window( j+tau ) , 2 ) ) ;

end

end

end

A fair amount of work has been put into finding the optimal values for the input

variables specified earlier. In the end, F
max

and F
min

are set to 200 and 20 Hz, respectively,

which no imitations are believed to exceed or fall below. Hence, ⌧
min

and ⌧
max

amount to

240 and 2,400 when computing above equations with a sampling rate of 48 kHz. Moreover,

hop and block sizes are each set to 20 and 40 milliseconds, or 960 and 1.920 samples when

working with the same F
s

.

Exemplarily applying these input variables to the arbitrarily chosen myoelastic file

0910 1 F01 Grupp1.wav, an output array containing 2,400 rows (i.e. values of ⌧) and

158 columns (i.e. frames) is created. Note that the first 239 rows are negligible since the

minimum value of ⌧ is 240. Table 10 shows an excerpt of this resulting matrix, thereby

including rows 1,780-1,790 and columns 5-9. One number per column is emphasized,

denoting the smallest value thereof. Upon referencing Section 2.3, it becomes evident

that, when dividing a signal’s sampling frequency F
s

by the index ⌧0 of this value, its

fundamental frequency F0 can be obtained. These indices and frequencies (the latter

denoted in Hz) are specified therafter.

Even though aforementioned results describe only a fraction of the actual data, the ba-

sic concept of the previously introduced auto-correlation function applies to every signal.

In fact, the algorithm computes an output matrix for each parameter’s 1,100+ fragments,

thereby employing the same set of input parameters. In the next subsection, the funda-

mental frequencies exemplarily presented in Table 8 are subsequently utilized, amongst

others, to compute a specific set of features.
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Table 10. Excerpt of the results of the auto-correlation function for one imitation.

Frame 5 Frame 6 Frame 7 Frame 8 Frame 9

⌧ = 1780 0.0796 0.0800 0.0650 0.0517 0.1159

⌧ = 1781 0.0792 0.0711 0.0618 0.0519 0.1049

⌧ = 1782 0.0800 0.0638 0.0599 0.0533 0.0953

⌧ = 1783 0.0821 0.0579 0.0591 0.0555 0.0867

⌧ = 1784 0.0855 0.0531 0.0591 0.0587 0.0789

⌧ = 1785 0.0904 0.0494 0.0603 0.0640 0.0726

⌧ = 1786 0.0965 0.0473 0.0631 0.0714 0.0683

⌧ = 1787 0.1035 0.0472 0.0673 0.0799 0.0655

⌧ = 1788 0.1116 0.0489 0.0727 0.0886 0.0633

⌧ = 1789 0.1211 0.0523 0.0794 0.0974 0.0613

⌧ = 1790 0.1319 0.0572 0.0876 0.1075 0.0601

⌧0 1781 1787 1784 1780 1790

F0 (in Hz) 26.95 26.86 26.91 26.97 26.82

3.5 Features

3.5.1 Computation

Besides the extraction of fragments and the classification thereof, the computation of

features is the second core step in the program at hand. The input data is thereby de-

rived from the auto-correlation matrix generated in the previous subsection. However,

whereas only the smallest value of each column is emphasized in Table 8, a total of four

such characteristics (which the features are subsequently calculated from) are eventually

employed:

1. Global minimum

2. Second global minimum

3. Local minima

4. Local maxima

Rather self-explanatory, the former two denote the smallest as well as second-smallest

values of a data structure, respectively. A local minimum, however, occurs whenever

a data item is neither immediately preceded nor followed by another item with smaller

value. Conversely, a local maximum exhibits the highest value in its immediate proximity.

Normally, multiple occurrences of the latter two are found in an arbitrary signal. In order

to illustrate this concept, an overview of the di↵erent types of minima and maxima is

given in Figure 614. Note that their graphic representations tend to resemble valley floors

and mountain peaks.

14 http://en.wikipedia.org/wiki/Maxima and minima
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Fig. 6. Overview of the di↵erent types of minima and maxima.

Subsequently, these characteristics are applied to the auto-correlation matrix of every

imitation. Much like in the above algorithm, each frame is processed in its own iteration.

In particular, two types of information are derived from each characteristic, namely its

values and its indices. By means of the latter, frequencies are calculated as demonstrated

in Section 3.4. The former, on the other hand, are henceforth referred to as amplitudes.

Note, however, that these are not in any way related to the amplitudes of a signal’s

waveform, which are not of importance in the algorithm at hand.

Once again referencing the data in Table 10, the global minimum of the first frame

exhibits an amplitude of 0.0792 and a frequency of 26.95 Hz, which is in turn based on

an index of 1,781. Furthermore, the second global minimum is described by an amplitude

of 0.0796 and a frequency of 26.97 Hz, derived from an index of 1780. Continuing this

procedure for all characteristics, a total of twelve features are collected for each frame, as

specified in Table 11. Note that the local minima and maxima are thereby represented

twice, defined by both their arithmetic mean and median. This is due to the existence of

multiple values for these characteristics, which in turn calls for the consolidation thereof

into a single value. Thereby, arithmetic mean and median appear to be elegant solutions.

Eventually, five statistical measures are calculated for each feature. Note that, whereas

the latter exhibit separate values for each frame, the former specify aggregates thereof. In

other words, all values featured in one row of Table 11 are merged, similarly to the idea

presented above, by means one of the following measures:

1. Median

2. Mean

3. Mean of the absolute value of variation

4. Variance

5. Interquartile range
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Table 11. Features for an excerpt of the results of the auto-correlation function.

Feature Frame 5 Frame 6 Frame 7 Frame 8 Frame 9

Global minimum, frequency (in Hz) 26.95 26.86 26.91 26.97 26.82

Second global minimum, frequency 26.97 26.88 26.92 26.95 26.80

Local minima, median of frequencies 1118.00 1406.00 1404.00 1403.00 1313.00

Local minima, mean of frequencies 1264.64 1380.55 1385.09 1377.36 1341.67

Local maxima, median of frequencies 1119.00 1400.50 1397.50 1398.00 1314.00

Local maxima, mean of frequencies 1253.69 1378.80 1383.50 1377.30 1337.91

Global minimum, amplitude 0.0792 0.0472 0.0591 0.0517 0.0601

Second global minimum, amplitude 0.0796 0.0473 0.0591 0.0519 0.0602

Local minima, median of amplitudes 1.0106 0.7262 0.6787 0.6391 0.8122

Local minima, mean of amplitudes 0.8642 0.6223 0.6198 0.6271 0.7686

Local maxima, median of amplitudes 1.6984 1.9780 1.9801 1.8886 1.7507

Local maxima, mean of amplitudes 1.7447 1.9809 1.9915 1.8992 1.7926

All measures are common statistical characteristics, with the exception of mean of

absolute value of variation, which yields an indication of a signal’s continuity by computing

the di↵erences between its frames. Eventually, by applying all five measures to each of

the twelve features, 60 values are derived in total. For the sake of the argument, these

results are henceforth referred to as features as well. However, a representation thereof in

a table is not o↵ered at this point.

Before proceeding any further, it is nevertheless crucial to expand the above list by two

features, respectively based on the median values of a signal’s global and second global

minimum frequencies. In particular, a Gaussian bell curve is considered, with its peak

defined by the assumed fundamental frequency of each parameter. For the myoelastic

and phonation types, 40 Hz and 100 Hz are arbitrarily chosen as base frequencies. Due

to its fricative nature, however, the turbulent type does not exhibit such periodicity and

is thus unsuitable for this type of calculation.

Eventually, the Gaussian bell curve is drawn using a bandwidth of 30 Hz and its

amplitudes normalized in order to satisfy x
i

 1. Hence, considering aforementioned

definition of peaks, the frequency range extends from 10 Hz and 40 Hz (x = 1) to 70 Hz

for the myoelastic type and from 70 Hz and 100 Hz (x = 1) to 130 Hz for the phonation

type. Subsequently, the amplitudes of the previously introduced frequency medians under

the curve are conveyed as features. As an example, the Gaussian bell curve for exemplarily

used imitation is depicted in Figure 7. The median values of 26.95 Hz and 26.96 Hz are

thereby denoted by the same vertical red line (due to their close proximity), with the

resulting amplitudes both amounting to x1 = x2 = 0.4296. These values are ultimately

added to the list for the myoelastic and phonation parameters, thus yielding a total of

62 features for the former two types while retaining aforementioned 60 features for the

turbulent parameter.
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Fig. 7. Gaussian bell curve peaking on the assumed myoelastic base frequency.

Now that the selection of features is complete, it is perhaps of interest to take a

closer look at how the respective algorithm is embedded in the program at hand. In

particular, two important variables thereof have yet to be defined, namely factor and

minimumLength. The former, if applicable, describes the factor by which a fragment’s

F
s

is downsampled prior to its computation:

F
s new

= F
s

/factor (9)

For example, when considering the current sampling rate of 48 kHz for all fragments,

a factor of 2 would result in F
s new

= 24kHz, whereas a factor of 1 would leave F
s

unchanged (i.e. F
s new

= F
s

). This mechanism has been implemented in order to reduce

the computation time of the algorithm, based on the notion that merely every nth data

point has to be considered when working with a downsampling factor of n.

Conversely, the latter denotes the minimum length that a fragment needs to exhibit

in order to be eligible for feature computation. This restriction stems from the notion

that at least a certain number of frames have to be computed for each signal in order to

meaningfully and faultlessly apply the statistical aggregates discussed earlier (including,

but not limited to, mean of absolute value of variation and interquartile range). Following

a fair amount of testing, four frames are determined as the minimum amount which the

program can still be executed without errors for. Subsequently consulting the MATLAB

code in Section 3.4, it becomes evident that the corresponding auto-correlation loop is

only correctly iterated four times or more if the following condition is satisfied:

length
fragment

> (hop ⇤ 3 + block + ⌧
max

) (10)
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Inserting the previously defined values of 960 samples for hop, 1,920 samples for block

and 2,400 samples for ⌧
max

into this equation, a fragment length threshold of 7,200 sam-

ples (or 150 milliseconds with a sampling rate of 48 kHz) is yielded. Interestingly enough,

this corresponds to three cycles of a vibration of 20 Hz, which in turn is the lowest peri-

odic frequency any parameter can exhibit [5]. Note that an alteration of aforementioned

downsampling factor e↵ects the minimum length as well. That being said, an overview

of how many fragments per parameter are respectively eligible or ineligible is o↵ered in

Table 12, implying computation with no downsampling. What’s more, in Section 4 these

variables are changed at will in order to demonstrate the algorithm’s performance for

di↵erent instances of its inputs.

Table 12. Overview of the fragments’ applicability for feature computation.

length > 150 ms myoelastic phonation turbulent

Eligible (negative/positive) 456 (307/149) 465 (243/222) 481 (284/197)

Ineligible (negative/positive) 670 (587/83) 712 (433/279) 744 (349/395)

Total (negative/positive) 1126 (894/232) 1177 (676/501) 1225 (633/592)

Eventually, the feature computation algorithm described above is executed for all

qualified fragments. This process takes some time due to the complexity of the auto-

correlation’s input data. The following MATLAB code illustrates the loop wherein the

respective function computeFeatures is called. Upon completion, the resulting features are

stored in an array for analysis before being employed in the classification of fragments.

Likewise, the humanly annotated ground truth is saved thereafter, its values amounting

to either 0 or 1 depending on whether the respective parameter is absent or present in

the corresponding fragment.

j = 0 ;

f o r i = 1 : l ength ( fragments )

parameter = s t r s p l i t ( fragments { i , 4} , ‘ � ’ ) ;

minimumLength = ( ( hop⇤3+block )⇤ f ragments { i ,3})+( fragments { i , 3}/ fMin ) ;

i f ( l ength ( fragments { i , 2} ) > minimumLength )

[ data , names ] = computeFeatures ( fragments { i , 2} , f ragments { i , 5 } , . . .

f a c to r , f ragments { i , 3 } , . . .

fBase , fMin , fMax , hop , b lock ) ;

j = j +1;

featuresTemp ( j , 1 : l ength ( data ) ) = data ;

groundTruthTemp ( j , 1 ) = st r2doub l e ( parameter {2} ) ;
end

end
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3.5.2 Analysis

A fair amount of thought has been given to the possibility of creating separate feature

lists for each parameter in order to achieve slightly better classification results, while

simultaneously sacrificing adaptability and generic applicability of the program at hand.

In the end, the student decided in favour of the latter by employing the sole overall feature

list introduced above. That being said, the only exception thereto are the amplitudes

under the Gaussian bell curve, which are missing for the turbulent parameter.

Even so, it might nevertheless be desirable to gain insight into each feature’s individual

significance before launching the classification process. Thus, all of them are correlated

with the ground truth as well as with themselves by means of the following built-in

MATLAB function:

[R,P] = c o r r c o e f ( data , ‘ rows ’ , ‘ pa i rwi se ’ ) ;

Thereby, data denotes the input array wherefrom the correlation results are derived.

For the cross-correlation between the features and the ground truth, this matrix is com-

posed of both of their arrays, while for the correlation between the features proper, it

consists solely of the former. Conversely, parameters R and P identify the correlation

coe�cient and its significance, respectively. In particular, each relationship between two

arbitrary input values i and j is denoted by R 2 [-1...1], with -1 representing the strongest

negative correlation, 0 representing no correlation, and 1 representing the strongest pos-

itive correlation. Furthermore, significance value P is utilised to test the null-hypothesis,

which in turn claims that no relationship exists between i and j. Extending this notion,

a rating system is established as part of the algorithm in order to assess the importance

of each correlation, denoted by stars in ascending order of significance:

P (i, j) > 0.05 �! no stars (11)

P (i, j) <= 0.05 �! one star (⇤) (12)

P (i, j) <= 0.01 �! two stars (⇤⇤) (13)

P (i, j) <= 0.001 �! three stars (⇤ ⇤ ⇤) (14)

Eventually, the results of above procedure are displayed in the MATLAB console.

Since all features are ultimately used in the classification process, their individual signif-

icances are not pivotal at this time for a selection thereof. Nevertheless, potential issues

with the prediction algorithm can be solved with greater ease by means of this analysis.

In conclusion, Table 13 presents the results of both the cross-correlation between the

features and the ground truth as well as the correlation between the features proper. Ex-

emplarily, only the mean values of the myoelastic parameter’s amplitude-based features

are displayed. Note that the features’ acronyms, which have been established in the source

code upon creation thereof, are used throughout the program.
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Table 13. Exemplary (cross-)correlation results for myoelastic features and ground truth.

Ground truth meanA1 meanA2 meanA3 meanA4 meanA5

meanA1 -0.25 ***

meanA2 -0.25 *** 1.00 ***

meanA3 0.15 ** 0.82 *** 0.82 ***

meanA4 0.30 *** 0.81 *** 0.81 *** 0.91 ***

meanA5 0.07 -0.67 *** -0.67 *** -0.75 *** -0.70 ***

meanA6 0.31 *** -0.61 *** -0.61 *** -0.73 *** -0.54 *** 0.85 ***

3.6 Classification

3.6.1 Prediction

Eventually, the annotated audio fragments are classified by means of the features com-

puted before. In particular, each parameter’s fragments are divided into a positive and a

negative group, depending on the presence or absence of the respective source type. Two

types of prediction models are thereby used to forecast the results of the classification:

Partial Least Squares (PLS) regression [6,22] and Support Vector Machine (SVM). Even

though a comprehensive external library entitled LIBSVM15 exists for the latter, the cor-

responding native MATLAB functions are nevertheless employed for both algorithms in

order to avoid unnecessary overhead. Subsequently, each prediction model is explained in

detail, accompanied by excerpts of the source code whenever appropriate.

On the one hand, PLS regression is a statistical method used for the prediction of

responses from a number of factors. In the program at hand, these factors correspond to

the features, while the responses are equal to the classification results. Tobias o↵ers in his

paper a schematic outline of the regression process, depicted in Figure 8. Thereby, latent

(i.e. underlying) variables T and U (also referred to as X- and Y-scores, respectively) are

extracted from the sample data. Subsequently, the former are used to predict the results

of the latter, which in turn the responses are constructed from [22]. Whereas for the

related method of Principal Component Regression (PCR), aforementioned X-scores are

chosen to explain as much of the factor variation as possible, for the PLS regression strong

relationships between successive pairs of scores are of the essence. Even so, the emphasis

lies on the prediction process rather than on the relationships between the extracted

variables [22].

While PLS is applicable to a large amount of highly collinear factors, the selection

of too many thereof can lead to a phenomenon called “over-fitting”. Thereby, in spite

of the overall number of factors, the amount of latent variables is insu�cient for predic-

tion, resulting in the model being perfectly suitable for the training set while failing to

accurately predict new data.

15 http://www.csie.ntu.edu.tw/⇠cjlin/libsvm
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Fig. 8. Schematic outline of the Partial Least Squares regression method [22].

In MATLAB, the regression algorithm is programmed as follows. First, X- and Y-

scores are extracted from the factors and responses (i.e. features and ground truth),

identified by pX and pY in the following code sample. Note that the built-in MATLAB

function randperm rearranges the input data in a random fashion.

zX = zs co r e ( f e a t u r e s . data ) ;

p = randperm ( s i z e (zX , 1 ) ) ;

pX = zX(p , : ) ;

pY = groundTruth . data (p , : ) ;

Subsequently, training and validation data for both factors and responses are derived

from the scores. The variables trainingIndices and validationIndices, even though in-

troduced here, are discussed at a later time. Eventually, PLS regression is carried out

using a certain number of principal components (i.e. linear combinations of input data),

and its resulting parameter utilized in the calculation of the prediction matrix. The ideal

value of the former is thereby determined by manual testing (cf. Section 4.2).

t ra in ingX = pX( t r a i n i n g I nd i c e s , : ) ;

va l idat ionX = pX( va l i d a t i o n Ind i c e s , : ) ;

t ra in ingY = pY( t r a i n i n g I nd i c e s , : ) ;

va l idat ionY = pY( va l i d a t i o n Ind i c e s , : ) ;

[ ˜ , ˜ , ˜ , ˜ ,BETA, ˜ , ˜ , ˜ ] = p l s r e g r e s s ( tra iningX , train ingY , components ) ;

resultPLS = [ ones ( s i z e ( val idat ionX , 1 ) , 1 ) va l idat ionX ]⇤BETA;
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On the other hand, SVM is a classifier model able to divide objects into two separate

categories. Thereby, these items are mapped into a coordinate system, exemplarily de-

picted in Figure 916. In order to provide the model with a classification pattern to follow,

a training set is analyzed first, the objects of which have already been assigned to the

two groups. The resulting pattern is subsequently stored by the algorithm, and used to

predict the category of any new data item which is supplied as input thereafter. All the

while, it is desirable for objects of di↵erent groups to be located far away from each other

in the coordinate space in order to exhibit clear discrimination. Exemplarily, the light

blue margins on both sides of the dividing lines in Figure 9 identify the gaps between

items of separate categories.

Fig. 9. Classification of objects by the Support Vector Machine method.

When taking a closer look at the source code, it becomes evident that the calculation

of training and validation sets is the same for both PLS and SVM. Instead of carrying

out the regression, however, a training model is derived using the corresponding arrays,

and subsequently employed in the computation of the resulting matrix. Note once again

that, although an external library could have been used, native MATLAB functions are

preferred due to their e�ciency.

model = f i t c svm ( trainingX , t ra in ingY ) ;

resultSVM = pred i c t (model , va l idat ionX ) ;

Upon completion of the prediction algorithms, both of their resulting arrays are on

hand for each parameter. However, so far the prediction is merely tailored to the fragments

available in the program at hand. In order to ensure flexibility and applicability in real-

world scenarios, it is necessary to additionally include cross-validation. Thus, two types

thereof are subsequently introduced.

16 http://de.wikipedia.org/wiki/Support Vector Machine
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However, before discussing this notion in more detail, it might still be of interest to

take a closer look at an alternative version of the PLS regression, which is executed en-

tirely without cross-validation. In particular, the corresponding prediction algorithm is

employed in order to receive an indication as to whether or not the whole cross-validation

procedure is successful. Perhaps not surprisingly, it also yields better accuracy in com-

parison with the models discussed previously, due to its specific adjustment to the data

at hand. The following code presents the implementation of the PLS regression without

cross-validation, with cumsum and max denoting built-in functions of MATLAB.

[ zX , ˜ , ˜ ] = z s co r e ( f e a t u r e s . data ) ;

[ zY ,muY, sigmaY ] = z s co r e ( groundTruth . data ) ;

[ ˜ , ˜ , ˜ , ˜ , ˜ ,PCTVAR, ˜ , ˜ ] = p l s r e g r e s s (zX , zY , numberFeatures ) ;

cumulativeSum = cumsum(PCTVAR( 2 , : ) ) ;

f o r i = 1 : numberFeatures

temp( i ) = 1�(1�cumulativeSum ( i ) ) ⇤ . . .
( numberFragments�1)/(numberFragments�i �1);

end

[ ˜ , numberPredictors ] = max( temp ) ;

[ ˜ , ˜ , ˜ , ˜ ,BETA, ˜ , ˜ , ˜ ] = p l s r e g r e s s (zX , zY , numberPredictors +1);

r e s u l t = ( [ ones ( s i z e (zX , 1 ) , 1 ) zX ]⇤BETA⇤sigmaY)+muY;

3.6.2 Cross-validation

In order for a prediction model to become robust and versatile, relying on a variation of

alternating input data is of the essence. Thus, the corresponding algorithm is trained on a

multitude of arrays before being employed in the classification of new items. This notion

is called cross-validation, whereof two variations are presented in the program at hand.

Both are subsequently discussed in more detail, accompanied by excerpts of the source

code if necessary.

On the one hand, N-fold cross-validation is based on the idea of splitting an input data

set into N mutually exclusive subsets (i.e. folds). Therefrom, N�1 subsets are arbitrarily

selected as training data, with the remaining one used for validation. Subsequently, the

latter is exchanged for another subset previously involved in training. This procedure is

repeated N times, until each subset has once been employed in the validation process.

Eventually, all individual results are merged, thus yielding the overall accuracy of the

prediction model.

The following MATLAB code introduces N-fold cross-validation by means of selected

parts of the algorithm at hand, thereby arbitrarily defining N = 10 as the amount of folds.

In order to minimize computation errors, the whole method itself is additionally iterated

100 times, implemented by the outer loop in the code below. Ultimately, the indices of

the training and validation sets introduced above are computed in the inner loop, before

being employed in the creation of their corresponding arrays.
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numberFragments = length ( groundTruth . data ) ;

numberFolds = 10 ;

numberI terat ions = 100 ;

samplesPerFold = round ( s i z e ( f e a t u r e s . data , 1 ) / numberFolds ) ;

f o r i = 1 : numberI terat ions

f o r j = 1 : numberFolds

t r a i n i n g I n d i c e s = [ 1 : ( ( j �1)⇤ samplesPerFold ) . . .

( j ⇤ samplesPerFold + 1 ) : . . .

s i z e ( f e a t u r e s . data , 1 ) ] ;

v a l i d a t i o n I nd i c e s = ( j �1)⇤ samplesPerFold+1: j ⇤ samplesPerFold ;

i f ( j == numberFolds )

i f ( v a l i d a t i o n I nd i c e s ( end ) < numberFragments )

v a l i d a t i o n I nd i c e s = [ v a l i d a t i o n I nd i c e s , . . .

v a l i d a t i o n I nd i c e s ( end ) : . . .

numberFragments ] ;

end

i f ( v a l i d a t i o n I nd i c e s ( end ) > numberFragments )

l a s t Index = f i nd ( v a l i d a t i o n I nd i c e s == numberFragments ) ;

v a l i d a t i o n I nd i c e s = va l i d a t i o n I nd i c e s ( 1 : l a s t Index ) ;

end

end

end

end

On the other hand, leave-one-out cross-validation, while working similarly to aforemen-

tioned type, focuses on the imitation artists rather than on arbitrarily selected subsets.

In particular, upon consideration of M subjects, the data of M � 1 thereof is selected for

training, while the remaining artist’s data is used for validation. Again, this procedure is

iterated M times, thereby employing each subject in the validation process once, before

merging the individual results in order to yield the model’s overall accuracy.

Since M = 4 imitators are recorded in the program at hand, the algorithm is simulta-

neously trained on three data sets while being validated on one. The necessary information

is thereby conveyed by an array containing a unique index for each speaker. According

to Friberg et al., even though leave-one-out cross-validation generally corresponds more

closely to real-world scenarios than its N-fold counterpart, in the program at hand it is

nevertheless less reliable due to the small number of subjects [5].

Much like before, the following excerpt of the source code depicts the implementation

of leave-one-out cross-validation in MATLAB. Note that the procedure is again iterated

100 times in order to minimize computation errors. Furthermore identical to above code,

validation and training indices are subsequently derived for the computation of their

corresponding data matrices.
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numberSpeakers = max( sp eake r Ind i c e s ) ;

numberI terat ions = 100 ;

f o r i = 1 : numberI terat ions

f o r j = 1 : numberSpeakers

t r a i n i n g I n d i c e s = [ ] ;

v a l i d a t i o n I nd i c e s = [ ] ;

index1 = 1 ;

index2 = 1 ;

f o r k = 1 : l ength ( sp eake r Ind i c e s )

i f ( s p eake r Ind i c e s ( k ) == j )

v a l i d a t i o n I nd i c e s ( index1 ) = k ;

index1 = index1+1;

e l s e

t r a i n i n g I n d i c e s ( index2 ) = k ;

index2 = index2+1;

end

end

end

end

Ultimately, the data arrays resulting from the previously discussed prediction and

cross-validation procedures contain the fragments’ classification results, all of which amount

to either 0 or 1 depending on the absence or presence of the corresponding source type.

In particular, the following five matrices are on hand for each parameter:

1. PLS, 10-fold cross-validation

2. SVM, 10-fold cross-validation

3. PLS, leave-one-out cross-validation

4. SVM, leave-one-out cross-validation

5. PLS, no cross-validation

Subsequently, every output matrix is compared to its corresponding ground truth

array, thereby yielding the individual overall accuracy of each prediction model. Drawing

on these values, the final results of the program at hand are eventually introduced and

discussed in more detail in the next section, additionally examining deviations thereof

stemming from di↵erent instances of the algorithms’ input variables.



40

4 Results

This section presents and evaluates the results of the program at hand, thereby treating

each source parameter separately. In particular, the computation of the prediction mod-

els’ accuracies are discussed, and ideal combinations of input variables therefor revealed.

Subsequently, the latter are changed in order to further examine the behaviour of each al-

gorithm. Specifically, the number of PLS components, imitation artists, minimum length

of fragments and downsampling factor are subject to modification. Whenever necessary,

cross-references to other subsections will be made.

4.1 Overall performance

When referencing the result arrays of the prediction models, it becomes evident that the

classification algorithms merely yield as output 0 or 1 for each fragment, thus identifying

the corresponding parameter respectively being absent or present therein. Exemplarily,

Table 14 o↵ers an overview of ten fragments that exhibit the myoelastic source type.

Note that in a similar list in Table 6, imitations were merely selected from the data in

running order, whereas in the table at hand, the first ten eligible fragments are chosen,

all of which satisfy the minimum length of 7,200 samples put forward in Section 3.5.

Thereby, the first column denotes their names, with the second column containing the

corresponding lengths in samples. Moreover, parameter and ground truth are included

in the third and fourth column, respectively. Upon input of the fragments’ features, a

perfect prediction model should theoretically be able to classify each imitation according

to this ground truth. As a matter of fact, when consulting the results presented in the

fifth column, the present classification algorithm (PLS without cross-validation) is indeed

able to assign each fragment of the sample data set correctly.

Table 14. Excerpt of the (rounded) classification results for PLS without cross-validation.

Name Length

(samples)

Parameter Ground truth Classification result

0003 1 F01 Grupp1 15889 myoelastic 1 1

0006 1 F01 Grupp1 13153 myoelastic 1 1

0010 1 F01 Grupp1 8833 myoelastic 1 1

0011 1 F01 Grupp1 31345 myoelastic 1 1

0012 1 F01 Grupp1 103729 myoelastic 1 1

0013 1 F01 Grupp1 28993 myoelastic 1 1

0014 1 F01 Grupp1 7729 myoelastic 1 1

0015 1 F01 Grupp1 18193 myoelastic 1 1

0016 1 F01 Grupp1 155521 myoelastic 1 1

0021 1 F01 Grupp1 10177 myoelastic 1 1
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However, before matching all output matrices of the prediction models with their cor-

responding ground truth arrays in order to receive the success rate of each, it is important

to understand that, initially, the results of the PLS algorithms do not simply amount to

0 and 1 as stipulated before. In fact, they can adopt a multitude of values. Thus, in order

to be successfully matched to the ground truth later on, it is necessary to round them

to either one of the two binary values. Thereby, the following method is applied, with x
i

denoting the PLS output for an arbitrary fragment i and y
i

identifying its final result:

x
i

> 0.5 �! y
i

= 1 (15)

x
i

 0.5 �! y
i

= 0 (16)

Whenever a fragment is correctly classified, a corresponding counter is incremented

in MATLAB. Note that an increase of this variable is possible in every single iteration of

the nested loops introduced before. Upon completion of the last iteration, the prediction

models’ accuracy is eventually computed by dividing the number of correctly assigned

fragments by the total amount thereof. The following code sample depicts this procedure

for the PLS and SVM algorithms with both types of cross-validation. Much like before,

its inclusion hereby is merely of exemplary nature, and should not be mistaken for the

exact source code.

numberCorrectPLS = 0 ;

numberTotalPLS = 0 ;

numberCorrectSVM = 0 ;

numberTotalSVM = 0 ;

numberCorrectPLS = numberCorrectPLS+sum( va l idat ionY == round ( resultPLS ) ) ;

numberTotalPLS = numberTotalPLS+length ( va l idat ionY ) ;

numberCorrectSVM = numberCorrectSVM+sum( va l idat ionY == resultSVM ) ;

numberTotalSVM = numberTotalSVM+length ( va l idat ionY ) ;

accuracyPLS = numberCorrectPLS/numberTotalPLS ;

accuracySVM = numberCorrectSVM/numberTotalSVM ;

For the sake of completion, the MATLAB implementation of the same notion for the

PLS model without cross-validation is o↵ered below. Even though similar to the previous

code sample, the actual computation of accuracy is nevertheless easier due to the absence

of loops.

numberCorrect = sum( groundTruth . data == round ( r e s u l t ) ) ;

numberTotal = length ( groundTruth . data ) ;

accuracy = numberCorrect/numberTotal ;
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Subsequently, the classification results of each prediction model are conveyed by means

of their accuracy values, all of which are listed in Tables 15-17. By default, every speaker’s

data and no downsampling are used. Furthermore, the minimum fragment length defined

before as well as the respective ideal number of PLS components (cf. Tables 18-20) are

chosen as inputs. Note that, due to the random division of data items into subsets dur-

ing 10-fold cross-validation, the results of algorithms employing this method are prone

to change ever so slightly from iteration to iteration. However, this fluctuation can be

disregarded since its range amounts to less than 0.5 %.

When referencing the following results, it becomes evident that all prediction models

yield good accuracies for each parameter. In general, phonation fragments are assigned

most precisely, followed by myoelastic and eventually turbulent imitations. For reasons

discussed above, PLS without cross-validation is superior to every other method. How-

ever, since cross-validation is essential when classifying new data, the best results of any

algorithm but the former are highlighted in red. Little over-fitting is present in the models,

indicated by the relatively small di↵erences between all results.

Table 15. Overall classification accuracies for the myoelastic parameter.

PLS SVM

10-fold cross-validation 81.72 % 81.95 %

leave-one-out cross-validation 80.26 % 79.61 %

no cross-validation 85.09 %

Table 16. Overall classification accuracies for the phonation parameter.

PLS SVM

10-fold cross-validation 87.45 % 86.73 %

leave-one-out cross-validation 87.53 % 84.95 %

no cross-validation 90.97 %

Table 17. Overall classification accuracies for the turbulent parameter.

PLS SVM

10-fold cross-validation 76.02 % 74.08 %

leave-one-out cross-validation 73.39 % 70.27 %

no cross-validation 80.25 %
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Additionally, Figures 10-12 depict coordinate systems in which the (exact) prediction

results of PLS regression without cross-validation are mapped against the ground truth.

In each, a vertical red line denotes the classification border of 0.5 introduced before.

Ideally, all negative fragments (ground truth = 0) are located to the left thereof, and all

positive fragments (ground truth = 1) to the right.

Fig. 10. Overall classification results for the myoelastic parameter.

Fig. 11. Overall classification results for the phonation parameter.
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Fig. 12. Overall classification results for the turbulent parameter.

4.2 PLS components

After discussion of the prediction algorithms’ overall performance, it might be of interest

to examine how PLS regression with cross-validation fares when being executed with

varying numbers of principal components (whilst leaving all other variables unaltered).

As mentioned before, PLS components denote linear combinations of input data by means

of which the prediction is carried out. The results for ten di↵erent amounts thereof are

shown in Tables 18-20, all the while including both cross-validation methods. Once again,

the highest classification accuracies are highlighted in red. For reasons specified above,

the latter are also listed in the first columns of Tables 15-17.

In particular, every time a PLS prediction algorithm is called, the ideal number of

principal components is conveyed to the respective function. The corresponding code is

implemented as follows in MATLAB, with su�xes “1” and “2” denoting 10-fold and leave-

one-out cross-validation procedures, respectively, and the array speakerIndices featuring

a unique number for each subject.

accuracyPLS1 = p r e d i c tC l a s s i f i c a t i o n 1 ( f e a tu r e s , groundTruth , . . .

components1 ) ;

accuracyPLS2 = p r e d i c tC l a s s i f i c a t i o n 2 ( f e a tu r e s , groundTruth , . . .

components2 , s p eake r Ind i c e s ) ;
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Table 18. Classification accuracies for the myoelastic parameter using di↵erent numbers of PLS

components.

# components 10-fold cross-validation leave-one-out cross-validation

1 69.70 % 67.54 %

2 78.15 % 76.10 %

3 80.84 % 79.17 %

4 80.60 % 78.07 %

5 81.72 % 80.26 %

6 81.29 % 78.95 %

7 81.29 % 77.85 %

8 81.14 % 78.07 %

9 80.77 % 77.19 %

10 80.51 % 77.63 %

Table 19. Classification accuracies for the phonation parameter using di↵erent numbers of PLS

components.

# components 10-fold cross-validation leave-one-out cross-validation

1 79.39 % 79.35 %

2 82.20 % 81.51 %

3 85.51 % 84.52 %

4 86.45 % 85.38 %

5 87.45 % 85.81 %

6 87.22 % 86.24 %

7 87.34 % 86.24 %

8 86.95 % 86.24 %

9 87.00 % 86.45 %

10 86.74 % 87.53 %

Table 20. Classification accuracies for the turbulent parameter using di↵erent numbers of PLS

components.

# components 10-fold cross-validation leave-one-out cross-validation

1 70.32 % 69.02 %

2 73.56 % 71.31 %

3 76.02 % 73.39 %

4 75.42 % 71.73 %

5 74.93 % 72.14 %

6 75.50 % 73.39 %

7 74.34 % 71.73 %

8 73.65 % 71.52 %

9 73.23 % 70.48 %

10 73.31 % 70.27 %
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4.3 Speakers

Whereas before, no discrimination between individual speakers was made in particular,

in this subsection each imitation artist’s data is treated separately. Thus, potential mis-

takes in the prediction process can be analysed in more detail. Tables 21-23 show the

respective classification results, with each column’s highest applicable value highlighted

in red. Note that leave-one-out cross-validation is missing, due to its impossibility of being

performed when considering one subject at a time only. Interestingly enough, nearly all

female speakers exhibit better classification accuracies than their male counterparts.

Table 21. Individual speakers’ classification accuracies for the myoelastic parameter.

Female 1 Female 2 Male 1 Male 2

PLS, 10-fold cross-validation 85.24 % 84.56 % 69.42 % 82.78 %

SVM, 10-fold cross-validation 85.91 % 85.77 % 71.98 % 79.23 %

PLS, no cross-validation 94.16 % 97.96 % 89.60 % 91.67 %

Table 22. Individual speakers’ classification accuracies for the phonation parameter.

Female 1 Female 2 Male 1 Male 2

PLS, 10-fold cross-validation 83.89 % 91.82 % 85.08 % 88.14 %

SVM, 10-fold cross-validation 82.01 % 90.35 % 82.48 % 90.60 %

PLS, no cross-validation 98.51 % 98.99 % 96.00 % 100.00 %

Table 23. Individual speakers’ classification accuracies for the turbulent parameter.

Female 1 Female 2 Male 1 Male 2

PLS, 10-fold cross-validation 82.96 % 73.84 % 68.63 % 75.31 %

SVM, 10-fold cross-validation 79.45 % 77.55 % 65.04 % 72.84 %

PLS, no cross-validation 94.16 % 94.17 % 84.96 % 87.96 %

Moreover, Figures 13-15 depict the female subjects’ results of PLS regression without

cross-validation in a similar fashion to Section 4.1. Thereby, the predictions of each of

the two imitators are marked in di↵erent colors. Analogously, Figures 16-18 illustrate the

male subjects’ corresponding results.
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Fig. 13. Female speakers’ classification results for the myoelastic parameter.

Fig. 14. Female speakers’ classification results for the phonation parameter.
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Fig. 15. Female speakers’ classification results for the turbulent parameter.

Fig. 16. Male speakers’ classification results for the myoelastic parameter.
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Fig. 17. Male speakers’ classification results for the phonation parameter.

Fig. 18. Male speakers’ classification results for the turbulent parameter.
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4.4 Minimum fragment length

During implementation of the source code, the student has experimented with di↵erent

lengths of the fragments involved in the prediction process. In general, longer imitations

seem to be classified more precisely due to the wealth of information contained therein.

Even though all fragments able to be processed by the algorithm should be selected

as inputs, it is nevertheless interesting to compare the program’s results when using

alternative minimum fragment lengths. Hence, the classification accuracies for multiples

of the threshold of 7.200 samples (calculated in Section 3.5) are shown in Tables 24-29.

Perhaps not surprisingly, the amount of imitations is thereby inversely proportional to

their minimum length.

Table 24. Classification accuracies for the myoelastic parameter using a minimum fragment

length of 14.400 samples.

265 eligible fragments PLS SVM

10-fold cross-validation 79.21 % 82.91 %

leave-one-out cross-validation 80.00 % 82.64 %

no cross-validation 88.68 %

Table 25. Classification accuracies for the phonation parameter using a minimum fragment

length of 14.400 samples.

260 eligible fragments PLS SVM

10-fold cross-validation 86.32 % 86.08 %

leave-one-out cross-validation 85.00 % 82.69 %

no cross-validation 93.85 %

Table 26. Classification accuracies for the turbulent parameter using a minimum fragment

length of 14.400 samples.

269 eligible fragments PLS SVM

10-fold cross-validation 72.42 % 70.60 %

leave-one-out cross-validation 70.63 % 71.38 %

no cross-validation 82.53 %
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Table 27. Classification accuracies for the myoelastic parameter using a minimum fragment

length of 28.800 samples.

148 eligible fragments PLS SVM

10-fold cross-validation 82.82 % 83.95 %

leave-one-out cross-validation 81.76 % 84.46 %

no cross-validation 95.27 %

Table 28. Classification accuracies for the phonation parameter using a minimum fragment

length of 28.800 samples.

151 eligible fragments PLS SVM

10-fold cross-validation 90.98 % 89.38 %

leave-one-out cross-validation 86.09 % 84.11 %

no cross-validation 98.68 %

Table 29. Classification accuracies for the turbulent parameter using a minimum fragment

length of 28.800 samples.

157 eligible fragments PLS SVM

10-fold cross-validation 74.24 % 75.10 %

leave-one-out cross-validation 75.16 % 73.25 %

no cross-validation 89.81 %

Similarly to the previous subsections, Figures 19-24 depict the predictions of PLS

regression without cross-validation for above minimum lengths. Each table’s results are

thereby plotted separately, since in this case the combination of two data sets would

lead to overly cluttered graphics, caused by an excessive number of overlapping circles.

Moreover, upon close inspection of all figures it becomes obvious that in the latter three,

fewer fragments are mapped into the coordinate system due to the higher length threshold

specified therefor.
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Fig. 19. Classification results for the myoelastic parameter using a minimum fragment length of

14.400 samples.

Fig. 20. Classification results for the phonation parameter using a minimum fragment length of

14.400 samples.
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Fig. 21. Classification results for the turbulent parameter using a minimum fragment length of

14.400 samples.

Fig. 22. Classification results for the myoelastic parameter using a minimum fragment length of

28.800 samples.
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Fig. 23. Classification results for the phonation parameter using a minimum fragment length of

28.800 samples.

Fig. 24. Classification results for the turbulent parameter using a minimum fragment length of

28.800 samples.
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4.5 Downsampling factor

Last but not least, the user-adjustable input variable factor, which in turn specifies the

fragments’ downsampling, is analyzed in more detail. For the calculation of the latter,

the corresponding equation has been introduced in Section 3.5:

F
s new

= F
s

/factor (17)

Subsequently, Tables 30-35 give an overview of the algorithm’s classification accuracies

when using two di↵erent downsampling factors (and thus two new sampling rates), with

above F
s

amounting to 48 kHz by default. Note that, while the number of fragments stays

the same in each case, the respective computations are nevertheless executed faster due

to less information being contained in the signals.

Table 30. Classification accuracies for the myoelastic parameter using a sampling rate of 24

kHz.

PLS SVM

10-fold cross-validation 81.80 % 81.54 %

leave-one-out cross-validation 79.39 % 80.48 %

no cross-validation 84.65 %

Table 31. Classification accuracies for the phonation parameter using a sampling rate of 24 kHz.

PLS SVM

10-fold cross-validation 87.05 % 87.26 %

leave-one-out cross-validation 86.24 % 86.67 %

no cross-validation 91.18 %

Table 32. Classification accuracies for the turbulent parameter using a sampling rate of 24 kHz.

PLS SVM

10-fold cross-validation 74.72 % 74.64 %

leave-one-out cross-validation 70.89 % 69.44 %

no cross-validation 80.25 %
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Table 33. Classification accuracies for the myoelastic parameter using a sampling rate of 12

kHz.

PLS SVM

10-fold cross-validation 81.46 % 81.00 %

leave-one-out cross-validation 79.82 % 77.85 %

no cross-validation 85.96 %

Table 34. Classification accuracies for the phonation parameter using a sampling rate of 12 kHz.

PLS SVM

10-fold cross-validation 87.11 % 88.64 %

leave-one-out cross-validation 86.24 % 86.45 %

no cross-validation 93.12 %

Table 35. Classification accuracies for the turbulent parameter using a sampling rate of 12 kHz.

PLS SVM

10-fold cross-validation 75.38 % 75.07 %

leave-one-out cross-validation 71.31 % 68.81 %

no cross-validation 80.04 %

Eventually, Figures 25-30 show the results of PLS without cross-validation for both

new sampling rates. Once again, each table’s results are plotted separately in order to

avoid overly cluttered figures. Interestingly enough, the prediction remains surprisingly

accurate even when fragments are downsampled. Thus, by lowering F
s

, major speed

improvements can be achieved while potentially sacrificing a fraction of the classification

accuracy. In the next section, these improvements are discussed in more detail, alongside

the examination of problems arising from the algorithm.
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Fig. 25. Classification results for the myoelastic parameter using a sampling rate of 24 kHz.

Fig. 26. Classification results for the phonation parameter using a sampling rate of 24 kHz.



58

Fig. 27. Classification results for the turbulent parameter using a sampling rate of 24 kHz.

Fig. 28. Classification results for the myoelastic parameter using a sampling rate of 12 kHz.
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Fig. 29. Classification results for the phonation parameter using a sampling rate of 12 kHz.

Fig. 30. Classification results for the turbulent parameter using a sampling rate of 12 kHz.
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5 Discussion

While the functionality and results of the algorithm are discussed above, its problems are

eventually put forward in this section, all the while additionally proposing improvements

concerning accuracy and speed. Note that, even though several such suggestions are made,

their implementation is beyond the scope of this thesis, and will thus be subject of future

work.

5.1 Problems

In particular, an issue introduced in Section 2.4 is addressed first, namely the simultaneous

appearance of two or more parameters in one signal. Even though the algorithm is able

to correctly distinguish between overlapping periodic (i.e. myoelastic, phonation) and

fricative (i.e. turbulent) source types, the concurrent emergence of both of the former

might result in some fragments’ erroneous classification, especially if one parameter’s

frequency is a multiple of the other (e.g. 50 Hz for myoelastic and 100 Hz for phonation).

Hence, the algorithm is, in its current form, unable to achieve perfect accuracy for these

parameters.

Moreover, turbulent signals have been observed to inherently include too much noise

for flawless classification. Unfortunately, due to the very nature of the source type in

question, which is produced by channelling an airstream through a constriction in the

glottis or the vocal tract, a certain kind of background noise is inevitably contained in

every such imitation. Perhaps not surprisingly, this results in the lowest classification

accuracies of any parameter.

Besides technical problems, imbalances in the selection of input signals are an issue

worth mentioning as well. When referencing Tables 7-9 as well as Table 12, it becomes

evident that the respective amounts of positive and negative samples are far from equal,

with the latter outnumbering the former in every scenario. This inequality is particularly

striking for the myoelastic type, which exhibits a total of 232 positive opposed to 894

negative fragments for all speakers. Likewise, when separately examining its 456 eligible

and 670 ineligible fragments (cf. Section 3.5), respective distributions of 149 positive and

307 negative as well as 83 positive and 587 negative imitations support this observation.

In addition thereto, examination of Tables 21-23 reveals fairly diverse classification

accuracies for individual speakers. For example, in all cases but one, female speakers

exhibit better classification accuracies than their male counterparts. Moreover, upon sep-

arate consideration of both genders, it becomes obvious that the second male imitator

outperforms the first in each case, whereas for the female imitators no such clear dis-

tinction can be made. Interestingly enough, the sole perfect classification result achieved

by the algorithm at hand is derived when applying PLS without cross-validation to the

second male speakers’s phonation predictions.
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5.2 Improvements

Perhaps not surprisingly, the program’s classification accuracies can only be improved

when attending to the problems specified in the previous subsection. In particular, all

fragments need to be analysed more closely before computing their respective features.

The goal of this analysis is thereby three-fold: (i) identify overlapping myoelastic and

phonation source types and clearly discriminate between them, (ii) filter out noise from

turbulent parameters in order to facilitate prediction thereof, (iii) reject training samples

not deemed adequate for accurate classification. Implementation of these measures is

believed to result in the creation of more well-tuned prediction models, which in turn can

successfully be employed to an arbitrary set of real-world data.

However, not only the algorithm’s accuracy can be improved by means of follow-up

e↵orts. In fact, speed of execution is an even more pressing issue in the program at

hand. As mentioned in Section 4, the latter’s default input variables are chosen in order

to yield the best results for non-downsampled signals. Naturally, this decision leads to

rather lengthly runtimes. Since good time performance is nonetheless essential in real-

world scenarios, acceleration of the program’s execution ultimately becomes a necessity,

thereby condoning slightly lower classification accuracies. With this paradigm in mind,

the following changes are proposed for the creation of a light-weight and fast version of

the algorithm:

1. Prediction method: use solely PLS with 10-fold cross-validation as well as PLS

without cross-validation

2. PLS components: lower the number of PLS components to 3 for each parameter

3. Downsampling factor: choose a downsampling factor of 4 (i.e. a new sampling rate

of 12 kHz)

Subsequently, the accuracies of this alternative classification are shown in Tables 36-

38, with the prediction values of PLS without cross-validation depicted in Figures 31-33.

All the while, the number of speakers and minimum fragment length remain unchanged.

Not surprisingly, the algorithm is indeed executed much more quickly. Conversely, the

corresponding classification accuracies deteriorate only slightly (< 2 %) in comparison

with the results presented in Section 4.1, thus highlighting the potential of this novel

approach regarding runtime improvements.

Table 36. Alternative overall classification accuracies for the myoelastic parameter.

PLS components = 3, Fs = 12 kHz PLS

10-fold cross-validation 80.22 %

no cross-validation 85.96 %
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Table 37. Alternative overall classification accuracies for the phonation parameter.

PLS components = 3, Fs = 12 kHz PLS

10-fold cross-validation 85.82 %

no cross-validation 93.12 %

Table 38. Alternative overall classification accuracies for the turbulent parameter.

PLS components = 3, Fs = 12 kHz PLS

10-fold cross-validation 75.46 %

no cross-validation 80.04 %

Fig. 31. Alternative overall classification results for the myoelastic parameter.
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Fig. 32. Alternative overall classification results for the phonation parameter.

Fig. 33. Alternative overall classification results for the turbulent parameter.
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6 Summary

The Master’s thesis at hand dealt with the automatic extraction of articulatory parame-

ters from audio files of everyday sounds (e.g. animal sounds, mechanical sounds) vocally

imitated by actors. Thus, in order to gather the necessary information, the student joined

the team at KTH Stockholm in the wake of his research, with the intent of crafting this

work as well as contributing to the EU project SkAT-VG. As mentioned above, the overall

goal of the latter was three-fold: (i) improve the understanding of how sounds are commu-

nicated through vocalizations and gestures, (ii) look for physical relations between vocal

sounds and sound-producing phenomena, (iii) design tools for converting vocalizations

and gestures into parametrised sound models [14]. Both the team at KTH and the stu-

dent concentrated their e↵orts on the first subgoal, which will additionally be summarized

in a separate paper at a later time.

In particular, the thesis was structured as follows: Section 1 introduced the general

idea and included an outlook on consecutive chapters. Subsequently, Section 2 o↵ered an

overview of the subject matter’s background, thereby focusing on the following topics:

1. Vocal imitations and verbal descriptions

2. Classification frameworks

3. Sound analysis and feature extraction

4. Sound sketching parameters

Naturally, special attention was given to academic work carried out as part of afore-

mentioned research project, in addition to referencing other relevant publications. More-

over, Section 3 explained and discussed the program’s methodology in more detail, all the

while concentrating on a number of di↵erent notions:

1. Audio files

2. Annotations

3. Fragments

4. Auto-correlation

5. Features

6. Classification

The algorithm’s execution was thereby outlined as follows: at first, the imitations of

everyday sounds by four voice artists, recorded at KTH before the arrival of the stu-

dent, were annotated by the department’s phonetic experts with regard to three speech

parameters introduced by Helgason [7], namely myoelastic, phonation and turbulent. Sub-

sequently, these annotations were applied to the raw data, resulting in the extraction of a

large number of short audio files (i.e. fragments), which were either marked as positive or

negative, depending on their possession of the respective humanly annotated parameter

or the lack thereof.
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Thereafter, a set of features was created by means of the auto-correlation function in-

troduced by Cheveigné and Kawahara [2]. Subsequently applying these features to afore-

mentioned fragments, the latter were classified into a positive and a negative group, all the

while using two types of prediction models, namely PLS regression and SVM, to forecast

the corresponding results. To ensure flexibility and applicability in real-world scenarios,

N-fold and leave-one-out cross-validation were additionally performed on the data sets.

Eventually, the prediction results were matched against the annotated ground truth

in order yield the classification accuracies discussed in Section 4. In addition to its default

combination, four di↵erent instances of the algorithms’ input variables were examined:

1. PLS components

2. Speakers

3. Minimum fragment length

4. Downsampling factor

Finally, problems with the algorithm were discussed in Section 5, all the while o↵ering

improvements in order to further enhance the accuracy and speed of the program by

means of future e↵orts.

In general, the overall results of the classification process are satisfactory, revealing

good accuracies of around 82 %, 88 % and 76 % for the myoelastic, phonation and

turbulent parameters, respectively. Upon comparison with the corresponding success rates

of around 86 %, 94 % and 80 % derived by Friberg and his team [5] by means of the analysis

of the fragments’ spectrograms, it becomes evident that a promising time domain-only

approach to some kinds of speech processing is put forward in the work at hand. Thus, the

student believes that this Master’s thesis successfully contributes to the academic research

by investigating and exploiting the potential of vocal imitations, thereby facilitating the

process of producing, verifying, selecting, communicating and refining ideas for sonic

designers and sound artists alike.
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