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Abstract

Due to the need for individually acquired head-related transfer functions (HRTFs) and the

long and tedious measurement process for high spatial resolution HRTFs, in this thesis, a sys-

tem for the fast measurement of individual HRTFs was modeled and simulated. Two system

identi�cation methods for rapid HRTF measurement were implemented: the optimized Mul-

tiple Exponential Sweep Method (optimized MESM) and the Normalized Least Mean Square

(NLMS) adaptive �lter algorithm. The HRTF measurement was assumed to be done with

a horizontally continuous rotation of the subject with respect to the sound source during

the measurement. The HRTFs were acquired for di�erent conditions regarding environmental

noise, number of loudspeaker channels and nonlinear distortion. Both implemented methods

were able to o�er satisfactory results within measurement durations considerably shorter than

that of conventionally used methods. Despite the robustness and stability of optimized MESM

with respect to noise disturbances, this method showed limitations caused by the continuous

rotation. It was shown, that, as long as the signal to noise ratio is held su�ciently high, the

NLMS algorithm represents the better choice.

Zusammenfassung

Aufgrund der Notwendigkeit, kopfbezogene Übertragungsfunktionen (HRTFs) individuell zu

messen, und Bezug nehmend auf das lange und mühsame Verfahren zur Messung der HRTFs

mit hoher räumlicher Au�ösung, wurde in dieser Arbeit ein System zur schnellen Messung

von HRTFs modelliert und simuliert. Es wurden zwei Systemidenti�kationsverfahren für

die schnelle Messung der HRTFs implementiert: das optimierte Multiple Exponential Sweep

Method (optimized MESM) und der Normalized Least Mean Square (NLMS) adaptive-Filter

Algorithmus. Es wurde angenommen, dass die Messung mit einer horizontal kontinuierlichen

Drehung der Versuchsperson in Bezug auf die Schallquelle während der Messung durchge-

führt wird. Die HRTFs wurden für unterschiedliche Bedingungen bezüglich der Umgebungs-

geräusche, Anzahl der Lautsprecherkanäle und nicht lineare Verzerrungen erworben. Beide

implementierten Methoden konnten zufriedenstellende Ergebnisse innerhalb einer Messdauer

bieten, die erheblich kürzer war, als die Messdauer von herkömmlich verwendeten Verfahren.

Trotz der Stabilität von optimized MESM in Bezug auf Lärm und Rauschen, zeigte diese

Methode Einschränkungen, die durch die kontinuierliche Umdrehung verursacht wurden. Es

wurde gezeigt, dass, solange das Signal-Rausch Verhältnis hoch gehalten wird, der NLMS

Algorithmus die bessere Wahl darstellt.
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Glossary

BEM boundary element method

BRIR binaural room impulse response

BRTF binaural room transfer function

DUT device under test

ERB equivalent rectangular bandwidth

ES exponential sweep

ESA error signal attenuation

FABIAN Fast and Automatic Binaural Impulse response AcquisitioN

FEC free air equivalent coupling

FFT fast fourier transform

HIR harmonic impulse response

HRIR head-related impulse response

HRTF head-related transfer function

ILD interaural level di�erence

IR impulse response

ITD interaural time di�erence

LMS least mean square

MLS maximum length sequence

MESM multiple exponential sweep method

NLMS normalized least mean square

PSEQ perfect sequence

SNR signal to noise ratio

THD total harmonic distortion



List of symbols

fs sampling frequency

f frequency

θ azimuth

ϕ elevation

r distance

T360 the duration of one complete rotation of 360◦

ak energy decay of kth harmonic response (optimized MESM)

α the percentage of the length of the useful impulse response (optimized MESM)

η - ηopt number of the interleaved channels - optimal number of interleaved channels
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rs sweep rate

ti excitation time for each ith system using MESM

T duration of the excitation signal

TES measurement duration using exponential sweep method

TINT measurement duration using interleaving strategy

TOV measurement duration using overlapping strategy

TMESM measurement duration using MESM

TOPT measurement duration using optimized MESM

τgd group delay

τIR length of the room impulse response

τIR,k length of the kth nonlinear impulse response

τIL minimum delay between two interleaved sweeps

τOV minimum delay between two consequent sweeps using overlapping

τw minimum delay between consequent excitations (optimized MESM)

τst stop margin (the time to allow the system to decay after the sweep stops - optimized

MESM)

τsp saftey time (optimized MESM)

τDUT the length of the usefull part of the impulse response (optimized MESM)

∆tk beginning time of the kth nonlinear impulse response

ν e�ciency of MESM relative to conventional measurements

d(k) distance vector (mismatch between estimated and real impulse response)

e(k) NLMS error signal

ε(k) NLMS estimation error

D(k) mean square deviation

Errornoise e�ect of environmental noise on NLMS inaccuracy

Errordynamic e�ect of variability of dynamic HRIR acquisition system on NLMS inaccuracy

k iteration

λmin smallest eigenvalue of the input correlation matrix

λmax largest eigenvalue of the input correlation matrix

N length of the impulse response or NLMS �lter



R imput correlation matrix

Rpp periodic autocorrelation function

σ2
e variance of the error signal

σ2
y variance of the signal captured by microphones



Chapter 1

Introduction

Binaural technology has the aim of supplying the listener with a reliable representation of the

recorded sound. Due to its capacity to be used to perceive and localize the sound source,

binaural technology can be employed in virtual reality to create a virtual sound source any-

where around the listener, for example it can be used for psychoacoustic experimentations

[Nic 10]. It can also be used in applications such as entertainment products (games), or de-

velopment of guidance systems for visually impaired people [Par 12a]. The free �eld sound

propagation between the sound source and the listener's ears is described by Head-Related

Transfer Functions (HRTFs). HRTFs include all spatial information which the listener uses

to localize the sound source, and build therefore the basis of the binaural technology. For a

high spatial resolution HRTF data set, acquiring the transfer function of the source-ear path

for all possible source positions around the listener poses a tedious and time consuming task.

In most practical applications, the measurement is carried out once, using recordings of one

listener or more often, of an arti�cial head and the measured HRTFs are used to reproduce

the binaural signals for other listeners. However, there have been studies [Møl 96, Wen 93],

showing that listening to binaural signals, which originate from other subjects or from an arti-

�cial head, leads to localization and coloration errors. This is due to the fact that the HRTFs

include the individual �ltering information of re�ections and di�ractions from the subject's

head, torso and pinna. Therefore, for applications with high demand on �delity, individual

HRTFs gain more importance. In order to acquire customized HRTFs, besides carrying out

the measurements directly on individuals, there are also other methods which are based on

simulation or modeling, each with its advantages and disadvantages. However, as long as

the HRTF acquisition is to be done by real measurements with individual subjects, the long

duration of the measurement imposes a serious constraint. On the one hand, the subject must

keep still during the measurement to avoid the artifacts caused by head movements and it can

get unpleasant for him or her to hold on throughout the measurement process. On the other

1
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hand, long measurement durations give rise to the appearance of time varying elements such

as temperature changes or the subject's unwanted head movements. Therefore, reducing the

measurement duration, without loss of quality in the results, represents the main motivation.

In this thesis, two of the proposed methods for speeding up the HRTF measurement were

studied and used to simulate a system for the fast measurement of head-related transfer func-

tions. These two methods were the optimized Multiple Exponential Sweep Method (optimized

MESM), suggested by Dietrich et al. [Die 13a] which is based on MESM, proposed by Majdak

et al. [Maj 07], and the continuous azimuth HRTF measurement using Normalized Least Mean

Square (NLMS) adaptive �lters, which was introduced by Enzner [Enz 08, Enz 09]. This simu-

lated measurement system consisted of a vertical arc of up to 39 loudspeaker channels with the

subject's head positioned in the center of the arc. The subject was assumed to be rotated per-

manently during the measurement in the horizontal direction to accomplish the measurement

within one complete rotation of 360◦. This measurement setup is in accordance with the setup

described by Enzner for the continuous azimuth HRTF measurement with NLMS adaptive

�ltering [Enz 09]. Although the other algorithm, the optimized MESM [Die 13a], is originally

considered for a discrete azimuth HRTF measurement, this algorithm was also applied to the

continuous rotation measurement setup in the simulations. After introducing an overview of

the background studies carried out concerning HRTFs and human's spatial hearing in chapter

2, chapter 3 introduces the MESM and optimized MESM algorithms and deals with the review

and derivation of the equations which de�ne the performance of the algorithms. The NLMS

adaptive �lter and its application to HRTF measurement are introduced in chapter 4, with a

discussion on the parameters that impact the performance of the system identi�cation with

this algorithm. The sound propagation path between loudspeakers and microphones within a

HRTF measurement as well as the continuous rotation of the subject during the measurement

are modeled in chapter 5. Finally, the results of the simulations are presented and discussed

in chapter 6. These simulations had two aims. One aim was to study the performance of each

algorithm for di�erent measurement situations concerning number of loudspeaker channels,

environmental noise or nonlinear distortions, of course in respect of the measurement dura-

tion. The other aim was to explore which implemented algorithm and under which conditions

provides the more suitable method for the modeled measurement setup.

This master thesis is part of a project to develop a system for the fast measurement of indi-

vidual head-related transfer functions, in collaboration with Human Factors Consult 1. The

other part of the project, within another master thesis, concerns the construction of a real

HRTF measurement system, for which the results of the present thesis could be used.

1www.human-factors-consult.de



Chapter 2

State of Research

This chapter introduces the main studies concerning Head-Related Transfer Functions (HRTFs)

and their measurements, starting with the fundamentals of spatial hearing in section 2.1, fol-

lowed by the role of HRTFs in binaural technology in section 2.2. The advantages of individ-

ually measured HRTFs are explained in section 2.3. The chapter concludes with introducing

some main trends in HRTF individualization.

2.1 Spatial hearing and sound source localization

Human's ability of sound localization originates from binaural hearing. To de�ne the position

of a sound source with respect to the listener, the spherical coordinate system as shown in

�gure 2.1 can be considered. The origin of this coordinate system is located on the interaural

axis at the point exactly between the two ear canal entrances [Bla 08]. The location of the

source is de�ned with the azimuth (θ), elevation (ϕ) and distance (r) with respect to the

origin. The spherical coordinate system of �gure 2.1 includes the three orthogonal planes,

namely the horizontal, the frontal and the median planes, which run through the origin.

For sound sources which are located away from the median plane, i.e. for lateral sound

incidences, the emitted sound reaches the closer ear earlier and at a higher level. These two

phenomena lead to Interaural Time Di�erences (ITD) and Interaural Level Di�erences (ILD)

respectively. ILD and ITD are two important binaural features by which the auditory system

localizes the sound source. For sound incidence from sources located on the median plane, the

signals at both ears are very similar in level and arrival time. In the absence of binaural features

the monoaural spectral cues play the dominant role. These spectral features are characterized

by listener's individual morphology, especially by outer ear structure and the pinna. According

to [Bla 97], the pinna acts like a �lter which, depending on the sound source distance and

direction, a�ects di�erent parts of the spectrum of the sound signal. Studies have shown that

3
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Figure 2.1: Head centered spherical coordinate system. [Vor 08]

familiarity with the signal improves the directional hearing in the median plane, especially

for distinguishing between sources which are located axially symmetric with respect to the

interaural axis [Bla 97]. Although for narrow-band signals these features might be absent,

the listener wins further information by delicate head movement or posture against the sound

source to promote the localization, as long as the signal is long enough to allow exploratory

head movements (at least 200ms)[Bla 08]. A thorough overview of studies carried out on

human's spatial hearing can be found in [Bla 97]. There have been several studies concerning

the localization blur. Localization blur, as a criterion of human's localization accuracy, is the

smallest change in the attributes of the sound source which leads to a just noticeable change

in the location of the perceived auditory event. The results of these studies, which were done

with di�erent signals (clicks, sinusoids, narrow and broad band noise or speech) implied that

the most precise spatial hearing lies close to the intersection of median and horizontal plane.

The minimum value for localization blur on the horizontal plane, frontal direction, is about

0.75◦ for clicks signals 1. For deviations from median plane to left and right on the horizontal

plane, the localization blur increases to between three to ten times of the value found for the

forward direction ([Bla 97], p. 40). For sound sources located on the median plane and with

deviation in the elevation from the forward direction, the localization blur changes from 4◦ for

white noise to approximately 17◦ for continuous speech of an unfamiliar person ([Bla 97], p.44).

For free �eld sound propagation the interaural features cannot be investigated separately, but

by dichotic representations via headphones these attributes can be studied individually. For

1See table 2.1 in [Bla 97], p. 39
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these cases, instead of the exact sound source location, usually the lateral displacement of the

sound source with respect to the median plane is detected. To determine the importance of

ILD and ITD with respect to spatial hearing, the lateralization blur of these two parameters is

considered which is de�ned as the smallest change in the ILD and ITD that leads to a lateral

displacement of the auditory event. The lateralization blur for ILD increases generally with

increasing signal levels and is signal and frequency dependent. The smallest lateralization blur

of 0.6 dB was reported for a sinusoid of 2 kHz2. The lateralization blur for ITD also di�ers

for di�erent signals, signal levels and frequencies. The smallest lateralization blur for ITD was

found in the range of 2 to 10 µs for click signals and between 6 to 12 µs for sinusoids and

noise3.

While the binaural cues ITD and ILD correlate with displacements in the lateral direction, the

monoaural spectral cues serve the distinguishing among front or rear positions or the angle

of the elevation. The combination of these features lead to specifying the azimuth, elevation

and distance of the source in the free �eld. There are also other additional parameters which

improve the spatial hearing such as head movements toward the sound source or visual cues

[Bla 97]. Furthermore, in case of hearing in rooms, the listener's impression of the room

depending on the room acoustical parameters can also contribute to spatial hearing.

2.2 Binaural technology and head-related transfer functions

The aim of binaural technology is to capture the sound signal arriving at both ears of the

listener, and reproduce them exactly as they were so that all spatial and spectral aspects of

the auditory experience are included [Møl 92]. The head-related transfer functions (HRTFs)

as the basis of the binaural technology describe the free �eld sound propagation between the

sound source and the listener's ears. According to [Møl 92, Møl 95] this propagation can be

divided into two parts, a direction dependent part and a part independent of the direction.

The direction dependent part is de�ned as the ratio between the pressure at the entrance

to the (blocked) ear canal to that measured at the center position of the head with listener

absent [Møl 92]. HRTFs include the �ltering information due to re�ecting and di�racting

e�ects of the listener's head, pinnae, shoulders and torso. By taking the inverse Fourier

transform of HRTFs, the equivalent head-related impulse responses (HRIRs) are obtained. For

each source located at azimuth θ, elevation ϕ and distance r in the head centered spherical

coordinate system the transfer path to the left and to the right ear can be described with

a pair of HRTFs as a function of source position and frequency: HRTF left(θ, ϕ, r, f ) and

HRTF right(θ, ϕ, r, f ). Naturally, HRTFs include the binaural cues ITD and ILD, and the

2See table 2.4 in [Bla 97], p. 161
3See table 2.3 in [Bla 97], p. 153
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spectral cues can be presented as well. While HRTFs describe the free �eld sound transmission,

in the case of listening in rooms, besides the direct sound arriving at the listener, there are

also re�ections from the room boundaries, which are added to the direct sound. In this

case, sound transmission in rooms is described by BRIRs or BRTFs (Binaural Room Impulse

Response - or Transfer Function). Because of simplicity and feasibility, HRTFs and BRTFs

are often measured with an arti�cial head which has the shape and acoustical properties

of an average human head. The binaural signals are usually played back with headphones

to prevent unwanted disturbing cross-talk which exists between the left and right signals

when representing via loudspeakers. Using headphones also makes a reproduction free from

re�ections in the room [Møl 92]. With the technique of auralization, by convolving the HRTF

or BRTF with an anechoic signal, the binaural listening of this signal at a given position in the

room can be represented via headphones within a simulated auditory scene [Kle 93]. One well

known problem from which the binaural technology su�ers, is the errors occuring in sound

localization, mainly for sound sources in the frontal hemisphere and on the median plane:

These sound sources often appear to be behind the listener or vice versa (front-back errors).

These errors can be explained, among other reasons, by the absence of the head movements

in binaural signals which improve the front-back localization in real life situations.

2.3 The need for individual HRTFs

Due to the fact that HRTFs include the �ltering information caused by subject's head, pinnae,

shoulders and torso, it is evident that the HRTFs of di�erent subjects show individualities

since subjects are morphologically di�erent, especially with respect to the pinna structure.

Experimenting with blind folded listeners with localization tasks Wenzel et al. [Wen 88] have

already found individual di�erences among the subjects in the ability to localize the elevation

of the sound source which could be predicted from acoustical characteristics of the subjects'

outer ear. In a later study [Wen 93] Wenzel et al. showed that there was an increase in

the rate of front-back errors when subjects listened to non-individual HRTF recordings. The

listeners however, appeared to be still able to obtain useful directional cues from non-individual

HRTFs for localizations in the horizontal plane. Similar results came out from studies of

Møller et al. [Møl 96]. They compared the localization performance in real life to the case

of listening to individual and non-individual binaural recordings and indicated that front-

back errors occur commonly in the median plane where there is a lack of binaural cues.

Consequently, they concluded that there are similar error rates for real life and simulations

with individual recordings. However, when using non-individual HRTFs, there were signi�cant

distant errors and errors in the median plane. The increased rate of errors for median plane
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is expected since pinna is the most individual morphological element and provides important

spectral cues for vertical localization as well as localization in median plane [But 77]. Algazi

et al. [Alg 01a] acquired high spatial resolution HRTFs of 45 subjects at 1250 directions

and included the anthropometric measurements for each subject as well. The study of the

correlation between anthropometry and spectral and temporal features of HRTFs showed that

the maximum ITD is strongly correlated with the head size. This, together with the fact that

the dependence of the ILD on frequency actually varies with the head size show that, when

listening to non-individual HRTFs, although the spectral cues are the main source of errors,

they are not the only features which cause localization errors. Algazi et al. [Alg 01a] also found

that because of small correlations between anatomical features and accurate pinna dimensions,

it is not easy to estimate the pinna dimensions from head and torso measurements. There

have also been attempts to �nd an idealized arti�cial head with HRTFs which minimize the

localization errors. However, the study of Møller et al with 8 di�erent arti�cial heads showed

that the localization performance with HRTFs measured on arti�cial heads and with randomly

chosen human HRTFs are of the same order [Møl 97]. According to experiments with speech

stimuli carried out by Begault et al. [Beg 00], adding synthesized early and di�use re�ections

to the HRTFs reduces the in-head localization errors. They also showed that front-back errors

can be reduced by supplying head motion cues to listeners with head tracking. Völk et al.

[Vol 08] repeated a similar study with MLS signal stimuli and measured BRTFs instead of using

synthesized ones and concluded that the presence of reverberations in the impulse response

can only improve the externalization in case of acquisition with a human head, whereas the

use of arti�cial heads doesn't serve signi�cant improvements. Finally, it should be pointed

out, that the human is capable of adapting to non-individual HRTFs through training. Shinn-

Cunningham et al. [Shi 98] used feedbacks to train the subjects. After the training phase,

subjects showed smaller errors although the error-pattern of localization remained the same.

The authors supposed that there might be some limitations on the plasticity of subjects and

concluded that the adaptation also depends on the presented stimuli. Blum et al. [Blu 04]

reported that it might be possible to adapt the auditory system to the non-individual HRTF by

letting the subject participate interactively to explore his own entire auditory sphere. Zahorik

et al. [Zah 06] trained their subjects to remediate the front-back reversals with improvements

that lasted at least 4 months after training. The other study by Parseihian et al. [Par 12b]

showed the ability of people to adapt in localizing virtual sound sources when listening to non-

individual HRTFs with improvements in elevation localization, without necessarily needing a

visual feedback. Nevertheless, the process of training the subjects to non-individual HRTFs

poses a complicated and time-consuming task.
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2.4 Trends in HRTF customization

The fact that individual HRTFs can contribute to large extends to the improvement of local-

ization while listening to binaural recordings have prompted many researchers to the challenge

of individualization. The major problem regarding doing the measurements for real persons

individually is the very long and time consuming measurement process. In the most straight

forward acquisition method, HRTFs are measured for every source position separately by mov-

ing the source after one measurement point to the next in the form of a stop & go measurement.

The subject keeps still during the whole measurement to avoid artifacts due to head move-

ments. In most practical cases, an array with loudspeakers at �xed elevations is used which

is rotated with respect to the subject to di�erent azimuths. This has the advantage that, as

long as the measurement is done for a given azimuth, no extra time will be spent to set the

new position of the source. However the situation can still get di�cult for the subject if high

resolution HRTF grids are aimed. Zotkin et al. [Zot 06] proposed the idea of applying the

acoustical principle of reciprocity, which implies that the measured impulse response of the

acoustical path between source and microphone will be the same if the source and microphone

positions are exchanged. Therefore, by inserting miniature loudspeakers in the subject's ears

and capturing the sound simultaneously by a microphone array, the HRTF measurement can

be accelerated. The use of a microphone array instead of a loudspeaker array also reduces

the inter-equipment re�ections. Zotkin et al. tested the directly and reciprocally measured

HRTFs and concluded that the two results agreed to good extends. One problem with re-

ciprocally measured HRTFs however is the resulted weak Signal to Noise Ratio (SNR), since

for subject's comfort and for physiological safety there are limitations in the amplitude of the

signal emitted by in-ear loudspeakers. Although acoustical isolations can be used between

the eardrum and the speaker, another problem arises from the size of the miniature sound

source. Small loudspeakers have weak performance at lower frequencies. Poor results at lower

frequencies might be a problem which concerns HRTF measurements generally as the HRTFs

are often windowed to remove the re�ections in the measurement room. However, the validity

of the HRTF data set acquired reciprocally by Zotkin et al. was for frequencies above 1.5 kHz.

Therefore, analytical methods had to be performed to compensate for the lack of content at

lower frequencies. According to the study by Algazi et al. [Alg 01b] the origin of the low

frequency localization features for di�erent elevations is the re�ections and di�ractions from

head and torso and the e�ect of pinna structure appears only for frequencies above 3 kHz.

Therefore, for low frequencies HRTFs can be well approximated by simple geometric models

of head and torso [Alg 02].

Another approach to the customization of HRTFs leaves the area of directly acoustic mea-

surement and takes advantage of the knowledge of the anthropometry of the subjects. Katz
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[Kat 01] used models of head and pinna to calculate the HRTFs numerically with Boundary

Element Method (BEM). This method is able to change the geometry of the subject during

the experiment, which is not possible in measurements with real persons. In addition, the

BEM method is a good solution for measuring the HRTFs of small children due to di�culties

involved during direct measurement with very young subjects [Fel 04]. The major constraint

of BEM method is that the upper frequency, for which the calculation is valid, depends on

the size of the elements. If the �ne structure of the subject's outer ear and pinna should be

considered, smaller elements are required. On the other hand the size and number of the ele-

ments determine the speed of the calculations and the memory requirements. For this reason

and in order to avoid enormous data sets usually only the head, neck and pinna are modeled

and shoulders and the torso are neglected. Calculations can get faster by applying the theory

of reciprocity to the numerical calculations [Fel 04] or by use of multipole accelerated BEM

and its spherical harmonic representation [Gum 10]. Otani et al. [Ota 06] mentioned that ap-

plying reciprocity to BEM might lead to di�erent results in comparison to normal BEM and

suggested the possibility of performing some parts of calculations, which are independent of

the source position, in advance. Despite these attempts to speed up the calculations, another

problem is the need for special laser scanners to acquire the exact model of subjects head

and pinna, which poses extra �nancial burden. There are also attempts to construct models

between HRTF features and anthropometry, as done by Jin et al. [Jin 00] or Rothbucher et

al. [Rot 10a]. Given an existing HRTF data set, which also includes the anthropometric data

of the subjects, this set can be used to train for example a linear regression model. However,

for this end, a collection of HRTF of various subjects with corresponding anthropometric data

is de�nitely required [Rot 10b].

Another �eld of study concerns the simultaneous or semi-parallel measurement of sound sources

to reduce the measurement time. González et al. [Gon 04] proposed a general method for

multichannel simultaneous linear impulse response measurement which is based on frequency-

multiplexing. Using multi-tone signals, di�erent groups of interleaved frequencies are allocated

to di�erent channels and due to orthogonality of signals the information corresponding to each

channel can be separated later. Majdak et al. [Maj 07] developed the Multiple Exponential

Sweep Method (MESM), a method for system identi�cation of weakly non-linear systems ex-

cited with exponential sweeps. This method bene�ts from the fact that by exciting the system

with logarithmic sweeps, linear and non-linear parts of the response can be separated. In

this method the excitation signals for di�erent channels are interleaved in time. By starting

each sweep one after another, the linear impulse responses are located between the linear and

the �rst harmonic impulse response corresponding to the next sweep. Dividing the existing

channels into groups of interleaved systems, these can furthermore be overlapped by starting
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the next group before the last sweep of the present group has reached its end. Majdak et

al. tested the MESM with an array of loudspeakers to measure 22 elevations within ca 7

seconds, reducing the measurement time by a factor of �ve, and showed that MESM performs

excellently robust against non-linear distortions, as long as the systems retain their weakly

nonlinear performance. Weinzierl et al. [Wei 09] introduced a more general multiple sweep

measurement with sweeps which were spectrally colored according to the present background

noise to improve the SNR and concluded that this method is advantageous against MESM for

measurements with room impulse responses longer than 2 seconds. Masiero et al. [Mas 11]

used also interleaved sweeps as excitation signal with the subject standing on a turntable

inside a vertical arc of up to 40 loudspeakers and discussed the electro acoustical and mechan-

ical aspects to be considered for an errorless acquisition. Going further than interleaving and

overlapping, to yield even shorter measurement times, Dietrich et al. [Die 13a] introduced the

optimized MESM which takes advantage of temporal structure of the linear impulse response

to place the single harmonics among arbitrary fundamentals.

One reason for the long duration of sequential point to point measurement is the time which is

needed between two subsequent measurements to set the new source location. To overcome this

limitation, the HRTFs can be acquired by rotating the subject continuously for all azimuthal

directions during the measurement. Ajdler et al. [Ajd 07] suggested a system for dynamic mea-

surements with a rotating microphone and a �xed source position to measure all azimuthal

angles within one rotation of only 1 second duration. After capturing the excitation signal,

di�erent impulse responses corresponding to di�erent angular positions are then reconstructed

using the 2D-Fourier representation and by taking into consideration the Doppler e�ect and

compensating for it. In order to have this reconstruction successfully, the rotation speed should

be adapted to a revolution time corresponding to a multiple of the period of the excitation

signal and the emitted signal should be designed very carefully. Fukudome et al. [Fuk 07] also

proposed a measurement system consisting of a rotating chair with a constant angular speed

to rotate the subject continuously during the measurement with Maximum Length Sequences

(MLS) excitation. The system identi�cation is based on the cross-correlation technique which

is commonly used for MLS excitation of LTI systems. However, modi�cations should be carried

out to the period of the excitation signal to adapt the system identi�cation to the rotating time

variant system. The system of Fukudome et al. is capable of acquiring the impulse responses

for all azimuthal directions within about 1 minute of rotation. Enzner [Enz 08] introduced the

continuous azimuth measurement of HRTFs with system identi�cation based on Normalized

Least Mean Square (NLMS) adaptive �ltering. Similar to the before mentioned methods, the

subject of interest with in ear microphones, is rotated continuously with respect to a single

sound source �xed at a given elevation. The impulse response corresponding to each angular
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azimuthal point can be identi�ed using adaptive �ltering algorithms [Hay 02] within a rotation

time of around 20 seconds. The excitation signal plays an important role in the behavior of the

system identi�cation with NLMS adaptive �ltering [Hay 02]. Antweiler et al. [Ant 95] showed

that perfect sequences (sequences with an impulse-like periodic autocorrelation) lead to the

best performance of adaptive �lters. On the other hand, sweeps have shown to come o� well

as excitation signals, having high energy and dealing with the limitations due to non-linear

distortions [Mul 08]. Telle et al. [Tel 10] introduced the perfect sweep as excitation signal

which o�ers the properties of sweeps and perfect sequences at the same time. Antweiler et

al. [Ant 12] con�rmed the better performance of perfect sweeps in comparison to white noise.

Enzner developed the system of continuous azimuth acquisition from single channel to the

multi-channel case by letting the subject rotate around the vertical axis at the center of a

vertically located loudspeaker array. During a single rotation of 360◦ the loudspeakers pro-

duce simultaneously the excitation signal. For the case of optimal multi-channel excitation,

Antweiler [Ant 08] introduced the adequate generation of perfect sequences which leads to the

perfect multi-channel system identi�cation using NLMS adaptive �lters.

2.5 Chapter Summary

In this chapter, the spatial hearing and the involved interaural and spectral features in sound

source localization were introduced. Furthermore, head-related transfer functions and their

role in the binaural technology were discussed. It was shown that the binaural technology has

to deal with artifacts if the HRTFs acquisition and the binaural representation are not done for

the same person and it is of interest to acquire HRTFs individually. Due to the long duration

of HRTF measurement, especially for high resolution measurement grids, individually HRTF

measurement with real persons poses a challenging problem. Di�erent attempts on HRTF

customizations were brie�y introduced. Besides trends to acquire HRTFs without engaging

the subjects directly in the measurements, other methods have been suggested to overcome the

di�culty of individually measurements by shortening the measurement duration. The present

thesis concerns two of the proposed approaches which aim at reducing the measurement time,

namely the multiple exponential sweep method (MESM) and the optimized MESM, proposed

by Majdak et al. [Maj 07] and Dietrich et al. [Die 13a] respectively, and the continuous

HRTF acquisition based on system identi�cation with NLMS adaptive �ltering as proposed

by Enzner [Enz 08]. The advantages and limitations of these methods are discussed in the

following chapters.



Chapter 3

Multiple Exponential Sweep Method

(MESM) and optimized MESM

Majdak et al. [Maj 07] introduced the multiple exponential sweep method (MESM), which

can be applied for system identi�cation of multiple weakly nonlinear systems, where only

the linear part of the impulse response is of interest. The main idea behind MESM consists

in letting the excitation of subsequent systems overlap in time, in order to speed up the

measurements. Based on the fundamental principles of MESM, Dietrich et al. [Die 13a]

proposed an optimization on MESM, which, under certain conditions can lead to even shorter

measurement times than MESM. This chapter treats these two approaches. Since MESM is

based on system identi�cation with exponential sweeps, the latter is introduced �rst shortly

in section 3.1. Further on, in sections 3.2 to 3.4, MESM and its strategies as well as optimal

choice for its parameters are reviwed. The discussion continues to optimized MESM in section

3.5. According to [Maj 07] and [Wei 09], MESM can also be used to improve the SNR, but

the attention of the chapter will remain on MESM's ability to improve the measurement

speed. The main focus of this chapter is dedicated to the review, derivation and discussion of

the formula and equations envolved in the two methods, as originally presented in the main

refrences [Maj 07], [Wei 09] and [Die 13a].

3.1 Exponential Sweep Method (ES)

Using exponential sweeps as excitation signal for system identi�cation was proposed by Farina

[Far 00]. The main idea of this method is the possibility of measuring the impulse response

of a weakly-nonlinear almost time-invariant system without the need for repeating an extra

measurement for nonlinearities, hence the possibility of the simultaneous measurement of

impulse response and nonlinear distrotion, which can be applied for room acoustics and audio

12
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measurements as well. The straight forward method of measuring the impulse response is to

excite the system with a deterministic wideband signal such as random noise sequences or

sweeps and acquire the response of the system. The impulse response can then be achieved by

spectral division of these two signals and taking the inverse Fourier transform of the result.

The time aliasing problems caused by circular deconvolution can be avoided in excitations

with sweeps by adding some silent segments to the end of the signal [Far 00]. But the main

property of sweeps emphasized by [Far 00] is that in the case of a logarithmic sweep, that

is a sweep with the frequency increasing exponentially over time, the higher order nonlinear

distortions in the impulse response appear as harmonic impulse responses distinctly separated

from the system's linear response. A logarithmic sweep starting at frequency f1, ending at

frequency f2 and with a total duration of T can be synthesized in time domain as a sinus

signal with exponentially varying frequency [Far 00]:

x(t) = sin

(
2πf1T

ln f2
f1

(
e
t
T
ln
f2
f1 − 1

))
(3.1)

For a logarithmic sweep, the time with respect to the linear impulse response, at which the

kth nonlinear response(kth harmonic response) appears, can be exactly calculated as [Far 00]:

∆tk =
T ln(k)

c
=

ln(k)

rs
(3.2)

with c = ln
(
f2
f1

)
. rs =

ln(
f2
f1

)

T is the sweep rate which represents the frequency range of the

sweep in octaves normalized to the length of the sweep in seconds [Die 13a]. Figure 3.1 shows

the result of the deconvolution of the output of a simulated nonlinear system to excitation

with a logarithmic sweep.
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Figure 3.1: Linear impulse response (k = 1), and harmonic impulse responses (k = 2 to k = 5) of a
simulated nonlinear system excited with an exponential sweep.
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As depicted in Figure 3.1, the nonlinearities appear as similar copies separated from the lin-

ear response. Knowing the exact beginning time according to equation 3.2, the linear impulse

response and the high order nonlinear responses can be separated using proper window func-

tions. It should be noticed, that since the deconvolution with the excitation signal corresponds

to a convolution with the time reversed sweep, the harmonic impulse responses are folded back

to negative times [Wei 09].

The logarithmic sweep can also be constructed in frequency domain by designing the amplitude

spectrum to increas by 3 dB/octave with a group delay which grows exponentially. It is of

interest to maintain a constant temporal envelope for the logarithmic sweep to guarantee for

the optimal crest factor of 3 dB for the excitation. This can be achieved by setting the group

delay growth proportionally to the power of the logarithmic sweep |H(f)|2 as [Mul 08]:

τgd(f) = τgd(f − df) + C|H(f)|2 (3.3)

with τgd as group delay, df as the width of each frequency bin and C de�ned as:

C =
τgd(fend)− τgd(fstart)∑ fs

2
f=0|H(f)|2

(3.4)

In addition to the above mentioned properties, there are also other qualities which make

sweeps in general more attractive against pseudo random sequences for acoustical measurement

purposes. Sweeps can be constructed for any length and any measurement frequency range.

Pseudo random sequences might theoretically have a high energy due to very low crest factor,

as they have, in contrast to white noise, only two possible amplitudes of 0 and 1 (binary

signals), but in practice, they do not perform as expected. The anti-aliasing �lters used

in audio analog to digital converters lead to drastic changes in the rectangular wave form

of the binary sequences in case of high amplitude excitations. In addition, periodic pseudo

random sequences are extremely vulnerable to time variations which limit the use of averages

to compensate for low SNRs. In contrast, a single logarithmic sweep of proper length enables

achieving su�cient SNR even with a single measurement. In addition, the impact of transient

noise appears only within a narrow frequency band of the signal. Sweeps can also be �lled

up with zeros to a power of 2-length, 2n (n ∈ N), suitable to be analyzed by the Fast Fourier

Transform (FFT) method. Although FFT analysis performs actually for sequences which

are repeated periodically, the single sweep and the periodically repeated one do not show

considerable spectral di�erances [Mul 08].
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3.2 Interleaving and overlapping: MESM

If the exponential sweep method is used to identify M systems, the simplest way is to do

the identi�cation system by system. In case of an acoustical system identi�cation, besides

the length of excitation signal, T , an additional length of τIR for each system should also be

considered in the measurement duration due to the reverberations in the room (the length

of the room impulse response). As a result, the measurement duration for M systems using

exponential sweep (ES) method is given as:

TES = (T + τIR)M (3.5)

Considering M weakly nonlinear systems excited with exponential sweeps, the measurement

result of each system will also include a set of separable harmonic responses. If the length of

the 2nd order harmonic response, τIR,2, and the time of its occurrence, ∆t2, (which can be

calculated by equation 3.2) are so, that the 2nd order harmonic response fades away before

the linear impulse response begins, one can use the remaining time distance to send the

excitation signal for the next system. It means, sweeps can be sent semi-parallel in time.

This is one important idea of MESM and is named as interleaving. By applying interleaving,

after deconvolution, the linear impulse response (IR) of the �rst system in placed between

the IR and 2nd harmonic impulse response (2nd HIR) of the second system. This process

can be generalized to as many systems as necessary, as long as there is su�cient distance

between the end of the 2nd HIR and the beginning of the IR of the last system. Figure 3.2

shows the response of a nonlinear system to four interleaved sweeps as well as the result of the

deconvolution.

Figure 3.2: Response signal spectrogram of excitation with four interleaved sweeps (left), and the
result of deconvolution with IRs (higher peaks) and nonlinear HIRs (lower peaks)(right). [Maj 07]
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For a group of η interleaved sweeps, the following condition should be met [Maj 07]:

∆t2 − τIR,2 > τIR(η − 1)⇒ ∆t2 > τIR,2 + τIR(η − 1) (3.6)

It means, a minimum delay of τIR should exist between the interleaved sweeps and considering

equation 3.2, there is now a minimum duration for the sweep necessary which reads:

T ′ = [τIR(η − 1) + τIR,2]
c

ln 2
(3.7)

If this minimum length is shorter than the original sweep duration, the sweep length is set

to the original length to meet the necessary SNR conditions. If the condition in equation 3.7

holds, each ith sweep is to be played at time (i− 1) τIR and η systems are interleaved. The

last sweep begins at (η − 1) τIR and lasts T ′ seconds. After the last sweep is �nished, the

measurement should be further extended by another τIR to capture the reverberations for the

last system. As a result, the measurement duration of η interleaved systems is given by:

Tgrp = T ′ + ητIR (3.8)

If M systems are divided into groups of η interleaved members, the measurement should be

repeated M
η times and the whole measurement duration will be:

TINT =
M

η
Tgrp =

M

η
T ′ +MτIR (3.9)

Comparison between equations 3.5 and 3.9 shows that the interleaving results in a reduction

of the measurement duration if the ratio T ′

η is smaller than T .

[Maj 07] also suggested the idea that, in case of weakly nonlinear systems, where the number

of high order harmonic responses is small, it is not necessary to wait until the �rst sweep is

�nished to send the second sweep. As shown in �gure 3.3, as long as the highest harmonic

response of the next sweep does not disturb the reverberation caused by the previous sweep,

these two sweeps can overlap in time.

Using this strategy of overlapping and applying deconvolution, the impulse response of individ-

ual systems do not interfere with each other, although their excitation overlaps. Overlapping

of two consequent sweeps works as long as the beginning point of the highest harmonic re-

sponse does not interfere with the information contained in the linear part of the system. For

this end, the next sweep should keep a minimum distance from the previous one. Assuming

that after deconvolution, a maximum number of Kmax harmonic responses can be recognized,
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Figure 3.3: Response signal spectrogram for four overlapped sweeps (left) and the IR and HIRs after
deconvolution (right). [Maj 07]

the minimum delay between two consequent sweeps is given by [Maj 07]:

τOV = ∆tKmax + τIR =
T

c
lnKmax + τIR (3.10)

The measurement duration for M overlapped systems will be [Wei 09]:

TOV = T + (M − 1)(∆tKmax + τIR) + τIR (3.11)

One might think that using fast sweeps, the beginning time of the maximum order harmonic

response, ∆tKmax , could get smaller since for increasing sweep rates, the harmonic responses

move closer together. But that would at the same time result in a reduced obtained SNR due

to the shorter excitation signal. In addition, it should be noticed that any interference between

the linear impulse response and the second harmonic response should be avoided. This sets a

constraint for the sweep rate which can be calculated according to equation 3.2 as [Die 13a]

rs ≤
ln 2

τIR,2
(3.12)

The overlapping strategy will result in a reduction in measurement duration if the maximum

order of nonlinearity is low enough (weakly nonlinear systems).

Combination of the two strategies of interleaving and overlapping builds the basis of MESM.

First, M systems are interleaved in M
η groups and then, these groups are overlapped. The

measurement duration will be equal to M
η times interleaving for η systems, plus the delay for

overlapping M
η groups with a maximum order of distortion Kmax [Wei 09]:

TMESM = T ′ +
M

η
(ητIR) + ∆t′Kmaxd

M

η
− 1e = T ′ + ∆t′Kmaxd

M

η
− 1e+ τIRM (3.13)
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dxe denotes the next higher integer of x. Note that as a result of interleaving, the sweep

duration and the begin of the kth harmonic response should be modi�ed by equation 3.7.

Figure 3.4 shows the response signal and the impulse responses for overlapping two groups,

each containing two interleaved sweeps.

Figure 3.4: Response signal for overlapping two groups, each group containing two interleaved sweeps
(left), and the IRs and HIRs (right) for system identi�cation with MESM. [Maj 07]

For a given η, the excitation time for each ith system is given by [Maj 07]:

ti = τIR (i− 1) + b i− 1

η
c∆t′Kmax (3.14)

bxc denotes the next lower integer of x. Therefore, knowing the length of the linear impulse

response, (τIR), these impulse responses can be separated by windowing. MESM can be

applied if only the linear impulse response is of interest since the harmonic impulse responses

of subsequent systems interfere with each other and cannot be completely separated as in case

of ES method [Maj 07]. However, as shown by Torras-Rossel et al. [Tor 11], even the linear

impulse response does not stay totally una�ected from nonlinearities and in particular, the

odd orders of nonlinearities contaminate the linear response. It means that the ES method

can reject a signi�cant amount of distortions from the linear part but after applying a time

window, not all nonlinearities can be suppressed from the measurement results.

3.3 Optimization of MESM parameters

Comparing equations 3.5 and 3.13, it can be seen that the improvement in measurement

duration using MESM against ES can be evaluated by comparing the two terms TM and

T ′ + ∆t′Kmaxd
M
η − 1e:

TES = (T + τIR)M ←→ TMESM = T ′ + ∆t′Kmaxd
M

η
− 1e+ τIRM (3.15)
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For MESM, the measurement duration depends on Kmax, τIR, τIR,2 and T (or sweep rate rs).

In addition, the number of interleaved systems, η, is important. In order to �nd an optimal

η, which minimizes the duration TMESM , this duration can be rewritten as a function of η by

substituting equations 3.2 and 3.7 in equation 3.13 which results in:

(3.16)TMESM (η) =
1

ln 2

[
(τIR(η − 1) + τIR,2)

(
c+ lnKmaxd

M

η
− 1e

)
+MτIR ln 2

]
The derivative of TMESM with respect to η yields:

dTMESM

dη
=

1

ln 2

(
τIRc+ τIR lnKmaxd

M

η
− 1e)

)
(3.17)

Since M
η ≥1, the derivative of TMESM is always positive (for all η 6= 0) which means that

TMESM increases with increasing η. Therefore the optimal number of interleaved systems,

ηopt, is the minimum η which still meets the condition of minimum sweep length (equation

3.7):

ηopt = dT ln 2

cτIR
+
τIR − τIR,2

τIR
e (3.18)

Weinzierl et al. [Wei 09] mentioned the issue that if small values are set for ηopt, it might hap-

pen that a non interleaved measurement (η=1) with sweep duration T yields a shorter mea-

surement duration than MESM. Therefore, the e�ciency of �nding an optimal η for MESM

relative to conventional measurement is considered as ν = Tconventional
TMESM

[Wei 09]. Figure 3.5

shows the e�ciency of an optimal MESM measurement, also named as measurement acceler-

ation, as a function of number of systems N and the length of linear impulse response τIR.

It can be seen that �nding an optimal η is not much bene�cial if the linear impulse response

contains long reverberations, but for large numbers of systems and small τIR, MESM results

in a considerable improvement of measurement duration.

3.4 Calibration measurement for MESM

According to equations 3.7 and 3.14, the length of linear and second harmonic responses, (τIR

and τIR,2), as well as the maximum order of nonlinearities, Kmax, are required to calculate the

MESM parameters, which are the sweep duration, T ′, and the excitation time for each sweep,

ti. This necessitates measurements which should be done prior to MESM measurement. This

calibration measurement can be done using an un-optimized method such as ES method, in

order to read the length of linear and second harmonic responses as well as the maximum

number of harmonics, which can be recognized in measurement results. Since the length of
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Figure 3.5: Measurement acceleration: MESM measurement duration for di�erent values of τIR
(τIR,2 = 0.1τIR) , Kmax = 5, f2

f1
= 400) relative to the duration of a conventional ES measurement

with sweep length T=3s as a function of N(number of systems)[Wei 09](Parameter τIR is named L1

in [Wei 09]. The renaming was done for uniformity).

the impulse response depends on sound absorption of walls, �oors and ceiling of the room, the

lengths τIR and τIR,2 do not make considerable di�erences for di�erent systems. Parameter

Kmax depends on the degree of nonlinearities of each system. However, the variability of Kmax

will be reduced if the measurement equipment is of the same type for all channels. So, after

repeating the un-optimized measurement for each system separately, the maximum values for

τIR, τIR,2 and Kmax among all values are used to calculate the MESM parameters. In the

case of HRTF measurement, the calibration measurement is done in the absence of the subject

with the microphone placed in the center position of his head whereas the MESM measure-

ment is performed with microphones in the ear canal. Switching from calibration to MESM

measurement however does not change the length of the impulse response since the length

of HRTF is short in comparison to room impulse response [Maj 07]. But one aspect to be

considered is that, when sweeps are played in a semi-parallel manner, as in MESM, the micro-

phones capture the summation result of the existing sound in the room. Since the amplitude

of this summation is higher than the amplitude in single separate measurements, there might

be the risk of further clipping in measurement equipment and Kmax could di�er from the

value obtained from calibration measurements. Therefore, the amplitude of excitation signals

should be modi�ed for MESM. Majdak et al. [Maj 07] suggested to perform the calibration

measurement with a sweep duration and amplitude which ful�lls the SNR requirements and

lets enough headroom for each of the systems and achieve the MESM parameters, and in the

next step, to repeat the measurement again, this time with MESM to adapt the amplitude

to have enough headroom for the case of semi-parallel excitation. This MESM measurement

might reduce the SNR since the amplitudes are lowered to avoid clipping but an extended

duration for sweep will then be used to increase the SNR again to the desired value. Finally,
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this eventually extended sweep length from the very recent measurement is used, together

with the values τIR, τIR,2 and Kmax from the �rst calibration measurement, to calculate the

MESM parameters.

It should be mentioned again that the results of MESM measurement can be compared tempo-

rally and spectrally to conventional measurement if the system is weakly nonlinear. Dietrich

et al. [Die 13a] also pointed out that the level must be kept constant between actual and

calibration measurements. Once the loudspeakers cause the nonlinearities, other equipment

(microphones and ampli�ers) should work in linear range only.

Majdak et al. [Maj 07] carried out a MESM measurement with τIR = 100 ms, τIR,2 = 10 ms

and Kmax=5. ηopt and the extended sweep duration T ′ were calculated as 3 and 1.815 s re-

spectively. A number of M= 22 channels were measured within 7.1 seconds, which, compared

to a sequential measurement with a sweep length of T=1.5s, resulted in an improvement of

measurement speed by a factor 5. By rotating to the next azimuths in 2.5◦ steps, a total

number of 1550 points were measured within 10 minutes. If time variances are considered as

a stochastic process, MESM shows, due to a shorter measurement time, less vulnerability to

time variance artifacts and performs robust against nonlinear distortions [Maj 07].

3.5 Optimized MESM

As discussed in the previous sections, compared to conventional ES measurements, MESM

can reduce the measurement duration for large numbers of systems and shorter reverberation

times. Dietrich et al. [Die 13a] proposed a generalized overlapping strategy which leads

under certain conditions to even better results than MESM. This strategy takes advantage of

temporal structure of impulse responses as well as the length of harmonic responses, and is

called optimized MESM by authors. The idea of optimized MESM corresponds generally to

overlapping as for MESM but without any interleaving. Actually, the formula for measurement

time as de�ned in equation 3.11 is also used for optimized MESM but with some modi�cations:

TOPT = T + (M − 1)τw + τst (3.19)

τst is the time which the last system needs to decay after the sweep has stopped. This time is

chosen for safety as long as one impulse response τIR.

The di�erence to equation 3.11 is that the minimum time delay between consequent excitations,

τw, is not given by equation 3.10 anymore. The reason is the temporal structure of the impulse

response. When measuring the transfer function of acoustical path as a Device Under Test

(DUT), the resulted impulse response contains, besides the direct sound, also re�ections from

objects in the room and from the room itself. For the case of HRTF measurement, the
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Figure 3.6: Temporal structure of an impulse response measured with exponential sweep. [Die 13a]

direct sound as well as early re�ections are important and the rest of re�ections, which might

even occur in anechoic environments due to objects in the room, do not supply any useful

information. It means that it is not the whole length of impulse response, τIR, which should

be protected against harmonic responses or re�ections. It is su�cient to protect the useful part

of the impulse response, τDUT . As shown in �gure 3.6, an avoid zone can be put around the

useful impulse response, suggested as an optional safety time ,τsp, before and after the impulse

response of DUT. The percentage of the length of the useful impulse response is de�ned as:

α =
τDUT + 2τsp

τIR
≤ 1 +

2τsp
τIR

(3.20)

If τsp = 0, it is clear that for α=1, τDUT = τIR and no improvement in measurement time

is achieved. Considering this strategy, the optimized MESM corresponds to a MESM mea-

surement with only overlapping, named as adapted overlapping [Die 13a], for which the time

delay between the sweeps is calculated by:

τw,adapted = ∆tKmax + τDUT + τsp (3.21)

The next strategy of optimized MESM is based on the idea that it is su�cient for harmonic

impulse responses to be placed in a manner that they do not interfere with the avoid zones.

[Die 13a] used two conditions for this end. First: for each harmonic response, the beginning

time ∆tk should take place after the end of an avoid zone:

(−∆tk mod τw) ≥ τDUT + τsp (3.22)
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Second: each harmonic response of length τIR,k should end, before the next avoid zone begins:

(−∆tk mod τw) + τIR,k ≤ τw − τsp (3.23)

The combination if equations 3.22 and 3.23 implies that:

τDUT + τsp ≤
(
− ln k

rs
mod τw

)
≤ τw − τsp − τIR,k (3.24)

To ful�ll the constraint in equation 3.24 two parameters should be found: τw and rs. At the

same time, there exists a minimum limit for τw. For the case, where there are no distortions,

the only issue which limits the time delay is the presence of re�ections so that the time distance

between two avoid zones should be at least as long as the length of impulse response: τw ≥ τIR.
In the presence of harmonic distortions, this limit should be extended to avoid the interference

of the maximum harmonic response with the avoid zone. So, the other constraint for τw besides

equation 3.24 is:

τw ≥ max (τDUT + 2τsp +max(τIR,k), τIR) (3.25)

Another strategy of optimized MESM takes advantage of weakly nonlinearity of systems, which

implies that the length of the harmonic responses, τIR,k decreases with increasing order. One

way to obtain these lengths is to read them from calibration measurements. The values τIR,k

depend on signal to noise ratio. If a harmonic response vanishes below the noise �oor, it is

not considered at all since in this case τIR,k < 0. It is important that the SNR for main

measurements should not exceed the SNR at calibration measurements. Besides direct tem-

poral measurements, [Die 13a] also suggested considering the energy decay of each harmonic

response instead of its duration in time domain. If the energy decay of kth harmonic response

is ak and if the decay rate is considered as unchanged for all harmonic responses, then the

length of kth harmonic response will be:

τIR,k =
SNR− ak
SNR

τIR (3.26)

In the worst case, there is no decay in the energy content of harmonic responses, which means

that τIR,k = τIR. However, if the systems are weakly nonlinear, the condition τIR,k < τIR will

contribute to shorter measurement times.

As there is no analytic solution to �nd the optimal values for τw and rs, which ful�ll the con-

straints in equations 3.24 and 3.25, di�erent possible values for τw and rs are demonstrated in

a normalized search space (rsτIR,
τw
τIR

) in order to be studied. The normalization with respect

to the length of the room impulse response makes the analysis independent of this length
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Figure 3.7: Minimum normalized delay for MESM (with τIR = τDUT ) and optimized MESM for
α = 1 and ak = 0. [Die 13a]

[Die 13a]. Figure 3.7 shows such a search space 1. The goal is to �nd the minimum time delay,

τw, between consequent sweeps, which leads to the minimum measurement time according to

equation 3.19. Here, the minimum delay is compared between a MESM measurement (with

interleaving, overlapping and ηopt, but considering τIR = τDUT ), and an optimal MESM mea-

surement, which in this case corresponds to a MESM measurement with only overlapping,

since α=1 and ak=0, it means that τIR,k = τIR for all �ve harmonic responses. As can be

seen, for rsτIR > 0.5, MESM and the proposed method have exactly the same manner, since

for increasing sweep rates the harmonic responses move closer together so that η=1, which

implies a MESM with only overlapping strategy. Using optimized MESM for α=1 and ak=0

leads to only slightly smaller values of τw for a narrow range of sweep rates.

In the next step, the in�uence of the parameter α is considered in �gure 3.8. The compar-

ison is done between following measurement situations: original MESM, MESM, for which

the overlapping is done considering equation 3.21, labeled as adapted MESM, and the pro-

posed method, for which ak = 0 but α < 1. In this case the proposed method improves the

measurement time for small values of α and low sweep rates.

And next, the e�ect of the length of harmonic responses is studied (�gure 3.9). The attenua-

tion, ak, is chosen to be ak=20dB and ak=40dB for every order k. It is again assumed that

α = 1. The curve labeled as reference MESM corresponds to original MESM for which a2 = 0.

For the adapted MESM a2=20dB or a2=40dB is considered. In this case the proposed method

leads to a shorter measurement duration only for large ak and small sweep rates.

Finally, �gure 3.10 shows the results for combinations using realistic values for α and ak. The

reference MESM refers to a normal MESM measurement without taking advantage of a shorter

1In �gures 3.7 to 3.10, the normalization in both axes is labeled with τRIR which should actually be τIR,
since the room impulse response and the useful part of the impulse response are named as τIR and τDUT within
the paper's text in [Die 13a].
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Figure 3.8: Minimum normalized delay for original MESM, MESM with overlapping considering
equation 3.21 (adapted MESM) and optimized MESM with ak = 0, α < 1 for α = 0.5(top) and
α = 0.125(bottom). [Die 13a]

Figure 3.9: Minimum normalized delay for referecne MESM (MESM with a2 = 0), adapted MESM
(MESM with a2=20dB or 40dB) and proposed method (optimized MESM) for ak=20dB (top) and
ak=40dB (bottom). [Die 13a]
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Figure 3.10: Minimum normalized delay for reference MESM, original MESM (MESM with τIR,2 <
τIR), adapted MESM (MESM with τIR,2 < τIR and α < 1) and optimized MESM. [Die 13a]

second harmonic response. The original MESM uses only decreased second order harmonic

lengths. The adapted MESM uses decreased second harmonic lengths as well as α < 1 and the

proposed method corresponds to optimized MESM. It is obvious that the proposed method

outperforms all other methods for normalized sweep rates approximately below 0.8.

As a result, optimized MESM improves the measurement speed if the length of the measured

impulse response is small compared to the length of the room impulse response (if α<1), and

if the smaller length of the harmonic impulse responses are considered. In �gure 3.10, the

curve labeled as proposed method shows the results for a measurement done with a system

consisting of M= 40 loudspeakers. τDUT= 4ms and τIR = 40ms were considered. Achieving

the best combination of rs and τw as 5.59 and 48.09 ms respectively, Dietrich et al. measured

the impulse responses for all 40 loudspeaker locations within 3.25 seconds.

It should be pointed out here that for optimized MESM there is only one delay time, τw,

which is needed to be found whereas for original MESM two delay times, namely the delay

between the interleaved sweeps, (τIL), and the delay between the overlapped sweeps, (τOV ),

are required. Therefore, the comparison between the original and the optimized methods is

done under the assumption that the number of systems, M , is large enough, because, if this

number tends to in�nity there can be one mean delay considered for original MESM which is

given as [Die 13a]:

τ̄w,MESM =
(η − 1)τIL + τOV

η
(3.27)
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The minimum value for τIL is the length of linear impulse response, τIR.

As long as the length of the measured impulse response is much smaller than the time delay

between two subsequent sweeps, and as long as the number of harmonic impulse responses is

small (weakly nonlinear systems), with the consideration that no further weak nonlinearities

appear during the measurement, MESM and optimized MESM result in measured impulse

responses with the same SNR and spectral and temporal structure as obtained by a sequential

ES measurement [Die 13a].

3.6 Chapter summary

This chapter introduced and reviewed MESM by Majdak et al. [Maj 07] and optimized MESM

proposed by [Die 13a]. According to [Maj 07] and [Wei 09], MESM leads to the improvement

of measurement speed if a large number of channels are used to measure an impulse response

of small length. The optimal choice of MESM parameters and the guidance to calibration

measurements to set these parameters were reviewed. In addition, the even better performance

of optimized MESM against original MESM was explained. Optimized MESM improves the

measurement speed for the case that a small percentage of measured impulse response in

comparison to the whole room impulse response is of interest and takes advantage of the shorter

length of the harmonic responses in comparison to the linear response as well. Following the

instructions and considering the constraints discussed in the chapter, MESM and optimized

MESM result in impulse responses with the same spectral and temporal structure as measured

with a sequential ES method.



Chapter 4

System identi�cation with Normalized

Least Mean Square (NLMS) adaptive

�lters

LMS and NLMS adaptive �lters have gained popularity among other adaptive �ltering methods

due to their simplicity and ease of implementation. The NLMS is the most used adaptation

algorithm in acoustic echo cancelation [Ben 01]. Combined with perfect sequences as excitation

signals, which improve the adaptation speed, the NLMS approach can be applied to track the

response of time varying systems and is used in single- and multichannel system identi�cations.

Enzner [Enz 08], [Enz 09] proposed the system identi�cation with NLMS adaptive �ltering

to measure HRTFs for all azimuths by rotating the subject continuously in the horizontal

direction. This method can also be extended to the simultaneous measurements of more than

one sound source. This chapter begins with a brief introduction in the LMS and NLMS

algorithms in section 4.1. Section 4.2 deals with the conditions which guarantee the stability

of the NLMS algorithm. In Sections 4.3 and 4.4 the conditions are discussed, which lead to

the optimal excitation of NLMS algorithm. The HRTF measurement systems proposed by

Enzner [Enz 08], [Enz 09] are described in sections 4.5 and 4.6. Finally, section 4.7 introduces

a measureable criterion to judge the accuracy of system identi�cation of time varying HRTF

measurement systems with the NLMS algorithm.

4.1 LMS and NLMS adaptive �lters

Least Mean Square algorithm (LMS) is a special implementation of the method of steepest

descent. The method of steepest descent is recursive, it means that its formulation is based on

a feedback system with a �lter computation which proceeds iteratively step by step. According

28
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to [Hay 02], the basic idea of this method is to �nd an optimal solution w0 among some other

unknown vectors w, which satis�es the following condition:

J(w0) ≤ J(w) for all w (4.1)

The cost function J(w) is a continuously di�erentiable function of w. In case of the LMS

algorithm, the cost function is the mean square of the deviation of the response of the �lter

w to a desirable response. For adaptive �ltering, a well suited condition is to assume that the

cost function is reduced at each iteration:

J(w(k + 1)) < J(w(k)) (4.2)

For the LMS algorithm, as a special case of the method of steepest descent, the adjustment

applied to the vector w is in a direction opposite to the gradient vector of the cost function,

5J 1, and is described as [Hay 02]:

w(k + 1) = w(k)− 1

2
µ5 J (4.3)

µ>0 is called the step size. Step size has an important role in the behavior of the LMS and

NLMS adaptive �lters, as will be discussed in the next sections. The di�erence between LMS

and the method of steepest descent is that the latter uses exact measurements of the gradient

vector at each iteration whereas the LMS relies on an estimation of the gradient vector. The

LMS algorithm consists of three general steps [Hay 02]:

1. Computing the output of the �lter (ŷ(k)) in response to the input signal (p(k)): ŷ(k) =

hT (k)p(k)

2. Generating an estimation error (e(k)) by comparing this output with a desired response

(y(k)): e(k) = y(k)− ŷ(k)

3. Adjustment of the parameters of the �lter in accordance with the estimation error:

h(k + 1) = h(k) + µp(k)e(k)

Because of the estimation used in LMS algorithm, vector h(k), which is not the same as w(k),

performs a random motion around the minimum point of the error. As a result, the LMS

su�ers from a gradient noise. Since the adjustment of the �lter depends directly on the input

signal p, this gradient noise gets worse for large inputs. The Normalized Least Mean Square

Method (NLMS) overcomes this problem by normalizing the adjustment at iteration k + 1

1For a little more detailed, but still summarized discussion on gradient vector as well as the derivation of
equations 4.4 and 4.5, see appendix A
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with respect to the squared Euclidean norm of the input signal at iteration k. Therefore, the

iterative adapting process of NLMS will be:

h(k + 1) = h(k) +
µ

‖p(k)‖2
p(k)e(k) (4.4)

with:

e(k) = y(k)− hT (k)p(k) (4.5)

4.2 Stability of the NLMS algorithm

One way to interpret the adaptation process and stability of the NLMS algorithm is the use

of geometric interpretation as in [Som 89]. To this end, consider the block diagram of a single

channel system identi�cation shown in �gure 4.1.

Figure 4.1: Single channel system identi�cation. [Ant 08]

g depicts the impulse response of the unknown system to be identi�ed as the estimation h(k),

and p(k) is the input vector. n(k) represents the in�uence of the environmental noise on the

adaptation process. Using the new notations of �gure 4.1, the recursive updating process of

the NLMS algorithm is rewritten as:

h(k + 1) = h(k) +
µ

‖p(k)‖2
p(k)e(k) with µ : step size (4.6)

with:

e(k) = (g− h(k))T p(k) + n(k) = ε(k) + n(k) (error signal) (4.7)

ε(k) is the mismatch between the desired output y(k) and its estimation ŷ(k). The distance

vector, which de�nes the mismatch between g and h(k), is de�ned as:

d(k) = g− h(k) (4.8)
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Assuming that n(k) ≡ 0 (noiseless environment), the error signal in terms of the distance

vector is reduced to:

e(k) = (d(k))T p(k) (4.9)

Considering equations 4.8 and 4.9, the NLMS algorithm of equation 4.6 changes to:

d(k + 1) = d(k)− µ(d(k))T p(k)

‖p(k)‖2
p(k) (4.10)

The geometric representation uses a vector space representation which decomposes the distance

vector into two components [Ant 08]:

d(k) = d⊥(k) + d‖(k) (4.11)

As shown in �gure 4.2, the parallel component d‖(k) can be interpreted as the orthogonal

projection of d on to the input signal p(k):

d‖(k) =
(d(k))T p(k)

‖p(k)‖
p(k)

‖p(k)‖
=

(d(k))T p(k)

‖p(k)‖2
p(k) (4.12)

� k) k) 

⊥ k) 

−μ k) 

k) 

k+ 1) 

Figure 4.2: Geometric interpretation of the NLMS algorithm (Idea of the �gure was adopted from

[Ant 08]).

which, in combination with equation 4.10 leads to:

d(k + 1) = d(k)− µd‖(k) (4.13)

It means, only the parallel component d‖(k) contributes to a reduction of the length of the

vector d(k + 1). As can be observed from �gure 4.2, this reduction is met only for:

0 < µ < 2 (4.14)

which represents the stability criterion of the NLMS algorithm. Also, the mean square devia-
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tion is de�ned as:

D(k) = E
[
‖d(k)‖2

]
(4.15)

In equation 4.15, E denotes the expected value, which is considered here the same as the mean

value. If we take the mean of the square Euclidean norms of both sides of equation 4.10, we

will have:

D(k + 1)−D(k) = µ2E

[
|e(k)|2

‖p(k)‖2

]
− 2µE

[
e(k)d(k)p(k)

‖p(k)‖2

]
(4.16)

With the assumption, that the input signal energy ‖p(k)‖2, from one iteration to the next,

can be approximated by a constant 2 and considering equation 4.9, we will have 3 :

D(k + 1)−D(k) = µ2
E
[
|e(k)|2

]
E
[
‖p(k)‖2

] − 2µ
E [e(k)e(k)]

E
[
‖p(k)‖2

] (4.17)

According to equation 4.17, the mean square deviation decreases with increasing iteration k

and the NLMS �lter is stable in the mean square error sense if the condition in equation 4.14

is met [Hay 02]. For the general case, in the presence of environmental noise n(k), equation

4.17 changes to:

D(k + 1)−D(k) = µ2
E
[
|e(k)|2

]
E
[
‖p(k)‖2

] − 2µ
E [e(k)ε(k)]

E
[
‖p(k)‖2

] (4.18)

Since for the LMS and NLMS algorithms the exact optimal answer is never reached, the �lter

converges to an optimal answer about which the estimated impulse response h changes. The

amount of this change depends on the step size value. In order to �nd the optimal step size for

the NLMS method and by derivation of equations 4.17 and 4.18, it is shown that the largest

decrease in the distance vector can be achieved for [Mad 00]:

µopt(k) =
E [e(k)ε(k)]

E [|e(k)|2]
(4.19)

or:

µopt = 1 for n(k) ≡ 0 (4.20)

Whereas in order to guarantee for the convergence of the LMS algorithm, the step size should

2so that the approximation E
[
|e(k)|2

‖p(k)‖2

]
≈ E[|e(k)|2]

E[‖p(k)‖2]
is justi�ed. [Hay 02]

3Note that for n(k) ≡ 0 we have: e(k) = ε(k)
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meet the following condition [Hay 02, Wid 85]:

0 < µ <
2

λmax
(4.21)

where λmax is the largest eigenvalue of the input correlation matrix R4. It means that in

the LMS algorithm the step size should be inversely proportional to the signal power. Since

the optimal convergence speed of the LMS algorithm is achieved for small eigenvalue spread,(
λmax
λmin

)
, with increasing eigenvalue spread the convergence of the LMS algorithm will not be

optimal anymore [Hay 02]. If we want to increase the convergence speed by increasing the

step size, there might be the risk of disturbing the condition in equation 4.21. However, for

the NLMS algorithm and for stationary signals, analytical expressions for input eigenvalues

are not needed. NLMS can be seen as a special case of the LMS, for which the step size is

re-parameterized as (see equation 4.6):

µ̃ =
µ

‖p(k)‖2
(4.22)

and therefore, the step size condition of equation 4.14 is independent of the signal characteris-

tics [Slo 93]. [Tar 88] also showed the better convergence behavior of the NLMS over the LMS

for big step size values, however the NLMS shows worse mean square deviations. As a rule of

thumb, the best step size for the LMS and NLMS algorithms with respect to the convergence

speed, is the one which is half of the maximum stable value. But in practice, usually smaller

step size values are chosen to guarantee the stability in the presence of environmental transient

noise and disturbances [Ben 01].

4.3 Perfect sweep as optimal excitation of the NLMS

According to �gure 4.2 and equation 4.13, for an impulse response g of length N all N com-

ponents of the distant vector, d(k), can be eliminated if N consecutive inputs p(k),p(k −
1), ...,p(k − N + 1) are orthogonal in the N -dimensional vector space [Ant 94, Ant 08]. As-

suming that the input vector p(k) is a white noise so that the consecutive vectors p(k),p(k−
1), ...,p(k−N+1) are each of in�nite length, these vectors are orthogonal in the in�nite vector

space. However, for real applications, the vectors are of �nite length and the orthogonality

in the N -dimensional vector space is not guaranteed. Since the weight vector h(k), which

changes at each iteration, depends on the past input vectors p(k),p(k − 1), ...,p(k −N + 1),

if these successive input vectors are independent over time, h(k) will be independent of p(k)

and the adaptation process will converge after su�cient number of iterations to the optimal

4R = E
[
p(k)p(k)T

]
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solution [Wid 85]. In applications of NLMS such as echo cancelation, in which the adaptation

process is driven by speech signals, the convergence speed is drastically reduced due to colored

signals. White noise of �nite length as excitation signal provides a better but still not optimal

convergence speed. The key to the optimal adaptation is that the N consecutive vectors of the

excitation signal are orthogonal to each other. If this condition is met, the NLMS algorithm

is able to identify the unknown impulse response of the length N (in a noiseless environment

and for µ = 1) after N iterations.

An alternative class of excitation signals beside the white noise stimulus is the so called Per-

fect Sequences (PSEQs), which o�er interesting properties regarding convergence speed of the

NLMS adaptive �ltering. Perfect Sequences are periodically repeated pseudo noise signals.

The main and most important characteristic of PSEQs is that their periodic autocorrelation

function Rpp(i) vanishes for all out-of-phase values, it means that allN -phase shifted sequences

of the signal with period N are orthogonal [Luk 88]. For the PSEQ p(k) of period N we have:

Rpp =
N−1∑
k=0

p(i)p(k + i) =

‖p(i)‖
2 for i mod N = 0

0 else
(4.23)

For this reason, perfect sequences ful�ll the requirement of an optimal excitation for the

NLMS algorithm [Ant 95]. [Ant 08] showed the advantage of exciting the system with PSEQs

in comparison to excitation with white noise. Using the logarithmic distance vector 5 as a

measure, �gure 4.3 shows the LTI system response to a sudden change at iteration k = 3000.

Figure 4.3: Logarithmic distance vector for an LTI system with PSEQ and noise excitation with a

sudden change at k = 3000 for µ = 1, N = 500, and n(k) ≡ 0. [Ant 08]

As the environmental noise is eliminated and with the assumption that the length of the adap-

tive �lter is the same as the period N of the PSEQ, the NLMS algorithm is able to reduce the

system distance to the desired value within N iterations, whereas with white noise excitation,

5The logarithmic distance vector is de�ned as: 10log10
‖g− h(k)‖2

‖g‖2
[Ant 08]
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is takes much longer. Notice that the initialization phase takes 2N iterations. The extra N -

samples delay is caused by the N empty �lter states of the unknown system at the beginning.

Since for most applications the excitation should have a high energy e�ciency (or a small

crest factor), binary sequences are most preferable, also for ease of implementation. However,

no perfect binary sequence of length N > 4 can exist [Luk 88]. Therefore, ternary sequences,

whose symbols are from the set [−1, 0, 1] are more promising, such as Ipatov sequences [Ipa 79],

or odd perfect sequences [Luk 95], both of which can however be constructed only for limited

possible lengths. In addition, pseudo noise sequences o�er only theoretically the ideal ex-

citation signal in sense of energy e�ciency, as there are limitations using them, as already

discussed in chapter 3.1. As a result, sweeps perform as a more preferable choice in acoustical

measurement tasks. Despite a non-zero crest factor of 3 dB, sweeps can be used at higher

amplitudes than pseudo noise sequences through a distortion free measurement [Mul 08] and

can also be designed, in contrast to pseudo noise sequences, for any lengths. The problem of

using sweeps as excitation signal for the NLMS adaptive �ltering system identi�cation is that

sweeps do not show the perfect impulse-like autocorrelation function as a perfect sequence.

Telle et al. [Tel 10] introduced a new class of PSEQs, the so called perfect sweep, which com-

bines the characteristics of a sweep signal and a PSEQ. A perfect sweep can be constructed

as a linear sweep in time and/or in frequency domain. For the construction of a linear sweep

in the time domain, a sinus signal is calculated with a phase which increases with a �xed rate

per time unit [Mul 01]. As shown in �gure 4.4, if the linear sweep is repeated periodically, it

is not a perfect sweep because the spectrum is not white at frequencies near beginning and

near the nyquist frequency.
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Figure 4.4: Spectrum of the linear sweep, constructed in the time domain.

In order to achieve a completely white spectrum the perfect sweep should be constructed in

frequency domain by setting the spectrum amplitude to a constant value and designing a

linearly increasing group delay, as already discussed in chapter 3.1. The perfect sweep is then

directly calculated by taking the inverse Fourier transform of this signal. For periodically

repetitions of the signal, by taking the inverse Fourier transform of the signal, high frequencies
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Figure 4.5: The e�ect of circular convolution for a sweep generated in frequency domain after taking
the inverse Fourier transform, passing from one period to the next. The period of the sweep is 1
second.

fold back on the low frequencies, in�uencing the beginning part of the next period, as shown

in �gure 4.5. According to [Tel 10], extra actions such as zero padding should nevertheless be

avoided, since using such corrections, the sweep is not perfect anymore. Avoiding corrections

will guarantee a continuous transition from one period to the next.

4.4 The choice sequence period

Up to this point the length Ng of the unknown impulse response g, the length Nh of the

�lter h and the length Np of the excitation signal p (in the case of PSEQs, the period of the

sequence) were considered to be the same. Actually, Ng = Nh = Np should be met in order

for the NLMS to behave optimally for µ = 1 and n(k) ≡ 0 [Ant 95]. According to the nature

of the NLMS algorithm, the period of the PSEQ, Np, has to match the length of the �lter Nh,

it means ,Np = Nh. If the period of the PSEQ is smaller (Nh > Np), not all directions of the

distance vector d(k) can be excited. And if the period of the PSEQ is larger (Nh < Np), it is

shown that the convergence speed of the system will degrade [Ant 08, Ant 95]. Since PSEQs

can be constructed for di�erent lengths, the condition Np = Nh = N does not represent any

constraint. But it is often a problem to meet for the other condition, Ng = N , because, the

length of the impulse response of the system may be unknown. Assuming an impulse response

g of length Ng as g =
(
g0, g1, ..., gNg-1

)
, the identi�cation of the �lter coe�cients for µ = 1

and n(k) ≡ 0 is [Ant 08]:

hk mod N(k) = δ (k mod N) ∗ ĝk with ĝk =

gk k < Ng

0 k ≥ Ng

(4.24)
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Figure 4.6: Time aliasing e�ect in the NLMS system identi�ation due to �lter length shorter than
the length of the system impulse response [Ant 94] (Parameter names in �gure were changed for
uniformity).

δ denotes the unit impulse and ∗ is the convolution operator. The interpretation of equation

4.24 is shown in �gure 4.6 for Ng > N . As a result, the impulse response wraps back on itself

and causes a time aliasing error [Ant 94]. So, the length of the �lter, N , must be long enough.

On the other hand it should be noted that large �lter lengths also increase the convergence

time. Therefore the optimal choice for the �lter length and the PSEQ period is given by

Ng = Nh = Np.

4.5 Single channel acquisition of HRTFs using the NLMS adap-

tive �lter

Enzner [Enz 08] introduced a method for continuous-azimuth acquisition of HRTFs using

NLMS adaptive �ltering system identi�cation. As depicted in �gure 4.7, the subject of interest

(arti�cial head or real person) rotates continuously in the horizontal plane as the loudspeaker

at a �xed elevation ϕ plays back the excitation signal and the microphones at the entrance

of the subject's blocked ear canal capture the signals. The acoustical transfer path between

the loudspeaker and the microphones is considered as a linear time varying system with the

assumption of small non-linear behavior of the measurement setup. Under this assumption, for

this acoustical path a time varying impulse response for the left and right ear, hiϕ (i = l or r),

can be considered so that the signals captured by the two microphones, yi(k) at each time k

(or its corresponding azimuth θk) can be described as:

yi(k) =
N∑
m=0

hiϕ(m, θk)X(k −m) + ni(k) (4.25)
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Figure 4.7: Measurement setup for single channel acquisition of HRTFs using NLMS adaptive �ltering.
[Enz 08]

X denotes the most recent N samples of the known excitation signal x:

X = (x(k), x(k − 1), ..., x(k −N + 1))T , (4.26)

and hiϕ(θk) denotes the impulse response of the acoustical path or simply the HRIR at elevation

ϕ and azimuth θk with a length of N samples:

hiϕ(θk) =
(
hiϕ(0, θk), ..., h

i
ϕ(N − 1, θk)

)
(4.27)

ni(k) models the independent noise, which is present at the left and right microphones in-

cluding the environmental noise and the noise caused by microphones, ampli�ers and other

measurement equipment as well as the mechanical system used for the continuous rotation.

Subject's constant angular speed is ω0 = 2π
T360

with T360 as the duration of one complete 360◦

rotation and θk corresponds to the quasi-continuous azimuth θk = ω0kTs with the temporal

sampling interval Ts = 1
fs

and the sampling frequency fs. Making the minimum mean square

error (ei(k)) between the real microphone signals and the estimated one at each time k, similar

to the NLMS recursive equations 4.6 and 4.7, the new update of the estimated HRIR, ĥϕ
i
, at

iteration k + 1 will be:

ĥϕ
i
(θk+1) = ĥϕ

i
(θk) + µ

ei(k)XT (k)

‖X(k)‖2
(4.28)

with the step size µ and the error signal:

ei(k) = yi(k)− ĥϕ
i
(θk)X(k) (4.29)
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The unknown states of ĥϕ
i
at the beginning (k = 0) is replaced with zeros:

ĥϕ
i
(0) = (0, 0, ..., 0)︸ ︷︷ ︸

N

(4.30)

The excitation signal X is measured via reference measurements with the microphones at the

center position of subject's head in his absence [Wnrt 12].

Assuming a 360◦ revolution time of 20 seconds for this single channel case [Enz 08] and with a

sampling frequency of fs = 44100 Hz, it can easily be seen that the HRIRs can be calculated

with an azimuth resolution of ∆θ ≈ 10−4 degrees, showing that the azimuths can be considered

with a good approximation as continuous. According to this fact there will be a huge amount

of data if all HRIRs at all iterations are assumed to be acquired. Actually, since the HRIRs

can be calculated o�-line after the microphones have captured the signals for one complete

rotation, one can sample out and store the HRIRs only at desired azimuths. It should also

be noted that the linear convolution model described by equation 4.25 is valid under the

assumption that the system changes more slowly than the time, which is needed to change all

states of the NLMS �lter, in other words, the time-constant of impulse response variations is

signi�cantly larger than the memory of the �lter, N .

4.6 Multi-channel (3D) acquisition of HRTFs using the NLMS

adaptive �lter

Enzner [Enz 09] extended the idea of HRTF acquisition using NLMS adaptive �lters to the

multi-channel case, as shown in �gure 4.8. This system consists of an array ofM loudspeakers

which are �xed on a vertical arc at discrete elevations. The subject of interest is positioned

with his head in the center of the arc and is rotated horizontally with in-ear microphones, as

the loudspeakers play back simultaneously the excitation signal. The recursive update process

of equations 4.28 and 4.29 changes for the case of multi-channel system identi�cation to:

ˆhϕν
i
(θk+1) = ˆhϕν

i
(θk) + µ

ei(k)Xϕν
T (k)∑

ϕν
‖Xϕν (k)‖2

(4.31)

ei(k) = yi(k)−
∑
ϕν

ˆhϕν
i
(θk)Xϕν (k) (4.32)

It should be noted, that the normalization is done with a common summing term,
∑

ϕν
‖Xϕν (k)‖2,

and the same error signal is used to update the state of impulse response for each channel.

A typical problem of multi-channel system identi�cation using NLMS adaptive �lters is that

the cross correlation between excitation signals might be non-zero. As only one single output
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Figure 4.8: Measurement setup for multi-channel acquisition of HRTFs using NLMS adaptive �lters.
[Enz 09]

signal, yi, is present for the simultaneous identi�cation of all channels, the choice of input ex-

citation signal, Xϕν , should be met adequately. For such a case, Antweiler [Ant 08] proposed

the use of a PSEQ, XMN , with an extended period length of M · N . M is the number of

systems to be identi�ed and N is the length of the HRIR �lters. For the �rst channel, the

originally constructed PSEQ is used as excitation signal, for other channels, a shifted version of

this PSEQ is used in a manner that each channel is in N samples shifted against the previous

and next channel, so that:

Xϕ1(k) = XMN (k)

Xϕ2(k) = XMN (k −N)

...

XϕM (k) = XMN (k − (M − 1)N)

(4.33)

Although the excitation signal has now an extended period duration ofM ·N , since the length

of HRIRs for each channel remains the same as in the single channel case, the input vectors

used in the recursive equations 4.31 and 4.32 are all of dimension N , meaning that the used

excitation signal of each channel in these equations contains only 1
M of the whole PSEQ. In this

case the excitation signal of each channel has an ideal impulse like autocorrelation function

and the excitation signals of all channels are orthogonal with a zero cross correlation which will

lead to the optimal excitation for the multi-channel NLMS system identi�cation. Excitation

with this kind of extended PSEQ shows a higher convergence speed in comparison to the

excitation with white noise, but in contrast to single channel excitation, where the unknown
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Errordynamic 

T360 

1 

Figure 4.9: Qualitative behavior of dynamic system inaccuracy with revolution time, according to
the model of �rst order Markov process proposed by [Enz 08].

impulse response of length N can be identi�ed after N iterations in a noiseless environment,

it will take M ·N iterations for the M -channel case to identify M impulse responses, each of

length N . Also, in order to balance the time constant of the NLMS �lter and the variability

of the system between the two cases of single- and multi-channel excitation, the revolution

time should be extended from T360 in the single-channel case to M ·T360 for the multi-channel
excitation case with M channels [Enz 13].

4.7 Accuracy of dynamic HRIR acquisition - a measurable quan-

tity

According to Haykin [Hay 02], after enough number of iterations, the mean square deviation

D can be approximated as 6:

D(k) ' µErrornoise +
1

µ
Errordynamic (4.34)

According to equation 4.34, there are two error sources which contribute to the inaccuracy of

the system identi�cation: Errornoise, which is caused by observation noise and contributes lin-

early with step size to inaccuracy, and Errordynamic, which is due to variability of the dynamic

rotation of the system and a�ects the inaccuracy inversely with step size. Enzner [Enz 08]

proposed a model based on �rst order Markov process to describe the dynamic behavior of the

rotating system. According to this model, Errordynamic decreases exponentially as a function

of rotation time in the form of 1− e
−
const.

T360 , as qualitatively depicted in �gure 4.9.

This behavior implies that longer rotation times reduce the inaccuracy, however the improve-

ment of accuracy with increasing rotation time gets slower with longer T360. In a noiseless

situation, the �rst term on the right-hand side of the equation 4.34 disappears and the optimal

step size value with respect to accuracy will be the maximum possible value within the stability

6To recall: D(k) = E
[
‖d(k)‖2

]
= E

[
‖g− h(k)‖2

]
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Figure 4.10: ESA for dynamical HRTF measurement for di�erent channel numbers and rotation
times. [Enz 13]

range, it means µ=1, as also discussed in section 4.2. In the presence of environmental noise,

the optimal step size is theoretically the value for which the two terms on the right-hand side

of equation 4.34 contribute equally to the deviation D. However, practically, the deviation

D cannot be accessed directly for noisy environments. Since the only available signals are

the error signal7 and the captured signals yi, Enzner introduced the Error Signal Attenuation

(ESA), which maps the theoretical deviation onto a measurable inaccuracy [Enz 08], and can

be achieved from the variance of the two signals e(k) and y as [Enz 13]:

ESA = 10log10
σ2e
σ2y

/N(dB) (4.35)

As can be seen in �gure 4.10, ESA decreases with increasing rotation time and for the multi-

channel case, the ESA increases in comparison to single-channel case especially for short

rotation times. The results of �gure 4.10 are from a dynamical HRTF measurement with

white noise excitation, done by Enzner et al. [Enz 13]. According to the authors, there is

also another source of error, arising from the �nite length of the adaptive �lter, which has

led to the stopping improvement of the accuracy for longer rotation times. The truncation

of the last samples of HRIRs leads to this error and causes results with under modeled low

frequency. According to Antweiler et al. [Ant 09], this error is in case of white noise excitation

a non-systematic error, which appears as an audible noisy like disturbance signal. Therefore,

smaller step size values should be used to reject this error, whereas in case of excitation with

PSEQs, this error is systematic with less disturbing �uctuations from one iteration to the

next. In comparison to the white noise excitation, PSEQs can result in better ESAs despite

truncated �lter lengths.

7To recall: e(k) = (g− h(k))T p(k)+n(k) - for the case of HRIR measurement: ei(k) = yi(k)− ĥϕ
i
(θk)X(k)
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4.8 Chapter summary

In this chapter, the NLMS as a widely used adaptive �ltering algorithm was introduced and

discussed with respect to its adaptation mechanism and stability. In addition , the best

choices for the �lter length and excitation signal to achieve the best performance of the al-

gorithm were mentioned. It has been shown, that exciting with perfect sequences, due to

their impulse-like autocorrelation function, leads to the optimal performance in the sense of

adaptation speed. Considering the attractive properties of sweeps for acoustical measurement

tasks, perfect sweeps, as proposed by [Tel 10], can be used to gather the advantages of perfect

sequences and sweep excitations. Further on, the method proposed by Enzner [Enz 08] was

introduced. This method uses NLMS system identi�cation to acquire HRTFs after a mea-

surement with a continuously rotating subject and enables to cover all azimuths (with a very

high resolution) within one complete rotation of 20 seconds duration for one sound source at a

�xed elevation. This method can also be extended to a multi-channel case [Enz 09], however,

modi�cations should be considered on the excitation signal to attain the best performance of

the adaptation. In addition, the multi-channel HRTF acquisition necessitates longer rotation

times. One important parameter involved in the NLMS adaptation process is the step size,

which was also discussed in this chapter. On the one hand, choosing the correct step size can

guarantee the stability of the adaptive �lter, on the other hand, the accuracy of the adap-

tation system has been shown to vary with environmental noise and the dynamic behavior

of the time varying system (rotating subject during the measurements) and the step size has

an in�uence on this variation. Generally, large step size values work in favor of systems with

short measurement times (corresponding to fast rotations for the continuous HRTF acquisition

system) to allow the quick tracking of the time varying system. In contrast, in the presence

of noise, a smaller step size is preferable due to the ability of noise rejection. Furthermore,

the length of the NLMS �lter has an in�uence on the adaptation speed and the accuracy. The

best performance of the system mentioned above can only be achieved considering all involved

parameters and �nding a tradeo� between them.



Chapter 5

Modeling HRTF measurements

The acoustical path between the loudspeakers and the microphones during HRTF acquisition

can be modeled as illustrated in �gure 5.1.

x depicts the excitation signal (exponential or perfect sweep). Hloudspeaker represents the trans-

fer function of the loudspeaker and the e�ect of harmonic distortions. The former performs

generally as a 2nd order highpass �lter and the latter can be modeled using Volterra series.

The details are presented in sections 5.1 and 5.2. Hair includes the e�ects of di�erences in the

sound speed and the attenuation by the air. Viscosity, heat conduction and thermal relaxation

are the reasons of energy attenuation during sound propagation through the air. The amount

of attenuation is also dependent on the distance which the sound travels and the humidity

has also a signi�cant in�uence, which can cause up to 0.1dB/m attenuation of sound level at

high frequencies [Vor 08]. Since the attenuation di�ers for di�erent frequencies, this can lead

to slight spectral colorations. Another e�ect is the change in the sound speed due to tem-

perature �uctuations. However, the distance between the loudspeakers and the microphones

Hloudspeaker +HRIR

Noise

-Loudspeaker Frequency Response

-Total Harmonic Distortion (THD)

Hair

-Subject's head, torso  

and pinna

-Continuous Rotation (Loudspeakers,

Microphones,

Amplifiers,

Environment)

x
(Excitation Signal)

y
(Microphone Signal)

x y

 

Not considered in the modeling

Figure 5.1: Transfer path model between the loudspeakers and the microphones.
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in the simulations is considered to be in the range of 1 to 2 meters and due to the reduced

measurement time (as it is the main goal of the implemented methods), the e�ect of sound

air attenuation and sound speed variation can be neglected. The microphones at the blocked

ear canal capture the direct sound from the loudspeakers as well as the re�ections from the

subject's head, pinna, shoulders and torso. To model the subject himself, an existing HRTF

data set is used, which will be presented in more details in section 5.3. Furthermore, subject's

position against the sound sources varies permanently in form of a continuous horizontal ro-

tation, making the system get time-variant. Section 5.4 discusses the modeling of the time

varying rotating system. Inevitably, the measurement is a�ected by unwanted interferences of

the noise in the room which is caused by the environment, loudspeakers and other measure-

ment equipment. This noise is assumed as a time-invariant signal and is modeled as described

in section 5.5.

5.1 A model for linear and high order nonlinear loudspeaker

transfer functions

Loudspeakers are the most important source of nonlinear distortions in an acoustic measurement-

and transmission line [Goe 08]. The dominant elements in a loudspeaker which cause nonlin-

earities are mostly related to the voice coil excursion and the amplitude of the input signal

such as sti�ness of the suspension or the force factor (electromagnetic driving component) as

functions of coil displacement, or electromagnetic driving forces as a function of coil displace-

ment and electrical current [Kli 92]. Such nonlinearities generate signal components which do

not exist in the exciting input signal and appear generally in the spectrum as integer multiples

of the applied fundamental frequencies (harmonic distortion) or as linear combination of the

applied fundamentals (intermodulation distortions). One established �gure of merit for the

level of the harmonics is the Total Harmonic Distortion (THD), which is de�ned, among other

existing de�nitions, as the ratio of the sum of the power of all existing harmonic components

to the power of the fundamental and can be given in decibel or percents as [Mul 08]:

THD = 100%

√∑N
k=2 Ik

I1
= 20dB log

√∑N
k=2 Ik

I1
(5.1)

Another common de�nition for THD compares the harmonic content to the total rms value

of the signal. In case of power systems, equation 5.1 o�ers the better de�nition [Shm 05].

However, for small THD values these two de�nitions do not show considerable di�erences.

The loudspeaker can be seen as a nonlinear system which has, besides the linear impulse

response, a set of higher order harmonic impulse responses, also known as kernels. The transfer
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function of an electro-dynamic loudspeaker, which de�nes the relationship between the output

sound pressure, p, and the input electric voltage, u, is given by 1:

p

u
= Bl

1

Ri +Ra + jωL︸ ︷︷ ︸
electrical behavior

.
1

jωm+ r + D
jω︸ ︷︷ ︸

mechanical behavior

.
jρ0ωπa

2

4πd︸ ︷︷ ︸
acoustical behavior

(5.2)

According to equation 5.2, the behavior of an electro-dynamic loudspeaker over frequency

can be divided into three parts. The mechanical part represents a resonance frequency at

ω0 =
√

D
m with 6dB and -6dB per octave roll-o� before and after this resonance frequency.

The electrical part behaves as a �rst order low pass �lter (-6dB per octave roll-o�) with a

cut-o� frequency at ωk = Ri+Ra
L . And �nally the acoustical part of the transfer function

rises continuously with 6dB per octave over frequency. These altogether result in a frequency

response with 12dB/octave increase up to resonance frequency and 6dB/octave fall after the

electrical cut-o� frequency [Mos 09].

The increase of 12dB/octave was modeled in this thesis with a second order Butterworth

high pass �lter and the electrical cut-o� frequency was assumed to be outside the audible

frequency range. In order to have a choice for the cut-o� frequency of this Butterwort �lter,

the measurement results of �ve loudspeaker drivers were used. These loudspeaker drivers,

which were measured as a part of another Master thesis, are listed in table 5.1

Loudspeaker driver model Abbreviation in this thesis

Fountek FR89EX FOUN

Monacor SPH_30X/f MON

Peerless 830984 P8

Peerless NE65W-04 PNE

Tangband W3-881SJF TB W3

Table 5.1: Loudspeaker drivers used to choose a proper loudspeaker model.

Figure 5.2 shows the result of sensitivity measurements together with the synthesized 2nd order

high pass �lter. The cut-o� frequency of the high pass �lter was varied until the 12dB/octave

roll-o� of the �lter matched approximately the behavior of all �ve drivers. The curves cor-

responding to di�erent measurements were shifted vertically against the high pass �lter to a

proper position to make the comparison easier, therefore, the vertical axis does not supply any

special information and �gure 5.2 shows rather a comparison between the roll-o� behavior of

the drivers and that of the high pass �lter. According to this comparison, a cut-o� frequency

of 180Hz was chosen for the model of the linear frequency response of the loudspeaker.

In order to �nd a proper general model for the loudspeaker's nonlinear behavior, the results

of THD measurements for loudspeaker drivers of table 5.1 were studied. The measurement

1The derivation of Eq. 5.2 as well as description of its parameters are presented in appendix B
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Figure 5.2: Sensitivity measurement results of the �ve loudspeaker drivers of table 5.1. The bold
curve shows the synthesized high pass Butterworth �lter.

results, which were available to be used for the modeling in this thesis, included the THD

measurements for each driver at three di�erent excitation powers and were carried out for

harmonic components up to the �fteenth order. For each harmonic order, the results of the

�ve drivers, each excited at three di�erent power levels, were plotted. Again, the goal was

to �nd a model which matches in average possibly all THD curves for all harmonic orders.

This model was achieved by applying a low shelf �lter to the before mentioned 2nd order high

pass butterworth which was chosen as the linear impulse response. The result was in addition

low pass �ltered according to the order of the harmonic response, to avoid the Aliasing e�ects

which could occur after the high order response is raised to the power of the harmonic order

(see the Hammerstein model of nonlinearity and equation 5.5). The shelf frequency and the

amount of the increase below the shelf frequency were the two degrees of freedom which were to

be changed until a proper match to the measurement curves was achieved. The measurement

curves were again shifted against the model to make a comparison possible. Each curve was

shifted vertically until it contained the same energy as the model. The results of the THD

measurements for orders k=2 to k=7, together with the chosen model, are shown in �gure 5.3.

As a result of this comparison, the shelf frequency was chosen at 1 kHz with an increase of

50dB for frequencies below it.

Having chosen the parameters for the low shelf �lter, the next step was to weight the harmonic

responses properly, similar to the behavior of the �ve loudspeaker drivers. To this aim, the

energy content of the harmonic responses of orders k=2 to k=15 for all drivers and for all

excitation powers were calculated, which are shown in �gue 5.4. Then, a polynomial of second

order was �tted to the results. The curve �tting was also repeated for the case of omitting

the outliers out of the results (this was the case for the two models Peerless NE65W-04 and

Tangband W3-881SJF for high and middle levels of excitation). However, since the maximum
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Figure 5.3: The results of the THD measurements for loudspeaker drivers listed in table 5.1 for har-
monic orders k=2 to k=7. The bold curve shows the model which was chosen as harmonic loudspeaker
responses.

di�erence to the case, where all results were considered, was about 4dB at relatively higher

harmonic orders (k=8 and above), the curve, which was �tted to all measurement results, was

considered as acceptable. Using these models and assuming that the number of high order

responses, Kmax, is limited, the high order responses were weighted according to the results

shown in �gure 5.4. Next, a uniform ampli�cation was applied to them so that the sum of

their energy in relation to the energy of the linear response led to a given THD value according

to equation 5.1. Figure 5.5 shows the spectrum of the linear and high order impulse responses

for the modeled loudspeaker with Kmax=5 and 3% Total Harmonic Distortion.
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Figure 5.4: Modeling the energy attenuation of harmonic impulse responses. The bold curve was �tted
including all measurement points, the dashed curve in the case of omitting the results for TB_W3 and
PNE as outliers.
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Figure 5.5: Spectrum of the linear and harmonic impulse responses for the modeled loudspeaker,
resulting 3% Total Harmonic Distortion. Harmonic orders k>5 were neglected.

5.2 Hammerstein model for loudspeaker nonlinearities

A time invariant nonlinear system with input x and output y can be described using Volterra

series as [Sch 80]:

(5.3)
y(t) =

∫ ∞
−∞

h1(τ1)x(t− τ1) dτ1 +

∫∫ ∞
−∞

h2(τ1, τ2)x(t− τ1)x(t− τ2) dτ1dτ2

+

∫∫∫ ∞
−∞

h3(τ1, τ2, τ3)x(t− τ1)x(t− τ2)x(t− τ3) dτ1dτ2dτ3 + . . .

h1 is the linear impulse response of the system and hns are the Volterra kernels or the higher

order harmonic impulse responses. The Volterra model of equation 5.3 can be simpli�ed further

with the assumption that the memory e�ects appear in the linear part and the nonlinear part

is purely algebraic. The simplest nonlinear model is the Hammerstein model as shown in

�gure 5.6 which can be described as [Zel 12]:

y(t) = hlin ∗ w(t) =

∫
hlinw(t− k) dk (5.4)

Non-linear 

without memory

Linear 

with memory

x(t) x(t)

hlin

T{.}

w(t) w(t)y(t) y(t)

 

Figure 5.6: Block diagram of Hammerstein nonlinear model (Idea of the �gure was adopted from
[Zel 12]).

Regarding the linearity of hlin as well as the time invariance of memory-less nonlinear operator

T in �gure 5.6, and assuming up to order P of nonlinear impulse responses, y can be written
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as:

y(t) =

∫
hlinT (x(t− k)) dk =

∫
hlin

 P∑
p=1

apx
p(t− k)

 =

P∑
p=1

ap

∫
hlinx

p(t− k) dk (5.5)

According to the fact that in the Hammerstein model the nonlinear part is memory-less,

this model can be used for systems where the source of nonlinearity shows time invariant

characteristics [Zel 12]. A more generalized Hammersetin model can be achieved by using

power �lters, which considers various independent linear impulse responses Gn(f), instead of

only one impulse response hlin and its corresponding ampli�cation factors ap. This generalized

Hammerstein model is shown in �gure 5.7.

Figure 5.7: Generalized Hammerstein model. [Nov 10]

According to [Nov 10], the linear �lters Gn(f) are related to the frequency responses of the

system kernels, Hm(f) (up to order N) in the frequency domain, as:

Hm(f) =

N∑
n=1

An,mGn(f) (5.6)

with the matrix A de�ned as:

An,m =


(−1)(2n+

1−m
2 )

2n−1

(
n

n−m
2

)
for n ≥ m and (n+m) even

0 else where

(5.7)

Hm can be seen as the system frequency response when only the e�ect of the input frequency

on the mth harmonic of the output is considered . The relation between H and G can be
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expressed in matrix form as [Nov 10]:
G1(f)

G2(f)
...

GN (f)

 =
(
AT
)−1


H1(f)

H2(f)
...

HN (f)

 (5.8)

So, if the linear transfer function, H1(f), and the high order transfer functions of the loud-

speaker, Hn(f), are known, the weight �lters Gn(f) can be calculated by equations 5.7 and

5.8, and the loudspeaker can be modeled by generalized Hammerstein model.

5.3 Modeling the signals captured by in-ear microphones

Apparently, simulations are done in the absence of the real subject. For simulation of HRTF

measurements an existing HRTF data bank can be used since any HRTF data bank includes

the �ltering information of head, pinna and torso of a subject or an arti�cial head. So, if a new

excitation signal is passed through the �lters contained in the HRTF data bank, the output is

the same as the sound signal which would have been present at the in-ear microphones of the

same subject if the HRTF measurement had been repeated for him. The high resolution HRTF

data bank, which was available to be used in this thesis, has been measured by Brinkmann

et al. for FABIAN 2 head and torso simulator [Lin 06] in the anechoic chamber of Carl von

Ossietztky University of Oldenburg [Bri 13]. The grid of source locations in this data bank

consists of 11345 points for a �xed 0◦ head above torso orientation. The grid samples in

2◦ steps between elevations of −64◦ and 90◦ and the steps between azimuths were chosen

so that the distance between two neighboring points of the same elevation does not exceed

two degrees of the greatest circle distance. The grid also includes the horizontal, median and

frontal planes. The distance of the sources to the center of the head have been 1.7 m, which

implies that the HRTFs can be considered as far �eld and their dependence on the distance

can be neglected [Bru 99]. The HRIRs were acquired point for point by Exponential Sweep

measurements. Frequency responses of microphones and loudspeakers as well as the transfer

function of measurement equipment were cancelled out. The HRIRs were truncated by 425

samples. The measurement grid used for the modeling was adopted from this data bank.

For each point at elevation ϕ and azimuth θ, the excitation signal was convolved with the

corresponding HRIR from the data bank (Ground Truth HRTF data bank) for the left and

the right ear at the given elevation and azimuth, to model the signal recorded by the left and

right microphones, yL(θ, ϕ) and yR(θ, ϕ), as depicted in �gure 5.8. For source locations at

2Fast and Automatic Binaural Impulse response AcquisitioN
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azimuths which are not contained in the ground truth data set, a representative HRIR was

calculated by linear interpolation of HRIRs of the two closest existing azimuths. The elevation

of the sound sources stayed the same as the elevations of the measured points in the ground

truth data set.

X (Excitation Signal) -Loudspeaker

-THD

Ground Truth 

HRIR Data Bank

*Convolution

HRIR_L ( , ) 

HRIR_R ( , ) 

yL ( , ) 

yR ( , ) 

Figure 5.8: Modeling the left and the right microphone signals by convolving the excitation signal
with the HRIRs from data bank (Ground Truth Data Bank).

5.4 Modeling the subject's continuous rotation

The model shown in �gure 5.8 can be applied to a system-by-system measurement, where

the position of the source relative to the microphones stays unchanged during one single

measurement. In this case, the ground truth HRIR �lters do not change during the whole

convolution. In continuous azimuth measurements however, the subject rotates continuously

as the loudspeaker (or a number of loudspeakers in case of a multichannel measurement) plays

back the excitation signal. If the subject rotates at a speed of ∆θ/dt in the horizontal plane

(with temporal sample interval dt = 1
fs
), the HRIR �lters change in the time section between t0

and t0+dt from HRIR(θ0, ϕ) to HRIR(θ0+∆θ, ϕ), meaning that during the convolution with

the excitation signal, the HRIR �lter changes constantly. This is the case of non-stationary

�ltering. Time varying convolutional �ltering can be described as non-stationary convolution

or non-stationary combination3 [Mar 98]. To model the subject's continuous rotation, the non-

stationary combination was considered. In this case, the non-stationarity of the time-varying

impulse response h(t) and its relation to the input signal u(t) and the output signal v(t) is

3For a brief discussion on non-stationary convolution and non-stationary combination, see appendix C
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described in convolutional matrix form as [Mar 98]:

...

v0

v1

v2
...


= · · ·



...

h0(t0)

h1(t1)

h2(t2)
...


u0 +



...

h−1(t0)

h0(t1)

h1(t2)
...


u1 +



...

h−2(t0)

h−1(t1)

h0(t2)
...


u2 + · · · (5.9)

The input of the non-stationary �lter is the excitation signal (perfect or logarithmic sweep),

which repeats periodically due to continuous rotation. After a complete rotation of θ=360◦,

the recording should continue for another L samples (L being the length of the HRIR �lter)

to take into account the reverberation information after the excitation signal stops. At this

point, rotation stops and therefore the non-stationary �ltering changes back to stationary

convolution. Figure 5.9 shows the steps of non-stationary combination to model one complete

rotation. Note that the time variance of HRIR �lters is shown as changes in the current

azimuth.
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Figure 5.9: Model of subject's one complete rotation with non-stationary combination.
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5.5 Modeling the environmental noise

The observed noise at the microphones includes the environmental noise and the noise caused

by measurement equipment. The spectral behavior of this noise was adopted from the noise

�oor measured in the anechoic chamber of Carl von Ossietztky University of Oldenburg

[Bri 13]. As can be seen in �gure 5.10, the amplitude of the spectrum gets higher for low

frequencies which is based on the fact that the isolation of the anechoic chamber decreases for

these frequencies.

To have a model for the noise, �rst a random sequence with standard normal distribution was

generated using MATLAB4 random generator. By applying a low shelf �lter to this sequence,

it was tried to match its amplitude spectrum to the spectrum of the measured noise (�g-

ure 5.10). The shelf frequency and its gain were chosen as 1 kHz and 35dB respectively. Again

the curves were shifted vertically against each other to make the comparison possible and only

the changing behavior of the amplitude over frequency was of interest. The resulted modeled

noise was then applied to the modeled microphone signals within a single HRTF measurement

simulation with Exponential Sweep method for an extreme source position, facing directly the

left ear (ϕ=0, θ=90◦) and was weighted properly until a desired peak SNR could be read from

the HRIRs of the left ear. For this end, an exponential sweep of order 16 (65536 samples ≈ 1.5

seconds at fs=44100Hz) was chosen as the excitation signal. The results of the HRIR for the

left ear are shown in �gure 5.11 for the case of 60dB and 90dB peak SNR. As this noise was

considered to be independent of time and also independent of other signals during the HRTF

measurement, it was applied once, at the end of the simulation of one complete rotation, to

the modeled microphone signals.

4from The MathWorks, Inc.
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Figure 5.10: Model of the observed noise in the measurement room.

−10 0 10 20 30 40 50 60 70 80 90 100
−100

−50

0

t in ms

am
pl

itu
de

 in
 d

B
re

l

HRIR−left ear

 

 
with noise − Peak SNR =60 dB
without noise

−10 0 10 20 30 40 50 60 70 80 90 100
−100

−50

0

t in ms

am
pl

itu
de

 in
 d

B
re

l

HRIR−left ear

 

 
with noise − Peak SNR =90 dB
without noise

Figure 5.11: Results for a single simulated HRTF measurement with exponential sweep method for
the left ear, modeling a peak SNR of 60dB (top) or 90dB (bottom).



Chapter 6

Evaluation of HRTF measurement

approaches

In this chapter, a system for the fast measurement of individual head-related transfer functions

was simulated. The HRTF measurement was modeled as described in the previous chapter. To

obtain the HRTFs, the two discussed system identi�cation algorithms, optimized MESM and

NLMS adaptive �ltering, were implemented. Each algorithm was �rst studied separately with

respect to its response to varying measurement parameters. Then, the two algorithms were

compared regarding their performance. In section 6.1 the criteria are discussed, by which the

results have been evaluated. Section 6.2 o�ers a discussion on the simulated measurement setup

and the considerations which have been taken into account for the implemented algorithms.

An introduction of the measurement parameters and excitation signals are included as well.

The results are presented and discussed in section 6.3.

6.1 Evaluation criteria

The evaluation of results is based on the comparison to the ground truth HRIR data bank

which was also used to model the signal captured by the in-ear microphones (see chapter

5.3). The aim is to �nd out, to what extend the methods for fast HRIR acquisition (the

two presented algorithms) di�er from a traditional system - by -system measurement. The

evaluation criteria are the di�erences in the ITD and ILD between simulated and ground truth

HRIRs (lateralization blur). These di�erences are named as ILD-error and ITD-error in this

thesis. The ILD in dB was calculated as the di�erence between the rms values of the left and

the right HRIR:

ILD(θ, ϕ) = 20log10
rms(HRIRLeft(θ, ϕ))

rms(HRIRRight(θ, ϕ))
(6.1)

56
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And the ILD-error was calculated as:

ILD-error(θ, ϕ) = |ILDSimulated(θ, ϕ)− ILDGroundtruth(θ, ϕ)| (6.2)

The ITD is de�ned as the di�erence between the onsets of the left and the right HRIR. Here,

the onset was assumed as the ponit, at which the HRIR reaches half of its maximum amplitude.

The ITD-error was accordingly calculated as:

ITD-error(θ, ϕ) = |ITDSimulated(θ, ϕ)− ITDGroundtruth(θ, ϕ)| (6.3)

An increase in ILD- or ITD-error, which exceeds the audible thresholds of lateralization blur

could mean that the implemented method would lead to localization errors which will not

happen if the conventionally acquired HRIR (ground truth data set) is used. In the evaluations,

the audible threshold levels for lateralization blurs were considered as 0.6 dB and 11 µ seconds

for ILD- and ITD-errors respectively. To have an evaluation on the spectral di�erences between

the two HRIR data sets, the method used by Schärer et al. [Sch 09] was considered. This

method is based on the auditory �lter banks model by Moore [Moo 95], which describes the

behavior of human's auditory system with a model consisting of 40 overlapping Equivalent

Rectangular Bandwidth (ERB) bandpass �lters. For the evaluations, the spectral powers of

simulated HRIR and that of the ground truth data (for any source position at elevation ϕ and

azimuth θ) were �rst �ltered by the auditory �lter C(f, fc) with the central frequency fc and

then compared to each other in dB as:

ELeft(fc, θ, ϕ) = 10log10

[ ∫
C(f, fc)|HRTFSimulated−Left(θ, ϕ)|2df∫
C(f, fc)|HRTFGroundtruth−Left(θ, ϕ)|2df

]
(6.4)

This di�erence was calculated for all �lter banks for which the central frequency fell between

180Hz and 20kHz (the beginning of the high pass characteristic of the modeled loudspeaker,

and the upper limit of the auditory range respectively; on the whole, Nauditoryfilter= 37 audi-

tory �lters) for the left and the right ear. The results were then added and �nally averaged to

achieve a single value for a given source location, which is named ERB-error in the simulation

results:

ERB-error(θ, ϕ) =
1

Nauditoryfilter

∑
fc

|ELeft(fc, θ, ϕ)|+|ERight(fc, θ, ϕ)| (6.5)

To calculate the ERB-�lters, MakeERBFilter and ERBFilterBank from Matlab Auditory Tool-

box by Slaney [Sla 98] were used. Schärer et al. [Sch 09] used the spectral comparison of

equation 6.4 (without the averaging step of equation 6.5) to study the performance of dif-

ferent inverse �ltering methods, which are used to compensate for recording and reproduc-
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tion systems. They considered deviations greater than 1dB to be perceivable. Minnaar et

al. [Min 05] calculated the absolute di�erence between the magnitudes of interpolated and

measured HRTFs at 94 frequency bins, distributed logarithmically on the frequency range of

interest, and took the average of the summations for the left and the right ear as a single value

to describe the spectral di�erences. They also reported an audible threshold of 1dB, which was

observed through listening tests. Brinkmann et al. [Bri 14] used the single value obtained by

equations 6.4 and 6.5 in their investigations on the e�ect of the head above torso orientation in

HRTFs. As their perceptual evaluations resulted, deviations in the range of 0.5 to 1 dB could

be considered as slightly perceivable. For the evaluation of the simulation results, ERB-errors

less than 1dB were considered as acceptable.

As already stated in chapter 4.5, HRTF acquisition with NLMS leads to a quasi continuous

data set. Therefore, in the case of NLMS, the simulated HRIRs can be extracted with a

good precision for the measurement points which correspond directly to the HRIR grid of the

ground truth data bank. However, as will be discussed shortly later, this is not the case for

optimized MESM. For this method, a point to point comparison to the ground truth data

set necessitates interpolations. Therefore, optimized MESM su�ers in the evaluation from

interpolation errors.

6.2 Measurement structure and parameters

The simulated measurement setup is shown in �gure 6.1. It consists of a vertical arc with 39

omnidirectional loudspeakers at �xed elevations with 4◦ steps between −64◦ and 88◦. Subject

of interest is located with his head in the center of the arc and is rotated on a turntable

continuously in the horizontal direction with microphones at the blocked ear canal entrance

[Ham 96]. The distance between the speakers and the subject's head is assumed to be between

1 and 2m and the HRIR dependence on distance is neglected.

For both cases of NLMS and optimized MESM, all loudspeakers were assumed to have the same

linear and nonlinear behavior of up to �fth order (as modeled in chapter 5.1). The measurement

system worked in its weakly-nonlinear range so that the resulted THD did not exceed 3%.

Loudspeakers were assumed to be the main source of nonlinearities. Air sound absorption and

phase changes due to sound propagation were neglected. Subject's head remained motionless

during the whole measurement and the revolution speed was constant. The sampling rate was

44100Hz and the simulated measurement was assumed to be done in an anechoic chamber.

Frequency response of the in-ear microphones was not modeled, as a result, there was also no

need to simulate the reference measurement. The frequency response of the loudspeaker was

not compensated from the simulation results, however, as mentioned above, the ERB-error
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Figure 6.1: Simulated measurement setup.

was evaluated for frequencies already above 180Hz.

The simulations were implemented in Matlab1.

6.2.1 Considerations on optimized MESM and continuous rotation

As already discussed in chapter 3.5, the two crucial parameters of optimized MESM, namely

the sweep rate, rs, and the time delay between subsequent excitations, τw, depend on other

involved parameters. To calculate the best case for rs and τw, the ITA-Toolbox, developed

at the Institute of Technical Acoustics, RWTH Aachen University was used [Die 13b]. The

function optimized from the class itaMSTFinterleaved in this toolbox receives as input

the parameters, which should have been set beforehand through calibration measurements2.

Then, it looks within a given range of sweep rates and time delays for all possible τws and

rss, which satisfy the prerequisites of optimized MESM 3, and chooses the best pair (τw,rs),

which minimizes the time to measure all M channels once4. Due to continuous rotation in the

simulations here, subject's azimuth changes even during the excitation of one single channel.

This leads inevitably to vagueness in the resulted HRTF after the deconvolution. Subject's

azimuth also changes in the time between two subsequent excitations of the same channel.

Therefore, two constraints were considered on the revolution speed:

1. During the excitation of each channel the subject must not rotate more than 1◦ in the

azimuthal direction. It means that the sweep rate should correspond to a movement

1from The MathWorks, Inc.
2These parameters are: length of the HRIR (τDUT ), length of the room impulse response (τIR), the optional

safety time (τsp), number of the channels (M), number of the harmonic orders (Kmax), energy decay of the
harmonic responses (ak), Signal to Noise Ratio, frequency range of the exponential sweep and the minimum
and maximum limits for the sweep rate, within which the function should look for the best rs.

3See chapter 3.5, equations 3.22 and 3.23
4Equation 3.19: TOPT = T + (M − 1)τw + τst
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of maximum 1◦ rotation, by which the changes caused by the rotation remain near the

minimum value of the localization blur [Bla 97].

2. Subject's movement between two consequent excitations of the same channel must not

exceed 2◦ of rotation. This constraint aims at an azimuth resolution of 2◦ or less for the

resulted HRIR data set and is based on the highest needed horizontal resolution, which

enables interpolations between existing HRTFs without causing audible errors [Min 05].

To calculate the best possible rotation speed, the time for one complete rotation, T360, was

calculated for all (τw,rs) pairs, taking into account the two above mentioned constraints.

Finally, the pair, for which the calculated T360 was the shortest, was chosen. From this pair,

the rs was given to the function ita_generate_exact_sweep in the class itaMSTFinterleaved

to generate the excitation signal and τw was used to put the delay between the excitations of

consequent channels. As a result, the HRIR grid for optimized MESM could not be set freely

and di�ered for di�erent situations depending on the resulted rs and τw.

Another issue concerning optimized MESM and continuous rotation is that the deconvolution

with the known excitation signal leads to HRIRs for given channels (at �xed elevations) which

however cannot be assigned to a de�ned azimuth, but to a range of all azimuths which the

subject has passed during the excitation of each channel. Since the frequency of the exponential

sweep changes with time during rotation, each azimuth in this range corresponds to another

part of the frequency spectrum. This phenomenon was neglected here. Instead, it was decided

to choose a proper representative azimuth, to which the resulted HRIR for a given channel

could then be assigned. This azimuth was chosen as the point at which the exponential sweep

reaches the geometric mean of the two frequencies 3kHz and 16kHz, namely the frequency

range within which the predominant individual features with respect to pinna structure are

included. For a given non-varying rotation speed and a sweep with de�ned frequency range

and sweep rate, this representative azimuth can be calculated easily.

6.2.2 Di�erent noise levels for NLMS and optimized MESM

To investigate the in�uence of environmental noise, three cases were considered for the NLMS

method: the idealistic case of noiseless environment (in�nite SNR), the case of comparativeley

quiet environment (90dB peak SNR) and the case of a poorer peak SNR of 60dB5. For opti-

mized MESM and according to equation 3.266, the case of in�nite or very high SNR would

imply that the harmonic impulse responses are nearly as long as the linear impulse response.

In such cases, the resulted HRIR grid tends to its lowest resolution, leading to an increase in

5Peak SNR at one single ES measurement as described in chapter 5.5
6Equation 3.26: τIR,k = SNR−ak

SNR
τIR
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the interpolation errors. As shown in �gure 6.2, there is a slight improvement in the spec-

tral comparison to the ground truth data from the case with 60dB SNR to the case of 90dB.

However, the results start to get worse, if SNR is further increased to 150dB. For this reason

and in order to avoid the errors which are related to interpolations, the case of in�nite SNR

was not considered for optimized MESM. Instead, and at the same time in order to attain a

sense for the e�ect of increasing noise, the case of 40dB peak SNR was chosen beside 60dB

and 90dB for optimized MESM.

Figure 6.2: Spectral comparison to the ground truth data for 60dB (left), 90dB (middle), and 150dB
peak SNR (right): the e�ect of the interpolation error on optimized MESM for very high SNR values.
The vertical axis, named as data points, shows the points assigned to the azimuths from 0◦ to 360◦.

6.2.3 Number of channels, the HRIR grid and the measurement duration

The simulations for both algorithms were accomplished for three cases: 10 channels, 20 chan-

nels and 39 channels. In each case the supposed number of channels was distributed equidis-

tantly at elevations between −64◦ and 88◦ by taking into consideration that only the elevations

are allowed which are contained in the grid of the ground truth data set. Figure 6.3 shows the

used HRIR grid for the three cases of channel numbers.

The results for the NLMS were acquired directly for these points, whereas the results for

optimized MESM were modi�ed after acquisition via interpolation to match these grids.

For NLMS, three revolution times of 1, 5 and 15 minutes were considered. For optimized

MESM however, this duration is a result of measurement condition (THD, SNR and number

of channels) as well as the constraints regarding the revolution speed, and could not be chosen

freely. Table 6.1 shows the resulted revolution time and azimuthal resolution for optimized

MESM according to the well-chosen (τw,rs) pair for di�erent simulated cases. The resulted

T360 durations for optimized MESM imply that the changes in THD or SNR or a change from

10 channels to 20 channels doesn't lead to signi�cantly di�erent revolution times. There is an
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Figure 6.3: Measurement grid for di�erent number of channels.

increase of about 1.5 minutes in T360 for the system with 39 channels. A somehow considerable

increase can be seen for the system with 39 channels, 3% THD and 90dB measured peak SNR.

Channels SNR 40 dB SNR 60 dB SNR 90 dB
THD:0% 1% 3% THD:0% 1% 3% THD:0% 1% 3%

10
T360 10′ 7′′ 10′ 7′′ 10′ 7′′ 10′ 7′′ 10′ 7′′ 10′ 7′′ 10′ 7′′ 10′ 7′′ 10′ 7′′

(τw,rs) (0.16,6) (0.16,6) (0.16,6) (0.16,6) (0.16,6) (0.16,6) (0.16,6) (0.16,6) (0.16,6)
Az.res. 1◦ 1◦ 1◦ 1◦ 1◦ 1◦ 1◦ 1◦ 1◦

θonesweep 1◦ 1◦ 1◦ 1◦ 1◦ 1◦ 1◦ 1◦ 1◦

20
T360 10′ 7′′ 10′ 7′′ 10′ 7′′ 10′ 7′′ 10′ 7′′ 10′ 7′′ 10′ 7′′ 10′ 10′′ 10′ 19′′

(τw,rs) (0.1,6) (0.1,6) (0.1,6) (0.1,6) (0.1,6) (0.1,6) (0.1,6) (0.1,5.97) (0.17,6)
Az.res. 1.18◦ 1.18◦ 1.18◦ 1.18◦ 1.18◦ 1.18◦ 1.18◦ 1.18◦ 2◦

θonesweep 1◦ 1◦ 1◦ 1◦ 1◦ 1◦ 1◦ 1◦ 0.98◦

39
T360 11′ 42′′ 11′ 42′′ 11′ 42′′ 11′ 42′′ 11′ 42′′ 11′ 42′′ 11′ 42′′ 11′ 42′′ 13′ 10′′

(τw,rs) (0.1,5.19) (0.1,5.19) (0.1,5.19) (0.1,5.19) (0.1,5.4) (0.1,5.4) (0.1,5.19) (0.1,5.4) (0.1,5.22)
Az.res. 2◦ 2◦ 2◦ 2◦ 2◦ 2◦ 2◦ 2◦ 2◦

θonesweep 1◦ 1◦ 1◦ 1◦ 0.95◦ 0.95◦ 1◦ 0.95◦ 0.88◦

Table 6.1: Revolution time (T360), the well-chosen (τw, rs) pair, the originally calculated azimuthal
resolution (Az.Res), and the rotation corresponding to one single sweep (θonesweep) for di�erent mea-
surement conditions of optimized MESM.

6.2.4 Considerations on NLMS due to the unde�ned �lter states at the

beginning

Due to the unknown states of the NLMS �lter at the beginning stage of adaptation, it takes a

few iterations for the NLMS algorithm to converge to the desired response. If the measurement

is supposed to begin directly at the beginning azimuth (θ=0◦ in our simulations), the results

for the �rst few azimuths of the HRTF grid will be missing or might be incomplete. As a

result, before starting the measurement, subject's position was rotated back to an azimuth
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θPreset<0◦, as shown in �gure 6.4. So, after rotating θPreset, where the subject passes the

azimuth θ=0◦, the NLMS �lters will have reached their adaptation stage for the whole length

of the �lter. The HRIR extraction and storage will start as before at θ=0◦. θPreset was set at

a point which corresponds to 5 seconds ≡ 220500 samples7. Therefore the actual measurement

time for NLMS will be 5 seconds longer than the time for one complete rotation.

θ = 0° 

θ = 90° 

θ = 180°

θ = 270° 

Rotation & 

Recording_start

HRIRs storage_start

(during post processing)

θ = θPreset 

Figure 6.4: Rotating the subject back to θPreset before starting the measurement, to compensate for
the unknown start states of NLMS �lters.

6.2.5 Excitation signal and HRIR acquisition

The excitation signal for optimized MESM was an exponential sweep (20Hz < f < 22.05kHz),

generated by the function ita_generate_exact_sweep from ITA-Toolbox for the chosen sweep

rate. Figure 6.5 shows the excitation signal for a system consisting of 10 channels, 3% THD

and 60dB SNR, the recorded microphone signal of 1◦ rotation (all channels excited once)

and the result of the deconvolution of these two signals. The HRIR length was set to 176

samples ≡ 4ms. The length of the room impulse response was assumed to be 100ms and 1ms

was considered as the safety time before and after the HRIR. The sweep rate range, within

which the Toolbox should look for the optimal sweep rate was set to 3< rs <6, corresponding

to sweep order between 16 and 17. The energy attenuation values shown in �gure 5.4 were

weighted according to the THD value and were considered as energy decay coe�cients of the

harmonic impulse responses, ak. The HRIRs were separated later with a rectangular window

function. The process shown in �gure 6.5 was repeated until the measurement was completed

for 360◦ rotation. For the NLMS algorithm, the excitation signal was a perfect sweep generated

in frequency domain as described in section 4.3 (0 < f < 22.05kHz). The excitation signal,

generated to measure 10 channels, as well as the recorded microphone signal after a complete

rotation of 60 seconds duration, and the result of the multi-channel system identi�cation with

the NLMS algorithm are shown in �gure 6.6. The NLMS �lter length (HRIR length) was set

7−30◦ for T360= 1 minute, −6◦ for T360= 5 minutes and −2◦ for T360= 15 minutes
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to 156 samples ≡ 3.5 ms. The excitation signal shown in �gure 6.6 was repeated periodically

for the �rst channel until one complete rotation of 360◦ was �nished. The excitation signals

of the second to the tenth channel were the same, with the di�erence of a circular shift of 156

samples with respect to their neighbouring channels. For the post processing, three di�erent

step size values were considered: 0.25, 0.5 and 1.
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Figure 6.5: Optimized MESM for exciting 10 channels only once, with 3% THD and 60dB SNR:
exponential sweep in time and frequency domain (top), microphone signal (bottom left) and the HRIRs
after deconvolutoin (bottom right).
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Figure 6.6: NLMS for exciting 10 channels within a complete rotation of 60 seconds duration, with
3% THD and 60dB SNR: perfect sweep in time and frequency domain (top), simulated microphone
signal (bottom left) and the �rst two acquired HRIRs through system identi�cation (bottom right).
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6.2.6 An overview of the parameter set used in the simulations

Table 6.2 summarizes the parameter set used in the simulations.

Channel numbers: 10, 20 and 39 channels

THD: 0%, 1% and 3%

Max. order of nonlinearities: 5

optimized MESM NLMS

Excitation exponential sweep perfect sweep

freq. Range: 20 - 22050 Hz freq. Range: 0 - 22050Hz

HRIR τDUT = 0.004 s (176 samples) NLMS �lter length = 0.0035 s (156 samples)

�lter length

T360 between ca. 10 and 13 minutes 1, 5, and 15 minutes

(see table 6.1)

SNR 90, 60, and 40 dB ∞, 90, and 60 dB

Other τIR = 0.1 s µ: 0.25, 0.5, 1

parameters τsp = 0.001 s θPreset≡ 5 seconds of rotation

3< rs <6

ak: according to the

loudspeaker model and THD value

(see section 5.1)

Table 6.2: A summary of parameter set used in the simulations.
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6.3 Simulation results

Due to the large number of results for di�erent combinations of parameters, the dependency on

the azimuth and elevation within the resulted HRTF data bank was not considered. Instead,

the 95th percentile of each data set was chosen, that means, the value below which 95% of

the results for all azimuths and elevations within a given set of �xed parameters (THD, SNR,

number of channels and step size (for NLMS)) fall. In addition, applying the Lilliefors test

over the results showed that none of the error results (ILD-, ITD-, and ERB-errors) fall under

a normal distribution curve. Therefore, instead of the mean value, the median value of each

data set was considered. However, as can be seen in the �gures shown in the next section,

the behavior of the results for 95th percentile and for median values is in the same direction.

Moreover, the judgement, whether the errors exceed the audible thresholds or not, will be

made according to the more strict 95th percentile values. Therefore, only these values are

considered in the discussions. The median values are nevertheless depicted to provide an

additional glimpse at the results.

6.3.1 Optimized MESM simulation results - evaluation

Since the measurement grid for optimized MESM di�ers according to involved parameters,

and in order to avoid the presence of interpolation errors, any comparison is only possible

for results, for which the same azimuthal resolution is calculated. According to table 6.1

the original azimuthal resolution shows no changes for di�erent cases within the results of the

system consisting of 10 loudspeaker channels (1◦ for all cases). The same applies for the system

with 39 channels (2◦ azimuthal resolution for all cases). For the system with 20 channels the

original resolution is 1.18◦ for all cases, except for the case with 3% THD and 90dB peak SNR,

which has an azimuthal resolution of 2◦. Therefore, any analysis should only be done within

the results for a �xed number of channels and the e�ect of di�ering channel numbers cannot be

determined directly. Figure 6.7 summarizes the results for optimized MESM for ILD-, ITD-,

and ERB-errors for di�erent number of channels, THD- and SNR values. According to �gure

6.7, apart from the exceptional case of 20 channels with 3% THD and 90dB peak SNR, for all

other cases the variation in the THD-value leads to deviations less than 0.03dB for ILD-error

and less than 0.07dB for ERB-error. There is no di�erence in the results of ITD-error.
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Figure 6.7: Optimized MESM-ILD-error(top), ITD-error(middle) and ERB-error(Bottom) for dif-
ferent THD and SNR values for 10 channels(left), 20 channels(middle) and 39 channels(right)- 95th
percentile (bold) and median value (dashed).
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The outlier case within the results of the system with 20 channels shows a somehow higher

deterioration of about 0.15dB for ILD-error, 2,26 µsec. for ITD-error and 0.18dB for ERB-

error. The in�uence of variations in the SNR value is negligible for ILD- and ITD-errors. In

the case of ERB-error, there is a slight improvement for increased SNR (with the exception

of the case with 39 channels and 3% THD), however, the deviations are less than 0.06dB and

can actually be neglected.

6.3.2 Optimized MESM simulation results - discussion

The simulation results point out a neutral e�ect of the variations in THD or SNR on the

accuracy of optimized MESM. The fact that the outlier in the results of the system with 20

channels corresponds exactly to the case of di�erent azimuthal resolution proposes the idea

that the worsening results in this case are related to a consistent error caused by interpola-

tion. This outlier case represents at the same time an interesting point because it has the same

azimuthal resolution of 2◦ as the system with 39 channels and o�ers therefore a qualitative

estimate of the e�ect of varying number of channels. The comparison between the results of 20

and 39 channels in this situation implies however very small and negligible di�erences between

the two cases (about 0.01dB for ILD-error, 0.03dB for ERB-error, and almost no di�erence

for ITD-error). This implies that the variation in the number of channels has also no e�ect

on the quality of the results and the slight increase in errors from the case with 10 channels

to the system with 20 channels could also correspond to the small change in the azimuthal

resolution (from 1◦ for 10 channels to 1.18◦ for 20 channels).

The performance of the simulated optimized MESM measurement with respect to the perceiv-

able error thresholds is shown in �gure 6.8 for the case of 0% THD. The 95% percentile values

of the ILD-, ITD-, and ERB-errors fall for all cases in the acceptable region or only slightly

out of it. As already remarked in [Die 13a], optimized MESM shows a robust behavior despite

the presence of noise or nonlinear distortions and is comparable to a sequential exponential

sweep measurement.

6.3.3 NLMS simulation results - evaluation

�gure 6.9 shows the ILD-, ITD-, and ERB-errors, for di�erent number of channels, THD- and

SNR values, for system identi�cation with the NLMS adaptive �lter algorithm. The errors

decrease generally with improved SNR and increase for higher number of channels. More

on the behavior of errors with SNR or number of channels as well as rotation time will be

discussed shortly later. First of all, the comparison of the results shows that di�erent values

of applied THD do not cause signi�cant changes in the results. Figure 6.9 shows the results
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Figure 6.8: Optimized MESM performance: Comparison to the perceivable threshold: ILD-error
(top), ITD-error (middle) and ERB-error(bottom).

for the case of step size µ=0.5 and rotation time T360=5 minutes. But, the study of other step

size values and rotation times indicates that the deviation between the results for di�erent

THD values is less than 0.05 dB for ILD-error, less than 2,26 µseconds for ITD-error and less

than 0.25 dB for ERB-error. As a result and for the sake of feasibility, for the rest of the

discussion only the case of THD = 0% is considered. The complete set of results for di�erent

THD values are available in appendix D.
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Figure 6.9: NLMS-ILD-error(top), ITD-error(middle) and ERB-error(Bottom)-dependency on THD
for di�erent SNR values for 10 channels(left), 20 channels(middle) and 39 channels(right)- 95th per-
centile (bold) and median value (dashed)- µ=0.5, T360=5 minutes.
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Figure 6.10: NLMS ILD-error and its comparison to the perceivable threshold, for 10 channels (top),
20 channels (middle) and 39 channels (bottom), for 1 Min. (left), 5 Min. (middle) and 15 Min. (right)
rotation time, for di�erent SNR and step size values.

According to �gure 6.10:

• The ILD-error increases with increasing number of channels. This increase is sharper for

shorter T360.

• The ILD-error decreases for longer T360. There is however a saturation in the improv-

ment with incerasing T360 and especially in the presence of noise, there is no signi�cant

di�erence between T360=5 and 15 minutes.

• The ILD-error decreases with increasing SNR (with no signi�cant di�erence between

in�nite and 90dB SNR). However, for T360=1 minutes the error due to the short mea-

surement time outweights the error caused by SNR.

• The ILD-error decreases with increasing step size. This e�ect slows down for longer T360.

For the case of 60dB SNR the e�ect of variances in the step size diminishes for T360=5

and 15 minutes.
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• For the system with 10 channels, at any case, the 95% percentile value of ILD-errors

falls in the acceptable region. For 20 or 39 channels, this meets only for T360 of 5 and

15 minutes. For large numbers of channels and short rotation times (T360=1 minutes),

this situation can only be achieved with su�cient SNR and a properly chosen step size

(µ→ 1).
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Figure 6.11: NLMS ITD-error and its comparison to the perceivable threshold, for 10 channels (top),
20 channels (middle) and 39 channels (bottom), for 1 Min. (left), 5 Min. (middle) and 15 Min. (right)
rotation time, for di�erent SNR and step size values.

According to �gure 6.11:

• The ITD-error increases with increasing number of channels. This increase is sharper

for shorter T360.

• The ITD-error decreases for longer T360. However, there is no signi�cant di�erences

between T360=5 and 15 minutes.

• The ITD-error decreases with increasing SNR. For T360=1 minutes, the error due to the
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short measurement time outweighs the e�ect of the SNR.

• The ITD-error decreases with increasing step size. For longer T360, the e�ect of variances

in step size vanishes.

• At any case, the 95% percentile value of ITD-errors falls in the acceptable region.
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Figure 6.12: NLMS ERB-error and its comparison to the perceivable threshold, for 10 channels (top),
20 channels (middle) and 39 channels (bottom), for 1 Min. (left), 5 Min. (middle) and 15 Min. (right)
rotation time, for di�erent SNR and step size values.

According to �gure 6.12:

• The ERB-error increases with increasing number of channels. This increase is sharper

for shorter T360.

• With 90dB or in�nite SNR, the ERB-error decreases for longer T360. With 60dB SNR,

there are no signi�cant changes in the ERB-error for di�erent T360.

• The ERB-error decreases with increasing SNR (with no signi�cant di�erence between

in�nite and 90dB SNR).
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• With 90dB or in�nite SNR, the ERB-error decreases with increasing step size, whereas

with 60dB SNR, µ<1 is often better.

• The 95% percentile value of ERB-error can be considered as acceptable if there is su�-

cient SNR (90dB and more) and the step size is chosen properly (µ→ 1). For 60dB SNR,

the 95% percentile value of ERB-error at any case exceeds the perceivable threshold.

6.3.4 NLMS simulation results - discussion

The results of all three evaluation criteria (ILD-, ITD-, and ERB-errors) imply that the error

increases with increasing number of loudspeaker channels and decreases for longer revolution

times. The improvement with longer rotation times slows down, the longer the revolution time

T360 gets, especially for the cases with poorer SNR. These results are in good accordance with

the behavior of Error Signal Attenuation (ESA).
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Figure 6.13: Error Signal Attenuation as a function of T360 for di�erent SNR values, for 10 channels
(top), 20 channels (middle) and 39 channels (bottom), for µ=0.25 (left), µ=0.5 (middle) and µ=1
(right).

As can be seen in �gure 6.13, the improvement rate of ESA gets slower with increasing T360. For

60dB peak SNR the improvement from T360= 5 minutes to 15 minutes almost stops. As already

discussed in chapter 4.7, the ESA performs as a proper representative of the NLMS inaccuracy.

The dropping rate of improvement in the simulation results with increasing T360 corresponds

to the improvement of NLMS accuracy and its dependency on the modeled dynamic behavior
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of the system.

For noiseless environments or with 90dB SNR, di�erent evaluation criteria (ILD-, ITD-, and

ERB-errors) show a similar behavior with respect to the step size: For all of them the choice

of larger step size is applicable to improve the results for a given measurement setup (with

de�ned number of channels and rotation time). For T360 = 1 minute and with the small step

size of µ=0.25, the results of ILD- and ITD-errors for in�nite or 90dB SNR are mostly as high

as the results for 60dB SNR. Therefore, especially for faster rotation times, a larger step size

gains more importance.

For 60dB SNR, the results don't show a common tendency with step size variations. While

for the ILD- and ITD-errors the e�ect of step size variances diminishes for longer T360, for the

ERB-error there still can be up to 1dB improvement, which is due to variations in the step size.

This can even be observed at T360=15 minutes. In addition, the best result in the ERB-error is

often the case for µ<1. It seems that the ERB-error is more correlated with the environmental

noise than with the error due to time variations and pro�ts from the noise rejection e�ect of

smaller step size values. However, according to �gure 6.12, with 60dB SNR, the ERB-error

always exceeds the perceivable threshold. Even variances in the step size cannot pull down

the errors below this threshold. Therefore, the best performance of the NLMS, for which all

three evaluation criteria fall at the same time in the acceptable region, can only be achieved

for in�nite or 90dB SNR.

For a real measurement, the SNR might be somewhere between 60dB and 90dB. Since it is

not clear, how the behavior of results with respect to the step size would be, it is advisable

to choose a smaller step size at any case to improve the results in favor of the ERB-error. As

already mentioned, for rotation times of 5 minutes and more, the step size alteration doesn't

cause signi�cant changes in the ILD- and ITD-error. Even for smaller step size values, these

errors still fall below the audible thresholds. So, if the revolution time is long enough (at least

5 minutes), a smaller µ is still able to keep track of time variations and o�ers at the same

time the advantage of smoothing e�ects in case of unwanted sudden disturbances. However,

for T360=5 minutes, the step size should not become very small, because, for very small step

size values the accuracy of the NLMS algorithm begins again to deteriorate (see �gure 6.14).

As a result, step size values smaller than 0.25 are not recommended.

Besides choosing a smaller step size, there is also another way to improve the results further,

at the cost of measurement duration: referring to the simulation results, measuring with less

number of channels leads to less errors. So, the idea is to divide 39 channels into two groups of

20 channels (actually one group with 20 channels and another with 19 channels), and perform

two separate measurements, each of 5 minutes duration. This will result in a measurement

time of 10 minutes, plus the time which is spent between the two measurements to set the
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Figure 6.14: Error Signal Attenuation resulted for di�erent step size values, for 60 dB SNR.

system. The total measurement duration could be between 10 to 15 minutes, but there can

be up to 1dB improvement in the ERB-error in comparison to one single measurement of 39

channels with 5 or 15 minutes rotation. Although 1dB improvement doesn't o�er the required

reduction in the ERB-error in case of 60 dB SNR, but breaking the measurement into two parts

to take advantage of less involved channels can be considered as an option, which contributes

to better results. However, since the HRTF acquisition for all channels through one single

measurement is of more interest, an improved SNR, as long as it is possible, o�ers the better

solution.

6.3.5 Optimized MESM or NLMS?

For both implemented methods, there are conditions, under which the algorithms lead to the

ful�llment of the constraints included in the evaluation criteria. This meets for optimized

MESM, una�ected from variations in the number of channels or SNR, if the less strict evalua-

tion criterion on ERB-error (1dB threshold) is acceptable. At the same time, the measurement

duration for optimized MESM varies according to the used parameters and cannot be reduced

without loss of accuracy in the azimuthal resolution. Assuming a THD < 3%, it takes at least

11 minutes for optimized MESM to measure 39 channels under 90 dB SNR. On the other hand,

without the need of changing the measurement duration, optimized MESM has the advantage,

that the quality of the results doesn't change if SNR is reduced to 60 dB or even less.

For NLMS, meeting the constraints of the evaluation criteria all at the same time is only

possible for 90dB SNR or more. If only 10 or 20 channels are to be measured, it is possible

to obtain satisfactory results even with 1 minute rotation, as long as the step size is set large

enough. To measure 39 channels in one single measurement, at least 5 minutes are required.
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However, if the SNR is decreased to 60dB, according to the results of ERB-error, the spectral

colorations will become audible. In this case, a smaller step size (µ=0.25) can makes the re-

sults become better, although this improvement is not enough to reduce the errors below the

perceivable threshold. A longer rotation time doesn't lead to signi�cant improvements either.

In comparison to optimized MESM, the higher sensitivity of the NLMS to the environmental

noise can be seen in �gure 6.15. This �gure shows, as an example, the HRTF acquired for the

source at θ = 0◦ azimuth and ϕ = 0◦elevation for both methods.
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Figure 6.15: Optimized MESM versus NLMS: Simulated HRTF of the right ear for the source position
at θ = 0◦ azimuth and ϕ = 0◦elevation. The results for both methods at their best performance
(measuring 39 channels in the shortest possible time) under the two SNR conditions of 90dB and
60dB.

Summarizing the discussions, as long as the SNR remains at 90 dB, the NLMS outperforms the

optimized MESM regarding the measurement time and HRTF grid resolution. If less channels

should be measured, the NLMS can o�er satisfactory results even with a 1 minute measure-

ment. For optimized MESM, less channel numbers don't cause any signi�cant reduction in the

measurement duration. In addition, for the NLMS, the azimuthal resolution can vary to any

precision without the loss of quality or the need for longer measurement times. In contrast,

the azimuthal resolution of optimized MESM is limited to the measurement time. Further-

more, as long as one single deconvolution is applied to the data corresponding to a range of
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azimuths to acquire a single HRTF, this method entails inevitable errors due to continuous

rotation. However, if the SNR is decreased to 60dB, the NLMS cannot o�er the desirable

quality anymore, not even for longer measurement times. In this case, due to robustness in

spite of SNR degradation, optimized MESM outperforms the NLMS.

Actually, it is the continuous rotation, which has largely limited the performance of optimized

MESM. Otherwise, the stability and robustness of optimized MESM against SNR variations

in comparison to NLMS is very remarkable. Of course, in a discrete azimuth measurement,

optimized MESM o�ers results, which, compared to an exponential sweep measurement, are of

almost the same quality, while reducing the measurement duration to a large extend. However,

as long as there is su�cient SNR, for the continuous rotating system, which was simulated here,

the NLMS adaptive �ltering is more suitable. It should also be noted, that in the simulations,

the measurement room was considered as totally anechoic. In a real measurement however,

re�ections from objects in the room or from room itself cannot be eliminated. In a real case,

a �lter length of 156 samples, as used for NLMS in the simulations here, will probably not

be su�cient. Therefore, the convergence speed of the NLMS in a real measurement would

become limited, as a longer �lter length will be needed to cover the re�ections and avoid the

artifacts due to the truncated length of the impulse response.



Chapter 7

Conclusion

High resolution HRTF data sets demand long and time consuming measurements. Due to

the importance of individually measured HRTFs in the improvement of sound localization

with binaural signals, a system for the fast measurement of individual head-related trans-

fer functions was simulated and evaluated. This system consisted of a vertical arc of up to

39 loudspeaker canals, with the horizontally continuous rotation of the subject during the

measurement, and enabled performing HRTF measurement for 5716 source locations in less

than 15 minutes. The sound propagation path between the loudspeaker and the microphone

was modeled, including loudspeakers' transfer function and their nonlinear behavior, subject's

head, pinna and torso, the continuous rotation of the subject as well as the environmental

noise. Two of the existing algorithms were implemented to perform the excitation and acquire

the HRTFs from the simulated recordings: the optimized MESM and the NLMS adaptive

�ltering.

Optimized MESM showed a highly robust performance with respect to variations in the SNR,

THD, and the number of the channels. Since optimized MESM is originally supposed for a

discrete azimuth measurement, the continuous rotation necessitated limitations on the mea-

surement duration and azimuthal resolution, both of which were dependent on the used pa-

rameters and could not be set freely. Since the evaluation of the results was based on the

comparison to an existing ground truth HRTF data set with a �xed azimuthal resolution, the

results of optimized MESM su�ered from interpolation error. However, despite this error, the

optimized MESM o�ered to a very good extend a satisfactory performance with deviations to

the ground truth data set, which were below the critical audible thresholds.

For the NLMS adaptive �ltering algorithm the results showed also no signi�cant di�erences

for di�erent THD values, but they varied with respect to SNR, measurement duration, num-

ber of channels, and step size. In general, the accuracy of the system identi�cation improved

with increasing measurement time and SNR, and degraded with increasing number of chan-

80
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nels. However, very long measurement times did not necessarily make the results much better.

Especially for short measurement times, a larger step size was preferable. Step size values

smaller than 1 o�ered a noise rejection e�ect. With enough long measurement times (at least

5 minutes), the NLMS algorithm o�ered results with deviations in the ITD and ILD as well

as spectral deviations to the ground truth data, which all fell in the acceptable range. How-

ever, as soon as the SNR degraded, the coloration errors presented a problem, independent of

revolution time or number of channels.

The comparison of both implemented algorithms showed, that for the modeled HRTF mea-

surement system with continuous rotation, the NLMS algorithm o�ers the better option, as

long as the SNR is su�ciently high. In this case, the NLMS was able to o�er satisfactory

results within a measurement of 5 minutes duration or even less, with the option of varying

azimuthal resolution without any constraints. For acceptable results with the same azimuthal

resolution, the optimized MESM required measurement durations at least twice as long as

the NLMS algorithm. A reduction in the measurement time for optimized MESM is at the

expense of high azimuthal resolution and accuracy. However, since for degraded SNR condi-

tions the NLMS shows audible coloration errors, which cannot be eliminated even with longer

measurement durations, in such cases, the optimized MESM outperforms the NLMS due to

its robust performance.

There are some points which should be taken into consideration for a real measurement: �rst of

all, the re�ections in the measurement room are inevitable and a�ect the quality of the results

for both methods. In particular, the length of the NLMS �lter should be modi�ed accordingly.

This limits the convergence speed of the algorithm. There is also the need for head tracking,

to detect the exact position of the subject's head and considerations given to assigning the

HRTFs to the corresponding head-source positions. The latency time between excitation and

response of the system should be compensated. In addition, the e�ect of the transfer functions

of the measurement system (Microphone, loudspeakers, ampli�ers etc.) should be canceled

out and for this aim, reference measurements are necessary. Unwanted sudden disturbances

and non optimal performance of the measurement equipment are other constraints. If the

new measurement system is used to repeat the HRTF acquisition for a person or an arti�cial

head, for which a formerly measured HRTF dataset already exists, the criteria described in

this thesis can be used to evaluate the results. For optimized MESM, this comparison can be

improved, if for each frequency bin the corresponding azimuth position of the head is consid-

ered for the interpolation. The more accurate and of course the more time consuming choice

is to perform psychoacoustic listening tests to verify the performance of binaural signals with

the individually measured HRTFs.
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Appendix A

LMS and NLMS adaptation algorithm

The basic idea of the method of steepest descent is to �nd an optimal solution w0 among some

unknown vectors w, which satis�es the following condition:

J(w0) ≤ J(w) for all w (A.1)

where the cost function J(w) is a continuously di�erentiable function of w. For the LMS

algorithm, the cost function is the mean square of the deviation of the response of the �lter w

to a desirable response. A well suited condition is to assume that the cost function is reduced

at each iteration:

J(w(k + 1)) < J(w(k)) (A.2)

For the method of steepest descent the adjustment applied to the weight vector w is in a

direction opposite to the gradient vector of the cost function. The gradient vector of the cost

function is given as [Wid 85]:

5J(k) = −2C+ 2Rw(k) (A.3)

where R is the correlation matrix of the input of the �lter and C is the cross-correlation

vector betweeen the desired response and the same input. The steepest descent algorithm is

described by [Hay 02]:

w(k + 1) = w(k)− 1

2
µ5 J(k) (A.4)

with the following adjustment going from iteration k to k + 1:

δw(k) = w(k + 1)−w(k) = −1

2
µ5 J(k) (A.5)
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k denotes the iteration and µ is the step size. The question is, whether this formulation for

steepest descent algorithm satis�es the condition in equation A.1. With the assumption that

µ is small, one can use the �rst order Taylor series expansion around w(k) to obtain the

approximation:

J(w(k + 1)) ≈ J(w(k)) +5JT (k)δw(k) (A.6)

Substituting equation A.5 in A.6 yields:

J(w(k + 1)) ≈ J(w(k))− 1

2
µ ‖5J(k)‖2 (A.7)

According to equation A.7, J(w(k + 1)) is smaller than J(w(k)) if µ is positiv. This also

shows that the cost function decreases with increasing k, approaching the minimum value at

k = ∞. The di�erence between the LMS algorithm and the steepest descent algorithm is

that the method of steepest descent uses exact measurements of the gradient vector at each

iteration, whereas the LMS algorithm relies on an estimation of the gradient vector. In order

to have an estimate of the gradient vector, an instantaneous estimate of R and C, based on

the sample values of the tap input vectors and the desired response, y, can be used as following

[Hay 02, Wid 85]:

R̂(k) = p(k)pT (k)

Ĉ(k) = p(k)yT (k)
(A.8)

Substituting these estimations in equation A.3, and again, substituting the result in equation

A.4, we can get a recursive relation for updating the tap-weight vector:

h(k + 1) = h(k) + µp(k)e(k) (A.9)

with:

e(k) = y(k)− pT (k)h(k) (A.10)

The adjustment of the �lter in LMS method depends directly on the input vector p(k). Since

the LMS algorithm su�ers from a gradient noise due to estimations, this problem can get worse

for large inputs. The Normalized Least Mean Square method (NLMS) overcomes this problem

by normalizing the adjustment at iteration k+ 1 with respect to the squared Euclidean norm

of the input vector at iteration k such that:

h(k + 1) = h(k) +
µ

‖p(k)‖2
p(k)e(k) (A.11)
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with e(k) being set by equation A.10.



Appendix B

Transfer function of an electro

dynamic loudspeaker - Derivation

1 An electro dynamic loudspeaker can mechanically be modeled as a sprind-mass system. The

electro dynamic force generates a relative movement between loudspeaker diaphragm and its

housing. The housing is relatively heavy and an be seen as stationary. Therefore the important

mass m is of the loudspeaker diaphragm which can also include the mass of the coil or other

moving parts. This mass is resiliently mounted to the heavy immpbile housing which together

build a resonator. On the mass m act three external forces: the exciting electro dynamic

force, as well as the resisting forces due to spring sti�ness and friction. According to Hooke's

law and assuming a velocity-proportional friction and also assuming pure tones, the exciting

electro dynamic force can be written as:

F =

(
jωm+ r +

D

jω

)
ν (B.1)

In which:

ν: velocity of the diaphragm

r : friction coe�cient

D: spring sti�ness

The resonance frequency of the spring-mass system is at ω0 =
√

D
m . On the other hand the

electro dynamic force is related to the electric current I, magnetic �ux density B and the

length of the coil l:

F = BIl (B.2)

The quivalent circuit for the electrical behavior of the loudspeaker is shown in �gure B.1.

1From [Mos 09]
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u 

I 

Ra 

Ri 

j L

Figure B.1: Equivalent electrical circuit of the electro dynamic loudspeaker.

According to �gure B.1 the electrical current can be written as:

I =
u

Ri +Ra + jωL
(B.3)

with Ri + jωL as the impedance of the loudspeaker and Ra as the impedance of the voltage

source. Substituting equations B.1 and B.3 in equation B.2 we have:

ν

u
= Bl

1

Ri +Ra + jωL

1

jωm+ r + D
jω

(B.4)

Finally considering the loudspeaker as a spherical volume source one can describe the di-

aphragm velocity ν in relationship to the spund source as:

p =
jρ0ωπa

2ν

4πd
ej(ωt−kd) (B.5)

With:

a: radius of the spherical volume source

d: distance to the source

k: wave number

Combining ewuations B.4 and B.5 the transfer function of the loudspeaker is achievd as:

p

u
= Bl

1

Ri +Ra + jωL
.

1

jωm+ r + D
jω

.
jρ0πa

2

4πd
ej(ωt−kd) (B.6)



Appendix C

Non-stationary convolution and

combination

1 For stationary convolutional �ltering the response of the �lter to an impulse response is

known at any particular time and for any input u(t) the �ltered output is the convolution of

input signal with the impulse response of the �lter h(t):

v(t) =

∫ ∞
−∞

h(t− τ)u(τ) dτ = h(t) ∗ u(t) (C.1)

In discrete form the integral of equation C.1 can be written in matrix form as:



...

v0

v1

v2
...


=



...
...

...
...

...
... h0 h−1 h−2

...
... h1 h0 h−1

...
... h2 h1 h0

...
...

...
...

...
...





...

u0

u1

u2
...


(C.2)

Equation C.2 can also be rewritten after matrix multiplication as [Mar 98]:

...

v0 = · · ·+ h0u0 + h−1u1 + h−2u2 + · · ·

v1 = · · ·+ h1u0 + h0u1 + h−1u2 + · · ·

v2 = · · ·+ h2u0 + h1u1 + h0u2 + · · ·
...

(C.3)

1From [Mar 98]
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Equation C.3 can again be rewritten in matrix form, this time by putting the �lter coe�cients

hk in column matrices:

...

v0

v1

v2
...


= · · ·



...

h0

h1

h2
...


u0 +



...

h−1

h0

h1
...


u1 +



...

h−2

h−1

h0
...


u2 + · · · (C.4)

According to matrix form of equation C.4 each input sample uk is used to weight a time shifted

version of h(t). Since equation C.4 shows the case of stationary �ltering the column vectors

at the right hand side of the equation are the same except for a time shift. But in case of

non-stationary �ltering they vary as the �lter varies with the time:

...

v0

v1

v2
...


= · · ·



...

h0(t0)

h1(t0)

h2(t0)
...


u0 +



...

h−1(t1)

h0(t1)

h1(t1)
...


u1 +



...

h−2(t2)

h−1(t2)

h0(t2)
...


u2 + · · · (C.5)

Considering the time variance of �lter h the non-stationary convolutional integral can be

written as:

v(t) =

∫ ∞
−∞

h(t− τ, τ )u(τ) dτ (C.6)

Equation C.6 is known as non-stationary convolution, which describes the non-stationarity

as a function if input time τ . Non-stationary convolution preserves the impulse response in

the columns of the convolutional matrix (see equation C.2). Non-stationarity can also be

considered as a function of output time t, known as non-stationary combination:

v(t) =

∫ ∞
−∞

h(t− τ, t)u(τ) dτ (C.7)

In the case of non-stationary combination the impulse response is preserved as rows of the
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convolutional matrix and can be written as:

...

v0

v1

v2
...


= · · ·



...

h0(t0)

h1(t1)

h2(t2)
...


u0 +



...

h−1(t0)

h0(t1)

h1(t2)
...


u1 +



...

h−2(t0)

h−1(t1)

h0(t2)
...


u2 + · · · (C.8)
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Figure D.1: NLMS-ILD-error for di�erent THD values - Revolution time T360=1 minute, for step size
µ=0.25 (top), µ=0.5 (middle) and µ=1 (bottom)
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Figure D.2: NLMS-ILD-error for di�erent THD values - Revolution time T360=5 minute, for step size
µ=0.25 (top), µ=0.5 (middle) and µ=1 (bottom)



APPENDIX D. SIMULATION RESULTS 104

60 90 Inf.
0

0.05

0.1

0.15

0.2

0.25
Ch.10

IL
D

(d
B

)

SNR(dB)

 

 

60 90 Inf.
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Ch.20

IL
D

(d
B

)

SNR(dB)

 

 
THD 0%
THD 1%
THD 3%

THD 0%
THD 1%
THD 3%

NLMS − (µ: 0.25 − T360 = 15 Min. )  ILD Error − for: 95th Percentile (bold)  &  Median Value (dashed)

60 90 Inf.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Ch.39

IL
D

(d
B

)

SNR(dB)

 

 

60 90 Inf.
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Ch.10

IL
D

(d
B

)

SNR(dB)

 

 

60 90 Inf.
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Ch.20

IL
D

(d
B

)

SNR(dB)

 

 
THD 0%
THD 1%
THD 3%

THD 0%
THD 1%
THD 3%

NLMS − (µ: 0.5 − T360 = 15 Min. )  ILD Error − for: 95th Percentile (bold)  &  Median Value (dashed)

60 90 Inf.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Ch.39

IL
D

(d
B

)

SNR(dB)

 

 

60 90 Inf.
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Ch.10

IL
D

(d
B

)

SNR(dB)

 

 

60 90 Inf.
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Ch.20

IL
D

(d
B

)

SNR(dB)

 

 
THD 0%
THD 1%
THD 3%

THD 0%
THD 1%
THD 3%

NLMS − (µ: 1 − T360 = 15 Min. )  ILD Error − for: 95th Percentile (bold)  &  Median Value (dashed)

60 90 Inf.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Ch.39

IL
D

(d
B

)

SNR(dB)

 

 

Figure D.3: NLMS-ILD-error for di�erent THD values - Revolution time T360=15 minute, for step
size µ=0.25 (top), µ=0.5 (middle) and µ=1 (bottom)
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Figure D.4: NLMS-ITD-error for di�erent THD values - Revolution time T360=1 minute, for step size
µ=0.25 (top), µ=0.5 (middle) and µ=1 (bottom)
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Figure D.5: NLMS-ITD-error for di�erent THD values - Revolution time T360=5 minute, for step size
µ=0.25 (top), µ=0.5 (middle) and µ=1 (bottom)
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Figure D.6: NLMS-ITD-error for di�erent THD values - Revolution time T360=15 minute, for step
size µ=0.25 (top), µ=0.5 (middle) and µ=1 (bottom)
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Figure D.7: NLMS-ERB-error for di�erent THD values - Revolution time T360=1 minute, for step
size µ=0.25 (top), µ=0.5 (middle) and µ=1 (bottom)
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Figure D.8: NLMS-ERB-error for di�erent THD values - Revolution time T360=5 minute, for step
size µ=0.25 (top), µ=0.5 (middle) and µ=1 (bottom)
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Figure D.9: NLMS-ERB-error for di�erent THD values - Revolution time T360=15 minute, for step
size µ=0.25 (top), µ=0.5 (middle) and µ=1 (bottom)




