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Abstract At the audio communication group a library consisting of note transitions
played by a violin was recorded. The volume and the fundamental frequency trajectories
from recordings of two notes were extracted and different models for approximation of
the trajectories were developed: a simple model with a hyperbolic tangent function, a
model with natural splines and a model with beziér curves. The natural splines curves
showed the best results when using a mean absolute error measurement. A synthesizer
framework was developed in C++ on a Raspberry Pi to use the models in real-time.
Further evaluation of the models was done in a user study. The question was if the
models and their number of parameter have an influence on how precise the fundamental
frequency of the analyzed transitions can be reproduced. The study showed that the
models have a significant influence on the difference between the trajectories created by
users and the original fundamental frequency trajectory. Both the beziér curves and the
spline curves lead to significant better results than the hyperbolic tangent model when
recreating fundamental frequency trajectories. Overall the spline curve model performed
best. The approximation results had the lowest error and with the use of two parameters
for curve adjustment the majority of users preferred this model in the study.

Zusammenfassung Am Fachgebiet Audiokommunikation wurden Aufnahmen von
Noteniibergangen, gespielt von einer Konzertviolinistin, aufgenommen. Kurven fiir die
Lautstarke und die Grundfrequenz wurden aus Aufnahmen von zwei Tonen extrahiert
und Modelle fiir die Approximation dieser Kurven entwickelt: ein Modell mit einer Tan-
gens hyperbolicus Funktion, ein Modell mit natiirlichen Splines und eines mit Beziér
Kurven. Die Spline Kurven wiesen den geringsten mittleren absoluten Fehler bei Vergle-
ich der modellierten Kurven mit den extrahierten Kurven auf. Auf einem Raspberry Pi
wurde eine Framework zur Synthese in C++ entwickelt um die Modelle in Echtzeit zu
spielen. Weiterhin wurde eine Studie zur Evaluation der Modelle durchgefiihrt, in der
Teilnehmer gehorte Noteniibergange nachspielen sollten. Untersucht wurde der Einfluss
der Modelle und deren Parameteranzahl auf die Genauigkeit der Reproduktion der Grund-
frequenz. Ergebnisse zeigten, dass die Auswahl des Modells einen signifikanten Einfluss
hat. Die natiirlichen Spline und die Beziér Kurven zeigten dabei signifikant bessere Ergeb-
nisse als die Tangens hyperbolicus Funktion. Insgesamt hatte das Modell mit natiirlichen
Splines die besten Ergebnisse: Die Approximation zeigte die geringsten Fehler und bei
einer Nutzung von zwei Parametern bevorzugte die Mehrheit der Studienteilnehmer dieses

Modell.
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1. Introduction

When synthesizing a melody or playing an instruments ornamentation plays an important
role. Depending on the instrument there are a lot of different techniques that can be
applied. One component of the ornamentation is how note transitions are played.
Electronic instruments such as synthesizers are capable of producing continuous note
transitions. One way implementing these transitions is a linear change of the fundamental
frequency from one note to another. For acoustic instruments like a violin, transitions
cannot be described in such an easy way. Developing mathematical models for synthesis
of note transitions is the aim of this thesis.

Before finding models a deeper look into synthesizers and their way of producing contin-
uous transitions is made. Russ [1] describes a so called portamento circuit which is used
in synthesizers:

The portamento circuits in analogue synthesizers work by restricting the rate at
which a CV [control voltage] can change. Normally, the pitch CV from a keyboard
will change rapidly when a new note is selected. A portamento circuit changes the
slope of the transition between the two voltages. It thus takes time for the note to
move from the existing pitch to the new pitch (p.171).

Control of portamento was often placed near the keyboard and depending on the syn-
thesizer it could be switched on an off during play for expressive performance according
to Jenkins [2]. The only additional parameter was the time the transition needs and no
parameter about the curve form was described. Digital synthesizers on the other hand
offer different curve forms, like the Ultranova by Novation Digital Music Systems Ltd.
[3]: a linear and an exponential curve are selectable for a continuous note transition. But
still no parameter which offers further control about the curve form is available.

Instead of recreating the function of analog synthesizer circuits the behavior of an profes-
sional musician on a instrument is analyzed. With this approach models can be developed
which then offer a variety of parameters for curve manipulation. Therefore extracting con-
trol parameters of note transitions from recorded samples is done. In the next chapter
the analysis of the recorded audio files and the modeling of the control parameters is pre-
sented. In chapter 3 the real-time synthesis of these models is described. Then the models
are evaluated in a user study which is the topic of chapter 4. And finally in chapter 5 the
overall results are discussed.



2. Analysis and Modeling

This chapter addresses the analysis and modeling of note transitions. First the audio
material used for analysis is described and categorized into different transition types.
The methods used to extract different control parameters out of the audio material are
presented. After that results of the analysis are shown and discussed. Different models
for the use of synthesizing transitions are then proposed and evaluated.

2.1. Analysis - Parameter Extraction

First a set of control parameters needs to be chosen which then can be extracted to provide
a basis for the development of note transition models and their consecutive evaluation.
The data set used here are sequences of two notes played on a violin. Details about the
data set are described in the next section. For extraction a pure tone is taken as a basic
model, because it is not intended to reproduce the complete timbre and behavior of a
violin. Thus the characteristics of playing a violin like the movement of the bow and
the physical aspects of the body and the resulting resonance are ignored. Therefore a
single sinusoid can be used as the basic model for parameter extraction. The formula for
a sinusoid is:

x(t) = asin(wt) (2.1)

So there are two parameters: amplitude a and the angular frequency w. According to
Puckette [4] a good comparable measure for the signals amplitude is the root mean square
(RMS) amplitude which is used as the first control parameter. The fundamental frequency
in Hertz of the sinusoid fj is equal to 27w and builds the second control parameter. The
fundamental frequency is often used for a basic analysis of audio signals for example by
Ikemiya et al. [5], Gémez et al. [6] and Dai et al. [7]. These two control parameters are
then extracted from the recorded material.

2.1.1. Recorded Material

At the audio communication group a library of transitions was recorded. A concert vi-
olinist was instructed to play two notes with different articulation techniques for the
transition. Overall the library consists of 344 note transitions which differ in the starting
and ending note, the transition type, dynamic and if vibrato is used. In table 2.1 the
different parameters are shown. The recordings were labeled after the scheme described
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by von Coler and Lerch [8] with the help of the software Sonic Visualizer'. With this
segmentation the audio files, each consisting of a sequence of two notes, have seven la-
bels: rest, transition, note, transition, note, transition, rest. This thesis focuses on the
transitions from one note to another.

Table 2.1.: Different parameter values in the violin library

Parameter  possible Values

Volume mp, ff

Articulation legato, glissando, detached

Vibrato on, off

Semitones 0,5,7

Direction up, down

Note 1 d’,a’, e, b”

Note 2 a, e, b, fis", g d’, a”, e’ d,a, e, b’ g

2.1.2. Transition Classification

Now a deeper look into what behavior is expected from the transitions is taken. The
transitions are categorized here by the different articulations used, as shown in table
2.1. First the differences in playing for the articulations are described. After that
spectrograms for each articulation are presented. With these information simplified
models are described.

The three different articulations used in the library can be described in simple form
with the following violin playing technique: for glissando the player is sliding the finger
along the string from the position of the first note to the second note. During this slide
the string is constantly excited by the movement of the bow. For legato the player first
plays one note and then without any movement of this finger another finger pushes
another note on a string. This also involves constant excitation of the strings. The last
articulation used here is detached. This is basically the same as legato except there is
pause in the excitation.

The glissando playing leads to a spectrogram shown in figure 2.1. In this case a transition
from A3 (221.5 Hz) to D4 (295.66 Hz) is shown. For each tone the fundamental frequency
and the harmonics are clearly recognizable. As expected from the sliding with the
finger between the notes on the fingerboard a smooth change in frequency is visible.
The behavior of the fundamental frequency can be translated into a simplified model.
Also the power of the signal which is seen as volume can be translated into a simplified

Tt is an application designed for viewing and analyzing audio files from the Centre for Digital Music at
Queen Mary, University of London. Downloadable for free at http://www.sonicvisualiser.org/
[20.03.2018]
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model. It is shown in figure 2.2. The smooth change of the fundamental frequency and a
constant volume is presented. At time t; the glide is starting.

Power/f [dB/Hz]

Figure 2.1.: Spectrogram of a transition, glissando

Analogous to the glissando articulation the spectrogram of a legato transition is shown
in figure 2.3. This transition is going from A4 (443 Hz) to E4 (331.87 Hz). These
frequencies and their harmonics are obviously noticeable. The attenuation in power of
the first note and the rise in power of the second note are visible. In addition there is
an overlap between the two notes. All these observations lead to the model presented in
figure 2.4. The overlap in volume is reflected as well as a second frequency at ¢t; when
the second note starts and the first note is still active.
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Figure 2.2.: Simplified transition model for glissando articulation

Figure 2.3.: Spectrogram of a transition, legato
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Figure 2.4.: Simplified transition model for legato articulation

For the last articulation used, a spectrogram is shown in figure 2.5. In this case the notes
A3 (221.5 Hz) and D4 (295.66 Hz) were played. The fundamental frequency and the
harmonics are clearly visible for both tones. Also visible are the volume attenuation of
the first note and the volume rise of the second note. As expected no smooth connection
between the two different tones is visible. This behavior can be translated into a simpler
model, shown in figure 2.6. At ¢; the excitation of the first note ends and at t, the
excitation of the second note starts.

Volume f0

2

fi—

Figure 2.6.: Simplified transition model for detached articulation

With these models a decision for further analysis has to be made. Modeling of the funda-
mental frequency of transitions with detached and legato articulation is straightforward.
During the transition the frequency first is constant, then there is a jump and after that it
is constant again. Also the volume during these transition is comparable to modeling the
attack and the decay of a tone without another note following. In conclusion modeling
these transition can be achieved by modeling volume envelopes. By contrast, glissando
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Figure 2.5.: Spectrogram of a transition, detached

transitions require a further analysis. A model for the continuous frequency change and
a deeper look into the behavior of the volume of the signal is necessary.

2.1.3. Algorithms for Extraction

Glissando transitions are now in focus of the analysis and for the two control parameters
proper algorithms are needed.

Fundamental Frequency

For the extraction of the fundamental frequency (f0) trajectory a suitable algorithm is
a prerequisite. In this specific use-case the algorithm has certain requirements. With
the knowledge of the starting and the ending note the algorithm only needs to detect
frequencies in a specific range. Furthermore the algorithm only needs to deal with
monophonic input data due to the fact that the library only consists of monophonic
violin recordings. A ground truth is needed to test the trajectories calculated by the
algorithms. For this purpose the spectrogram and the starting and ending notes are a
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good basis for manual evaluation.

In the preexisting code written by Henrik von Coler he used a MATLAB implementation
of the SWIPE Algorithm from Camacho [9] for fO detection. This implementation of the
Algorithm has some drawbacks. The Algorithm often detects false trajectories. Different
sets of parameters did not solve the problem. Sometimes the algorithm calculates
unhelpful trajectories when the first detected value is not within the interval consisting
of starting and ending note of the analyzed transition or the f0 value is completely
outside the range in which it is expected. Out of the overall 96 glissando transitions 56
trajectories were false.

With the information about the beginning and the ending note of a transition, a filter
can be implemented before using the SWIPE algorithm. But it must be taken into
account that filtering involves delaying the signal depending on the filter. To get the
f0 trajectory and other parameter trajectories synchronous to the filter output the
filter should be designed with constant group delay. In this case a FIR filter design
is chosen, because in contrast to IIR filters they can be designed to fulfill this requirement.

With the help of a MATLAB FIR-Filter design function each audio sample is filtered
with a low-pass and a high-pass and filter. The function uses the classical method of
windowed linear-phase FIR digital filter design described by Digital Signal Processing
Committee [10]. The audio data is processed by convolution with the respective filter
coefficients. The group delay of the filter is used to truncate the output of the filter:
the first n samples and the last n samples of the output are discarded. n is equal to the
group delay. Then the filtered output has the same length as the input and the phases
of the in- and output are identical inside the pass band.

By applying the filter prior to the fO trajectory calculation, the SWIPE algorithm
achieves slightly better results: 34 out of 96 transition were falsely detected.

Considering the analysis results the need for another algorithm is clearly recognizeable.
The YIN algorithm proposed by De Cheveigné and Kawahara [11] is used. A MATLAB
implementation by the authors of the algorithm is used and none of the 96 transitions
was extracted with an obviously false trajectory.

Volume

As mentioned before the amplitude of a signal x is described by the root mean square
(RMS) value. Equation 2.2 is mathematically identical to the one from Puckette [4] but
with a different notation:

N—-1 o
RMS = Z=T0x (2.2)
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In the analysis the RMS value is calculated for each audio block, which consists of N
samples.

2.1.4. Results

All the glissando transitions are now processed with the two algorithms described before.
The parameters for the algorithms are shown in the following table:

Table 2.2.: Parameters for control parameter extraction

parameter value

general
fs 96 kHz
blocksize 4096 samples
hopsize 512 samples
YIN
FO0min starting note +/- 150 cent
f0mmaz ending note +/- 150 cent

The expected range of fO0 depends on if the transition is from a lower to higher note or
vice versa. If the starting note is lower than the ending note f0,,;, is the starting note
minus 150 cent and f0,,.. is the ending note + 150 cent. For one glissando transition the
result of the volume and f0 extraction is shown in figure 2.7. Additionally the starting
and the ending note is plotted as a dashed line in the graph of the {0 trajectory.

0 50 100 150 200 250 300 350 400 450 500

440
420
N’ 400
L
o 380
360
340

Figure 2.7.: RMS and {0 trajectory of one glissando transition
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2.2. Modeling

The calculated trajectories from previous section should be described in a more general
form. The goal is finding formulas that can be used for real-time synthesis. Different
algorithms for approximation are described and evaluated.

In the previous section we found curves for two different parameters: fO0 and volume. One
topic discussed here is if these two parameters need different interpolation algorithms.
One main requirement is the parameterization of the resulting curves. The number of
parameters per curve depends on the algorithm.

2.2.1. Real-Time Requirements

The term real-time often arose in previous sections. This term needs some explanation
in the context of audio and synthesis. Scholz [12] uses the definition from the Oxford
Dictionary of Computing: real-time means a system can always provide correct results in
a defined period of time. It means that even if the system provides the correct results after
this period of time the system fails. In the audio context this means that the calculation
of a block of audio samples must be finished after a certain amount of time. This time
period is defined by the length of the processed audio block and the sample rate. An
application with a block size of 64 samples and a sampling rate of 48000 Hz for example
has ﬁ = 1.33ms to calculate each block. On the target system this time period can
be converted to processor cycles and every function then can be measured. To assure this

behavior we can propose requirements to the algorithms used for audio calculation:

e Every part of the audio calculation should be done in a definite amount of time.
Some algorithms have an undefined amount of iterations to get their result, for
example recursive newton interpolation described by Schwarz and Kockler [13].

e The overall amount of time needed for calculation is measured by taking the longest
calculation path for each algorithm. For example if some parameters need to be
recalculated only every second this should be taken into account.

e There should never be an algorithm in the calculation that has to wait for an
undefined amount of time to start the calculation.

With these requirements in mind we can describe and evaluate algorithms for the use of
real-time audio synthesis in the next section.

2.2.2. Algorithms

In this section different algorithms for approximation of the trajectories are described
and evaluated. First an error measurement is introduced and then the algorithms are
described. For the algorithms there are different approaches. The first three are with
widely known functions, linear, exponential and hyperbolic tangent. Their parameters

18



can be used to improve the result of the approximation. For the next approach points
from a trajectory are used for the calculation of a cubic spline curve between them. The
last approach is a bézier curve, which is using basic functions and control points. These
points do not lie on the curve itself most of the time.

Linear Transition

Before using algorithms for trajectory approximation a look at ways of creating a transi-
tion between starting and ending notes without the use of other data points is done. The
most obvious way for a transition between two points is a linear connection. For this the
general form of the equation of a straight line by Papula [14] is used:

y(x) = mx +b. (2.3)

Exponential Smoothing

Another way to create a smooth curve between data points is stated by Brown [15]. The
definition of the smoothed function is:

Si(x) = azy + (1 — @)S;_1(x). (2.4)

For an audio related use case we adapt the definition of the exponential smoothing factor
« from Zolzer et al. [16] to:

e o5

7 is called the time constant and is defined as the amount of time in which the function
reaches 1 — e™'(& 0,63) of the original signal after excitation with a unit set function.
At is the time between the x - values of the function. For example the hopsize can be
used. Figure 2.8 shows examples for exponential smoothing. In this case the we used two
points yo = 0, y; = 1 and different time constants 7. The red dashed line shows ~ 63%
of y1. This curve was created using the following formula:

S(n) =1y, n=0,

Sn)=ay +(1—a)S(n—1), n>0neN (2.6)

Hyperbolic Tangent

The third way we consider is a transition with the help of a hyperbolic tangent function
defined by Papula [14]. The functions needs some improvements to fit our needs:

T(x) = ¢+ dtanh (xf;a) , x,a,bc,dER (2.7)
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Figure 2.8.: Exponential smoothing with different values for 7

For a transition between two values yp and y; the parameters ¢ and d must be:

|y0 - y1|
d="—"2""

2 (2.8)
¢ =min(yo,v1) + d.

Parameter a is depending on the x - values. For a transition between the first value z,
and the last value z; parameter a must be:

_ |zo — 1|

. (2.9)

The last parameter b then controls the slope of the function. In figure 2.9 a hyperbolic
tangent curve is plotted with different values for b.

Cubic Splines

Splines are a set of functions for piecewise interpolation where every piece is defined by a
polynomial.

According to Unser [17] and Schweizer [18] splines find regular use in signal processing as
well as data interpolation and seem to be a good choice for our modeling task, since they
are robust against data fluctuation whilst having low processing costs. Here cubic splines
are used, which means every piece is described by a cubic polynomial, because higher
order polynomials could cause unwanted oscillation at the edges. Splines and mostly
B-Splines are widely used for f0-interpolation, by Ardaillon et al. [19], Barbot et al. [20],
Hahn et al. [21], Hahn and Rébel [22], Lolive et al. [23], Lolive et al. [24], Lolive et al. [25]
and Robel [26]. Here the natural cubic splines are used instead of B-Splines, because for
interpolation with B-Splines the control points used do not lie on the curve itself. This
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Figure 2.9.: Hyperbolic tangent smoothing with different values for b

curve fitting approach is used with bézier curves in the next section. Another reason
why natural cubic splines are chosen is that there is no curvature at the starting and
the ending point of the curve, which means the second and the third derivatives at these
points are zero, and the curve can continue as a straight line. The following formulas
used for the calculation of natural cubic splines are taken from Engeln-Miillges et al. [27].

There are n points P; = (z;,¥;) and the resulting graph containing all the points is called
S. Between the points P; and P;,; the segments S; are represented by a cubic polynomial:

Si(x) := a; + bi(x — x;) + ci(x — 2:)* + di(z — )3,

2.10
x € [z, % 44],0:,b;,¢.d; € Ri=0,1,...,n — 1. (2.10)

The goal is having a formula for a graph which parameters are depending on the points
P;. In a general form this leads to a set of equations. The equations are simplified by
using the following substitution:

h‘i:xi+1_xi) z:0,1,,n—1 (211)

Equations have to be formulated for the coefficients a;,b;,c; and ¢;. The coefficients a; are:

=y, i=0,1,..n—1 (2.12)

Next step is buildings an equation System Ac = a. The first and the last coefficient cq

21



and ¢, are set to 0 due to the boundary conditions of natural cubic splines. The Matrix
Ais:

2(ho + h1) hy

hy 2(hqy + hg) ha
h 2(hs + h h
A= o et 213
hn—3 2(hn—3 + hn—2) hn—Q
hn—Z Q(hn—Z + hn—l)
Vectors ¢ and a are:
1 3?!2}1—191 _ 3y1h—0yo
c 3y3—y2 _ 3y2—y1
c=| 7], a= R (2.14)
Cn—l 3yn};zy_nl—l _ 3yn—hl;y2n—2
With the resulting ¢ vector the remaining b; and d; are:
i1 — Y By .
b = y“h—y—g(cﬁﬁm), i=0,1,.n—1 (2.15)
and
di— ) i=01 | (2.16)
T Cir1—¢), 1=0,1,...n ) )

With this set of equations several points out of extracted fO-trajectories can be used to
get a polynomial representation of the curve. In figure 2.10 a natural cubic spline curve
is plotted with the four points P; = (0,0), (%, 0.8), (%, 0.5),(1,1). For a large set of points
the computation time needed for calculation can rise depending on the algorithm used
for matrix solving. Also the choice of points ( e.g equidistant) needs evaluation. This is
done in the next section.

Bézier Curves

As we have seen in the previous section cubic splines offer a way to approximate curves.
The next approach presented are bézier curves. These curves are often used in the context
of computer graphics, since they create a smooth modifiable output. They are rarely
used in a computer music context but for example Battey [28] also used them for f0O
modeling. One major difference to natural cubic splines is that the control points for the
polynomial are not part of the curve itself. Another major difference is that the curve
definition is not piecewise. This leads to a modified approach for finding the polynomials
for approximation. The general definition of bézier curves K (x) from Schwarz and Kockler
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Figure 2.10.: Natural cubic spline

[13] is the following:
K(z)=) biB!z),neN (2.17)
i=0
where b; are the y values of the bézier points C;. The x values of C; are:

Ciz=—, i=0,1,..,n (2.18)

This means the bézier points are equidistant on the x axis. BI'(z) are the bernstein
polynomials. The bernstein polynomials are defined as:

Bl'(z) = T _la)n (T;) (x—a)'(b—2z)"", z€la,b,a,beR. (2.19)

n is the polynomial degree. To use these polynomials we need another restriction: a =0
and b = 1. For the bernstein polynomials this means:

Bl'(z) = (") (1 —z)"", =x€lo,1]. (2.20)
i

For a bézier curve that goes through of a set of points P; = (z;,y:) we need to find the

corresponding C;. Now an example for a set of four points is presented. The x values

of the points P; must be the same as the x values from C;. So we need to choose four

equidistant points. In this case the polynomial degree is n = 3. The bernstein polynomials
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are:

Table 2.3.: Bernstein polynomials and control points

i B} C;
0 (I—x)*  (0,b)
1 31—-2)x (3,b1)
2 31 —a)? (3,b2)
3 1'3 (1,[)3)
Then K(z) is:
K(z) = bo(1 — 2)® + 531 — 2)%x + 03(1 — 2)2® + bsz®, €0, 1]. (2.21)

With the four points P; = (z;,y;) which lie on K (z) we can write:

Similar to the splines this can be transformed into an equation system Ab = a. The
matrix A is then:

(1-— xo)f” (1 —x0)%xrg 3(1 —xo)xd )
R [ e 1 oo
(1 —23)® (1—=x3)%x3 3(1 —ax3)2? =3
vectors b and a are:
bo Yo
b= Z; . a= z; . (2.24)
bs Y3

This can be written in a more general form for n — 1 points. The equation system Ab = a
is then:

By(zo)  Bi(wo) ... Bj_i(wo)  Bj(xo)
By(z1)  Bi(zi) ... By ()  Bj(x)
A= : : : : : (2.25)
By(zn-1) Bi(za-1) ... By_i(zn-1) Bplza-1)
By () By (w,) ... B} (%) By ()
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bo Yo

by Y
bn—l Yn—1
br Yn

In figure 2.11 a bézier curve is plotted with the four control points P, =
(0,0),(3,0.8),(%,0.5),(1,1). The bézier points C; are then (0,0), (3,1.983), (2, —0.8667)
and (1,1). They form the control polygon, which is the blue dashed line in the figure.
For synthesis the y-values of these points, here also referred as b;, can be used to modify
the curve without causing a recalculation of the equation system.
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Figure 2.11.: Bézier Curve

2.2.3. Extracting the parameters

In the previous section the theory for all the used algorithms was presented. Before
going into more detail about the implementation of the algorithms the input data was
modified. One goal here is to find a general form for a glissando transition from one note
to another. To achieve that, a comparable form of the extracted trajectories was needed.
It was made by normalizing the transitions. Each transition is normalized individually,
so that y = 0 corresponds to the starting point and y = 1 to the ending point of the
transition. For the frequency the starting note corresponds to 0 and the ending note to
1.
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All of them were implemented as a function in MATLAB. For the exponential smoothing
and the hyperbolic tangent theory does not give a straightforward solution which
parameters might lead to good results. For the exponential smoothing a set of curves
were created with a different o for each curve. Then the mean absolute error was
calculated and the o with the lowest error was picked. The same procedure was made for
hyperbolic tangent curve. The parameter varied was b. For a linear transition there is no
parameter to influence the curve if the line goes from the starting note to the ending note.

2.2.4. Analysis of the modeling parameters

Now that every model provides a parameter set for each note transition we can try to find
correlation between the attributes and the extracted modeling parameters, for example
a correlation between the dynamic of the transition and the parameters used for a spline
modeling. The goal is finding a parameter set for the different attributes that a potential
user can pick when synthesizing a transition.

Clustering

A general overview about clustering algorithms is provided by Xu and Wunsch [29].
According to them clustering has no straightforward solution and needs trials and
repetitions. The goal of the clustering is to find a correlation between the clusters and
the attributes of the transitions, shown in table 2.4. With the extracted parameters
for the proposed models the transitions can be categorized into clusters. The k-means
algorithm, initially proposed by Lloyd [30], widely used in statistics, is used here in a
modified version by Arthur and Vassilvitskii [31], known as k-means++. The algorithm
tries to find k centers for n data points in R? and minimize the squared distance between
each point and its closest center.

One problem is finding the right number of clusters. A graphical visualization for finding
a suitable number of clusters are silhouettes. First described by Rousseeuw [32]. This
algorithm is used to evaluate the number of cluster centers found by a clustering algorithm.
The data set where clusters can be found contains for example all extracted parameters for
all f0 trajectories for one model. After finding clusters for k£ different centers a correlation
between attributes of the transitions and the clusters is analyzed. Attributes of the
transitions are:

Table 2.4.: Attributes of the transitions

attribute value 1 value 2 value 3
dynamic mp: mezzopiano ff: fortissimo

Af 0 semitones 5 semitones 7 semitones
transition type detached glissando legato

26



These attributes and their values would indicate two or three clusters, because of their
number of possible values. At best all transitions which are grouped to one cluster share
the same attribute value. Now the transition attribute values and their assigned clusters
are compared.

First the clustering is done for the amplitude trajectories. In the following table one result
is shown for a k-means+-+ clustering with £ = 2 and the extracted parameters for a four
point interpolation with spline curves:

Table 2.5.: Number of transitions for one attribute value and their cluster

dynamic transitions in cluster 1 transitions in cluster 2
mp 117 59
i 97 75

The table shows that 117 transitions with the dynamic mp are assigned to cluster 1 and
55 to the second cluster. This means that the clustering of the amplitude trajectories
into two clusters does not reflect the separation from the attribute dynamic. Ideally the
table should be diagonal, which means all transitions with the dynamic mp would be in
cluster 1 and all transitions with the dynamic ff would be in cluster 2 to indicate this
assumption. The clustering was also done with different models and different numbers of
interpolation points. However for other attributes and numbers of clusters there is also
no evidence that the clustering is similar to the separation of the transitions by their
attributes.

Second clustering is done for fO trajectories. The beziér curve and the spline parameters
indicate a useful number of clusters from two to four clusters with the k-means algorithm.
For the dynamic and Af there is no evidence that these attributes could be associated
to clusters, but transitions with type glissando could be assigned to one specific cluster.
Table 2.6 shows the results for a k-means++ clustering with & = 3 clusters. The used data
set was beziér curve parameters extracted out of all transitions with an upward direction
from note 1 to note 2 and four interpolation points. 83,3% of transitions with type
glissando are in cluster 2, and only 5% with type legato and only 4% of type detached.
The center of this cluster can be seen as an average glissando transition. In contrast to
that, the two other clusters can not be separated by the transition type. This could be
caused by overfitting. The algorithm used for the fO trajectory does not detect gaps, so
the trajectories for detached transitions can show a continuous trajectory even when there
is no such behavior.
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Table 2.6.: Three clusters and the number of associated transitions by type

transition type transitions in cluster 1 transitions in cluster 2 transitions in cluster 3

legato 25 3 32
glissando 0 40 8
detached 15 2 32

The cluster centers itself are a set of parameters and a trajectory can be created with
them. In figure 2.12 the trajectories of cluster centers for clusters which can be associated
to the articulation glissando are presented. The beziér and the spline curves where results
for a clustering with a data set created with a four point interpolation from transitions
with an upward direction from note 1 to note 2.
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Figure 2.12.: Trajectories of cluster centers associated to glissando

The clustering showed that some attributes are correlated to the modeling parameters
and some are not. The last example showed that for the search for a general description
of a glissando transition modeling parameter sets can be found. But further evaluation is
needed for finding a general model.

2.2.5. Evaluation

All the algorithms presented in this section must be compared and in terms of numerical
accuracy one can be picked. A numeric measurement will be introduced for the algorithms
but for further evaluation a user study is necessary. We need to take the complexity of
the algorithms into account and the benefits we get from increasing computational effort.
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A lower error limit needs to be found for which we can say that there is no notifiable
difference. According to Kollmeier et al. [33] the just notifiable difference (JND) is about
3 Hz for frequencies below 500 Hz and about 0,6 % for frequencies above 1000 Hz for sine
waves. For more complex tones inside the range of the fundamental frequency of speech
(80 Hz - 500 Hz) the JND is about 1 Hz. But these values are measured with stationary
tones, so for a tone with changing frequency these values could be different. With these
values in mind one of the algorithms can be picked.

Error Measurement
An error measurement is needed to compare the results of the algorithms. A relative error

is defined by Schwarz and Kockler [13]: € R and 7 is the approximate value for x. If
x # 0 the relative error ¢ is defined as:

€= . (2.27)

To make the error comparable by normalization, we use the relative error formula from
Engeln-Miillges et al. [27]:

B |z — Z|

L= 7 (2.28)
Another error is the absolute error, also described by Engeln-Miillges et al. [27]:

0y = |z — . (2.29)
In the scope of this thesis we are going to approximate vectors x; = (xo, 1, , Tp_1, Ty)
of length n,x; € R,n € N with the approximate vector Z; = (Zo, %1, ,Zn_1,Tn) of

length n,z; € R,n € N. We define a mean absolute error for vector approximation:

n—1

- 1
= — g i — T4l 2.
0 " |x; — ] (2.30)

1=0

For more information about the error we use the standard deviation of the error:

n—1

o= 1 Z(&m — 6,)2. (2.31)

All of these indicators can also be described in percent:

8o, = - 100 (2.32)

29



and
og = o - 100. (2.33)

A relative error works good if z and & have high values, but if the values are around 0, the
relative error can quickly rise and consecutively fails as a comparable error measure. For
example: x; = (345,350,500) and Z; = (340, 345,495). The absolute error is then 5 for
each pair of z; and Z;. The relative error is then ¢; = (0.0145,0.0143,0.01). In this case
the absolute error is the same for every pair but the relative error varies. In this example
the variation is not that high, but for z; = (0.1,0.2,0.4) and z; = (0.05,0.25,0.35)
the relative error is very high and varies even if the absolute error is the same: ¢; =
(0.5,0.25,0.125). The absolute error is chosen. In addition the error is comparable if the
data set is normalized, which means x and y - values are transformed linear to values
between 0 and 1.

With theses formulas for error description we have a tool to measure the accuracy of the
interpolation algorithms.

Fundamental frequency

First the results of the interpolation of the fO trajectories is analyzed. All the glissando
transitions are used and the parameters of the different models are extracted. In figure
2.13 one trajectory and the corresponding curves for each model are shown. This is
one example of a glissando transition. Apparently, the exponential curve is the worst
approximation in this case with a mean absolute error §, of 0.21. In this case the
normalization from 0 to 1 equals a frequency interval of 97.7 Hz. The mean absolute
error can also be describe in Hz by multiplying the value with the interval and in table
2.7 the errors for all four models are shown.

Table 2.7.: Mean absolute error for models for one transition

model normalized 0, 0, [Hz]
exponential smoothing 0.21 21.27
hyperbolic tangent 0.041 3.99
beziér 0.052 5.01
spline 0.32 3.14

In this example the spline approximation performs best but only with a small difference
compared to the hyperbolic tangent curve. Next this error measurement is done for all
the f0 trajectories of the glissando transitions. In table 2.8 the results are listed. The two
models exponential smoothing and hyperbolic tangent do not depend on the number of
interpolation points so there is only one row for each model. The error for the exponential
smoothing curve is too high to use it as a model, so this model will be disregarded.
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Figure 2.13.: f0 trajectory and interpolated curves for four interpolation points

Table 2.8.: Mean absolute error results for all glissando transitions

model

interpolation points mean of normalized d, mean of 4, [Hz]

exponential smoothing - 0.185 34.60
hyperbolic tangent - 0.083 15.38
beziér 4 0.0539 10.21
beziér 5 0.0394 7.26
beziér 6 0.0358 6.61
beziér 7 0.0311 5.39
beziér 8 0.0325 5.74
beziér 9 0.0377 6.63
beziér 10 0.0379 6.67
beziér 11 0.0594 10.22
beziér 12 0.0805 13.73
spline 4 0.0387 7.24
spline 5 0.0272 5.04
spline 6 0.0205 3.66
spline 7 0.0163 2.93
spline 8 0.0145 2.59
spline 9 0.0119 2.16
spline 10 0.0109 1.98
spline 11 0.0096 1.72
spline 12 0.0094 1.67
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The results also confirm that the exponential smoothing is a bad choice for a transition
model. The hyperbolic tangent does not give the best results in average but as we can
see in figure 2.13, this curve could still be a good choice for synthesis due to its simple
calculation. The spline curves lead to better results the he more points are used for
interpolation. In contrast the beziér curves have an optimum number of interpolation
points in terms of the mean value of §,. In this case seven points give the best results.
In figure 2.14 the interpolation of a trajectory with 12 interpolation points is shown. The
beziér curve in the graph shows the problem with increasing the number of points used for
interpolation. By increasing the number of points the polynomial degree also increases,
which leads to oscillation at the beginning and the end of the curve. This phenomenon
was first described by Runge [34]. The spline curves do not show this behavior, because
these curves are defined piece wise by third order polynomials and with an increasing
number of points the number of pieces / polynomials increases and not the polynomial
degree.
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Figure 2.14.: f0 trajectory and interpolated curves for twelve interpolation points

The evaluation shows that with clustering a general description of glissando transitions
can be found. The error evaluation suggests that exponential smoothing performs bad
and should not be further regarded. The other models will be used in a real-time im-
plementation, explained in the next chapter. While the hyperbolic tangent shows results
that are not that promising the computation is rather simple compared to the other two
models. The beziér curves show that polynomial interpolation with increasing polyno-
mial degree is suboptimal, while the spline curves, which also use polynomials, offer the
solution to this problem. The implementation and further testing in a real-time system
can then show which model is usable for synthesis and an actually playable synthesizer.
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Volume

The same error measurement was conducted with the volume trajectories of the glissando
transition. The results show the same tendencies as for the {0 trajectories, except that the
exponential smoothing model and the hyperbolic tangent model do not produce any curves
that can be used for synthesis. This is due to the shape of the trajectories. There are
additional maxima and minima, which can not be approximate by these two models. In
contrast to the fundamental frequency no general description or an average behavior could
be observed. In this case the advantages of the beziér and the spline curves are shown,
which can approximate a lot of different curve forms, because for these models there is
no previous assumption about the curve itself while the hyperbolic tangent function is
limited to a small range of curves.
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3. Synthesis

In this chapter the used tools and the framework developed for a MIDI controlled real-time
synthesis are described, which is later deployed for a user study to evaluate the models.

3.1. Requirements

The different modeling algorithms described in the previous chapter should be playable
and adjustable in real-time. Controlling the synthesizer should be realized with
MIDI'. The developed models itself do not produce any audible output so a simple
waveform synthesis and a volume control is needed, whose fundamental frequency is
then controlled by the different algorithms. A sinusoidal waveform oscillator whose
amplitude is controlled by an ADSR (attack, decay, sustain and release) envelope
is suitable for the purpose of evaluation of the fundamental frequency change. The
amplitude envelope is needed to avoid unwanted clicks in the output signal and is
described by Puckette [4]. More complex synthesis could distract participants in
a user study. Other features of a synthesizer like a filter or a low frequency oscilla-
tor for modulation are purposely left out to keep the synthesizer simple for the user study.

To ensure the real-time behavior of the synthesis the computational complexity should
be kept as low as possible. The audio processing must be blockwise and triggered
periodically to ensure an error free output. The time needed for the calculation must
never exceed the time of one block. For example if the block size is 128 samples and the
sampling frequency is 48 kHz the theoretic maximum time is 2,66 ms. If this time is
over and the processing is not finished the output is interrupted and an audible noise is
produced. Every block new incoming MIDI messages should be taken into account and
change the calculation of the synthesis.

The synthesis should be monophonic to reproduce the behavior of the analyzed note
transitions. Polyphony is not addressed here because the continuous frequency change
from for example three different notes to the next three notes would involve an algorithm
to pick which of the starting notes is linked to the ending notes to create three different
trajectories for a smooth frequency transition. This is possible but in the context of the
evaluation of the models and not an evaluation of an algorithm for polyphonic transitions

!Musical Instrument Digital Interface (MIDI) is a protocol widely used for control message for electronic
instruments defined by The MIDI Manufacturers Association [35].
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this should not be implemented here.

A model for the transition should control the frequency of the oscillator for every
output sample. With this requirement first the oscillator must be capable of handling
a sample wise frequency input and the trajectory must produce a frequency output
every sample. The frequency control of the oscillator should be separate from the
oscillator itself. There must be a module responsible for the frequency of the oscillator
which is controlled by the incoming midi data. Additionally this module must then
use one model for the calculation of a continuous frequency change. Incoming midi
note values should change the frequency and midi control values change the param-
eters of the corresponding transition model. If a new midi note value is received a
trajectory from the first to the second note is created. When the transition is over the
frequency then is constant until another new midi note value is received. The currently
used model should as well be controlled via midi. With this description of the oscil-
lator and its frequency control there is a continuous audio output with a constant volume.
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Figure 3.1.: ADSR envelope

The output volume should be controlled by the ADSR envelope which receives midi note
on and note off messages. In figure 3.1 an ADSR envelope is shown. The parameters
are the attack time (t;), the decay time (¢ — t;), the release level and the release time
(t4 —t3). When a note on message is received the attack phase starts and a linear ramp is
created until the maximum value, which is 1, is reached. After that the decay phase starts
and a linear transition from the maximum value to the sustain value, which is 0.5 in this
example. The sustain value is constant until a note off message is received. Afterwards
the release phase starts and the amplitude transitions linearly from the sustain value to
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0. The envelope must be capable of receiving new midi note on messages even if a note
off message is still missing or the release phase is not over yet. In this case the current
value should be used as a starting point for the new attack phase. All the parameters
described above should be controllable via midi. Most of the parameters described are
part of the MIDI standard and the midi control values that should be used are shown in
the following table:

Table 3.1.: MIDI control values for envelope parameters

parameter midi control value
attack time 73

decay time 75

sustain level 70(not in standard)
release time 72

With these requirements a suitable hardware should be picked and a software should be
developed.

3.2. Hardware

The Raspberry Pi by the Raspberry Pi Foundation [36] is a small computer of the
size of a credit card. More precise the Raspberry Pi 3 Model B Rev 1.2 is used. The
computational power with its 4 core 1.2 GHz Processor should be sufficient for the
synthesis. One major advantage of the Raspberry Pi is that it is also capable of running
in a headless setup which means, that there is no need for a connected screen.

Tests with the on board audio output of the Raspberry Pi revealed that it is not suitable
for a low-latency setup. Therefore an external USB audio interface is used. The choice
was the Behringer U-Control UCA222 due to its compact size and low price. With this
interface a sampling frequency of 48 kHz was used and a low processing block size of 128
samples could be realized.

The prerequisite MIDI input is provided by an external USB interface. Here the
LOGILINK USB to MIDI Adapter is used.

3.3. Software

In this section the developed software and additional dependencies are described.
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3.3.1. Framework

On the Raspberry Pi the operating system used is Raspbian GNU/Linux 9.1 (stretch),
kernel version 4.9.59-v7+. No additional tuning of the operating system towards
real-time was done. Newmarch [37] describes that Linux gives the possibility for a
real-time kernel but this is not necessarily needed here. This could be used later if
the overall latency, which is the time between pressing a key on a MIDI input device
and the audio interface producing output, is too high. The advanced Linux sound
architecture by the ALSA project [38] provides audio functionality and is part of the
main line kernel in Linux. The program developed here could directly use the ALSA
API but then no further connection to other programs which then could control the
synthesizer would be possible. This is needed for the user study described in chapter 4.
The JACK audio connection kit by Knoth et al. [39] offers the functionality to connect
audio and MIDI between programs and offers the possibility for low latency audio
processing. JACK is written in C++ so the program itself should also be written in
this language to use the provided API. According to the requirement from the previous
section the JACK API offers a function that is called synchronous and provides buffers
where the current audio block can be written to and a continuous audio stream is ensured.

The program is written in C++ and the C++11 standard described by Stroustrup [40]
is used. To ensure correct functionality of the implemented models unit tests are im-
plemented. The Boost unit test library by Rozental and Enficiaud [41] is used for this
purpose.

3.3.2. Implementation

A program for the evaluation of the modeling algorithms is developed. Therefore the
main goal of the software is producing a continuous audio output which is controllable
in real-time. C++4 offers object oriented programming and so the different functions
and modules of the program are separated into classes. All classes involved in the audio
processing manage blockwise audio samples. The primary class that holds all the other
objects needed for processing audio and which operates as an interface for all parameter
changes is the SingleVoiceContainer class. An overview of this class and its members
is given in figure 3.2.
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and 3 more...

Figure 3.2.: Class diagram for SingleVoiceContainer class

Inside the class Voice first the Trajectory class creates a frequency vector. This vector
depends on the currently selected model and its parameters as well as the current note
value. With that vector the Oscillator class produces a sinusoidal output waveform.
Then this output waveform is multiplied with the output of the Envelope class. All
parameters for these classes can be controlled via MIDI. The handling and parsing of
the MIDI messages is done in a separate class MidiMapping, which is not shown in the
figure.

Inside the MidiMapping class the MIDI control values are assigned to the different pa-
rameters. For the trajectories the mapping of the MIDI control values used for the user
study is shown in table 3.2. MIDI values, received as a number between 0 and 127 are
mapped linearly to a value between the minimum and the maximum. These limits are
chosen to fit best for the user study to reproduce resynthesized recordings out of the violin
library. The limits can be extended if it is desired. One special case is the maximum of
the hyperbolic tangent slope. If the value for the slope is greater than 0.23 the resulting
trajectory has a jump in the beginning and the end, which can be seen in figure 2.9.
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Table 3.2.: MIDI control values for trajectory parameters

parameter midi control value minimum value maximum value
portamento / transition time 5 10 ms 4s

model 75 0 127

hyperbolic tangent slope 52 0 0.23

Bézier parameter 1 53 0 1

Bézier parameter 2 54 0 1

Bézier parameter 3 55 0 1

Spline parameter 1 56 0 1

Spline parameter 2 61 0 1

Trajectories

Previously an overview about the synthesis was given without further implementation
details. The formulas described in section 2.2.2 were implemented in MATLAB for
testing and extracting parameters for the models. Solving the equation systems for the
bézier and spline curves in MATLAB is straight forward. In the C++ standard library
there is no function for matrix solving so a suitable library was needed. The Eigen library
by Guennebaud et al. [42] was chosen for that purpose. With the help of unit tests it
could be evaluated that the developed trajectories in C++ provide the same results as
the MATLAB implementation. For the user mathematical functions like the hyperbolic
tangent function the C++ standard library was used.

The developed program now offers a way of testing the different trajectory models in
real-time. Further description of the C++ code is provided inside the code itself that is
documented in the doxygen style developed by van Heesch [43].

3.3.3. Preparation for user study

For the user study a user interface is needed. For this purpose the programming language
pure data (Pd) by Puckette [44] is used. The interface itself is later described in section
4.1. In Pd it should be possible to listen to audio files, receive and send midi files to
the synthesizer to change for example the currently used transition model. In order to
provide forwarding midi messages with Pd, the demon a2jmidid by Arnaudov [45] is used
to connect the ALSA and JACK MIDI ports. Then the audio and MIDI signal flow can
be set up according to figure 3.3.
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4. User Study

In this chapter the developed synthesis algorithms are evaluated in a user study.
Questions examined could be: can listeners distinguish between different types of the
nonlinear transitions? Are differences of transition parameters noticeable and do the
parameters benefit the usage of the models in a synthesis context? However there is
already a study done by Thyer and Mahar [46] that investigates the ability of listeners to
discriminate different nonlinear frequency glides and the underlying physical mechanism
in the ear. They showed that participants could distinguish between different nonlinear
glides by their frequency change characteristics. This more general question should not
be addressed in this study. The models developed here should be used in a real-time
context for synthesis and therefore it would be interesting to know what models are
useful for synthesis and how many parameters are effective in the context of reproducing
the analyzed sounds. The question for this study is: can users reproduce the transition
trajectories with the provided models?

There are many studies related to the study presented here. There are psychological
studies focused on the perception of frequency glides like the ones by Thyer and Mahar
[46], Madden and Fire [47] and Dooley and Moore [48]. However, these studies have
a different approach because they do not propose a synthesis model and are focused
on finding thresholds for the perception of frequency glides. Also related are studies
which focus on the evaluation of digital music interfaces like the ones by Ghamsari et al.
[49], Harrison and McPherson [50] and Konovalovs et al. [51]. But their focus is on the
evaluation of digital music interfaces mostly developed by themselves and testing synthesis
algorithms is not done in their studies. A task based study described by Wanderley and
Orio [52] and O’modhrain [53] is often used for the evaluation of digital music interfaces
can be adopted.

4.1. Design

In the previous chapter the synthesis of the trajectory models was described. Participants
try to play with these models and test the usage of the parameters. To get the study
into the context of the analyzed violin data set, participants try to replay the analyzed
recordings. The Problem is that the developed models can only reproduce the trajectories
and not the complete sound of the violin. For simplification the fundamental frequency
trajectory is taken and a sinusoidal signal is created, further explanation of the stimuli is
provided in chapter 4.2. These signal are used as a reference for the users to adjust the
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parameters for each model.

One task consists of hearing a synthesized note transition and then tuning the parameters
of one model and playing the two notes that the played sound is equally to the heard one.
In each task only one model is tested and a suitable choice for the number of parameters
per model is needed. The length of the transition is the only parameter which is the same
for all of the models, but the reference note transition the participants are trying to repro-
duce defines this parameter. In the experiment the users do not change this parameter.
The hyperbolic tangent model offers one additional parameter. With bézier curves and
splines at least two parameters can be used. Theoretically a large number of parameters
could be used for these two models, but testing with different numbers of parameters
showed that too many parameters only complicate the task of reproducing the extracted
trajectories. There are two parameters for the spline model and three parameters for
the beziér curve presented to the participants. At least two parameters are needed for
both models and more than three parameters do not lead to better approximation results.

Figure 4.1.: PD user interface

Before the beginning of the task based study the participant gets a short description of
the models and the effect of a parameter change, shown in appendix A.1, and five minutes
to play with each model to get used to the parameters. In each task the user listens to
a stimulus and information about the transition is shown: the model currently used, the
starting and the ending note. Then they should set the parameters and play the two
notes shown so that what they play sounds equal to the presented stimulus. They can
listen to the stimuli as many times as they want. After solving the task they answer three
questions about the model and the parameters. In figure 4.1 the user interface for the
study is displayed. In the study the questions were in German, so here a translated version
is shown. Overall the study consists of 21 tasks and after the participants are finished
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they fill in a questionnaire with questions about their age, gender, education, their musical
skills and general questions about the models, which can be found in appendix A.2.

4.2. Stimuli

As mentioned earlier using the recorded violin samples as a reference is not a good
choice. With the extracted fundamental frequency trajectory a sinusoidal signal is
created. Additionally a 500 ms sine wave with the frequency of the first note is
added at the beginning and a 500 ms sine wave with the frequency of the second
note is added at the end. Also a linear fade in at the beginning and a fade out at
the end is used, each one with a length of 100 ms. The amplitude trajectories were
not used for the stimuli for multiple reasons. Only one model should be tested at
a time and so for each model the same seven stimuli were used which makes overall
21 tasks. Each task takes about two minutes so the overall experiment is around
40 minutes. Including the initial instructions and the final questionnaire the length
of the study is at its maximum considering the average participants’ ability to concentrate.

From the violin library seven samples where used which represent a good overall span of
the attributes of the transitions. The fundamental frequency trajectories were extracted
with the algorithm described in section 2.1.3. In following table the stimuli used for the
study and their attributes are listed.

Table 4.1.: User study stimuli

filename note 1 note 2 length direction
TwoNote_DPA_18 A3 D4 380 ms up
TwoNote DPA_ 19 D4 A3 320 ms down
TwoNote_DPA 65  Eb5 B4 400 ms down
TwoNote_DPA 66 B4 E5 485 ms up
TwoNote_DPA_113 D4 G4 300 ms up
TwoNote_DPA_137 A4 D5 700 ms up
TwoNote_DPA_186 E6 B5 550 ms down

The optimal parameters for the three models for the seven presented stimuli were
extracted. The absolute difference between these reference values and the parameters
values configured by the participants in the study is used as an error measure. For the
models with more than one parameter the mean value of the absolute difference is used
to compare the error between the models. Normalization of the parameter value was also
done to ensure better comparability of the error. This error is called parameter error
in the discussion of the results. Additionally another error measurement is used. The
curves created by the models with the user adjusted parameters are compared to the
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extracted f0 trajectory with the mean absolute error as a measure. This error is called
trajectory error in the discussion of the results.

4.3. Participants

The participants were recruited through the mailing list for students of the audio
communication group. There were 15 participants in total and 14 of them were male and
one female Their mean age was 27.4 years with a standard deviation of 5.6 years. They
were all highly educated and had an university degree. The majority of the participants
were musically skilled: 60 % played an instrument on a regular basis for more than 6
years and also 66.67 % had aural training for more than one year.

4.4. Results

The design of the study gives two independent variables, the model and the stimulus
and several dependent variables: the three questions which are answered each task, the
parameter error and the trajectory error. For the analysis a repeated measures analysis
of variance (rmANOVA), described by Seltman [54] and Hair et al. [55] was used with
the help of the software IBM SPSS. First the parameter error is analyzed.

Mauchly’s test of sphericity indicated that the assumption of sphericity has been violated,
x? = 7.18,p = 0.028, and therefore, a Greenhouse-geisser correction was used. Still there
was a significant influence from the models on the parameter error, F(1.40, 19.66) = 4.172,
p < 0.05, partial n? = 0.23. The results of the post-hoc test are shown in table 4.2.

Table 4.2.: Pairwise comparison of the models for parameter error

(I) (J) Mean Std. sig. 95% CI 95% CI
difference lower upper

Model Model (1) error bound bound

Hyperbolic g 1, _.066 026 024 -122 ~101

tangent

Hyperbolic ¢ -.026 027 346 -.084 032

tangent

Spline Beziér .040 .014 011 011 .069

The pairwise comparison shows that there is a significant difference between the hyper-
bolic tangent and the spline model, as well as between the spline and the beziér model.
In Table 4.3 the hyperbolic tangent model has the lowest mean value, but the difference
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to the beziér model is not significant, therefore a general assumption about the model
with the lowest parameter error can not be made.

Table 4.3.: Estimates of parameter error

Model Mean Std. error 95% CI lower bound 95% CI upper bound
Hyperbolic tangent .126  .037 .048 205
Spline 193 .026 137 .248
Beziér 153 .018 113 192

The results of the parameter error showed that there is a difference between the models
and how good the participants could adjust the parameters of the models. One drawback
of this error is, that the mean absolute error of the resulting curve and the initially used
f0 trajectory is not taken into account. For that reason the results of the trajectory
error are now reviewed. This time the Mauchly’s test of sphericity shows no significance,
x? = 2.883,p = 0.237 and the model has a significant effect on the trajectory error as
well, F(2,28) = 227.616, p < 0.05, partial n? = 0.942. The pairwise comparison, shown
in table 4.4, reveals a significant difference from the hyperbolic tangent model to other
two models. Their comparison on the other hand shows no significant difference.

Table 4.4.: Pairwise comparison of the models for trajectory error

(I) (J) Mean Std. sig. 95% CI 95% CI
difference lower upper

Model Model (1) error bound bound

Hyperbolic o 1.0\ o 208 014 .000 179 237

tangent

Hyperbolic ¢ 218 012 000 193 242

tangent

Spline Beziér .010 .009 281 -.009 .029

The estimated means in table 4.6 suggest that the hyperbolic tangent model is not a good
choice compared to the other models for the recreation of the original fO trajectories: the
mean value is more than twice as much as the other two values.
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Table 4.5.: Estimates of trajectory error

Model Mean Std. error 95% CI lower bound 95% CI upper bound
Hyperbolic tangent .348  .008 330 .366
Spline 140 018 102 179
Beziér 130 .016 .096 165

The results discussed so far are a measurement of the performance of the participants, but
now the answers to the three questions asked during the study are analyzed. The answers
could be adjusted on a slider which were then saved as a value between 0 and 100. The
same analysis was done with these values as with the previously discussed errors. The
first question was if the parameter changes were audible. Mauchly’s test of sphericity
shows no significance, x? = 2.380,p = 0.304 and the model has a significant effect on
the answer, F(2,28) = 4.176, p < 0.05, partial > = 0.230. Pairwise comparison shows
that there was no significant difference between the spline and the beziér model, while
the comparison between spline and hyperbolic tangent as well as the comparison between
beziér and hyperbolic tangent has been significant. The estimated means are shown in
the following table:

Table 4.6.: Estimates for the answer of the first question: parameter changes were: 0 =
not audible, 100 = clearly audible

Model Mean  Std. error 95% CI lower bound 95% CI upper bound
Hyperbolic tangent 82.030 5.257 70.754 93.305
Spline 70.287 5.043 59.471 81.104
Beziér 70.780 5.324 59.361 81.198

The next question was how good the parameters could be adjusted to recreate the
transition. For this question there was no significant difference between the models and
the means were close to each other as shown in table 4.7. The answers to this questions
show that the difficulty of the task was equally rated for all models.

Table 4.7.: Estimates for the answer of the second question: with this model I could easily
adjust the parameters and reproduce the transition. 0 = completely disagree,
100 = completely agree

Model Mean  Std. error 95% CI lower bound 95% CI upper bound
Hyperbolic tangent 70.224 5.686 58.029 82.420
Spline 69.843 5.694 57.630 82.055
Beziér 64.026 5.148 52.985 75.067
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The last question addresses the number of parameters. Mauchly’s test of sphericity shows
no significance, x? = 5.237,p = 0.073. The model has a significant effect on the answer
to this question, F(2,28) = 38.471, p < 0.05, partial n*> = 0.733. This time the pairwise
comparisons of the models were significant for each combination. The estimated means
are shown in table 4.8.

Table 4.8.: Estimates for the answer of the third question: the number of parameter for
this model is: 0 = too low, 100 = to high

Model Mean  Std. error 95% CI lower bound 95% CI upper bound
Hyperbolic tangent 32.855 3.522 25.300 40.410
Spline 49.750 1.323 46.913 52.587
Beziér 63.169 2.326 58.181 68.157

These results indicate that one parameter for adjustment is rated as insufficient, three
parameters seem to be too many whilst two parameters are the best choice. In the final
questionnaire the participants were asked which model they preferred. 53.5 % preferred
the spline curves, 33.3 % hyperbolic tangent, 6.67 % beziér and 6.67 % had no preference.
Overall the spline model was the preferred model by the users.
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5. Conclusion

In the previous chapters different models were developed and evaluated with different
measures. First a mean absolute error was used to examine which model an the number
of points used for the interpolation performs best. Subsequently the models were
implemented in a real-time synthesis framework before they were tested in a user study.

The spline curves lead to the lowest error with increasing number of interpolation
points. The number of interpolation points is not necessarily restricted, but a reasonable
number needs to be chosen. One problem with a large numbers can be overfitting. The
validity of the curve which should be interpolated is depending on the algorithm used
for the extraction of the curve. For the fundamental frequency extraction for example
the algorithm used can introduce errors like detecting false frequencies or too much
smoothing applied to the output. Also the possible use case of the models should be
considered. More points for interpolation also lead to a higher computational complexity
which should be considered in a real-time synthesis context.

In the user study the hyperbolic tangent curve with one parameter, the spline curve with
two parameters and the beziér curves with three parameters were tested. Results showed
that the error of the spline and the beziér curves compared to the reference fundamental
frequency trajectory were the lowest. The difference between the two models was not
significant. From that point of view no recommendation for an optimal model can be
made. The participants preferred having two parameters for the adjustment of the curve
so in a real-time synthesis context this would be a good choice. A parameter directly
controls a point on the curve which then is interpolated by a model. The number
of parameters is equal to the number of interpolation points minus the starting and
the ending point of the curve. For other implementations instead of one parameter
controlling one interpolation point, a parameter could also control more than one point.

Still the hyperbolic tangent function could be used for implementation especially when
there is no additional parameter for the slope of the curve desired. The clustering showed
that the average fundamental frequency curve is rather simple and a hyperbolic tangent
curve with a fixed slope can be a good approximation. With the time of the transitions
left as the only parameter this can be enough in a lot of use cases for the synthesis of
glissando transitions.

Another aspect of the beziér and the spline curves that was not mentioned before is
that they are capable of producing more complex curves. The extracted fundamental
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frequency trajectories of the violin recordings were rather simple in contrast to what the
models offer for synthesis. This opens a lot of possibility for sound design and the usage
of the curves outside the context of re-synthesizing violin recordings. These curves could
also be used in an oscillator when the starting and the beginning points of the curve
are fixed to the same y-value. Then the resulting curve could be used as a controllable
waveform in a wavetable oscillator.
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A. User Study

The user study was made in german and therefore the instructions and the questionnaire
were in german.

A.1l. Instructions

Infotext fur Teilnehmer

In diesem Versuch sollen unterschiedliche Algorithmen zur Erzeugung von kontinuierlichen
Noteniibergangen von zwei Noten untersucht werden. Zwischen zwei aufeinanderfolgen-
den Tonen wird ein kontinuierlicher Verlauf der Tonhohe modelliert. Dafiir gibt es 3
unterschiedliche Modelle mit jeweils 1-3 Parametern. Mit diesen Parametern wird der
Kurvenverlauf des Grundtons von einer Note zur Anderen verandert. Zuerst kénnt ihr
euch fir 5 Minuten im freien Spiel mit dem Keyboard und den Modellen sowie deren
Parametern vertraut machen. Um kontinuierliche Ubergange zu spielen, muss die erste
Taste auf dem Keyboard noch gehalten sein, wenn ihr eine zweite Taste driickt.

Versuchsanweisung

Ihr werdet eine Tonfolge von 2 Ténen mit einem kontinuierlichen Ubergang horen. Fiir
jede Tonfolge wird euch ein Ubergangsmodell zur Verfiigung stehen. Dann sollt ihr die
Parameter des Modells mit Hilfe der Fader auf dem Midikeyboard so einstellen, dass es
euch moglich ist, den Ubergang identisch zum abgespielten Ubergang selbst zu spielen.
Den gehorten Ubergang kénnt ihr so oft ihr wollt wieder héren indem ihr Play driickt.
Ihr miisst selbst die 2 Noten auf dem Keyboard anschlagen. Wenn ihr der Meinung seid,
dass ihr den Ubergang so gespielt habt, dass er dem Gehorten gleicht, driickt auf den
Next_Task Button. (Um kontinuierliche Ubergange spielen zu konnen, muss der zweite
Ton gespielt werden, wihrend der erste noch gedriickt ist.)
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A.2. Questionnaire

Fragen zu den Modellen

Ich hatte Schwierigkeiten beim Einstellen der Parameter.
-3 -2 -1 0 1 2 3
Ablehnung O O O O 0O O O Zustimmung

Ich konnte einen deutlichen klanglichen Unterschied zwischen den Modellen feststellen.
3 -2 - 0 1 2 3
Ablehnung O O O O 0O O O Zustimmung

Welches Modell hat dir am besten gefallen?

TanH (1 Parame- Bezier (3 Parame- Spline (2 Parame-

ter) ter) ter) Keines
O O O O
Wieso?:
Personenbezogene Fragen
Alter: Geschlecht: [0 mannlich [] weiblich (] keine Angabe

Beruf / Studiengang / Ausbildung:

Seit ... Jahren iibe ich regelméaflig ein Instrument:
10
0 1 2 3 45 6-9 oder
mehr

o o o o o o o

Das Instrument, das ich am besten spiele ist

Ich hatte Unterricht in Musiktheorie fir
10

0 1 2 3 4-5 6-9 oder
mehr

o o o o oo oo 0O Jahre
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Ich hatte Unterricht in Gehorbildung fiir
10
0 1 2 3 45 6-9 oder
mehr

o o o o oo GO 0O Jahre

Die Fahigkeiten meines Gehors sind:
-3 -2 -1 0 1 2 3

ich kann Intervalle O O O O O O OO absolutes Gehor

nicht unterscheiden
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B. Digital Ressource

This thesis comes with a CD. In the following listing a brief description of the folders
and the content is made:

Analysis/ This folder contains MATLAB code used for the analysis and the modeling,
further description of the code can be found inside the readme.md file in the folder.

Literature/ The used literature in .pdf format are inside this folder.

Study/ This folder contains two subfolders:
PD/ the Software for the user study,

evaluation/ the Resulting dataset and scripts for evaluation. In readme.md in-
structions are described.

Synthesis/ This folder contains the source code for the synthesizer, written in C++.
The readme.md file in this folder describes setting up and running the program.

Thesis/ The .bibtex, .tex file, figures and .pdf file for the document are inside this folder.
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