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Abstract

Dielectric elastomers (DE) are regarded as a potentially alternative to conventional actuator
technologies. They feature low weight, high strains and low material costs. A soft dielectric
(here: silicone) is sandwiched between two compliant electrodes. Upon voltage, the material
compresses in thickness and expands in area due to incompressibility. Their scope of application
ranges from sensors, energy generators, smart textiles to biomimetic robots and much more.
A few concepts of loudspeakers using DE have been demonstrated by the research community.
One of the disadvantages of previously concepts was the need for mechanical bias (e.g. by air
pressure). This work proposes a new concept of loudspeaker, which does not need prestretch or
other means of mechanical bias. Buckling dielectric elastomer actuators use the area expansion
of actuated DE to buckle up. This mechanism is used to construct a milli-meter-scale loud-
speaker with good frequency response in the range above 5 kHz. The concept is implemented
using automatically fabricated multi-layer membranes of 3 to 8 layers. The multilayer structure
allows to generate more force and higher flexural rigidity than a single-layer setup. 6 samples
with different amount of layers and a diameter of 8 mm are fabricated.
A full analytical model is derived. Measurements of the static deflection, the frequency re-
sponse and the total harmonic distortion validate the model. Ways of optimizing and tuning the
loudspeaker are discussed in the latter part of this thesis. Sound pressure level increases with
∼18 dB/octave until the peak SPL of almost 80 dB (in 1 m distance in half-space) is achieved at
a frequency of 5 kHz. The small scale of the speaker allows it to be installed in large arrays and
thus might offer a hardware platform for high-resolution beam forming or wave field synthesis.
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Zusammenfassung

Dielektrische Elastomere (DE) werden als mögliche Alternative zu konventionellen Aktortech-
nologien angesehen. Sie bieten große Verformung, geringes Gewicht und potentiell niedrige
Material- sowie Produktionskosten. Ein weiches Dielektrikum mit flexiblen Elektroden auf beiden
Seiten erfährt unter angelegter Spannung eine Kompression. Das Material gilt als inkompressibel
und dehnt sich im Zuge der Kompression in der Fläche aus. Frühe Anwendungen bezogen sich
fast ausschließlich auf künstliche Muskeln in der Robotik, doch immer mehr Anwendungsbereiche
werden durch diese Technologie erschlossen. Das Prinzip kann nicht nur als Aktor, sondern auch
als Sensor und Generator verwendet werden.
Diese Arbeit stellt einen neuartigen Lautsprecher vor, der die Flächenexpansion der Folie aus-
nutzt. Eingespannt in einem festen Rahmen kann das Material nicht zur Seite hin auswe-
ichen, und bei angelegter Spannung zwischen den Elektroden wölbt sich das Elastomer auf.
Ein mehrschichtiger Aufbau erlaubt es, einen höheren Druck zu generieren und die entstehende
Wölbung stabiler zu machen. Das System wird in dieser Arbeit analytisch beschrieben. 6 Ex-
emplare eines Lautsprechers mit einem Durchmesser von 8 mm und unterschiedlicher Anzahl
Schichten (3 bis 8 Schichten) werden hergestellt und vermessen. Anschließend wird die Ver-
formung unter statischer Spannung sowie der Frequenzgang und die total harmonic distortion
(THD) vermessen. Die Messergebnisse validieren das analytische Modell weitestgehend.
Der Lautsprecher kann eindeutig als Hochtöner identifiziert werden. Der Frequenzgang steigt
mit etwa ∼18 dB/Octave an, bis bei 5 kHz der maximale Schalldruckpegel von fast 80 dB (in 1 m
Abstand im Halbraum) erreicht wird. Der THD liegt mit ca. 30 dB etwas höher als bei konven-
tionellen Lautsprechern.
Gegenüber früherer Konzepte von DE-Lautsprechern bietet der hier vorgestellte Prototyp den
Vorteil, dass kein mechanischer Bias in Form von Luftdruck oder Vorspannung nötig ist.
Möglichkeiten, die akustische Performance zu verbessern werden diskutiert. Möglicher Anwen-
dungsbereich für den vorgestellten Schallwandler erstrecken sich von Mikrolautsprechern in mo-
bilen Geräten bis hin zu einer Hardwareplattform für hochauflösende Wellenfeldsynthese- und
Beamforming-Systeme.
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Chapter 1

Introduction

1.1 Motivation

Multi-channel audio systems are becoming increasingly popular as they become more affordable

even for consumers. A wide range of 5.1 and 7.1 systems are meanwhile available and enjoy great

popularity. Larger systems in cinemas, theatres or event halls provide good spatiality and the

sound can be adjusted to the specific location using complex audio signal processing methods,

to enhance audio quality. But multi-channel audio is becoming increasingly difficult to imple-

ment. While software algorithms can easily control large arrays of loudspeakers with modern

wave field synthesis (WFS) programs or beam forming algorithms, hardware limits the amount

of channels for most applications. Dolby Atmos, for example, is able to individually control up

to 128 loudspeakers, which is seldomly actually implemented in theatres. Conventional acoustic

transducers with reasonable performance are often expensive, heavy, large and require high input

power. Large installations, as they exist in movie theatres or in auditoriums (e.g. WellenFeld H

104, see Fig. 1.1), are therefore only possible in large rooms.

In theory, an infinite amount of loudspeakers is required to fully satisfy the WFS equations [52].

Figure 1.1: Auditorium H 104 at TU Berlin. Multichannel system of 832 separate channels for
wave field synthesis. More than 2700 loudspeaker arranged in 10 cm distance on ear-level around
the audience.
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Hence, to make WFS and beam forming appealing for consumers, new approaches to trans-

ducer design are needed. Lightweight, small and inexpensive loudspeakers with good overall

performance are required. The variety of possible interiors calls for loudspeakers, that can be

manufactured on demand and potentially very small.

The rise of dielectric elastomer actuators (DEA) over the past 20 years offer these opportu-

nities. A thin polymeric film is used to generate sound. Films can be of any shape and size, are

of cheap material (e.g. silicone) and thus, can be produced on demand in large scales with novel

manufacturing techniques like 3D-printing.

Films are usually only about 10µm to 500 µm thick and are supported by a rigid frame, which

accounts for most of the actuators overall weight. The absence of permanent magnets, coils or

other metallic structures in DEA leads to potentially lower weight than that of conventional

electrodynamic or electrostatic systems.

The low weight of dielectric elastomer (DE) loudspeakers might also offers the opportunity,

to install sound systems in weight restricted environments as automotive or aerospace. Small

size and low weight are also advantageous for mobile applications like phones, headphones or

portable speakers.

Recent prototypes of DE loudspeakers confirmed the capability of this technology. However,

more accurate models and studies on the dynamic behaviour and acoustical optimizations are

required to introduce these actuators to the consumer market.

1.2 Overview of Dielectric Elastomer (DE) Technology

Smart materials have become of great interest in recent decades, especially electroactive poly-

mers (EAP) received a lot of attention by the research community [8]. Applications of EAPs

cover a large variety of industries.

As a subclass of EAPs, dielectric elastomers (DE) have emerged as promising actuation technol-

ogy for various kinds of applications.

In its basic configuration, a dielectric elastomer actuator (DEA) consists of a thin film of elas-

tomer, usually only tens to hundreds of micrometers thick, sandwiched between two compliant

electrodes. An applied voltage attracts the electrodes and compresses the elastomer. Because

elastomers are rubber-like materials, they can be assumed to be incompressible and thus, their

area will increase in the process of thickness compression. (see Fig.1.2)

In Chapter 2, it will be derived that the pressure on the material induced by an applied voltage

is given by [41]
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Figure 1.2: Dielectric elastomer actuator [8]

p = ε0ε
V 2

d2
(1.1)

where ε is the dielectric constant of the elastomer with thickness d, ε0 the free-space permittivity

and V the applied voltage.

With equations of linear elasticity, the strain in thickness direction (z-direction) is

sz = − p
E

= −ε0ε
V 2

Ed2
(1.2)

with E the Young’s modulus of the elastomer. [41]

The resulting increase in area (x-y-plain) is obtained by making use of the incompressibility of

the material

(1 + sx)(1 + sy)(1 + sz) = (1 + sx)2(1 + sz) = 1 (1.3)

Substituting typical values for an elastomer gives a good approximation of the achievable are

strains. For a material with a dielectric constant of ε = 3, a modulus of elasticity of E = 1 MPa

and the vacuum permittivity of ε0 = 8.85× 10−12 F m−1 this becomes

sz = −3
8.85× 10−12 F

m

1 MPa

V 2

Ed2

= −2.66× 10−17 F

m Pa
· E2

(1.4)

With d = d0(1 + sz) and an initial thickness d0 = 100 µm, a third order polynomial of sz is

obtained

sz(1 + sz)
2 =

sz + 2s2
z + s3

z = −2.66× 10−9 1

V2 · V
2.

(1.5)

Fig- 1.3 shows the voltage induced strain in the elastomer. The maximum strain in this model

of −33 % is achieved at ≈7.5 kV. This corresponds to an increase in area of 50 %! [41]
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Figure 1.3: Strain-voltage in linear elasticity. A maximum thickness strain of 33 % is possible.
(Graph is plotted for 0.1 mm membrane thickness, E=1.0 MPa and ε = 3.0)

However, far greater strains have been observed, which highlights the limitations of the lin-

ear model. In reality the modulus of elasticity is strain dependent. But for low strains < 20 %

this model gives a good approximation. [40]

The idea of electricity induced deformation is not new. The volume of early capacitors in the

18th century (Leyden jars) was observed to change, when charged [33]. About 100 years later,

Roentgen observed deformations of rubber, when supplied with an electric field [42]. This may

be seen as the first ever dielectric elastomer actuator [4]. However, the observed strains were

small and the potential of this form of actuation was not seen.

Another ∼ 100 years later, researchers began experimenting with EAPs as actuators, and with

their extraordinary results introduced this technology to the research community [41,58].

A lot of effort has been made on developing more precise models [11,53] and on how to improve

performance of DE i.e. reduce driving voltage and increase response. Different fabrication tech-

niques [41], prestretching of the elastomer [23] and adding substrates into the material [28,49,57]

show considerable success.

1.3 Materials

A wide range of polymers have been tested for suitability as dielectric elastomers [4], with Flu-

orelastomers, Polyurethanes, silicones and acrylics being more frequently used as DE [38].

Elastomers, or rubber-like materials consist of long, flexible polymer chains, which are at some

points linked to each other, i.e. cross-linked or end-linked when the intermolecular linking is

randomly distributed or only at the ends of the molecules, respectively [5].

This allows stretching of the material up to large strains of several hundred percent. Upon re-
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Figure 1.4: Comparison of high-speed actuator technologies [8]

lease, the molecular chains form back to their initial configuration.

Different applications for DEA require specific properties of the material. Fig. 1.4 shows per-

formance of various DE materials in comparison to conventional actuators (electrostatic, elec-

tromagnetic, piezoelectric and magnetostrictive). The abscissa shows the actuation pressure per

material density. This is an important measure for applications, where weight is a limiting factor,

such as mobile devices, automotive or robots. The maximal strain observed with the materials

is displayed on the ordinate.

Not displayed in this figure are important features such as reaction time and output force. This

lack of information in the graphic leads to the assumption, that acrylic elastomers are the best

choice, as they are positioned in the up right corner. A more sophisticated overview of material

performance with respect to more properties including the impact of prestrain on performance

is shown in Tab. 1.1.

While Polyurethane shows maximum strains of less than 20 % and low pressure-density, it has

a large output force and good permittivity [41]. This may make it useful for applications, where

low voltage and high force is required, but large strains are not. However, because of the limita-

tions to low strains it is seldom used for DE, as conventional actuator technologies offer similar

strains but much larger output forces.
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Material Prestrain
(x,y)

Energy
density

Actuation
pressure

Thickness
strain

Area
strain

Young’s
Modulus

Electric
Field
(Break-
down)

Dielectric
Con-
stant

% MJ
m3 MPa % % MPa MV

m

Silicone (Nusil CF19-2186) 0,0 0.22 1.36 32 1 235 2.8
Silicone (Nusil CF19-2186) 45,45 0.75 3 39 64 1 350 2.8
Silicone (Dow Corning HS3) 0,0 0.026 0.13 41 0.135 72 2.8
Silicone (Dow Corning HS3) 68,68 0.098 0.3 48 93 0.1 110 2.8
Polyurethane (Deerfied PT6100S) 0,0 0.087 1.6 11 17 160 7
Polyurethane (Estane TPU588) 0,0 0.0025 0.14 8 8 6
Fluorsilicone (Dow Coring 730) 0,0 0.0055 0.39 28 0.5 80 6.9
Fluorelastomer (Lauren L143HC) 0,0 0.0046 0.11 8 2.5 32 12.7
Acrylic (3M VHB 4910) 15,15 0.022 0.13 29 40 55 4.8
Acrylic (3M VHB 4910) 300,300 3.4 7.2 61 158 3.0 412 4.8

Table 1.1: Material Overview [4]

Fluorelastomers show high permittivity but lower performance in most other respects. Thus,

these materials are also uncommon in actuators.

Acrylics and silicones seem to be most promising and are mainly used in actuators. In most

applications the acrylic elastomer VHB 4910 by 3M is used because of its strains and its avail-

ability as commercial adhesive tape. Strains of 380 % have been recorded [24].

However for applications where fast response time is important, such as in loudspeakers, silicone

seems to be more promising [31] (see Fig 1.5) and few loudspeaker prototypes have been already

built [12,14,17,48].

The elastomer used in this work is the silicone foil Elastosil 2030 provided by Wacker Chemie

AG.

1.4 Applications and Configurations

In most applications, the elastomer film is suspended in a frame, which supplies an antagonist

force. The force stretches the elastomer in absence of applied voltage (pre-stretch). By turning

on a voltage, the film elastically succumbs to the antagonist force and experiences a positive

area stretch. Turning off the voltage (and thus the attractive force between the electrodes), the

elastomer will return to its pre-stretched state.

As Kornbluh in [8] puts it: ‘You can’t push a rope’, DEs are not able to exert a pushing force

to an attached load. Instead DEs will only succumb to a mounted stretching/antagonist force.

This, of course, only refers to ’ropes’ considerably longer than thick.

For ’ropes’, the same as for DEs, above a certain threshold-ratio of diameter to length, the

material is able to exert a pushing force and will not uncontrollably buckle up.
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(a) Silicone

(b) Acryl

Figure 1.5: Frequency-dependent strain response of a circular DE actuator. Acrylic compared
to silicone. Silicone shows no dependency on applied signal frequency up to a resonance at
1425 Hz [8]
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Figure 1.6: Schematic view of one spring roll actuator. Left: Spring; Middle: electrode pattern;
Right: Actuator. [37]

Figure 1.7: Hexapod robot MERbot using six spring roll actuators [37].

As artificial muscles, EAPs provide promising features for robotics [22]. In contrast to con-

ventional actuators such as hydraulic-, pneumatic-, electric-motors or even combustion engines,

EAPs are flexible, lightweight, potentially thin, can induce large strains, are inexpensive and

easy to manufacture. Thus, they are of great interest as driving units in robotics. [22].

At SRI International, researchers have developed a range of biomimetic robots, including imita-

tions of birds, fishes and insects, with various kinds of dielectric elastomer actuators [39].

Pei et al [37] proposed so-called spring roll actuators for the design of artificial muscles in robotic

applications. With these, a hexapod robot called MERbot was successfully built.

The actuators consist of acrylic elastomers, which are prestrained 25-fold in area. The films were

then coated in a specific pattern with carbon based electrodes, see Fig. 1.6.

Wrapped around a spring, the prestrained films cause a compressive force on it. By applying a

voltage, stress on the activated side of the film is released and causes deformation of the spring.

Six of these actuators are attached to a robot, see Fig. 1.7. With a weight of only 29 g per

8



Figure 1.8: Powered Clothing by Seismic. https://www.myseismic.com/. Artificial muscles in
the suit enhance the wearer’s physique.

leg these actuators do not contribute much to a potential robots total weight as conventional

actuators usually do.

Similar mechanisms have been used to propel snake-like robots [39], which can be used for under-

water manoeuvres.

Besides of developing imitations of organisms, EAPs may be integrated into existing organ-

isms, e.g. as artificial blood pumps [7, 11], prosthetics [8] or as complex biomedical systems to

control biological phenomena [13]. These applications are possible, because most polymers (e.g.

silicone) are biocompatible and thus, can be integrated into organisms.

Smart textiles can be used to design clothing, that adapt to its environment, protect the wearer,

monitor his/her medical condition or to generate power. [50]

A recent example of smart textile with EAP technology builds the Powered Clothing bei Seismic.

An overall-like suit comprising various sensors and artificial muscles shall help elderly or injured

people to move, by enhancing the wearers’ own muscle force, see Fig. 1.8.

The ability to act as sensors and actuators at the same time, can be used to develop actuators

that respond to their own feedback [21].

As generators, they are able to harvest power in small scale applications. [19, 56]

The capabilities of these materials are great, as they can be manufactured on demand and

can be used as generators-, sensors-, and/or actuators simultaneously. The impact of EAPs on

the commercial market is potentially immense, and research on this field is expected to extend
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Figure 1.9: Schematic view of a buckling dielectric elastomer actuator. Top: inactive; Bottom:
active [25]

the variety of applications. [43]

In the case of a buckling dielectric elastomer actuator (BDEA) the buckling is used to make

use of the contracting force between the electrodes.

When said rope is sufficiently short, it will buckle up with only one antinode of buckling upon

pushing it towards a fixed object. The same principle accounts for the BDEA, except for the

fact, that the elastomer is not pushed, but its length will increase upon thickness contraction.

Transformed to three-dimensions, the membrane will buckle up forming a cap, which may be

assumed as spherical. The spherical buckling can then be used to move a mass or, for loudspeak-

ers, air.

Fig. 1.9 shows the principle of a BDEA.

Prototypes of pumps [7] or robotic motors [6] using BDEAs have been successfully demonstrated.

Lampani [25] studied the behaviour of a prototypic BDEA for its use in aerospace applications.

This thesis will examine its suitability for loudspeakers.

1.5 DE Loudspeakers

Of special interest for this work is the suitability of DEs as loudspeakers. The earliest prototype

using this technology as acoustic transducer was designed at SRI International and introduced

DE as a potentially well performing type of transducer. [15]
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Figure 1.10: Exploded-view of the DE loudspeaker by [14].

Figure 1.11: Cross sectional view of the DE loudspeaker by [14].

A silicone-rubber foil sandwiched between two compliant graphite electrodes is placed on top of

a plate with a dense matrix of holes (1.10). A negative pressure on one side of the film pulls it

through the holes, forming bubbles as seen in Fig. 1.11. Under applied bias- and signal voltage

the bubbles shrink/grow and thus generate sound.

Despite having a good frequency response above resonance frequency (see Fig. 1.12), it features

high harmonic distortion, as film displacement is dependent on the square of applied voltage

(Eq. 1.1). Square rooting the audio signal provided significant improvement. Above resonance

frequency, total harmonic distortion (THD) was reduced to <1 %.

With a bubble diameter of 5.5 mm, film thickness of 86µm and a prestrain of only 10 % the

resonance frequency was at ≈1.5 kHz.

Despite providing good performance, one might keep in mind, that the pressure beneath the

film has to be kept at constant level (relative to atmosphere) in order to provide unvarying sound
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Figure 1.12: Frequency response of the loudspeaker by [15]. Resonance frequency at 1450 Hz.
Measured in 1m distance.

generation. In ordinary applications, such as in consumer electronics, this is not feasible.

The frequency response of this loudspeaker is different from the strain-response of a silicon DE

actuator as in Fig. 1.5a, indicating a frequency dependent sound radiation compensating the

decline in strain for high frequencies.

Sugimoto et. al. [48] proposes a different approach to DE loudspeaker design. A transducer

in push-pull operation is built in order to achieve much lower THD, without the need of square

rooting the audio signal or mechanically biasing the film with static pressure, yet featuring a less

flat frequency response.

Two circular framed DE films of polyurethane are symmetrically positioned on both sides of a

small plate with mass m = 60 g. Stretching the films, by moving the frames away from each

other makes the plate stay in place.

By feeding the signal with opposite phase to the upper and lower film, push-pull operation

of the speaker is enabled. The mass allows tuning of the actuator without much effort. By

adding/removing some weight to the plate, the resonance can be tuned to the desired frequency.

Transducers with different resonance frequencies and low THD can be produced.

However, this approach withdraws the advantage of DE actuators being easily manufactured by

hand, as the setup is more complex compared to push/pull-only configurations.

A desirable loudspeaker would show a flat frequency response comparable to Fig. 1.12, with
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Figure 1.13: Two opposite phase operated membranes act as a Push-Pull transducer [48].With
center mass of m = 60 g, the resonance frequency is at 115 Hz.

low resonance frequency and without the need of keeping constant air pressure as in [48]. Easily

producible speakers might offer the chance of fabricating vast amounts with new manufacturing

methods like 3D printing.

A possible approach to achieve these features, might be the use of the mentioned buckling

actuator. The DE film, mounted on top of a rigid hemispheric cap and surrounded by a bound-

ary ring, will lift up (see Fig. 1.9). Without the underlying support, the actuator would form

uncontrolled buckles and would not force out any air to generate sound.

Several studies exist on the modelling of circular membranes as well as their dynamic be-

haviour [10,11,27,51,53,55,60] and good accordance with experimental data were achieved.

In his paper, Vertechy et. al. [51] uses a silicone foil with a thickness of d0 = 900 µm and a

Youngs’s modulus of 60 kPa. The initial height h0 of the cap was 3 mm and its base radius

14 mm. Loudspeakers using this form of DEA remain to be developed. By applying a bias-

voltage, the membrane can be ‘lifted up’ to a state of instability. An added signal voltage would

then force the membrane to oscillate around this state, generating sound.

The simple approach of not having a mechanical bias air-pressure or any other kind of external

force (e.g. foam) on the diaphragm makes this design configuration auspicious for loudspeaker

design. Besides that, it is more easy to be crafted manually and further reduces the already low

weight.

By using a thinner membrane, lower voltages may be required to achieve similar strains, since the

electric field is ∝ 1
d0

. Using a multilayer actuator then should increases the actuation pressure,

i.e. the sound pressure.
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1.6 Scope

This thesis reviews the application of buckling dielectric elastomer actuators as loudspeakers.

Different prototypes are tested in order to find a concept capable of sound generation.

A prototypic loudspeaker is developed and characterised. The work covers the analytical descrip-

tion of the system, i.e. the transfer function of voltage to sound pressure and the experimental

validation of the model. Other characteristics, like total harmonic distortion and various reso-

nance frequencies are discussed and measured.

The design and development of the actuator is thoroughly described. Goal of this thesis is to

introduce an innovative way of sound generation using smart materials. A functioning prototype

is presented. Possible ways of optimisation are considered in the latter part.
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Chapter 2

Theory and Fundamentals

In this chapter, the principle of dielectric elastomers will be explained. Special attention will be

given to buckling actuators, as those will be the driving unit for the loudspeaker.

The first part will describe the dielectric elastomer itself, where a general relation of applied

voltage and resulting stress in the elastomer is derived.

Principles of sound generation are discussed in the second part.

A linearised model of the the dynamic behaviour of the buckling actuator follows.

Last, all results will be combined, to estimate the generated sound pressure of the BDEA.

2.1 Electromechanical Transduction in DE

In this section, an energy approach will be used, to deduce a relation of voltage and stress. [8]

The basic structure of a dielectric elastomer sandwiched between two compliant electrodes can

be seen as a capacitor of area A and thickness z with capacitance

C =
ε0εA

z
(2.1)

where ε0 is the permittivity of free space and ε the permittivity of the dielectric.

The electrical energy Ue stored in a capacitor with charge Q is [8]

Ue =
Q2

2C
=

zQ2

2ε0εA
(2.2)
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Unlike conventional capacitors, the dielectric elastomer is able to change its shape and size upon

charging. An incremental change of energy dUe therefore will have to consider changes of size.

dUe =
∂Ue

∂Q
dQ+

∂Ue

∂z
dz +

∂Ue

∂A
dA

=
Q

C
dQ+ Ue

[
1

z
dz − 1

A
dA

]
= V dQ+ Ue

[
1

z
dz − 1

A
dA

] (2.3)

Here, the first terms represents the electrical energy provided by an external source, charging

the capacitor. The second term describes the conversion of electrical to mechanical work. [8]

It only depends on changes of the geometry dz and dA. So, the work on the polymer from an

external power (i.e. the electrical field force) is [8]

dW = −Ue

[
1

z
dz − 1

A
dA

]
(2.4)

For the frequently used assumption of constant volume V ol = A · z (incompressibility of the

elastomer) the electrical energy Ue reads as

dUe = V dQ+ 2Ue
1

z
dz (2.5)

The mechanical work done by a pressure p is obtained by

dW = Apdz (2.6)

or

p =
1

A

dUe

dz
(when charge Q is kept constant) (2.7)

Here, the actuation pressure is generated by the opposed charged electrodes. [8]

Derivation, considering constant volume yields

p = ε0ε
V 2

z2
= ε0εE

2 (2.8)

which is often called the Maxwell stress in dielectric elastomers.

This result will be later used in order to receive a relation for applied voltage and resulting strain

and is thus the underlying equation for modelling of the loudspeaker.

The supplied voltage from the external amplifier (VAMP) does not equal the voltage applied

at the dielectric (VC). Fig.2.1 shows the circuit diagram of the typical DEA setup. VC is then
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Figure 2.1: Circuit diagram of a dielectric elastomer actuator. RS: combined resistance of
electrode and feed line; RL: resistance of the dielectric (leakage current); C: capacitance of the
DE. [46]

given by

VC = VAMP ·
RL

RL +RS
(2.9)

For many applications the electrode resistance is orders of magnitude lower than the resistance of

the isolating layer and no leakage current can be assumed. For alternating current applications,

the complex impedance of the circuit is given by

Z = RS +RL
1

1 + iωCRL

= RS +
RL

1 + ω2C2R2
L

· (1− iωCRL)

= <(Z) + =(Z)

(2.10)

To calculate the power consumption of the DE, only the real part of the impedance is of interest.

The imaginary impedance only contributes to the energy in the electric field of the capacitor and

is recovered after each cycle.

The electroded area of the DE is 8 mm× 8 mm large, the thickness d0 is 50 µm and its permittivity

is 2.8. Substituting gives a capacitance at zero strain of

C0 = 3.2× 10−11 F (2.11)

Wacker specifies the volume resistivity of the utilised silicone as 1× 1014 Ω m, so

RL =
d

A
· 1× 1014 Ω m =

d0

A0
λ2 = λ2 · 7.8× 1013 Ω = RL,0 · λ2 (2.12)
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The real part of the impedance is then

<(Z) = RS +
RL,0λ

2

1 + ω2C2
0R

2
L,0

(2.13)

The resistance of the electrode is in the range of 100 kΩ. Electrode quality and thus the resistance

varies widely and is different for each sample. Uniform electrode design is a present topic of DE

research and progress is being made.

The approximate impedance at zero strain is

<(Z) = 100 kΩ +
7.8× 1013 Ω

1 + ω2(3.2× 10−11 F)2(7.8× 1013 Ω)2

= 100 kΩ +
7.8× 1013 Ω

1 + ω2 · 6.2× 106 s2

(2.14)

For an applied signal of ω = 2π · 1 kHz the right part of the equation is negligible compared to

the electrode resistance. Hence, only electrode resistance will be considered when calculating the

power consumption. Following Ohm’s Law, that is

Pel =
V 2

AMP

RS
(2.15)

When supplied by a voltage VAMP = Vbias + Vsignal, the bias voltage will not contribute to the

overall power consumption as the leakage current is low enough to be neglected.

For multilayer actuators, N layers of DE are connected in parallel and the total impedance

is approximated by

Z ≈ RS

N
(2.16)

The electrical power supplied to he system follows

Pel = N
V 2

AMP

RS
(2.17)

and will later be used to calculate the efficiency.

It is neglected, that with increasing electrode resistance, the electric field takes more time to

spread over the surface of the membrane. For lager membranes than the utilised 8 mm× 8 mm

of this work, this may have considerable effect on performance.

2.2 Continuum Mechanics

The loudspeaker presented in this work consists of a circular DE-membrane clamped into a rigid

frame.

Modelling of dielectric elastomers usually requires hyperelastic theory because of the large in-
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duced strains.

For the DEs used in this work, strains < 10 % are achieved and linear material behaviour can be

assumed [41].

This section will cover the static behaviour of the membrane. A short introduction on vis-

coelasticity is found at the end of the section.

The governing equation for the static deformation of a circular plate in z-direction is [1].

D∆2w = pz. (2.18)

In the following, all elements of the expression will be derived and explained. A static model

of the membrane will then estimate the expected shape of the membrane under uniform normal

stress (i.e. the maxwell stress derived in the previous Chapter 2.1).

For high-speed actuated DEAs (as for loudspeakers) viscoelastic properties have to be considered.

Let a particle P be initially at position X. After a displacement u, the particles are at location

x

x = X + u (2.19)

A deformation gradient F can be defined as

dx =
∂x

∂X
dX = F dX (2.20)

Its determinant J gives information about the change of volume of a body before and after

deformation V and v, respectively [16].

dv = det(F) dV = J dV with J > 0 (2.21)

The deformation is therefore reversible (because det(F ) < 0) and the reverse deformation is

dX = F−1 dx (2.22)

The Green-Lagrangian strain tensor E is defined as

E =
1

2
(FTF− I) (2.23)

It provides information about the strains inside the structure. [2] The displacement u can then

be written in terms of F and the identity matrix I as

du = dx− dX = (F− I) dX = HdX (2.24)
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with the displacement gradient H

Hij =
∂ui
∂Xj

=
∂ui
∂xk

∂xk
∂Xj

=
∂ui
∂xk

(
δkj +

∂uk
∂Xj

)
(2.25)

And the strain tensor E becomes

Eij =
1

2

(
∂ui
∂Xj

+
∂uj
∂Xi

+
∂uk
∂Xi

∂uk
∂Xj

)
(2.26)

In linear elasticity, the displacements of a particle are considered small with respect to the

dimensions of the structure ∂ui
∂Xj

<< 1 and Hij reads as

Hij =
∂ui
∂Xj

=
∂ui
∂xj

(2.27)

Now, under this assumption of infinitesimal small strains, E equals the strain tensor ε [2]

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
=

1

2
(uij + uji) (2.28)

2.2.1 Stress-Strain

The theory of elasticity was defined in the last section. Now, the equations of strains shall be

linked with the physical world using the stress tensor σ.

In linear elasticity, Hooke’s Law states that, the strains are linear to an external stress

σ = c : ε or σij = cijklεkl (2.29)

with the elasticity tensor c. The 4th order tensor c holds several symmetries, especially for

isotropic materials.

Isotropy states, that the material’s behaviour stays the same under rotation. 4th order tensors

with this property can be generally written as [2]

cijkl = λδijδkl + µ(δikδjl + δilδjk) + κ(δikδjl − δilδjk) (2.30)

with arbitrary constants λ, µ and κ.

In linear elasticity, the last term drops, because of σij = σij , which follows indirectly from

Newton’s Laws.

Substituting into Eq. 2.29 yields [2]

σij = λεkkδij + 2µεij (2.31)
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The remaining constants λ and µ are called Lamé parameters. They can be written in terms of

the more common material parameters E (Young’s modulus) and ν (Poisson ratio). [2]

λ =
νE

(1− ν)(1− 2ν)
, ν =

E

2(1 + ν)
. (2.32)

Then, Hooke’s Law solved by the strains and substituting the symmetries and constants reads

as (using summation convention)

Eεij = (1 + ν)σij − νσkkδij (2.33)

Now, the relationship of stress and strain is specified and can be applied to the membrane using

plate theory.

2.2.2 Kirchhoff-Love Plate Theory

The deformation of the silicone membrane shall be handled by the Kirchhoff-Love Plate Theory

[2].

Plate theory tries to describe the elastic behaviour of structures thin compared to its in-plane

dimensions (x, y). [2]

All material points are assumed to be in the midplane of the plate. The deflection in z-direction

of a material point is a function of the in-plane dimensions [2]

w = w(x, y). (2.34)

and is only due to a transverse distributed load pz.

The second assumption of plate theory demands, that normal-stresses are negligible. This, of

course, is not true for DE-membranes, as the normal stress is the driving force of actuation.

Redefining of the geometry can handle that problem. Instead of the membrane being compressed

in z-direction by a stress σz and expanding in area direction, the plate is regarded as being subject

to a radial compressive force q acting along the clamped edge leading to a fictive transverse load

pz. [1]

Both mechanics result in the buckling of the membrane and plate theory is applied to this

problem.

Consider a plate with thickness h in the x − y-plane deflected in z-direction as depicted in

Fig. 2.3 The displacements u and v for small angles wx,y are given by

u(x, y, z) = −z ∂w(x, y)

∂x

v(x, y, z) = −z ∂w(x, y)

∂y

(2.35)
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Figure 2.2: Schematic drawing of the circular plate of Radius R subject to a radial compressive
force q [30], as analogy to a plate subject to radial extension.

Figure 2.3: Plate bending in the x− z-plane. In-plane displacement in x-,y- direction are u and
v, respectively. Displacement if the midplane in z-direction is w. Plate bending in y− z-plane is
alike.
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The strains are with Eq. 2.28

εx =
∂u

∂x
= −z ∂

2w

∂x2

εy =
∂v

∂y
= −z ∂

2w

∂y2

εxy = γx,y =
∂u

∂x
+
∂v

∂y
= −z ∂

2w

∂x∂y

(2.36)

All other strains in Kirchhoff Plate Theory are considered as negligible [1]. For the DEA with

no prestretch, a strain in z-direction of less than 5 % is expected, and the assumption seems

acceptable.

Solving Eq. 2.33 by σ and substituting the strains yields [2]

σx = − Ez

1− ν2

(
∂2w

∂x2
+ ν

∂2w

∂y2

)
σx = − Ez

1− ν2

(
∂2w

∂y2
+ ν

∂2w

∂x2

)
σxy = τxy = − Ez

1 + ν

∂2w

∂x∂y

(2.37)

It is convenient to define internal forces Q and internal moments M as

Qi =

∫ h/2

−h/2
τiz dz

Mij =

∫ h/2

−h/2
σijz dz.

(2.38)

Internal moments are obtained by substituting Eq. 2.37 and integrating

Mx = − Eh3

12(1− ν2)

(
∂2w

∂x2
+ ν

∂2w

∂y2

)
My = − Eh3

12(1− ν2)

(
∂2w

∂y2
+ ν

∂2w

∂x2

)
Mxy = −(1− ν)

Eh3

12(1− ν2)

∂2w

∂x∂y

(2.39)

while the constant parameter is defined as the flexural rigidity D

D =
Eh3

12(1− ν2)
. (2.40)

The internal forces Q can not be obtained by integration, as it was stated that τxz = τyz = 0. But

they can be calculated with the equilibrium conditions for an infinitesimal small plate element
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under transverse load pz. It holds
∂Qx
∂x

+
∂Qy
∂y

= pz (2.41)

and

Qx =
∂Mx

∂x
+
∂Mxy

∂y
and Qx =

∂My

∂y
+
∂Mxy

∂x
. (2.42)

Applying all equations for moments and forces one finally yields [1]

D∆2w = pz. (2.43)

To apply the formula to the given problem of a radially compressed disc as stated earlier, the

fictive load pz has to be determined. Fictive, because there is no actual load in z-direction when

radially compressed. But plate theory requires a z-load.

For polar coordinates, a fictive load can be represented in terms of internal forces Tr and Tθ in

radial and angular directions, respectively [1] as

pz = Tr
∂2w

∂r2
+ Tφ

(
1

r

∂w

∂φ
+

1

r2

∂2w

∂φ2

)
(2.44)

where shear forces are neglected.

Substituting into Eq. 2.43 and using the Laplace operator in polar coordinates yields

D

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂φ2

)2

w = Tr
∂2w

∂r2
+ Tφ

(
1

r

∂w

∂φ
+

1

r2

∂2w

∂φ2

)
(2.45)

Substituting −q from Fig. 2.2 in Tr and Tθ

Tr = Tθ = −q (2.46)

and supposing axisymmetric deformation, Laplacians can be reduced and the solution is given

by the Bessel functions of the first and second kind Jn Yn, respectively. [1]

w = C1J0(kr) + C2Y0(kr) + C3 ln(kr) + C4 (2.47)

where k2 = q/D. Deflections in the centre r = 0 of the membrane must not be infinite, so the

constants C2 and C3 become zero.

In the specific problem of the membrane being clamped all around the edge

w(r = Rb) =
∂w(r = Rb)

∂
= 0 (2.48)

it follows [1],

J1(kRb) = 0 so kRb = 3.832 (2.49)
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and

C4 = −C1J0(kRb) (2.50)

and therefore

w(r) = C1[J0(kr)− J0(kRb)] (2.51)

Now, to apply this to the problem of a DE membrane the constant C1 has to be determined.

The compressive maxwell stress Eq. 1.1 leads to an elastic deformation of the material according

to linear elasticity (with λ = εz + 1). Considering a multilayer actuator, with N electrodes and

N dielectric layers, the equation becomes

NE · (λ− 1) = (N − 1)εε0
V 2

d2
0λ

2
. (2.52)

The restriction of constant volume V ol in incompressible materials as silicone states that

V ol = A0 · d0 = A · d = A · d0λ = const. (2.53)

and the strain λ is the ratio of area before and after deformation, where it is assumed that the

strain is homogeneous over the whole membrane surface.

A =
A0

λ
=
πR2

b

λ
or λ =

πR2
b

A
(2.54)

By calculating the surface of the deformed membrane given by Eq. 2.51 and substituting, C1 can

be calculated.

The shape is given by

f =

r cos(φ)

r sin(φ)

w(r)

 for r < Rb (2.55)

and its surface area is calculated by

A =

∫
∂f

dA

=

∫ 2π

0

∫ Rb

0

∣∣∣∣∂f∂r × ∂f

∂φ

∣∣∣∣ drdφ

=

∫ 2π

0

∫ Rb

0

√
1 + w′2(r)r drdφ

= 2π

∫ Rb

0

√
1 + C2

1k
2J2

1 (kr) r dr

(2.56)
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Figure 2.4: Cap height of a membrane by area-strain. The shape determined by plate-theory
and homogeneously distributed stress and strain are assumed.

Figure 2.5: Shape of a membrane determined by plate-theory.

which has to be solved numerically using the integral -function in Matlab

with the cap height of the membrane of

h = w(0) = C1 · 1.402 (2.57)

The cap height can be plotted over the strain, see Fig. 2.4. The shape of the membrane is illus-

trated in Fig. 2.5. As can be seen, strain near the base is expected to be much lower than near the

apex of the cap. Therefore, homogeneous strain leads to an overestimation of height/strain. By

what extend this model represents the actual shape of the membrane has to be tested. Possible

deviations are because of the membrane being too thick, to neglect thickness.

2.2.3 Analytical Model

For an analytical model of the membrane deflection, it is more convenient to approximate the

shape of the membrane by a sphere. Its geometry is specified as in Fig. 2.6
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Figure 2.6: Geometry of the spherical membrane

As the membrane is initially supported by a spherical cap, its shape is spheric. Furthermore, it

is assumed, that the membrane is still in the shape of a spherical cap when under electrostatic

load, which is a sufficient approximation [51], despite Zhu et al [60] pointing out that, at high

voltages, the shape of the membrane will slightly differ from a sphere.

The initial, or reference configuration is the unstretched membrane, i.e. planar. All material

points are on a flat surface defined by

X =

R · cos(φ)

R · sin(φ)

0

 (2.58)

where R ≤ Rb, with Rb the base radius of the cap and r0 and h0 the radius of the sphere and the

cap height, respectively. The thickness is neglected and will be calculated from the area stretch.

When supplied on the rigid cap, the particles form into spherical shape, defined by

xpre =

 r0 · cos(φ) · sin(θ)

r0 · sin(φ) · sin(θ)

r0 cos(θ)− r0 + h0

 . (2.59)

The restriction

θ ≤ arcsin

(
Rb
r0

)
= arccos

(
r0 − h0

r0

)
= θmax. (2.60)

follows from the rigid boundary ring and counts for all sphere radii.

Strains are calculated again by the area ratio of the undeformed and deformed membrane as

before.

λpre =
πR2

b

π(R2
b + h2

0)
(2.61)
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When subject to an applied voltage, the radius/height of the the cap height will shrink/increase,

respectively. All particles will move to the new position xact

xact =

r · cos(φ) · sin(ξ)

r · sin(φ) · sin(ξ)

r · cos(ξ)− r + h

 , (2.62)

with

ξ ≤ arcsin

(
Rb
r

)
= arccos

(
r − h
r

)
= ξmax. (2.63)

The total strains follow in analogy to the pre-strains. New cap height being substituted:

λ =
πR2

b

π(R2
b + h2)

(2.64)

The total area strains are the product of pre- and actuation-strains λ = λact · λpre, hence the

activation strain in normal direction reads as

λact =
λ

λpre
=
R2
b + h2

0

R2
b + h2

(2.65)

The total strain plotted versus the cap height of this analytical, spherical model differs from the

previous model by a factor of f ≈ 1.3 as seen in Fig. 2.7. So, as previously stated, the calculated

height using the model for the shape of the membrane is an overestimation.

The assumption of homogeneously distributed strain is expected to slightly overestimate the

deflection of the membrane. Strains near the apex of the cap will be greater, than those near

the boundary ring. A more sophisticated model may be done in future research.

Early experiments showed, that the unloaded membrane is not stretched over the rigid support.

It rather takes on a relaxed hemispherical shape, when clamped into the ring, see Fig. 2.8. This

is probably due to the material being squeezed by clamping and thus displaced into the centre

ring cavity.

Pre-strain is therefore neglected: λ = λact (similar assumption is made in [51]) and the equation

for static deflection then becomes

NE · (λact − 1) = (N − 1)εε0
V 2

d2
0λ

2
act

. (2.66)

Solved by the voltage this allows to estimate the capheight of the membrane. The result is

plotted in Fig. 2.9. At a voltage of about 4.3 kV the electrostatic attraction is stronger than the
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Figure 2.7: Comparison of strain-to-height for the calculated model of Ch. 2.2.2 and the more
convenient approach of assuming spherical shape.

Figure 2.8: Assembled actuator. At V = 0 membrane does not stretch over the rigid cap. It
takes on a (presumed) spherical shape of height h0, which is made visible by carefully denting it.
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Figure 2.9: Estimation of cap height for a 8-layered BDEA with Rb = 4.0 mm and h0 = 1.0 mm,
Youngs’ modulus E = 1.0 MPa, thickness d0 = 50µm and permittivity ε = 2.8.

elastic repulsion and the breakdown voltage is reached. However, such high voltages may not be

applied to the polymer, as the dielectric strength does not allow such high electric field strengths.

Inhomogeneities in the membrane and the electrode usually further decrease the possible voltage

significantly, and material failure is reached at far lower voltages.

2.2.4 Viscoelasticity

Until now, only pure elasticity was discussed. Most polymers also exhibit an viscous response to

stress and strain as well. [36]

This behaviour is usually called the viscoelastic behaviour. The strain here is not only dependent

on the applied stress, but also changes over time. The material shows creep strains and ‘lags’

behind the applied stress. For the modelling in this work a basic Kelvin-Voigt model is applied.

Several viscoelastic models exist in literature. The Kelvin-Voigt model is chosen, as it is the

simplest model for polymers at the beginning of loading. As this work is dedicated to the design

of a loudspeaker, a high-frequency-driven unit, it can be considered as constantly being at the

beginning of loading.

The material response is modelled by a parallel spring of elastic modulus E and a dashpot

η (see Fig. 2.10). The stress is stated as

σ = Eξ(t) + ηξ̇(t), (2.67)
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Figure 2.10: Schematic representation of the Kelvin-Voigt viscoelastic model. Two elements are
coupled via a spring with spring constant E and a dashpot with friction η

with the displacement ξ. [36]

Considering the stress σ as constant σ0, the strain is easily obtained by

ξ(t) =
σ0

E

(
−e− t

τ

)
(2.68)

with τ = η
E

For harmonic oscillating displacements of the system, Eq. 2.67 becomes

σ̂ei(ωt+δ) = Eξ̂eiωt + iωηξ̂eiωt (2.69)

which simplifies to

σ̂eiδ = Eξ̂ + iωηξ̂. (2.70)

Now, a complex modulus

Ê = E′ + iE′′ = |E|eiδ (2.71)

with E′ = E and E′′ = ηω can be defined, so

σ̂ = Êξ̂ (2.72)

The angle δ provides information of how far the material lags behind the actuation under har-

monic excitation. The loss factor is defined as

tan δ =
ηω

E
(2.73)

and is for dielectric elastomers in the range of a few percent [4].

The loss factor is an important measure for efficiency of the system. The efficiency of a DE

can be calculated by the ratio of electrical energy supplied to the DE and mechanical energy

received from it.
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The electrical energy applied to the actuator per cycle can be calculated considering the DE as

capacitor as in Ch.2.1. The capacitance is

C =
ε0εA

d
=
ε0εA0

d0λ2
(2.74)

And the energy is thus

Ue =
1

2
CV 2 =

ε0εA0V
2

2d0λ2
(2.75)

For an harmonically driven DEA with viscoelastic effects according to Eq. 2.72 and Eq. 1.1, the

electrical energy in the system becomes

Ûe(ω) =
1

2
A0d0Êξ̂ (2.76)

The elastically stored energy is given by

Ûm(ω) = A0d0Eξ̂
2 (2.77)

And thus, the efficiency becomes

ν =

∫ T
0

dUm
dt dt∫ T

0
dUe
dt dt

=
E

E + iωη
=

1

1 + tan(δ)
(2.78)

So, with an increase of viscosity, the efficiency drops as one would expect.

To model the viscoelastic behaviour of a DE with arbitrary voltage the equation (with λ = 1−ξ)

εε0
Ed2

0

V (t)2

λ2(t)
= ξ(t) + τ ξ̇(t) (2.79)

has to be solved.

A simple method to measure the viscosity of the material is to apply a static stress, switch it off

and measure the time of material relaxation. Substituting zero stress yields

0 = ξ(t) + τ ξ̇(t) (2.80)

leads to

ξ(t) = ξ0 · e−t/τ (2.81)

with ξ0 the initial strain under constant voltage.

Determination of viscoelastic properties of the membrane under use is not subject to this thesis.

The loss factor is expected to have values of 0.1 %, which is large enough to dampen resonances,

but low enough to allow movements at high velocities.
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2.3 Sound Radiation

In acoustics engineering, various ways of generating sound exist. Engineers have always been

looking for new methods of generating sound in an innovative way. Plasma loudspeakers, ther-

moacoustic transducers, magnetostatic transducers and many more. The most common types

however, transfer the force of an electrostatic, piezoelectric or electromagnetic transducer via a

membrane to the surrounding air. In these, the membrane (the coupling element of the trans-

ducer to the air) is one of the most crucial part of the system. While being lightweight to

decrease the necessary driving force of the transducer it should be rigid enough to accelerate the

surrounding mass of air even at high velocities, i.e. at high frequencies. Many manufacturers

focus on improving stiffness of the membrane and accepting high membrane masses, as high

driving force is easily achieved with large electromagnetic transducers and the price per power

of amplifiers has dropped in recent decades [3]. The acoustical efficiency of these systems often

reduces below 1 %.

Powerful speaker systems, though being able to generate high pressure amplitudes hence are of-

ten far less efficient. Not only the mass of the membrane but also the electronics of such systems

decrease the overall efficiency.

For large arrays and portable devices (including headphones) the quest for energy efficient acous-

tic conversion is still relevant. [3]

Hence, for mobile applications, headphones, car- and aerospace aswell as for applications where

a large number of loudspeakers is desired, more efficient technologies are requested.

The presented DE loudspeaker does not focus on membrane stiffness. Instead low membrane

weight and low electronic losses are of interest to increase efficiency. Efficiency of DEs are re-

ported to be significantly higher than that of conventional actuators. [18]

In a linear and time-invariant system, the mathematics can be handled in the frequency domain.

For convenience the system can be split into two parts. One part for each domain transition.

The deflected membrane, coupled to the air, will emit sound pressure p̂ in dependency to its

membrane velocity v̂. The first transfer function is

H1(ω) =
p̂

v̂
(2.82)

The driving voltage V̂ results in a deflection of the membrane according to a transfer function,

which can be expressed in terms of speed in dependency of its driving voltage

H2(ω) =
v̂

V̂
(2.83)
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Figure 2.11: Geometry of the membrane, modelled as a ball

The overall frequency response is the product of both

H(ω) =
p̂

V̂
= H1(ω) ·H2(ω) (2.84)

In the following sections, both transfer functions are determined. Last, the results are combined

with an estimation of the resonance behaviour to estimate the total frequency response of the

system.

2.3.1 Frequency response

For the acoustical model an analytical approach will be used to estimate the frequency response.

By calculating the membrane velocity and taking it as the boundary condition for the axial-

symmetric wave equation, both the sound field and the frequency response may be calculated.

First, the geometry has to be defined. Assuming the membrane to be perfectly spherical at any

times it shall be depicted by a ball vibrating along the x-axis while changing its radius in order

to fit though a cavity, see Fig. 2.11. Its shape under bias voltage is then described by

x =

(
r · cos(θ)

r · sin(θ)

)
(2.85)

with θ ≤ θmax = arcsin
(
Rb
r

)
and Rb its base radius. (see Fig. 2.6)

By changing the applied voltage, i.e. applying a signal, the centre and the radius of the sphere

will change:

x→ x′ =

(
r′ · cos(θ′)

r′ · sin(θ′)

)
+

(
(r − h)− (r′ − h′)

0

)
(2.86)

with h the height of the membrane. Following assumptions are made.

• The stretch is equal everywhere on the sphere, so θ
θmax

= θ′

θ′max
= const.
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• The radius vibrates harmonically around the bias radius: r′ = r + r̂eiωt

• r̂ is small compared to r: r̂ 5 r

The velocity can be written as

v = ṙ

[(
1− cos(θ)

r√
r2 −R2

b

)
er −

(
θRb

θmax
√
r2 −R2

b

− sin(θ)
r√

r2 −R2
B

)
eθ

]
(2.87)

The full derivation is found in the appendix 6.1 This shall be the boundary condition for solving

the wave equation in terms of the acoustic potential Φ (with c the sound velocity in air)

1

c2
∂2Φ

∂t2
−∇2Φ = 0 (2.88)

which translates under harmonic vibrations to

−ω
2

c2
Φ−∇2Φ = 0 or

(k2 +∇2)Φ = 0

(2.89)

In an axisymmetric system the solutions are the sum of Hankel functions H
(1)
n (kR)(representing

ingoing waves) und H
(2)
n (kR)(representing outgoing waves). Pn are the Legendre Polynomials. [3]

Φ =
∞∑
n=0

Φ̃n

(
An+H

(1)
n (kR) +An−H

(2)
n (kR)

)
Pn(cos(θ)) (2.90)

Ingoing waves are set zero to simulate the free field, so

Φ =
∞∑
n=0

AnH
(2)
n (kR)Pn(cos(θ)) (2.91)

To find the unknown coefficients An the boundary condition has to be met.

v =∇Φ|R=r (2.92)

vr + vθ =
∂Φ

∂R
er +

1

R

∂Φ

∂θ
eθ

∣∣∣
R=r0

(2.93)

Only the radial velocity component is relevant for the sound radiation, hence the governing re-

lation is

ṙ

[(
1− cos(θ)

r√
r2 −R2

b

)]
=

∂

∂R

∞∑
n=0

AnH
(2)
n (kR)Pn(cos(θ))

∣∣∣
R=r

(2.94)
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To solve the equation, the orthogonality of the Legendre Polynomials is exploited. Both sides are

multiplied by the mth Legendre Polynomial Pm(cos(θ)). Integration over the sphere eliminates

the sum.

A full calculation and the expression for the An are in the appendix 6.2.

For the sake of simplicity the loudspeaker is considered as an acoustic monopole. As the di-

ameter of the transducer is small compared to the acoustic wavelength in the air for the full

audible spectrum it is a viable approach. The potential is then given by

Φ =
A

R
ei(ωt−kR) (2.95)

To calculate the sound pressure, the volume flux is calculated. The volume of the spherical cap

is given by

V ol =
π

6
(3R2

bh+ h3) (2.96)

and its time derivative is

dV ol

dt
= Q =

π

6

(
3R2

b

∂h

∂r
ṙ + 3h2 ∂h

∂r
ṙ

)
(2.97)

with h = r −
√
r2 −R2

b it yields to

Q =
π

2

(
1− r√

r2 −R2
b

)(
R2
b + h2

)
ṙ. (2.98)

The displaced volume per time Q has to be equal to the volume flux given by a closed surface

integral (sphere) of the sound particle velocity

Q =

∫
S
~v · d~S =

∫
S
∇Φ · d~S = 4πAeiωt (2.99)

The missing coefficient A is easily obtained

A =
1

8

(
1− r√

r2 −R2
b

)(
R2
b + h2

)
ṙ · e−iωt (2.100)

And finally the simplified acoustic potential is

Φ =
1

8R

(
1− r√

r2 −R2
b

)(
R2
b + h2

)
ṙ · e−ikR (2.101)
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Figure 2.12: Sound pressure level in 1 m distance of the loudspeaker by membrane velocity.
(Frequency response of a constant-speed (1 m s−1) driven membrane).

which shall be the basis for further analysis.

The sound pressure is given by the time derivative of the acoustic potential Φ [9]

p = −ρ0
∂Φ

∂t
= −iωρ0Φ. (2.102)

Then the radial impedance at the membrane surface is given by the ratio of pressure and radial

velocity at R = r

Z0 =
p̂(r, ω)

v̂(r, ω)
= −iωρ0

1

8r

(
R2
b + h2

)
e−ikr (2.103)

Here Eq. 2.87 is used for small angles θ.

This radial impedance can be considered as additional damping for the membrane movement,

similar to the viscoelastic damping. [47]

And the transfer function, which calculates the sound pressure in distance R = 1 m relative to

the membrane velocity, is

H1(ω) =
p(1 m, ω)

v̂(r, ω)
=

= −iωρ0
1

8 m

(
R2
b + h2

)
· e−ikR

(2.104)

Fig. 2.12 shows the calculated frequency response of the simplified model. The membrane mov-

ing with a constant velocity of 1 m
s will emit sound as depicted. The curve shows an increase of

the SPL with increasing frequency 6 dB/octave.

This model is expected to overestimate the actual sound emission as the membrane will not

be in perfect spherical shape. It will rather flatten near the apex of the cap during movement,

as the soft material will struggle to displace the surrounding air. But, it serves as useful approx-
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imation by means of identifying the speaker clearly as a tweeter.

A numerical model and shape examination using laser vibrometry are ought to be done in future

research.

2.3.2 Sound power

To estimate the efficiency of the loudspeaker, which is supposed to be one of the main benefits

of DE technology, the sound power is calculated as

Pak =

∫
v · p dA

= 2π

∫
p(1 m, ω) · v(1 m, ω) sin(θ) dθ

(2.105)

when the area of integration is chosen as a sphere with radius 1 m. The pressure p was calculated

in the previous section relative to the membrane velocity as H1(ω).

The velocity in 1 m distance can be calculated using the free-field impedance

p

v
= ρ0 · c. (2.106)

As the loudspeaker only performs well at high frequencies, 1 m can be considered as far-field and

the free-field impedance a valid expression [34].

Substituting yields

Pak = 2π

∫
p2(1 m, ω)

ρc
sin(θ) dθ

=
4π

ρ0c
H1(ω)2 · v̂2

(2.107)

considering the loudspeaker as an omnidirectional sound source, which was the assumption for

the simplified acoustical model.

2.4 Dynamic Response of the Membrane

An accurate dynamic modelling of the non-linear behaviour of a DEA membrane is only possi-

ble with numerical approaches as the equations lead to a non-linear inhomogeneous differential

equation. This thesis’ aim is it to approximate the sound generation of a buckling DEA by means

of an analytical model. The governing equations will be linearised and compared with existing

studies [10,20,44] and with the results of acoustic measurements.
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2.4.1 Membrane Frequency Response

Here, a dynamic model of the membrane is derived. For the dynamic modelling of the membrane,

Newton’s equation of motion is solved in order to obtain the frequency response.

A · σmaxwell −A · σelastic = F (2.108)

The elastic stress is assumed to be linear. As the motion of the membrane will be small compared

to the bias-deflection it is a valid approach. F is the sum of the inertia, the air resistance in

terms of the acoustic impedance Z0 and viscous damping in terms of viscosity η. The acoustic

impedance was derived in the previous section. The viscoelastic losses are approximated as 0.1 %

using the results of [8] for other PDMS materials, as the loss-factor of the utilised Elastosil 2030

is yet unknown.

F = m · d2x

dt2
+A · (Z0 + η) · dx

dt
(2.109)

As was seen in 2.3, position and shape of the membrane x are represented by the surface of a

sphere, which can be reduced to only two dimensions.

x ≈ r

(
cos θ

sin θ

)
with θ < θmax (2.110)

As all forces are assumed to act along the radial direction, vectorial elements are reduced and

the equation becomes one-dimensional. As can be seen from Eq. 2.87, the radial velocity of the

membrane has to be adjusted by a factor dependent on the angle θ. For small angles, that is

for membrane radii much larger than Rb, θ can be considered as zero and the correction factor

becomes constant. With r the radius of the sphere under bias-voltage, radial velocity and accel-

eration become

ẋ = ṙ ·

(
1− r√

r2 −R2
b

)
(2.111)

ẍ = r̈ ·

(
1− r√

r2 −R2
b

)
(2.112)

For clearer synopsis, the factor is left out and will be added again later on.

Substituting into 2.109, together with 1.2, 1.1 and the geometrical relation

λact =
λ

λpre
=
R2
b + h2

0

R2
b + h2

(2.113)

yields to to an inhomogeneous 2nd order non-linear differential equation for an actuator consist-

ing of N layers. With a passive layer at the bottom, the first term representing the electrostatic
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attraction reduces by 1.

(N − 1) ·A · ε0ε
V 2

λ2
actd

2
0

+N ·A · E(λact − 1)−N ·mr̈ −A(Z0 +N · η) · ṙ = 0

N − 1

N
· ε0ε

V 2

d2
0

+ E(λ3
act − λ2

act)− λ3
actd0ρ · r̈ − λ2

act(
Z0

N
+ η) · ṙ = 0

N − 1

N
· ε0ε

V 2

d2
0

+ λ3
act(E − d0ρ · r̈)− λ2

act

(
(E +

Z0

N
+ η) · ṙ

)
= 0,

(2.114)

To linearise the equation, a series expansion of λn3 at r = r0 is conducted.

λnact ≈ αn + βn

∫
r̂eiωtdω (2.115)

substituting yields

N − 1

N
ε0ε

V 2

d2
0

+

(
α3 + β3

∫
r̂eiωtdω

)(
E + d0ρ · ω2

∫
r̂eiωtdω

)
−
(
α2 + β2

∫
r̂eiωtdω

)(
E + iω(

Z0

N
+ η)

∫
r̂eiωtdω

)
= 0

(2.116)

Let the voltage be given by V = Vbias+
∫
V̂ (ω)eiωt dω, whereas N−1

N
ε0ε
d20
V 2
bias = (α2−α3)E, then

N − 1

N

ε0ε

d2
0

(
2Vbias

∫
V̂ (ω)eiωtdω +

(∫
V̂ (ω)eiωtdω

)2
)

=

=
[
(β2 − β3)E − α3d0ρω

2 + α2(
Z0

N
+ η)iω

] ∫
r̂(ω)eiωtdω

+
[
β2(

Z0

N
+ ν)iω − β3d0ρω

2
](∫

r̂(ω)eiωtdω

)2

.

(2.117)

Making use of the convolution theorem, integrals can be reduced.

N − 1

N

ε0ε

d2
0

(
2Vbias +

(∫
V̂ (ξ)eiξtdξ

))
V̂ (ω) =

=
[
(β2 − β3)E − α3d0ρω

2 + α2(
Z0

N
+ η)iω

]
r̂(ω)

+
[
β2(

Z0

N
+ ν)iω − β3d0ρω

2
](∫

r̂(ξ)eiξtdξ

)
r̂(ω)

(2.118)

The relation has to be fulfilled for all times t. Assuming there is a moment in time for all

frequencies where both,
∫
V̂ (ξ)eiξtdξ and

∫
r̂(ξ)eiξtdξ are zero (e.g. in infinity after the signal

has been turned off), the second terms in both sides of the equations vanish and the transfer

function is calculated under consideration of the velocity correction factor which was dropped
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Figure 2.13: Membrane response with 2 kV applied bias voltage and 1 V signal voltage, mechan-
ical loss of 0.1 %, density of the material ρ = 1050 kg

m3 and elastic modulus of E = 1.2 MPa.

earlier, by

H2(ω) =
v̂(ω)

V̂ (ω)
=
iωr̂(ω)

V̂ (ω)
·

(
1− r√

r2 −R2
b

)
=

= 2ε0ε
N − 1

N

Vbias
d2

0

iω

(β2 − β3)E − α3d0ρω2 + α2(Z0

N + η)iω
·

(
1− r√

r2 −R2
b

)
.

(2.119)

Fig. 2.13 shows membrane velocity per applied voltage amplitude over the frequency. For a

signal voltage of 1 V the velocity of the membrane is about 3.5 mm s−1 for frequencies close to

its resonance.

The umber of layers barely affects the membrane velocity. The term Z0

N + η does not change

much by varying amount of layers, as viscoelastic losses are orders of magnitude higher than the

acoustic impedance. For other materials this might be different.

A clear resonance peak is found at 4.1 kHz. Higher values for viscoelastic losses dampen the

resonance.

Compared to existing studies of dynamic DE membranes the equation seems valid. In his paper,

Rosset et. al. [44] studies the behaviour of a buckling dielectric elastomer actuator made of sili-

cone. The actuator has a diameter of only 2 mm. Though a different setup with ion-implanted

electrodes was used, it may serve as comparison. Fig. 2.14 shows the measured response from

literature and the modelled curve for the BDEA of this work. Up to a specific frequency, both

curves are flat op to a specific resonance frequency, have a peak and then drop rapidly. Height

of the peak decreases with increasing loss-factor.

Measured data suspect a small peak at the 2nd natural frequency and a peak at the first subhar-

monic [44]. Fig. 2.14a shows the dynamic behaviour of the membrane. A resonance frequency of

1350 Hz is observed, which is very similar to the observed peak in Fig. 1.12 as well as in Fig. 1.5a

and suggests good validity. As Heydt et al [15] found out, the frequency response of a silicone
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(a) Response of a circular buckling silicone actuator on a 700 V
step signal. [44]

(b) Expected displacement-response of the BDEA of this thesis

Figure 2.14: Comparison of membrane response found in literature with the derived model.
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DE loudspeaker is almost linear up from the mechanical resonance frequency.

The linearised equation is only a rough estimation of the membrane response. It is only valid for

signal voltages small compared to the bis voltage.

2.4.2 Resonance Frequencies

The multilayer buckling actuators can be considered as an array of non-linearly-coupled para-

metric oscillators with each layer regarded as one oscillator subject to the non-linear driving

force ∝ V 2. [60]

As result of the quadratic excitation and the non-linear coupling, sub- and super-harmonic res-

onances occur [59].

That means, that for an excitation frequency Ω the oscillator will also show vibrations at fre-

quencies M · ω0 with M integers or inverses of integers and ω0 the natural frequency.

Natural frequencies in comb-drive microcantilevers are given by

ωi =

√
1− 8Q sin2

(
iπ

2(N + 1)

)
ω0 (2.120)

with Q =
εε0A0V

2
bias

2d30Y
and ω0

2π ≈ 4.1 kHz the fundamental frequency (see Fig.2.13). [59]

If the frequency of excitation Ω, given by a signal V = Vbias+V̂ ·cos(Ωt), is close to 2ωij (i, j ∈ N),

the system will resonate at frequencies ωi.

Fig.2.15 shows the measured displacement of a circular DE membrane for a broad frequency

range. High displacements are achieved at frequencies ωi, but also at frequencies ω0

2 and 2ω0,

i.e. sub- and superharmonics. Vibrations in frequencies different from the excitation frequency

contribute to the total harmonic distortion of loudspeaker. Hence, the total harmonic distortion

(THD) is expected to have peaks at frequencies Ω = 2ω0 and at Ω = ω0

2 .

Besides of the previously determined resonance frequency of ∼4.1 kHz, other natural frequencies

in Eq.2.120 and its sub- and superharmonics, the geometry of the problem leads to infinitely

many resonances. At high frequencies the movement of the membrane will decay in several

modal patterns, leading to peaks and dips in the frequency response.

Oscillations of a circular membrane are a well studied problem. Similar to Eq. 2.43, the dynamic

behaviour of a vibrating membrane is described by

D∆2w + ρ
∂2w

∂t2
= 0. (2.121)

Here, ρ is the mass per unit area [26]. Solutions for sinusoidal vibrations are given by

ŵ(k) = [AnJn(kr) +BnIn(kr)] cos(nφ), (2.122)
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Figure 2.15: Displacements and stretches of a circular stretched DE membrane [60]. Resonances
at natural frequencies ωi as well as sub- and superharmonics. With A radius of the membrane,
H its thickness, µ its shear modulus and ρ the density of the material.
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s n=0 n=1 n=2 n=3 n=4
1 3,196 4,611 5,906 7,144 8,347
2 6,306 7,800 9,197 10,54 11,84
3 9,439 10,96 12,40 13,80 15,15
4 12,58 14,11 15,58 17,01 18,40
5 15,72 17,26 18,74 20,19
6 18,86 20,40

Table 2.1: Values for κ from Eq. 2.125 to determinde resonance frequencies κ2 = ωR2
b

√
ρ/D

with Jn Bessel function of the first kind and In the modified Bessel function of the first kind [26].

Here, n represents the number of nodal lines as can be seen from the cos-term. Higher number of

nodal lines will split the membrane into areas of upward and downward movement. Consequence

will be drops in the frequency response as opposed movement will cancel air movement out.

With the same boundary conditions as in the static case for a clamped membrane it yields to

An
Bn

= − In(κ)

Jn(κ)
(2.123)

with κ2 = ωR2
b

√
ρ/D [26]. So, the modal shapes are given by

ŵ(κ) = An

[
AnJn(kr)− Jn(κ)

In(κ)
In(kr)

]
cos(nφ) (2.124)

The values of κ are obtained by solving

Jn(κ)In+1(κ) + In(κ)Jn+1(κ) = 0 (2.125)

and are listed in Tab.2.1 The lowest resonance frequency for the 8-layered actuator would be

458 Hz. As argued before, no sound generation is expected at such low frequencies, hence the

first audible peaks in the spectrum are expected to be at 953 Hz and 1.56 kHz corresponding to

the (n = 1, s = 1)- and(2 = 0, s = 1)-modes, respectively.

2.5 Complete System

With the results of the previous sections, the overall performance is approximated. The frequency

response is obtained by both transfer functions H1 and H2. Last, the efficiency of the actuator

is calculated, as it is supposed to be one of the major advantages of DE-technology.
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Figure 2.16: Frequency response of the experimental loudspeaker per kV of applied signal voltage.

2.5.1 Frequency response

Now, both transfer functions have been determined and it is possible to estimate the total sound

output of the system by

H(ω) =
v̂(ω)

V̂ (ω)
· p̂(ω)

v̂(ω)
=

p̂(ω)

V̂ (ω)
(2.126)

Fig. 2.16 shows the estimated acoustic frequency response of the actuator. Viscoelastic losses

are set to 0.1 % , density of air to ρ0 = 1.2 kg

m3 and of silicone to ρ = 1050 kg

m3 . The bias voltage

is set to 2 kV.

The available audio amplifier to drive the unit supplies a signal voltage of up to 400 V. The level

at 1 kHz will therefore be at about 45 dB [SPL] (−8 dB).

At ∼5 kHz the response reaches its maximum of almost 80 dB kV−1.

At high frequencies membrane movement decays into partial oscillations (see previous section)

and the actual frequency response is expected to hold several peaks and dips.

For frequencies below 500 Hz no sound output is expected. With increasing frequency, SPL

increases by ∼18 dB/octave. Low SPL for low frequencies is due to low membrane velocity (see

Fig. 2.13) and low acoustic impedance (see Fig. 2.12).

For playback of music, the frequency range should be expanded into lower frequency domains.

This may be achieved by increasing membrane mass (number of layers or other material), using

thicker foil, increasing diameter or by using a material with lower elastic modulus E.

Non-linear behaviour has been widely ignored, as the transfer function is linearised

2.5.2 Efficiency

The overall acoustical efficiency ν is calculated by the ratio of supplied electrical power and the

generated sound power.
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Following from Eqs. 2.104,2.119 and 2.17 the efficiency is

ν(ω) =
Pak(ω)

Pel(ω)

=
4π

ρ0c
H2

1 (ω) ·H2
2 (ω) · V̂

2

Pel

=
4π

ρ0c
H2

1 (ω) ·H2
2 (ω) · RS

N
.

(2.127)

And is below ∼1 % (assuming RS again as in the range of 100 kΩ, N = 8), which is common for

loudspeakers [3]. From this point of view the DE technology is not necessarily advantageous to

conventional drivers. The benefits of being extraordinarily lightweight, easy to manufacture and

scalable remain.

The equation, of course, is only valid under the assumptions made before. That is, electrode

resistance far lower than isolating resistance of the dielectric RS << RL, high frequencies

f >> 100 Hz (see Section 2.1), and voltage amplitude lower than bias-voltage, so that H2 is

a valid linearisation.
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Chapter 3

Experiments

After the proper concept of buckling dielectric elastomer actuators was found, static and acoustic

measurements are conducted.

First, development and assembly of the loudspeaker is described, followed by a description of the

experimental setup.

3.1 Preliminary Tests

The initial goal of the thesis was to develop a small scale buckling DEA for loudspeakers. Dif-

ferent actuator sizes with different membrane thicknesses were planned to be compared.

After frames for different actuator sizes were designed in Solidworks and 3D-printed using the

Ultimaker 2Go 3D-printer, experiments to figure out the optimal electrode mix were performed.

The electrode (ELASTOSIL LR 3162) was provided by Wacker. Following the manufactur-

ing guide, two pasty-like components A and B are mixed with ratio 1:1. The mixture is then

blended with an amount of volatile silicone (BELSIL DM 1 PLUS) to attain viscosity suitable for

spraying onto the silicone foil. BELSIL is a silicone solvent which, upon spraying, dissolves the

surface of the membrane. It allows the conducting carbon particles of A and B of the mixture

to blend onto the membrane, creating an abrasion resistant, stretchable electrode with good

conductivity even under stretch.

Results of earlier projects at the institute recommended a ratio of 1:1:40. Unfortunately this

ratio did not perform well. The large amount of BELSIL broke the surface tension of the mem-

brane and wrinkles formed during spraying. Gradually reducing the amount of BELSIL until a

ratio of 2:2:40 showed inreasing performance. This ratio, while still suitable for spraying, did not

corrode the membrane much and further allowed quick curing of the electrode.
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Figure 3.1: Experimental buckling DEA with membrane thickness of 50µm with 3 kV supplied
voltage. One large electrode was expected to buckle-up through the 5 mm wide cavities. The
deformation could not be assumed as spherical.

Next, different masking techniques were tested. First experiments were conducted using rigid

3D-printed PLA masks. Bad connection of mask and membrane lead to imprecise edges and

big margins of the electrode. Better results were achieved using the carrier foil, on which the

membranes were attached.

Carpi et al. [6] presented a buckling dielectric elastomer actuator with a diameter of 30 mm

using a membrane with thickness 500µm.

Many attempts of reproducing a downscaled version (5:2, 3:1, 5:1, 10:1) of a buckling dielectric

elastomer actuator with the provided membrane thicknesses of 20µm, 50 µm, 100 µm and 200 µm

failed. Even with small diameters of the actuator, uncontrolled wrinkles formed (see Fig. 3.1),

whereas the thicker membranes did not show any notable deformation at all. Therefore, the

concept of a downscaled single layer actuator was dropped.

Eventually a multilayer actuator consisting of 3 to 8 membrane layers (50µm thick) and a di-

ameter of 8 mm showed the desired spherical deformation and provided audible sound generation

down to frequencies of ∼500 Hz.
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3.2 Fabrication

Fabrication of the loudspeaker elements consists of two steps. First the multi-layered membranes

have to be produced.

The stacked membranes are then assembled into the 3D-printed frame.

Using 3D printer technology allowed quick prototyping and several concepts were tested before

the final concept was devised.

In the following each step of fabrications is explained.

3.2.1 Multilayer Film Fabrication

A semi-automatic fabrication process allows to produce multilayer DE actors of high quality with

very small variations. The produced membrane stacks have an active area of 8 mm× 8 mm. [29]

Within the development of multilayer actors, an automated dry deposition manufacturing se-

quential process was developed. Aim of the process is to automatically produce 192-layered stack

actuators. The process uses prefabricated silicone films (Elastosil 2030 50µm) by Wacker and is

subdivided into six sub-processes.

The elastomer is delivered on rolls. The first step is to remove the film from the protective sheet

and the carrier foil. A vacuum roller is used to avoid mechanical loading of the membrane in

the process. The vacuum roller is a roll of porous material with negative pressure inside (see

Fig. 3.2).

The film is then laminated on a vacuum folding table (see Fig. 3.3) by applying positive pressure

in the roller and negative pressure in the table of the same porous material. A hot wire cutter is

used to cut off the film. Once the film is placed on the vacuum folding table, the spraying mask

is arranged above the film. Electrode (ELASTOSIL LR 3162) is sprayed in thin layers (4µm to

5 µm) on the film. The cut-off membrane is large enough to contain 8 segments of 24 electrodes

(active area: 8 mm× 8 mm) each.

Before the electrode is cured, the films are folded. The process is repeated until 8 layers of film

and electrode are fabricated.

24 functioning actuators with 8 layers are ready to use after the electrode is cured.

A full overview of the fabrication facility is depicted in Fig. 3.4. For the multilayer buckling ac-

tuators the process ends here, as the maximum tested number of layers is 8. With this process,

24 samples of multilayer membranes for this work are automatically fabricated.

The purpose of the facility is to fabricate stack actuators of 192 layers.

To achieve this, the stacked segment is cut by an ultrasonic knife in 24 pieces and stacked by a

vacuum gripper.
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Figure 3.2: Vaccum roller to separate the film from the roll and to place it on the table [29]

Figure 3.3: Vacuum folding table used to produce 8 layered actuators [29]
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Figure 3.4: Sketch of the automatic multilayer production facility. [29]

Contacting is done using a contacting film. Last step is to encapsulate the stack actuator using

the same elastomer. [29]

To build samples of BDEA with different amount of layers (3-8 layers are tested), layers are

carefully removed subsequently. If electrode material was damaged in this process, additional

spraying is needed to cover up.

3.2.2 Actuator Assembly

Fig. 3.6 shows a technical drawing of the frame. To assemble the multi-layered membrane into

the frame, double sided adhesive tape is used. The membrane is not subject to any prestretch

as it would decrease actuating capabilities [6]. Clamped between conducting copper tape and

placed in the frame, the actuator is ready.

Fig. 3.7 shows the step-by-step assembly of the actuator. Post-treatment of the 3D-printed frame

involves polishing the surface. Height of rigid cap support decreases slightly in the process.

A cavity (1 mm wide) at the centre of the rigid cap accounts for the pressure compensation, so

the membrane may move freely without working against compressed air.

For better connection of the conducting copper tape, the actuator is frayed at the support

region. Tightly clamped between copper tape, it is ensured that all layers are connected to the

power supply.

Another tested method for connection was to pierce a wire through the membrane. Randomly

occurring discharges from the wire to the membrane lead to highly non linear behaviour. Upon

ramping up the voltage cracking sounds indicated sudden deformations. Measurements with a

high precision laser confirmed the audible examination (see Fig. 3.5).

As the actuator assembly is very simple, an automatic fabrication process might be installed in

the future. Together with an automatic fabrication process of multilayer membranes, which is
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Figure 3.5: Sample with bad conductivity, where randomly occurring discharges led to erratic
deflection changes during linear voltage ramping.

Figure 3.6: Technical drawing of the actuator. Total width is 40 mm. Frame is screwed together
(M4 screws) for maximum stability.

subject to research at FG Elektromechanische Konstruktion, full-automatic production of loud-

speakers seems to be possible in near future. In contrast to conventional electrodynamic loud-

speakers the DE technology might offer extraordinarily low production costs.

The finished actuator is depicted in Fig. 3.8.

3.3 Static Deflection

Measurements of the static deflection are conducted in order to proof the static model of the

membrane and to determine the Young’s modulus E of dielectric elastomer.

For measurements of the deflection under static load, an automated process with Simulink

and the dSpace micro-controller was implemented. Measurements are performed using a high-

precision laser rangefinder (Mirco-Epsilon optoNCDT ).

A laptop is used to run the micro-controller, which is connected to the high-voltage amplifier
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(a) Multilayer Membrane consisting of 8 layers
with 8 electrodes. The bottom layer is a passive
layer

(b) Double sided adhesive tape fixes the mem-
brane in the boundary ring of 8 mm diameter.

(c) Conductive copper tape is placed on the
frame. Supply region of the actuator is frayed
to ensure conductivity

(d) Membrane is sandwiched between the ad-
hesive copper tape and clamped into the frame.

Figure 3.7: Step-by-step assembly of the loudspeaker

Figure 3.8: The finished actuator
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Figure 3.9: Setup for the static measurement

and the laser range-finder, measuring applied voltage, current and deflection of the membrane

simultaneously, see Fig. 3.9.

The dSpace-microcontroller is able to provide an outgoing voltage of 0 V to 10 V, while the am-

plifier amplifies the input voltage by a fixed factor of 1000, so the necessary voltage of 0 V to

3000 V is easily achieved.

The BDE-sample is manually positioned below the laser leading to potential errors, as it is

possibly not exactly centred.

The sample is connected to the amplifier, using clamps attached to the copper tape contacts.

First the initial height h0 of each sample is measured to accurately calculate the strains from the

membrane deflection.

During measurement, the voltage is ramped up from 0 V to 2800 V over a period of 20 s. A

close-up view of the rangefinder and the BDE-sample is depicted in Fig. 3.10

3.4 Frequency Response

Acoustic measurements are conducted in the anechoic room of the Institut für Strömungsmechanik

und Technische Akustik. It has a volume of 1070 m3 and a lower cut-off frequency of 63 Hz. Below

that cut-off frequency, measurements might be prone to noise.

The room is equipped with a net to walk on, so bottom reflections are eliminated.

The device under test is placed on a sound baffle so sound is emitted in the half-space above the

speaker. The baffle rests on a foam mat. (see Fig. 3.11)

The microphone is located in 0.5 m distance above the DUT. Sound radiation in the half space
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Figure 3.10: Close-up view of the sample under test.

56



Figure 3.11: Acoustic measurement of the loudspeaker in the anechoic room of TU Berlin
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Figure 3.12: Hardware setup outside the anechoic room during the measurement of the frequency
response

Device Model
Sound card Focusrite Scarlett 18i8
Microphone and Preamp NTI M2230 and NTI MA220
Amplifier Custom build
Software AKtools-library for MatLab

Table 3.1: Equipment used for the measurement of the frequency response

(+6 dB) plus microphone distance of 0.5 m (+6 dB) result in a measured sound pressure level

12 dB higher than the modelled SPL, which is calculated for free space in 1 m distance.

The baffle is designed large enough to not affect the measurement with edge reflections for fre-

quencies higher than 500 Hz, which is the expected operating range of the loudspeaker.

The test facility provides a cable management system, so all electronics (sound card, ampli-

fier, PC, etc.) can be outside the anechoic room and noise can be reduced (see Fig. 3.12). The

software library AKtools for audio measurements is provided by Fachgebiet Audiokommunikation

and offers the possibility to measure various acoustic parameters using Matlab.

To observe the test signal during measurement, an oscilloscope is connected in parallel to the

loudspeaker. A voltage divider (1/1000) is linked to the oscilloscope, to handle the high voltages.

The flowchart depicting the setup is seen in Fig. 3.13

The amplifier provides a fixed bias-voltage of 2 kV and a maximum signal amplitude of 400 V.

As test signal for measurement of the frequency response a logarithmic sweep with a sampling

frequency of 44 100 Hz is used. The generated sweep has 220 samples and thus, lasts 23.8 s. Signal

amplitude is set to the maximum possible 400 V.

A frequency response measurement of the amplifier as reference is conducted in the same manner.
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Figure 3.13: Flowchart of acoustic measurements

Figure 3.14: Hardware setup outside the anechoic room during the measurement of THD+N

Its inverse is used to adjust the frequency response of the loudspeaker.

3.5 Total Harmonic Distortion (THD+N)

Measurement of the total harmonic distortion (THD+N) is also conducted in the anechoic room.

The same amplifier, microphone and preamplifier is used. Setup inside the test-facility is the

same as in Fig. 3.11

The measurement system used is Monkey Forest by Four Audio. A DOS-based software with

hardware front-end capable of measuring THD and various other acoustic parameters.

The setup is depicted in Fig. 3.14.

Total harmonic distortion is measured for each sample with signal voltages of 0.1 kV, 0.2 kV

and 0.4 kV. Bias voltage is kept constant 2.0 kV.
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Total harmonic distortion is calculated as the ratio of the fundamental p1 to its harmonics pi

plus noise pnoise

THD + N =

√∑inf
2 p2

i + p2
noise

p2
1

(3.1)

and can be expressed in terms of percent or decibel [52]. The audio measurement system only

measures (and calculates the THD) harmonics up to the 3rd order.

A sampling frequency of 44 100 Hz only allows measurement of the THD up to frequencies of

ca.10 kHz as the frequency of the 2nd harmonic already reaches the Nyquist frequency.

Measurements of the fundamental, the 2nd and 3rd harmonics and the noise level are performed

in the range of 0.1 kV to 10 kV. The 3rd harmonic is only possible to measure up to f = 44100/2
3 =

7.35 kHz. In contrast to the prior measurement of the frequency response, a stepped sine is used,

with step size of a 1/20-octave (corresponding to a factor of 1.0353).
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Chapter 4

Results

4.1 Static Deflection

As mentioned, the membrane formed a slight deflection upon assembling into the frame. Rigid

cap support seems to be unnecessary for these small-scale buckling DEAs. Measured cap heights

h0 for each sample is shown in Fig. 4.1.

The initial cap height is presumably due to compression of the material between the plastic

frames. Compressive force of clamping displaces the material into the cavity during actuator

assembly, forming a cap.

The cap heights h0 increase on average by 0.1 mm per added layer of dielectric material (d0 =

50µm).

For further analysis a larger amount of samples have to be studied. A more precise numerical

model might provide dependencies. Deflection tests are shown in Figs. 4.2-4.7.

A small hysteresis was measured (see Fig. 4.1). While ramping the voltage down, the measured

deflection was slightly above the deflection of ramping up. Different speeds of voltage ramping

were conducted with the same results. Hence, hysteresis is suspected to be not due viscoelastic

effects in the DE. They rather emerge from the material creeping below and out of the plastic

frame. Higher quality frames and clamping the material more tight might cover that problem. As

the effect is different for each sample, analysing and considering the hysteresis in the dynamical

model is challenging. Measured hysteresis is not further analysed but is expected to slightly

decrease sound generation.

The measured data is fitted into

Number of layers N 3 4 5 6 7 8
Initial height h0 [mm] 0.5 0.6 0.8 0.8 0.9 1.0

Table 4.1: Initial cap heights h0 for each actuator.
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Figure 4.1: Deflection of the 5-layered actuator as measured while ramping voltage up to 2.8 kV in
20 s and down. A notable hysteresis occurs. It is expected to decrease the acoustic performance.

NE · (λ− 1) = (N − 1)εε0
V 2

d2
0λ

2
(4.1)

after the strain λ was calculated by

λ =
R2
b + h2

0

R2
b + h2

(4.2)

Matlab’s fminsearch-function is used to minimize the standard variance of measured to modelled

data by the parameter E (elastic modulus).

A maximum deflection of almost ∼0.4 mm ( 50 % relative to h0) was achieved using the 8-layered

actuator. Similar relative displacements were achieved by the other actuators, widely confirming

the model.

The measurement’s aim was to validate the analytical model and to estimate the elastic

Modulus E of the membrane.

Half of the produced samples (3-,5- and 8-layer) showed good accordance with the model and

equal material parameters were fitted. The silicone is reported to have a Young’s modulus of

1.1 MPa [29]. The low discrepancy to the measured value of ∼1.2 MPa is most probably due to

electrode stiffness.

The large variation of elastic moduli determined by curve fitting confirms the apprehension

of high tolerances in manufacturing. 3D printing, the automatic multilayer production as well as

the assembly itself provide large sources of errors. In actuators with too high Young’s Moduli,

not all off the membranes seem to be conductively connected to the supply voltage. The applied

electrostatic force is seemingly lower and less deflection is seen.

The reason may either be in the electrode itself (not conducting, too thin, damages, etc) or in

the electrical contact itself.
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Figure 4.2: Deflection of the 3-layered actuator under static voltage. An elastic modulus of
1.2 MPa fits the curve.

Figure 4.3: Deflection of the 4-layered actuator under static voltage. An elastic modulus of
1.6 MPa fits the curve.
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Figure 4.4: Deflection of the 5-layered actuator under static voltage. An elastic modulus of
1.2 MPa fits the curve.

Figure 4.5: Deflection of the 6-layered actuator under static voltage. An elastic modulus of
2.3 MPa fits the curve.
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Figure 4.6: Deflection of the 7-layered actuator under static voltage. An elastic modulus of
2.1 MPa fits the curve.

Figure 4.7: Deflection of the 8-layered actuator under static voltage. An elastic modulus of
1.2 MPa fits the curve.
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Figure 4.8: Frequency response of the custom built amplifier. Normalised to 1 kHz

The measurements confirm the analytical model, despite some samples performed badly due

to manufacturing issues.

Compared to buckling actuators in literature, far lower relative displacements were achieved.

Both, Vertechy et al [51] and Lampani [25], used materials with Young’s Modulus of only 60 kPa

and a permittivity of 5.3 (Silicone TC-5005, BJB Enterprises Inc., USA) and achieved relative

displacement of >80 %.

4.2 Frequency Response

The frequency response of the amplifier, which is used to correct the acoustic measurements is

depicted in Fig. 4.8. As can be seen, the response drops rapidly for frequencies f > 6 kHz by

ca. 6 dB/octave. Adjusted values for the frequency response at high frequencies are thus more

prone to noise.

Figs. 4.9-4.14 show the measured and adjusted frequency responses of each actuator compared

to the modelled curves. In each figure, the modelled curve is adjusted for the fitted elastic mod-

ulus of the static tests. Of course, the elastic modulus is the same for every actuator, namely

(1.2 MPa), as the same material is used. In this context however, it is rather regarded as a mea-

sure of the material‘s response to the electric stimulus and not as an intrinsic material parameter.

The measurement distance of 0.5 m halves the measured curve, so values in 1.0 m are obtained.

Radiation in half space and signal voltage amplitude are included in the calculated curve.
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Figure 4.9: Measured frequency response of the 3-layered actuator. Measured with 2.0 kV bias
voltage and 0.4 kV signal amplitude voltage. Compared to the model.

The 8-layered actuator shows great difference to the others. Far lower SPLs than expected are

most probably due to fabrication issues. In the following it is regarded as faulty and is not

subject to further analysis.

All other actuators show similar SPL with a prominent peak at the calculated f0 ≈ 5 kHz

(see Fig. 4.15). Different amount of layers show different natural frequencies also in the model.

Small variations (< 5 %) of the location of the peaks are due to inhomogeneities in the fabrication

process.

The position of maximum SPL at about 5 kHz is observed for all samples.

This common property suggest high reproducibility of the membrane fabrication, as the position

of this major resonance results from layer thickness and material properties rather than geome-

try. Largest source of errors therefore seems to be in the assembling of the actuator itself, that is

clamping it stretch-free into the 3D-printed frame. Frame quality might also affect performance.

All samples share a small peak at around 1 kHz, which is most prominent in Fig. 4.12, where the

measured and modelled curve coincide.

Audible sound radiation is from ∼500 Hz, though at very low levels. As expected, the pre-

sented loudspeaker clearly acts as a tweeter.

With increasing amount of layers, an increase in sound pressure is generated. A maximum SPL

of 78.7 dB is achieved with the 7-layered actuator, while the 3-layered actuator only reaches an

SPL of 66.0 dB at the 2nd peak at 10 kHz.
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Figure 4.10: Measured frequency response of the 4-layered actuator. Measured with 2.0 kV bias
voltage and 0.4 kV signal amplitude voltage. Compared to the model.

Figure 4.11: Measured frequency response of the 5-layered actuator. Measured with 2.0 kV bias
voltage and 0.4 kV signal amplitude voltage.
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Figure 4.12: Measured frequency response of the 6-layered actuator. Measured with 2.0 kV bias
voltage and 0.4 kV signal amplitude voltage.

Figure 4.13: Measured frequency response of the 7-layered actuator. Measured with 2.0 kV bias
voltage and 0.4 kV signal amplitude voltage.
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Figure 4.14: Measured frequency response of the 8-layered actuator. Measured with 2.0 kV bias
voltage and 0.4 kV signal amplitude voltage. Sample is regarded as faulty.

Figure 4.15: Comparison of frequency responses. Measured with 2.0 kV bias voltage and 0.4 kV
signal amplitude voltage.
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Calculations of the membrane transfer function Eq. 2.119 are based on a viscoelastic loss factor

of 0.1 % which is only roughly estimated. Finding a value to fit the measured data does not

serve the purpose of this work. Too many unknown variables contribute to the system, such as

hysteresis and membrane inhomogeneities.

The abundance of modal frequencies from Eq.2.1 can hardly be associated to the various dips

in the frequency responses. Also, the membrane can not be regarded as uniform, the frame

exhibits irregularities and clamping the membrane into the frame results in compressive forces

at the edges. Boundary conditions thus, are arbitrary and different for each sample and cannot

be formulated satisfyingly in mathematical terms.

The measured curve of the 3-layered sample (Fig. 4.9) is about 12 dB below the model. The

peak value at f0 ≈ 5 kHz is in accordance with the model. It can be assumed, that viscoelastic

loss is indeed in the range of 0.1 %, as even small deviations would result in different peak fre-

quencies.

The 4-layered actuator shows very similar behaviour and deviations to the calculated curve are

almost identical to the 3-layered sample.

For each layer added to the actuators, the model seems to fit the measurements better. The

6- and 7-layered loudspeakers performed best, as the difference of calculated to measured fre-

quency responses is less than 3 dB at the middle peak of 1 kHz and the peak at f0. In between

these frequencies however, the SPL is much lower than expected. Membrane movement is highly

irregular as the very soft rubber-like material of the silicone allows a variety of partial oscillations.

The acoustic model can be regarded as confirmed by the measurements, though the abundance

of naturals frequencies by Tab. 2.1 lead to deviations.

4.3 Total harmonic distortion (THD)

Figs. 4.16-4.18 show the results for the THD+N measurements. Each figure shows the THD+N

for every sample at a given voltage amplitude. As the values do not seem to be dependent on the

sample, the mean THD+N is also depicted. For better comparison the mean values are shown

in Fig. 4.19.

The difference of THD+N for lower frequencies is mostly because of the noise at low fre-

quencies. Higher levels of signal voltage generate higher pressure amplitudes, and thus THD+N

decreases (see Eq.3.1, as the signal-to-noise-ratio (SNR) increases.

THD decreases with the same slope the frequency response increases with frequency (−6 dB/octave).

THD for all samples and for all signal-to-bias ratios converges to −30 dB (3.2 %), which is reached

at ∼3 kHz for all samples for all signal voltages. THD+N therefore also seems independent of
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Figure 4.16: THD+N for every DUT at a signal voltage of 0.1 kV and a bias voltage of 2.0 kV.

Figure 4.17: THD+N for every DUT at a signal voltage of 0.2 kV and a bias voltage of 2.0 kV.
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Figure 4.18: THD+N for every DUT at a signal voltage of 0.4 kV and a bias voltage of 2.0 kV.

Figure 4.19: Comparison of the mean THD+N for different signal amplitudes.
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Figure 4.20: Level of THD+N, the 2nd and 3rd harmonics. Averaged over signal voltages and
samples.

signal-to-bias ratio, contrary to observations in [15] but in accordance with measurements of [45].

Even better values of −38 dB are reached for frequencies in the range of 1.5 kHz to 2.5 kHz for

0.4 kV signal amplitude.

The level of the 2nd and 3rd harmonics are depicted in Fig. 4.20. The difference of the total

THD+N at low frequencies to the level of the harmonics indicates, that prior assumption is

correct: A large fraction of the THD here is the result of noise. Higher order harmonics usually

have far lower levels than the 2nd and 3rd, so the total THD would only be about 6 dB above the

level of the harmonics, if it wasn’t due to noise.

The level of the harmonics is almost equal up to frequencies of 2 kHz, where the 2 curves begin

to part.

Significance of Fig. 4.20 is only from that frequency upwards, as the THD+N varies for different

amplitudes below that frequency (see Fig. 4.19).

As can be seen, the level of the 2nd harmonic increases and is the main contributor to THD+N.

For conventional loudspeaker THD+N is usually specified as < 1 % = −40 dB, which is about

10 dB better value than the presented prototypic DE loudspeaker. Main reason for the high

THD+N is the quadratic behaviour of the strain-to-voltage relation [15].

The frequency response is calculated in terms cap height (p ∝ h2) as seen in Eq. 2.104. The
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voltage-to-strain behaviour is given by

N

N − 1
Ed2

0 · (λ3 − λ2) = εε0V
2 (4.3)

with

λ =
R2
b + h2

0

R2
b + h2

(4.4)

A sinusoidal stimulus V = Vbias + V̂ sin(ωt) then results in

A sin(ωt) +B sin(2ωt) ∝
(
C

p

)3

−
(
C

p

)2

(4.5)

(With A, B and C constants), which leads to

p ∝
3

√
c1 sin2(ωt) · sin2(2ωt) +

√
c2 sin4(ωt) sin4(2ωt) + c3 sin3(ωt) sin3(2ωt)

c4 sin(ωt) sin(2ωt)

− c5

3

√
c1 sin2(ωt) · sin2(2ωt) +

√
c2 sin4(ωt) sin4(2ωt) + c3 sin3(ωt) sin3(2ωt)

(4.6)

which highlights the complex harmonic structure of the system and explains the high THD+N.

Harmonics of up to the 6th order are expected.

The level peaks in Fig. 4.20 between 500 Hz to 800 Hz are significant, but in this range no cor-

responding feature can be found in the frequency response, which varies widely among different

samples. The reason for these peaks remains unknown.

4.4 Conclusion

Static deflection tests turned out to fit well with the analytical model for samples with layers

N = 3, 5 and 8, where elastic moduli similar to values found in literature are fitted. Small

deviations are most probably due to electrode stiffness. A small contribution to the difference

might be due the determination of the initial cap-height h0.

Relative displacements of up to 60 % are achieved with the 3-layered actuator, where an elastic

modulus of 1.18 MPa is found.

Contrary to expectations, samples with higher found elastic moduli do not perform worse in the

acoustic measurements. Conversely, the 8-layered actuator, which shows very good accordance

with the model (see Fig. 4.7) has to be regarded as faulty in the following acoustic measurements

(see Fig. 4.14).

In the modelled curve of Sec. 4.2 the previously determined elastic moduli were used. The re-
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Figure 4.21: Comparison of calculated and measured frequency response of the 3-layered actua-
tor. Effect of acoustic short-circuit considered

sulting shift of the natural frequency however, is not observed in the measurements. The peak

level remained to be around 5 kHz and does not reflect the static measurements, despite the same

samples are examined. This indicates, that some of the layers are not conductively connected to

the power supply as stated. A maximum SPL of almost 80 dB at the natural frequency, radiated

in the half space in 1 m distance is a good result for a loudspeaker of only 8 mm size. The level

discrepancy of measured to modelled frequency responses is most probably due to the hysteresis,

as depicted in Fig. 4.1 and due to the modal frequencies.

All together, the measurements are satisfactory, as the static as well as the acoustic model can

be confirmed. Hardest to include in the calculations and hardest to comply with measurements

are the modal frequencies, which causes the level deficits of measured to modelled frequency

responses. Also natural frequencies, sub and super-harmonic resonances (see Eq. 2.120) are not

visible in the curves, probably as they are concealed by the modal resonances.

The steep declines in SPL at ∼7.5 kHz and ∼15 kHz are a major performance deficit. An erro-

neous measurement setup is suspected. Sound radiated from the back of the transducer is mea-

sured with a delay of ∆T = ∆x
c . With the size of the actuator of 4 cm and a thickness of 0.6 cm,

sound waves from the back and front annihilate at a frequency of f = 1
∆T =

340 m
s

4.6 cm ≈ 7.4 kHz.

Adjusted calculated curves are seen in Fig.4.21-4.25. As the calculated curves match with

the suspected diagnosis, the loudspeaker, when its back is acoustically isolated, should indeed

feature the calculated frequency responses. The steep dips are merely the unfortunate result of

bad sealing between the transducer and the sound baffle during measurement. In an appropriate

enclosure (e.g. loudspeaker box) the back of the transducer is acoustically isolated, and these
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Figure 4.22: Comparison of calculated and measured frequency response of the 4-layered actua-
tor. Effect of acoustic short-circuit considered

Figure 4.23: Comparison of calculated and measured frequency response of the 5-layered actua-
tor. Effect of acoustic short-circuit considered
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Figure 4.24: Comparison of calculated and measured frequency response of the 6-layered actua-
tor. Effect of acoustic short-circuit considered

Figure 4.25: Comparison of calculated and measured frequency response of the 7-layered actua-
tor. Effect of acoustic short-circuit considered
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dips should not appear.
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Chapter 5

Discussion

This last chapter critically reflects on the work. The prototypic loudspeaker is compared to other

conceptual DE loudspeaker as well as to conventional drivers.

As the goal of the work is it to only develop but not to optimise an innovative loudspeaker, a

short section on possibilities to do so is added.

5.1 Comparison to other Loudspeakers

The biggest problem of the presented speaker seems to be the high driving voltage and the large

amount of modal frequencies, which lower the SPL significantly. The high voltages necessary to

cause actuation is shared among other prototypic loudspeakers.

The first ever presented DE loudspeaker by Heydt et al [15], whose frequency response is depicted

in Fig. 1.12 used a driving voltage of 0.6 kV with 1.5 kV bias voltage. His frequency response is

significantly flatter and thus, seems to perform better. The active area however is much larger

with 50 mm× 50 mm and 72 film elements are driven in parallel.

At such an area about 40 elements of the here presented speaker would fit, resulting in an SPL

about 32 dB higher than the measured curves! This would allow the use of equalizers to lower

some of the most prominent peaks. Using a softer material (E = 0.1 MPa and thicker membrane

(d0 = 86µm), the natural frequency of his design was at ca.1.4 kHz and thus, had a much wider

operating range.

Non-linear distortion is similar for both concepts.

The more recent prototypes of Sugimoto et al [48] and Rustighi et al [45] also show frequency

responses with better midrange capabilities than the BDEA of this thesis and similar values for

THD were measured. Although again, the active area for both concepts is much larger.

Biggest advantage over other DE loudspeaker is its simplicity in production and operation. No

underlying pressure chamber has to be used and no prestretch is necessary. Additionally, the

polymer material and the plastic frames are inexpensive.
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Conventional piezo and electrodynamic loudspeakers still outperform the presented prototype.

The high voltages necessary to rive the speaker inhibits not only the risk of electric failures, but

might also cause the system to generate much excess heat, as the electrode resistance is quite

high. At low frequencies, its SPL is far from that of electrodynamic systems. At high frequencies,

horn-loudspeakers outperform the presented prototype.

However, for applications, were small and lightweight tweeters are required, the presented pro-

totype comes just right.

The frequency response does not seem to decline for high frequencies. Possible use of that

is in the application as ultrasound loudspeakers.

The highly irregular frequency response and high THD impedes its use as high-fidelity loud-

speaker unless major design optimizations are implemented.

5.2 Improvements

The high driving voltage is probably one of the main reasons, DE technology has not entered

the commercial market on large scale, yet.

The decrease of driving voltage is solely a matter of the material and its thickness. As is high-

lighted in the equation for the generated stress by applied voltage Eq. 1.1, the parameters to

be adressed by material scientists are the Young’s modulus E and the dielectric constant ε.

An increase of the factor ε/E decreases the necessary driving voltage [35]. Blending of dielectric

fillers into the silicone is reported to increase the dielectric constant, and thus reduces the needed

voltage. As [35] reported, copper elements in silicone lead to an increase in ε of almost 80 %.

Use of plasticisers also showed success on improving actuation. A decrease of Young’s modulus

from 1.6 MPa to 0.75 MPa was achieved by adding epoxidised soybean oil to the silicone, while

dielectric constant lowered only by a small fraction. This led to an increase in actuation strain of

100 % [54]. The same authors also investigated the positive effect of titanium dioxide particles,

which increased the dielectric constant.

Unfortunately, the use of filler elements as means of increasing ε seems to lower the dielec-

tric breakdown strength of the material. Thus, the necessary voltage reduces but so does the

maximum applicable voltage.

To compensate for that, Molberg et al [32] experimented with encapsulation of polyaniline in

polydivinyl benzene. The encapsulated material was used as filler elements and led to 3-fold

higher dielectric breakdown field.
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Far easier than chemical manipulation of the material is to decrease film-thickness. Film thickness

is quadratic to strain and linear to voltage in Eq.1.1. So, with same voltage and half-thickness

of the film fourfold strain may be achieved. Or, for same strain only half the voltage is needed

for halved film thickness. The maximum applicable voltage reduces by the same factor.

The presented loudspeakers are the result of a fast-prototyping process. Focus has never been

on material quality, so different concepts could be tried in short time. The 3D-printed frame

is of bad quality and has sharp edges along its inner cavity, where the membrane buckles up.

Irregular behaviour and much deviation in performance among the samples are the result.

A standardized and reproducible fabrication process would allow to take on more actions on

improving the quality, as the issues would become more clear and can be tackled.

Modal examination of the driven membrane would allow to gather more information necessary

for tuning of the loudspeaker.

The frequency response is highly irregular with several dips and peaks for the full operating

range. Higher damping factors of the material would broaden those peaks and potentially smooth

the curve. Hysteresis however, might be negatively affected by such measures as well as response

time.

More elements packed into an array would multiply the rather low SPL. A possible way to

build a broadband speaker with an operating range from 300 Hz and above may be, to pack

enough elements together, to lift up the SPL at 300 Hz to a desired level, i.e. 70 dB (corre-

sponding to a level difference of 45 dB). About 200 elements are needed to achieve that. To

compensate for the increasing frequency response of ca. 6 dB/octave, an analogous filter could

be easily implemented.

Larger diameter of the elements would help to increase the level at low frequencies aswell. Fig. 5.1

applies the model to an actuator of 20 mm diameter and 10 layers. The predicted SPL is signif-

icantly higher for the full range. Material parameters of the Silicone TC-5005, BJB Enterprises

Inc., USA are fitted. (E = 60 kPa, ε = 5.3, d0 = 100µm).

As Heydt et al [15] demonstrated, square-root shaping of the signal lowers the THD to less

than 1 %. As the initial aim was to develop a small loudspeaker for WFS, signal preprocessing

is done anyway. An additional operation to lower the THD could be implemented easily.

This work proposes and proofs the concept of a lightweight and scalable tweeter loudspeaker and

proposes the basis for possible future research. As the material and fabrication is potentially

very low, cheap loudspeakers with reasonable performance might be produced automatically.
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Figure 5.1: Predicted frequency response for an actuator of 10 layers with diameter 20 mm
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Chapter 6

Appendix

6.1 Velocity of the membrane

Eq. 2.86 then reads as

x′ = (r + r̂eiωt) ·
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(6.1)

Differentiating by time provides the membrane velocity
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(6.2)

Which splits into a radial, a tangential and a axial term. The axial term is split into radial and
tangential terms. With r̂ 5 r → r′ ≈ r0 and θmax ≈ θ′max

6.2 Acoustic potential

Considering the velocity is zero for all angles θ > θmax, the integration area on the left hand side
reduces.
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The remaining integral is [3]∫ θmax

0
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(6.5)

With the radial derivative of the mth hankel function hm

∂h
(2)
m (kR)

∂R
=

k

2m+ 1

(
mh

(2)
m−1(kR)− (m+ 1)h

(2)
m+1(kR)

)
(6.6)

and substituting R = r, the An are
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[26] Arthur W. Leissa, editor. Vibration of Plates. National Aeornautics and Space Administra-
tion (NASA), 1969.

[27] Tiefeng Li, Shaoxing Qu, and Wei Yang. Electromechanical and dynamic analyses of tunable
dielectric elastomer resonator. International Journal of Solids and Structures, 2012.

[28] Liwu Liu, Yanju Liu, and Jinsong Leng. Theory progress and applications of dielectrc
elastomers. International Journal of Smart and Nano Materials, 2013.

[29] Jürgen Maas, Dominik Tepel, and Thorben Hoffstadt. Actuator design and automated
manufacturing process for deap-based multilayer stack-actuators. Meccanica, 2015.

[30] E. Magnucka-Blandzi, K. Wisniewska-Mleczko, M. J. Smyczynsi, and P. Kedzia. Buckling
of a sandwich symmetrical circular plate with varying mechanical properties of the core.
Applied Mathematics and Mechanics, 2018.

[31] Silvain Michel, Xuequn Q Zhang, Michael Wissler, Christian Löwe, and Gabor Kovacs. A
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[42] Wilhelm Conrad Röntgen. About the changes in shape and volume of dielectrics caused by
electricity. Annua Physics and Chemistry Series, 11, 1880.

[43] L. J. Romasante, M. A. Lopez-Manchado, and R. Verdejo. Increasing the performance of
dielectric elastomer actuators: A review from the materials perspective. Progress in Poylmer
Science, 2015.

[44] Samuel Rosset, Muhamed Niklaus, Philippe Dubois, and Herbert R. Shea. Large-stroke
dielectric elastomer actuators with ion-implanted electrodes. Journal of Microelectrome-
chanical Systems, 2009.

[45] Emiliano Rustighi, William Kaal, Sven Herold, and Ahmed Kubbara. Experimental char-
acterisation of a flat dielectric elastomer loudspeaker. Actuators, 2018.

[46] Rahimullah Sarban, Benny Lassen, and Morten Willatzen. Dynamic electromechanical mod-
eling of dielectric elastomer actuators with metallic electrodes. IEEE/ASME Transactions
on Mechatronics, 2012.

[47] J. H. Streng. Sound radiation from circular stretched membranes in free space. Audio
Engineering Society, 1989.

[48] Takehiro Sugimoto, Akio Ando, Kazuho Ono, Yuichi Morita, Kosuke Hosoda, Daisaku Ishii,
and Kentaro Nakamura. A lightweight push-pull acoustic transducer composed of a pair of
dielectric elastomer films. The Journal of the Acoustical Society of America, 2013.

V



[49] Takehiro Sugimoto, Kazuho Ono, Akio Ando, Hiroyuki Okubo, and Kentaro Nakamura.
Flexible acoustic transducer from dielectric-compound elastomer film. Audio Engineering
Society, 2012.

[50] Xiaoming Tao, editor. Smart fibres, fabrics and clothing. Woodhead Publishing Limited
and The Textile Institute, 2001.

[51] Rocco Vertechy, Antonio Frisoli, Massimo Bergamasco, Federico Carpi, Gabriele Frediani,
and Danilo De Rossi. Modeling and experimental validation of buckling dielectric elastomer
actuators. Smart Materials and Structures, 2012.

[52] Stefan Weinzierl, editor. Handbuch der Audiotechnik. Springer, 2008.

[53] Michael Wissler and Edoardo Mazza. Modeling of a pre-strained circular actuator made of
dielectric elastomers. Sensors and Actuators A: Physical, 2004.

[54] Dan Yang, Liqun Zhang, Nanying Ning, Dongdong Li, Zhao Wang, Toshio Nishi, Kohzo Ito,
and Ming Tian. Large increase in actuated strain of hnbr dielectric elastomer by controlling
molecular interaction and dielectric filler network. RSC Advances, 2013.

[55] Xiang Yu, Zhenbo Lu, Li Cheng, and Fangsen Cui. Vibroacoustic modeling of an acoustic
resonator tuned by dielectric elastomer membrane with voltage control. Journl of Sound
and Vibration, 2017.

[56] Xuan Yuan. Application review of dielectric electroactive polymers (deaps) and piezoelectric
materials for vibration energy harvesting. Journal of Physics: Conference Series, 2016.
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