
Technische Universität Berlin

Fachgebiet Audiokommunikation

Masterarbeit Audiokommunikation und -technologie

Tweaked Speech Codec to Inhibit Howling

Suppression

vorgelegt von

David Ditter

Abgabetermin

26. November 2014

Betreuer

Asst. Prof. Edgar Berdahl

contact



Abstract

Acoustical feedback is present whenever a speaker signal gets redirected to a micro-

phone that feeds its input signal directly or indirectly into this very speaker. If the

gain of such a closed feedback loop is close to or higher than 1, unpleasant acoustical

artifacts will occur and will often times lead to the sinusoidal howling noise, that

probably everybody has experienced at a presentation or a concert, when a micro-

phone was accidentally directed to a speaker. This research work tried to suppress

these unwanted e�ects of acoustical feedback by the insertion of a modi�ed speech

codec into the signal path of the feedback loop. Two basic concepts were utilized:

The ADPCM codec as well as the CELP codec, which were both implemented as

C++ real-time audio modules and tweaked for the purpose of feedback suppressi-

on. A total of 13 algorithm con�gurations were tested for their ability to suppress

feedback within a self-developed software simulation framework as well as in a live

test session, which was conducted in a conference room and a large lecture hall.

Results showed, that the Speex open-source speech codec was successfully tweaked

to increase the maximum stable feedback gain by 3 dB, but which goes along with a

reduction of the audio quality within the loop.



Zusammenfassung

Akustische Rückkopplung ist immer dann präsent, wenn ein Lautsprechersignal zu

einem Mikrofon gelangt, dessen Ausgangssignal zu ebendiesem Lautsprecher (di-

rekt oder indekt) weitergeleitet wird. Wenn der Verstärkungsfaktor einer solchen

geschlossenen Rückkopplungsschleife nahezu oder gröÿer als 1 ist, so treten un-

erwünschte akustische Artefakte auf. In vielen Fällen ein sinusartiger, heulender

Ton, den vermutlich jeder bereits einmal wahrgenommen hat, wenn bei einer Prä-

sentation oder einem Konzert ein Mikrofon aus Versehen auf einen Lautsprecher

gerichtet wurde. Diese Forschungsarbeit hat den Versuch unternommen, diese un-

erwünschten E�ekte zu unterdrücken und zwar durch das Einfügen eines modi�-

zierten Sprach-Codierungs-Algorithmus in den Signalpfad der Rückkopplungsschlei-

fe. Zwei grundlegende Konzepte wurden hierfür eingesetzt: Die ADPCM - und die

CELP -Codierung, die beide als C++ Echtzeit-Audiomodule implementiert und für

die Zwecke der Feedback-Unterdrückung optimiert wurden. Insgesamt 13 verschiede-

ne Kon�gurationen der implementierten Algorithmen wurden in der Hauptmessung,

die sowohl in einem Konferenzraum, als auch in einem groÿen Hörsaal ausgeführt

wurde, vermessen. Die Resultate der Messung zeigen, dass der Speex Open-Source

Codec erfolgreich für den Zweck der Feedback-Unterdrückung optimiert wurde. Der

Anstieg des maximalen, stabilen Verstärkungsfaktors liegt bei 3 dB und mehr, wel-

cher allerdings mit einer Reduktion der Audioqualität einhergeht.
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Overview

The thesis at hand is a summary of the research work of tweaking speech codecs to

inhibit howling suppression.

Chapter 1 introduces to the topic of acoustical feedback and to the common

research approaches and methods in this �eld. Furthermore, an insight is given on

the primal motivation for the approach of using speech codecs to inhibit howling

suppression.

As this work relies heavily on the basic concepts of speech coding � especially on

the ADPCM and CELP codec �, Chapter 2 gives a summary of the concepts that

have been utilized in the software implementation part of this project.

Chapter 3 explains in detail, how the algorithms under test were implemented

and con�gured. Four main approaches were realized as JACK applications, written

in C++. Further, a description of the implementation of the frequency shifter as a

baseline reference for the measurements is included to this chapter.

The testings of the e�ects on the system feedback have been carried out in a soft-

ware simulation framework as well as in a real-world usage scenario in two di�erent

rooms: a conference room and a large lecture hall. The detailed description of how

these measurements were conducted as well as the measurement data presenting the

characteristics of the utilized rooms, can be found in Chapter 4.

The results of all measurements are presented in the following Chapter 5 with

an attached discussion of the presented data. Last, Chapter 6 completes this thesis

with the conclusions of this research project.



1. Acoustical feedback and howling

In basically all audio systems that have a microphone and a speaker running at the

same time, acoustical feedback is an issue. Such systems are installed at events like

conferences of any size, presentations and live readings or concerts. Even in the case

of the microphone and the speaker not being within the same room, the e�ect can

still be present, for example in landline or voice over IP telephony, especially when

using PC speakers or table speakerphones for reproducing the transmitted audio

signal on the receiver side.

All these systems usually have a closed feedback loop, meaning there is an acous-

tical path within the system from the speaker to the microphone which feeds its

signal (possibly indirectly) into this very speaker. Whenever the feedback loop is

closed, it is possible for the system to go unstable all by itself, depending on the

gain of the feedback loop, which can mostly be controlled by an ampli�er or mixing

unit within the signal chain. Everybody should have experienced this � for example

at a presentation or at a concert �, that all of a sudden a howling noise appears

that increases its energy very fast and hence, is a very annoying, (and often times

physiologically dangerous,) acoustical phenomenon.

The target of this work is to approach this problem of an unstable, closed feed-

back loop with the basic concepts of speech coding.

1.0 Terminology

As there is no consistent use of the terms acoustical feedback and howling in the

literature, a de�nition for the scope of this work is needed:

• acoustical feedback : Acoustical coupling between one or more microphones and

one or more speakers which leads to various artifacts in the speaker signals.

With this de�nition, there is no necessity for audible, acoustical artifacts, to

apply this term.
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In the case of time-varying systems, we can not utilize the Nyquist stabilty cri-

terion, but the so-called circle criterion instead, which can not be linked to a single

author, as [Wil71, Ch. 5.4, p. 130] states: �There are several more or less inde-

pendent and simultaneous sources for the stabilty criterion.� These sources include

[San64], [San65] as well as [Zam66] and [Zam64].

Summarizing the explanations by [Wil71, Ch. 5.4, p. 130] to the circle criterion,

a time-varying system is stable, if

• (as a precondition) the open-loop1 system is stable

• there exists a so-called critical disk (see [Wil71, Ch. 5.4]) within the z-plane

such that for almost all time instances, the transfer function of the time-varying

block lies within this disk.

1.2 Common approaches to feedback suppression

Three common approaches to suppress acoustical feedback are introduced in the

following paragraphs. A more comprehensive and historically complete overview

over the DSP -based approaches can be found in [WM09].

Phase modulation methods

Phase modulation methods attempt to skirt the revised Bode stability criterion (see

[Lev96, Ch. 8]) by continually varying the phase for all frequencies in the system.

If the microphone and the loop signal are not in-phase for a su�ciently long time,

howling can be e�ectively suppressed.

One way to implement this concept, is to apply a pitch or frequency shift to

the signal. If we shift a certain frequency, we change its wavelength and hence also

change its phase at the microphone position. This method was introduced by [Sch64]

and was recently evaluated by [BH10]. They showed that the maximum stable gain

can be increased by as much as 4 dB or more by using a frequency-shift of up to

8 Hz on the signal. However, the increase in maximum stable gain is limited in

practice by artifacts introduced by the frequency shifter.

1open loop system stands for a system where no round-trip is possible
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Gain reduction methods

Algorithms from this category try to detect frequencies that are ampli�ed in the

feedback loop. If such a frequency is detected, gain will be reduced until the feedback

e�ect stops. The gain can be reduced

1. at all frequencies,

2. at a narrowband around the detected frequency using a notch �lter,

3. by a wider notch �lter at the detected frequency.

While the �rst solution is a simple and robust one, it is surely not the best idea in

terms of audio quality. The same can be said about the second approach. Hence,

the third type � gain reduction by a notch-�lter � is recently the most used one.

However, stability problems are often requiring multiple notch �lters, which may

e�ectively reduce the volume as in the �rst gain reduction method.

Room modeling methods

Room modeling methods measure the frequency response of the system (either online

or o�ine) and afterwards try to �atten it by convoluting the inverted response with

the input signal. As howling is likely to occur at frequencies with an above-average

ampli�cation, this inversion is able to suppress feedback. This method is a suitable

solution in systems where there is one microphone and one loudspeaker. But it gets

di�cult to execute, when there are multiple microphones and speakers, as they will

lead to a variety of measurable system responses that can not be �attened all at once.

Furthermore, in a practical context of a room, the e�ect is similar to introducing

notch �lters to �atten out peaks in the loop transfer function.

Now that we have seen the common approaches to feedback suppression, we want

to make the approach of tweaking speech codecs reasonable.
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2. In contrast to some of the common approaches to suppress feedback, which

reduce the output gain of the signal, speech codecs have no mean to change

the gain of the signal3. Furthermore, as we will see, the CELP codec for

example does a complex resynthesis of the signal which might lead to time-

varying changes in the phase of the output signal which could be bene�cial for

feedback suppression.

3. Within a practical scenario where a signal has to be transmitted through a

digital channel, some codec scheme has to be applied in any case. If acoustical

feedback is an issue in that use-case, one could use the knowledge about the

e�ect on feedback as an additional criterion for selecting the optimal codec

for that scenario. By this, one could suppress feedback without having to add

an additional feedback suppression algorithm and by this saving development

e�ort and CPU load.

3This is correct for the core speech codec technologies. Often times, speech codec implemen-
tations are enhanced by a an automatic gain control in the preprocessing phase. None of such
algorithms were utilized within this work.



2. Elementary speech codec

technologies

As in the course of this work we will make heavy use of standard speech coding

techniques, this chapter explains the basic concepts that were adapted and that

will be crucial to understand the tweaking modi�cations explained in the following

chapter.

2.1 Linear Predictive Coding (LPC )

All of the adapted speech codecs in this work depend on the concept of Linear

Predictive Coding. Its general idea is to minimize the variance of the transmitted

signal by transmitting the error signal of a linear prediction, instead of transmitting

the signal itself (see [KK89, p. 399]). As the receiver can make the same predictions

as the sender by using his reconstructed previous signal samples, it can use the

transmitted prediction error signal for a full reconstruction of the signal.

2.1.1 Analysis

The �rst assumption is, that we can �nd coe�cients p1, p2, ..., pN so that a linear

combination of the previous N signal samples is a good estimate x̂[n] for the current

sample x[n], in formula:

p1 · x[n− 1] + p2 · x[n− 2] + ...+ pN · x[n−N ] = x̂[n] ≈ x[n]. (2.1)

With this, the prediction signal x̂(n) is generated from the original signal x(n)

by applying a linear �lter with impulse response

p(n) =
N∑
k=1

pk · δ(n− k), (2.2)
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The linear system HAnalysis is often referred to as the LPC analysis �lter .

2.1.2 Optimal prediction for a deterministic signal

To �nd optimal prediction coe�cients p1, p2, ..., pN for a �xed N and a deterministic

signal, we have to minimize the variance of the prediction error signal d(n):

σ2
D = E[D2(n)] = E[{X(n)− X̂(n)}] !

= Min. (2.10)

As shown in [KK89, p.356f], this is equivalent to solving the system of linear

equations:

RXX · popt = rXX (2.11)

where RXX is the auto-correlation matrix, rXX is the auto-correlation vector

of the signal x(n) and popt is the vector consisting of the N optimal prediction

coe�cients. As RXX is a Toeplitz matrix 1 and the right hand side vector consists of

the unique values of the left hand side Toeplitz matrix, the system can be e�ciently

solved for popt by the Levinson-Durbin recursion (see [Lev47] and [Dur60]).

As [KK89, p.351f] shows, the variance of the transmitted signal d(n) for popt is

σ2
D = σ2

X − rTXX ·R−1
XX · rXX (2.12)

which implies, that rTXX ·R−1
XX · rXX is the decrease in variance compared to the

input signal x(n).

2.1.3 Synthesis

The original signal x(n) can be resynthesized, if only d(n) and P (z) are known. This

is done by the the reciprocal analysis �lter, the so-called LPC synthesis �lter with

the following system transfer function:

HSynthesis(z) =
1

HAnalysis(z)
=

1

1− P (z)
. (2.13)

1Toeplitz matrix definition: Ai,j = Ak,l, if i− j = k− l for all i, j, k, l = 1, ..., N , i.e. all entries
on each upper-left to bottom-right diagonal coincide.
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sides, for each frame of audio we calculate a current popt,current on the sender side,

using the methods described in Section 2.1.2. After the calculation, popt,current gets

passed to the LPC analysis �lter as well as the LPC synthesis �lter (see Figure 2.4)

and a traditional DPCM is performed.

For this process, additional data has to be transmitted through the channel. Usu-

ally, these coe�cients are coded before channel transmission using so-called re�ection

coe�cients (see [Mak77]), because the �lter P (z) is very sensitive to quantization

errors in the pure prediction coe�cients. Alongside the additional channel through-

put, this codec has a forced frame-by-frame processing, which implies a non-zero

latency of the codec.

2.2.2 Backward adaption

A second way to realize an ADPCM codec is by using a backwards structure, mean-

ing that it only relies on past signal frames and therefore has zero delay (see [Kon04,

p. 222]). The aim of the LPC coe�cient adaption in this case is to minimize the

energy Ed of the transmitted signal d(n).

To get an easy idea on how to minimize this energy, let us assume that we have

only a single LPC coe�cient p1, meaning N = 1. For a �xed time instance n, we

can obtain a formula for the energy:

E[d] = d(n)2 = (xn − p1 · xn−1)
2. (2.14)

As we have �xed the time to n and we are interested in minimizing the term

over p1, we should rewrite equation (2.14) as a function of p1:

dn(p1)
2 = (xn − p1 · xn−1)

2 (2.15)

= x2n−1 · p21 − 2 · xn · xn−1 · p1 + x(n)2. (2.16)

So, the energy of the transmitted signal is a parabolic function in p1, as schemat-

ically drawn in Figure 2.5.
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p1(n) p1,opt

−∂dn
∂p1

p1

dn(p1)
2

Figure 2.5: Schematic curve of the parabolic error function dn(p1)
2. The optimal

LPC coe�cient p1,opt lies at the minimum point of the curve. To minimize the
prediction error, we have to shift p1(n) in the direction of the negative gradient
−∂dn
∂p1

. Diagram adapted from [Nol12].
.

Since it is expensive (especially for N > 1) to �nd p1,opt analytically, we try to get

closer to it by walking in the opposite direction of the gradient of E[d] at the postion

of p1(n) instead. Imagine the current prediction coe�cient in a position left to p1,opt

as in �gure 2.5. The derivative/gradient would have a negative value because the

graph decreases at p1(n) and so it would be correct to walk in the opposite (positive)

direction to get closer to p1,opt.

Accordingly, if p1(n) were to be on the right side of p1,opt, the gradient at p1(n)

would be positive, and again, walking in the opposite (negative) direction would be

the right decision. Note that, if the step in the correct direction is too large, it may

happen that the value of dn(p1)
2 is even worse than before. Finding an optimal step

size is a main part of con�guring an ADPCM codec.

So, we need a formula for the derivative/gradient of E[d] to get the correct step
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direction, which we obtain by di�erentiating equation (2.14):

∂E[d]

∂p1
=
∂dn(p1)

2

∂p1
= 2 · xn−1 · p1 − 2 · xn · xn−1 (2.17)

= −2 · xn−1 · (xn − p1 · xn−1︸ ︷︷ ︸
=dn

). (2.18)

As explained above, the step direction has to be contrary to this gradient. Fur-

thermore, there is no knowledge on the step size that would bring us closest to p1,opt,

which is why we need a parameter λ > 0 that controls the step size. In total, we

get a formula for the updated prediction coe�cient:

p1(n+ 1) = p1(n)− λ · ∂E[d]

∂p1
= p1(n) + λ · xn−1 · d(n). (2.19)

(Notice that the factor 2 from equation 2.18 has been integrated into λ here.)

Examining Figure 2.5 once more, we see that the absolute value of the gradient
∂E[d]
∂p1

is proportional to the distance from p1(n) to p1,opt. We conclude, that equation

(2.19) implies a way to apply di�erent step sizes depending on this distance.

A di�cult task is to �nd an optimal setting for λ. Too small values will lead to

a slow adaption speed and hence poor prediction. Too high values might for some

time instances lead to a step too far in the correct direction and so the new p1(n+1)

leads to an amount of d(n)2 that is even larger than the one for p1(n). Analytically

speaking, this happens when the overall step size λ · xn−1 · d(n) is twice as large as

the distance |p1(n)− p1,opt|.
All conclusions up to this point were done under the assumption of N = 1, but

they can be executed in a very similar fashion for N > 1 and a general prediction

coe�cient pi (see [Hay96, p.266�]). We get:

pi(n+ 1) = pi(n) + λ · xn−i · d(n), for i = 1, 2, ..., N (2.20)

As a simpli�cation, equation (2.20) has a constant value λ for the update of each

LPC coe�cient, where it would be possible to have an own paramater λi for each

pi.
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2. Finding optimal Codebook vectors in a training phase.

3. Constructing a so-called sparse Codebook, which contains multiple zero entries

and by that speeds up the Codebook search.

Periodic Codebook

A periodic Codebook is a virtual Codebook, as in an implementation no actual

Codebook table is parsed. The underlying idea is, that a pitch might be occurent

in the signal after the LPC analysis (see [KK89, p. 400]) . So, let us assume that

we have a pitch at frequency fpitch. For a sample rate fs this would correspond to a

time periodicity of

Tpitch =
1

fpitch
(2.21)

which corresponds to a sample periodicity of

Ppitch = Tpitch · fs =
fs
fpitch

(2.22)

So for a signal with pitch at fs we would have a good approximation, namely:

e[n] ≈ e[n− Ppitch]. (2.23)

For this reason, we construct a virtual Codebook with vectors that are each time

shifted variants of the excitation signal for di�erent values of P. De�ning this set

of vectors as a Codebook, we can then use it for the optimization process shown

in Figure 2.7 to �nd the optimal value of P . The testing range of P should be

determined by the selection of a reasonable range of frequencies at which a speaker's

pitch can occur.

2.3.3 Source-�lter model of speech

The Signal synthesis block in 2.7 is an implementation of the source-�lter model

of speech [Kon04, p.65], which states that human speech generation works in the

following way:

1. The vocal chords generate a noise-like excitation signal.

2. For voiced sounds, the vocal chords open and close with the rate of the pitch

periodicity, to bring the basic pitch into the sound.
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3. The vocal-tract (upper throat and mouth cavity) acts as a �lter that shapes

the spectral envelope of the excitation signal.

Hence, CELP remodels the source-�lter model of speech with the following equiv-

alencies:

• Fixed Codebook =̂ Noise generated by vocal chords

• Periodic Codebook =̂ Vocal chords open/close periodicity

• LPC Synthesis �lter Fixed Codebook =̂ Vocal-tract �lter

2.3.4 Optimization methods

As mentioned in the caption of Figure 2.7, for each Codebook vector we produce a

synthesized signal and try to determine the one that is 'closest' to the input signal.

Di�erent approaches are possible for this determination (see [Kon04, p. 208f]).

Maximizing the normalized cross-correlation. One approach to �nd an opti-

mal Codebook vector is to maximize the normalized cross-correlation between x(n)

and x̂k(n) over the parameter of k, where x̂k(n) is the synthesized frame with the

k-th Codebook vector used for excitation. In formula:

RXX̂k
(0)

RX̂kX̂k
(0)

=
x(n) · x̂k(n)

x̂k(n)2
!

= Maximize over k ∈ {1, 2, ..., K}. (2.24)

This formula produces a white long-term spectrum for e(n): For the optimization

process it makes no di�erence if there is a spectral discrepancy between x(n) and

x̂k(n) at a frequency f1 or a second frequency f2 6= f1. Therefore, errors at all

frequencies are weighted in the same way and the long-term spectrum of e(n) is

white.

Minimizing the error energy (LMS -method). Another approach is a Least

Mean Squares (LMS) method, trying to minimize the energy of the error signal e(n).

In formula (N denotes frame size):

Ee = Ex−x̂k (2.25)

=

∑N
i=1(x(n− i)− x̂k(n− i))2

N
!

= Minimize over k ∈ {1, 2, ..., K}. (2.26)
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With the same argument as in the previous section, the outcoming noise will be

white.

2.3.5 Perceptual noise shaping

The synthesized signal x̂(n) that CELP produces is not equal to the input signal

x(n), because in general none of the Codebook vectors will match the excitation

signal exactly. An error noise signal e(n) is added to the input:

e(n) = x(n)− x̂(n). (2.27)

The spectral shape of e(n) will be determined by the method of �nding the

optimal Codebook vector. Our goal is to achieve a spectral shape for e(n) that is

close to the one of x(n). If that was true, most of the noise energy would occur

at frequencies where the energy of x(n) is large, too. Hence, by the principle of

auditory masking, the noise would be less audible, while remaining its total energy.

Perceptual noise shaping �lters. As in the case without shaping we assume

the noise to be white, any noise shaping �lter S(z) we apply would lead to a similar

spectral shape of the noise itself. As mentioned before, we want this shape to be

close to the shape of the signal itself.

The CELP processing already provides a �lter that describes the spectral enve-

lope of the incoming speech signal, namely the constantly updated LPC synthesis

�lter 1
1−P (z)

. But this �lter can have strong spectral peaks which we do not want to

see in the noise signal, so we use a smoothed version
1−P ( z

γ1
)

1−P ( z
γ2

)
of it, where the i-th

coe�cient ṗi of P ( z
γ
) is calculated with ṗi = pi · γi. This implies, that for the corner

case γ = 0 we get P ( z
γ
) = 0 and for γ = 1 we get P ( z

γ
) = P (z). Figure 2.8 shows

the frequency responses for di�erent pairs of γ1 and γ2 for a given LPC synthesis

�lter.





3. Algorithms under test

This chapter provides a description of the algorithms that were tested for their ability

to suppress feedback. The four main approaches are based on the speech coding

concepts presented in the previous chapter. Implementational details as well as the

speci�c tweaking modi�cations that have been introduced to maximize feedback

suppression are pointed out for each of the algorithms. Besides a description of the

original algorithms there is a brief description of the frequency shifter algorithm that

is used as a measurement reference.

At the end of each section, a list of the tested con�gurations of the speci�c al-

gorithm under test can be found which can be used as references for the Results

chapter. The value speech gain in the con�guration tables represents the gain that a

certain algorithm applies to a speech signal, i.e. the gain that is occurrent between

the input and the output of the algorithm. A negative value suggests, that the algo-

rithm decreases the signal gain and vice versa. This has been measured on 40 speech

samples of 3 second length each and for all algorithm under test con�gurations. The

mean and variance of the gain that is applied to each of these excerpts is listed in

the con�guration tables.

General notice on the implemented modules All algorithms under test were

implemented as a real-time JACK 1 audio module. To be comparable to narrow-

band Speex (see Section 3.2), the processing bandwidth of 4 kHz was chosen for all

modules. The frame size was set to 256 samples as this allows to run a fast room

impluse response convolution (working only on 2n frame sizes) which is needed in the

measurement simulation framework. For algorithms under test that have a di�erent

internal processing frame size, a rebu�ering was realized within the modules, which

1JACK (JACK Audio Connection Kit) provides an Application Programming Interface (API)
to write audio processing modules that can run with the audio framework of JACK. A JACK server
hosts the processing and is able to load the written JACK applications. The JACK framework
provides a simple way to connect the inputs and outputs of the running applications as well
as routing audio to the physical connections of the audio interface. For further details, visit
http://jackaudio.org/
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� in these cases � introduces an additional latency of a single 256 sample frame.

3.1 Original algorithms

3.1.1 Tweaked ADPCM (ADPCM-MIX)

As shown in Section ADPCM 2.2, the codec provides a way to subtract periodicity

from the input signal, namely when applying the analysis �lter 1 − P (z) to x(n).

The resulting signal d(n) has a long-term spectrum that is close to a white spectrum.

Feedback tends to be sinusoidal and so the idea was to use the analysis part of the

ADPCM to attenuate sinusoidal parts of the signal and by this lower the gain of

the feedback loop.

Implementation details

The implementation made use of the backward ADPCM (see Section 2.2.2), to guar-

entee for a low-latency codec. The length of P (z) was set to 10. For a fast adaption

speed of the �lter coe�cients, a relatively high value of λ = 0.2 is used in the im-

plementation. In rare cases this leads to an unstability of the LPC analysis �lter.

As a counteraction, a forgetting factor ϕ = 0.999 was introduced to formula (2.20)

for the prediction coe�cient update to ensure stability:

pi(n+ 1) = ϕ · pi(n) + λ · xn−i · d(n), for i = 1, 2, ..., N (3.1)

The factor decreases the in�uence of the old prediction coe�cients and by this

prevents p from going against in�nity.

Test con�gurations

The implemented JACK application provides a slider that mixes the prediction error

signal d(n) with the input signal x(n). The mix fader setting will be denoted as

MIX. The formula for the output signal y(n) of the ADPCM application is:

y(n) = MIX · d(n) + (MIX− 1) · x(n) with 0 ≤MIX ≤ 1. (3.2)

For high values of MIX, the prediction error signal d(n) will be more present in

the output signal y(n). For low values, it will be less present and the untouched

speech signal will dominate the output. The tweaking was a process of trying to
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�nd a MIX value that gives signi�cant raise in stable gain but on the other hand

does not touch the perceived audio quality too much.

The settings that were selected for the �nal measurement are:

parameter speech gain [dB]

algorithm name value mean var name

ADPCM MIX 0.2 -0.1 0.0 ADPCM-MIX0.2

ADPCM MIX 0.5 -0.1 0.0 ADPCM-MIX0.5

Table 3.1: Tweaked ADPCM test con�gurations

3.1.2 Tweaked Speex (SPEEX-MODE)

The Speex 2 codec is an open source implementation of CELP with several modi-

�cations and enhancements to the standard CELP approach described above (see

[Val06]).

Speex comes with 11 di�erent quality modes where each has a certain channel

bandwidth. Besides these 11 quality modes, Speex can furthermore run in narrow-

band (4 kHz bandwidth) or wide-band (8 kHz bandwidth) mode. To reduce the

number of the algorithms working withing Speex and so reducing the complexity of

the system, it was throughout con�gured as narrow-band. Notice that for narrow-

band mode, some of the 11 quality modes are equal up to the bit level, resulting in

a total of 7 unique narrow-band quality modes within Speex.

It can be heard, that lower quality modes subtract part of the pitch content

of the signal and preliminary tests had shown that this a�ects the feedback loop.

For this reason, three of the native Speex quality modes (0, 5, 8) are evaluated in

the measurements and furthermore an own mode (2) was con�gured in a tweaking

process.

2“The Speex project has been started in 2002 to address the need for a free, open-source speech
codec. Speex is based on the Code Excited Linear Prediction (CELP) algorithm and, unlike the
previously existing Vorbis codec, is optimised for transmitting speech for low latency communication
over an unreliable packet network.” (Quoted from [Val06]) For further details, visit http://www.
speex.org/
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Speex' implementation of standard CELP features

Figure 3.1: Basic concept of signal synthesis in Speex. This represents the analysis
block of Figure 2.7. The two Codebooks are both represented in the �gure: the
static (here: �xed) Codebook and the (virtual) periodic (here: adaptive) Codebook.
Graphic copied from the o�cial Speex paper [Val06, p. 3] which is under public
license4.

• Optimization method: Speex utilizes the LMS optimization method described

in Section 2.3.4.

• Perceptual noise shaping: Speex makes use of the noise shaping concepts de-

scribed in Section 2.3.5. The utilized noise shaping �lter is:

S(z) =
1− P ( z

γ1
)

1− P ( z
γ2

)
, with γ1 = 0.6 and γ2 = 0.9 (3.3)

Enhancements of Speex to standard CELP codec

• Multiple pitch gains per frame: Speex uses multiple pitch gain values, with a

number count from 1 to 3, depending on the quality setting. When using 3

pitch gain values, an optimal pitch period Popt is found and then the estimated

excitation signal is build as a linear combination of e(n−Popt−1), e(n−Popt)

and e(n− Popt + 1), i.e. also using the adjacent shifted signals for prediction.

4Copyright by Jmvalin at en.wikipedia [CC-BY-2.5] http://commons.wikimedia.org/wiki/
File:Celp_decoder.svg, from Wikimedia Commons.
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• Shortened Codebook: Each CELP subframe comes in at a length of 40 samples

(5 ms). The common approach is to use a static Codebook with vectors of 40

sample length. Speex instead uses Codebooks with a length of 5 samples5, then

dividing the 40 sample subframe into 8 sub-vectors with 5 sample length each

and matching these with the vectors of the short Codebook. This reduces the

CPU load signi�cantly. On the other hand it raises the channel throughput

because 8 instead of 1 Codebook vector indices have to be transmitted per

subframe.

Test con�gurations

The implemented JACK module utilizes the Speex library functions for encoding

and decoding a single frame. The application provides a parameter control that can

select the Speex quality mode, which determines the main con�guration parameters

of the CELP coding procedure. Three of the native Speex quality modes were

included in the measurements. Notice that MODE 2 in contrast, is a tweaked Speex

con�guration, trying to optimize the balance between speech quality and e�ect on

the maximum stable feedback gain. This tweaked mode is a mixture of the native

quality modes 2 and 3 of Speex. The following table shows the main con�guration

settings in these modes.

codebook number of pitch gain speech gain [dB]

algorithm size pitch gains on level mean var name

Speex 0 6 1 frame −3.2 0.6 SPEEX-MODE0

Speex 1024× 40 3 frame −0.4 0.1 SPEEX-MODE2

Speex 512× 10 3 subframe +0.2 0.0 SPEEX-MODE5

Speex 256× 5 3 subframe +0.2 0.0 SPEEX-MODE8

Table 3.2: (Tweaked) Speex test con�gurations

3.1.3 Tweaked original CELP (CELP-GAMMA)

Another approach to tweak the feedback suppression e�ect of a speech codec was

to build an own CELP implementation from scratch to be able to have a relatively

light-weight code base (compared to Speex ), that can be overseen and con�gured

5This length varies on the setting of the quality mode.
6No Codebook is needed, as comfort noise is used as the excitation signal
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in a more simple way. Starting point for this original implementation in C/C++ as

a JACK application was the MATLAB CELP example code written by Sourav

Mondal that is accessible on the MATLAB Central database 7.

The algorithm operates on 8 kHz sampling rate with a frame size of 160 samples

(20 ms) and a subframe size of 40 samples (5 ms). For each frame, the optimal

LPC coe�cients are calculated with the Levinson-Durbin recursion. The subframe

analysis is explained in detail in the following section.

Implementation of the subframe analysis

• Optimization method: The implementation utilizes the cross-correlation opti-

mization method described in section 2.3.4.

• Perceptual noise shaping: As in the case of Speex, the noise shaping concepts

described in Section 2.3.5 are utilized here. The applied noise shaping �lter is:

S(z) =
1− P ( z

γ1
)

1− P ( z
γ2

)
, where γ1 = 0.85 and γ2 = 1.0, (3.4)

leading to

S(z) =
1− P ( z

0.85
)

1− P (z)
. (3.5)

This relates to the noise weighting �lter W (z):

W (z) =
1

S(z)
=

1− P (z)

1− P ( z
0.85

)
. (3.6)

Setting γ2 = 1 has a computational advantage. When using CELP with

perceptual noise shaping, we have to do the following �ltering in each round

of the CELP analysis-by-synthesis loop:

x̂W (n) = e(n) ·HSynthesis ·W (z) = e(n) · 1

1− P (z)
· 1− P (z)

1− P ( z
0.85

)
. (3.7)

x̂W (n) is the full synthesized signal in the noise-weighted domain. As we have

7see http://de.mathworks.com/matlabcentral/fileexchange/39038-celp-codec (visited
on 2014-11-15)
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set γ2 = 1, we can now save one of the two �lter operations per loop:

x̂W (n) = e(n) · 1

1− P (z)
· 1− P (z)

1− P ( z
0.85

)
= e(n) · 1

1− P ( z
0.85

)
. (3.8)

To shorten the following block diagram, we de�ne

A

(
z

γ

)
:= 1− P

(
z

γ

)
, (3.9)

which gives us:

x̂W (n) = e(n) · 1

A( z
0.85

)
. (3.10)

Furthermore, a given input x(n) can be transformed to the noise weighted

domain signal xW (n) as follows:

xW (n) = x(n) ·W (z) = x(n) · 1− P (z)

1− P ( z
0.85

)
= x(n) · A(z)

A( z
0.85

)
. (3.11)

Figure 3.2 shows the utiliziation of the low-complexity noise shaping in the

block diagram of the subframe analysis.
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A(z)
A( z

γ1
)

1
A( z

γ1
)

maximize b over P :
b = x̂W [n−P ]·xW [n]

x̂W [n−P ]2+ε

1
A( z

γ1
)

+

maximize Θ over k:
Θ =

x̂kW [n]·r̂W [n]

x̂kW [n]2

CODE
BOOK

1
A( z

γ1
)

ê[n] = Θopt · ckopt [n] + bopt · ê[n− Popt]

1
A(z)

x[n]

xW [n]

ê[n− P ], 16 ≤ P ≤ 160

x̂W [n− P ]

bopt · ê[n− Popt]

−

Θopt, kopt

ê[n]

x̂[n]

ck[n], 1 ≤ k ≤ 128

x̂kW [n]r̂W [n]

Figure 3.2: Original CELP subframe analysis-by-synthesis. The two maximization
blocks represent the optimization process for the four parameters per subframe:
optimal pitch gain bopt, optimal pitch index Popt, optimal Codebook index kopt and
the optimal Codebook gain Θopt.

To enhance the quality of the synthesized signal, the idea of Speex was adapted

to use a Codebook that contains vectors smaller than the subframe size (see above).

A sub-vector size of 5 samples was chosen and the original Codebook from Speex

with dimensions 256× 5 is used.
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Test con�gurations

The JACK application provides a fader for γ1 to adjust the smoothness of the noise

shaping �lter where γ1 = 1 implies no noise shaping. Figure 2.8 shows an exemplary

�lter shape for a setting of γ1 = 0.85. The tested con�gurations γ1 = 0.70 and

γ1 = 0.85 are both comparable in the percepted quality of the output signal, even

if the di�erence in the noise between the two settings is audible.

parameter speech gain [dB]

algorithm name value mean var name

CELP γ1 0.70 +0.5 0.0 CELP-GAMMA10.70

CELP γ1 0.85 +1.3 0.3 CELP-GAMMA10.85

Table 3.3: Tweaked CELP test con�gurations

3.1.4 Noise shaping mixer (NOISE-GAMMA)

When coding and decoding a signal with CELP, it can not be avoided to introduce

noise to the signal, because the Codebook is of �nite length. The noise shaping

mixer explained here, emulates the shaped noise that is introduced by the CELP

algorithms and hence, will be valuable as a comparison in measurements.

Implementation details

As seen above, both CELP implementations shape the noise through a constantly

updated noise shaping �lter

S(z) =
1− P ( z

γ1
)

1− P ( z
γ2

)
, with γ1 < γ2 (3.12)

to make the noise less audible (see Section 2.3.5). Therefore, we want an algo-

rithm that generates the same shaping �lter S(z). Once we have S(z), we generate

white noise, pass it through S(z) and add it to the input signal. This process can

be seen in Figure 3.3, which is implemented for measurements as a JACK module.
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Test con�gurations

The tested algorithm was set to the shaping �lter settings of both the Speex codec

and the original CELP codec from above. This allows us to directly compare the

in�uence of the noise generation between the noise-only implementation and the

full-CELP implementation.

parameter 1 parameter 2 speech gain [dB]

algorithm name value name value mean var name

NoiseShaping γ1 0.6 γ2 0.9 +1.8 0.1 NOISE-GAMMA0.60_0.9

NoiseShaping γ1 0.85 γ2 1.0 +1.8 0.1 NOISE-GAMMA0.85_1.0

Table 3.4: Noise shaping mixer test con�gurations. Notice that speech gain is again
the value of the measured gain that is applied between input and output of the
algorithm under test. The gain value of g in the block diagram is de�ned as described
in Section 3.1.4. The SNR was set to +3 dB in all experiments.

3.2 Baseline algorithm

3.2.1 Frequency shifter (SHIFTER)

[BH10] report that using a frequency shift algorithm can lead to a signi�cant increase

in maximum stable gain and that furthermore, this technique does not suppress feed-

back through a gain modi�cation of the input signal. For this reason the frequency

shifter algorithm is used as a reference for the feedback suppression measurements.

Theory

To perform a frequency shift, we can make use the concept of single sideband mod-

ulation (SSB) which was introduced by [Pet41] and is a re�nement of the methods

of amplitude modulation (AM ). In AM, the input signal x(n) gets multiplied with a

carrier wave with frequency fcarrier. Mathematically, this alone leads to a frequency

shift of fc for any incoming sinusoidal wave.

Still, we can not use pure AM for frequency shifting, because the negative part

of the spectrum also gets shifted by the value of fc and so appears in the positve

part of the spectrum, on the left hand side to fc (i.e. in the left sideband).

To avoid the appearence of the negative spectrum in the modulated spectrum,

the concept of SSB, shown in Figure 3.2.1 can be used. As its name indicates, it
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Test con�gurations

The value of the pitch shift can be set by a fader in the JACK application. The

values 2, 4 and 6 Hz were chosen for baseline testing as [BH10] also ran tests on

these settings and and furthermore note that the audio quality is reasonable within

this range.

parameter speech gain [dB]

algorithm name value mean var name

FrequencyShifter SHIFTHZ 2 0.0 0.0 SHIFTER-HZ2

FrequencyShifter SHIFTHZ 4 0.0 0.0 SHIFTER-HZ4

FrequencyShifter SHIFTHZ 6 0.0 0.0 SHIFTER-HZ6

Table 3.5: Frequency shifter test con�gurations



4. Measurement setup

This chapter explains the evaluation procedure of the algorithms under test. There-

fore, a concept of measuring the increase in maximum stable gain is established.

This concept is realized in a software simulation framework as well as in the con-

ducted live tests in real rooms. The exact implementation of the concept in both

variants is explained here in detail.

4.1 Concept of measuring the increase in maxi-

mum stable gain (IMSG)

To measure the increase in maximum stable gain (IMSG), we �rst need to de�ne a

method to measure the maximum stable gain (MSG) of a system. For this task we

need an ampli�er with a gain control knob. With this knob, the speci�c maximum

gain value ĝ has to be found, at which the system is still stable. Stable here means,

that the energy in an early time frame [t1, t2] should be equal to or higher as in

a later time frame [t3, t4] in any part of the system. Further, for every gain value

g ≥ ĝ the system has to be unstable. For a system with an inserted algorithm under

test named A, the MSG that ful�lls these conditions will be noted as ĝA.

For measuring the IMSG, we will compare the algorithm under test A to the

exact same system, but with the di�erence of the algorithm under test bypassed or

- equivalently - replaced by a Dirac �lter δ(0). This leads to the formula for the

increase in maximum stable gain (IMSG):

∆ĝA = ĝA − ĝδ(0). (4.1)

The important notion that follows from these considerations is: For determining

the IMSG by experiment, we need a method to determine the MSG of a system and

a subtraction after two measurements will do the rest to calculate the IMSG.
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4.2 Simulation framework

As measurements in real rooms are time-consuming, especially the tweaking process

of this work created the need for a secondary and more time-e�cient method for

proper evaluation of the implemented algorithms. Therefore, a software framework

was developed to carry out measurements by using pre-recorded impulse responses

for simulating various speaker and room characterics. Besides the bene�cial aspect

of time e�ciency, simulations also provide a higher amount of repeatability than

real-world experiments.

4.2.1 Experimental setup

The leading thought for the experimental setup of the simulated measurements was

to be as close as possible to a real-world measurement scenario. Therefore, the

algorithms under test still had to run within the JACK framework as coded, so

recoding them in another language was not considered as an option.

This constraint avoids a di�erent behaviour of the algorithms under the di�erent

testing conditions (simulation/real world). Developing two programs in di�erent

programming languages that are equal up to the bit-levels is hard, e.g. due to

di�erences in the length of elementary data types. As the algorithms are time-

varying, proving equal behavior of two versions that are not bit-exact is also di�cult.

For that reason, the decision was made to simulate the whole audio system

within the JACK 1 framework and to use MATLAB as a tool to supervise, con-

trol and evaluate the measurements being run within JACK. By using the Open

Sound Control (OSC)2 communication protocol, MATLAB was successfully utilized

to control parameters of the implemented JACK modules.

Figure 4.1 shows the structure of the evaluation framework and its basic modules,

which should be explained brie�y.

1see http://jackaudio.org/
2see http://opensoundcontrol.org/
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Microphone, speaker & room simulation. Loads an impulse response (IR)

and convolutes it with the signal to achieve a microphone, speaker and room sim-

ulation. As real-time IR convolution is a hard problem which is not within the

core of this thesis, the open-source program LV2 Convolution Reverb4 written by

Tom Szilagyi was used for this task. It allows for fast convolution by transferring

the signal to the frequency domain (using the open source library FFTW 5) and

hence, replacing the expensive convolution in the time domain with a more e�cient

multiplication in the frequency domain.

The program is written as an audio plugin under the LV2 standard. Therefore,

the program Lv2Rack was used as a wrapper to make the LV2 Convolution Reverb

accessible within the JACK framework.

For each IR, a con�guration �le for the LV2Rack had to be created. Stored

con�gurations can be reloaded to the rack via the system command line and by this,

MATLAB is able to automatically load a various speaker/room con�gurations, if a

list with the con�guration �les is provided.

Recorder. The recorder module is needed to let MATLAB listen to sinks and

sources within the JACK framework. The recorder has an on/o� switch and writes

the current recording in its bu�er to a �le on disk when turned OFF. Again, the

LIBSNDFILE library was used for the implementation of this JACK module, in

this case for writing the .WAV -�les.

Measurement procedure for a �xed gain value

To determine the system stability for a single parameter setting and one �xed gain

value, the following tasks are executed by MATLAB :

1. Set algorithm under test 's parameters, set current gain in ampli�er (both via

OSC signals) and load the speaker/room con�guration to the IR convolution

engine (via shell command).

2. Feed the excitation signal - a three second speech excerpt - with the player to

the system. The player is turned to ON via OSC.

3. Record the system for another 25 seconds6 after the excitation signal was

4see http://factorial.hu/plugins/lv2/ir/
5For details, confer [FJ98] and http://www.fftw.org/
6This is the time needed for real-time experiments. JACK can be run in so called freewheel

mode which means that it runs faster than realtime. Depending on the real-time CPU load of the
algorithm under test, the time of 25 seconds was reduced up to 0.5 seconds.
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To �nd this pair of g1 and g2, the algorithm described in the Figure 4.2 was

implemented. Basically, we start with a certain step size and a certain gain value

for that we are sure that the system is stable. Once started, we check for stability

(see steps explained above) of the system with the current gain and keep raising the

gain step by step. As long as the system keeps in the same state (stable/unstable),

we keep going in the same direction, waiting for the system to switch its state. When

the system actually switches, we invert the step direction (see minus in formula),

halfen the step size and wait again for the system to switch and so on and so on.

By this method, we guarentee, that after 5 state switches the step size is as small

as 0.1 dB and this will just happen when we are stepping around the pair of g1 and

g2.

4.3 Testing live in real rooms

As there may always be weaknesses in simulated experiments, it is necessary to

verify the results of the simulation with a live test in real rooms. The presumably

most important di�erence between simulation and the live test in this experiment is

a time-varying room transfer function, e.g. due to temperature changes. Acoustical

feedback is a fragile phenomenon and could hence be in�uenced by tiny, but steady

variations in the room transfer function. The setup of the live test is explained in

the following paragraphs.

4.3.1 Experimental setup

The concept of the measurement setup was built up on the idea of �exibility, re-

peatability and to be as close as possible to a real world use-case. These aims led

to the setup shown in Figure 4.3.
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knob and display. Compared to the speaker, microphone and room, an ampli�er

is the most linear part of an audio chain when used within a reasonable dynamic

range, which should allow us to replace it by a digital model, even if we want to

match a real world scenario.

Besides this digital processing, the rest of the audio chain was realized in real

world conditions, including the following parts:

• speaker,

• room,

• microphone.

Process of �nding the MSG for a �xed setting

To determine the MSG for a speci�c setting the following iterative procedure was

executed:

1. Set initial ampli�er gain.

2. Feed excitation signal from player to system.

3. Wait about 10 seconds after excitation and listen if system gets unstable.

4. If the system is stable, raise ampli�er gain. If it is unstable, decrease ampli�er

gain.

5. Repeat steps 2 to 4 until two gain values ĝ1 and g2 have been found, with

g2 = ĝ1 + 0.1dB and where the system is still stable for ĝ1 but unstable for g2.

4.3.2 Measurement equipment and con�gurations

The following audio equipment was used to carry out the measurements:

• E-MU 0404 USB audio interface

• Technics SA-AX540 stereo ampli�er

• Teufel Ultima 40 speaker

Furthermore, the MSG for all algorithms under test was evaluated for:

• 2 di�erent microphones

1. Sennheiser E835 cardioid, dynamic, hand-held microphone

2. Shure SM58 cardioid, dynamic, hand-held microphone
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• 2 di�erent rooms

1. Medium-sized conference room (short name: medium)

(4m× 6m× 3m, V = 72 m3, T60 = 0.7 s)

2. Large lecture hall (short name: large)

(21m× 29m× 7m, V = 4623 m2, T60 = 1.6s)

• 3 microphone postions per room

This results in a total of 2× 2× 3 data points per test con�guration.









5. Results

This chapter provides the results of the live test session as well as the simulation

measurements described in the previous chapter. After the presentation of the data,

a discussion is attached. But �rst, a few words about how the data is presented.

Result tables The result tables list the mean values of the increase in maximum

stable gain (IMSG) in dB for a certain algorithm under test con�guration and for

all data points that fall under the speci�ed category. Notice that the speech gain for

each algorithm under test (which can be found in the con�guration tables in Chapter

3) was removed as a bias from the measurement data of each con�guration.1

As in total there are 12 data points for each of the 13 algorithm under test con�g-

urations, the number of data points that go into the mean and standard devitation

statistics range from 4 (for three groups) to 12 (overall statistics).

Furthermore, the following hypothesis was tested for signi�cance on the overall

results:

• H1: "The mean value of the increase in maximum stable gain is greater than

0"

Which gives us the counter-hypothesis:

• H0: "The mean value of the increase in maximum stable gain is less or equal

to 0"

The statistical signi�cance p (i.e. the probability of H0) was calculated under

the untested assumption, that the values follow the Gaussian normal distribution.

1If for example the actually measured IMSG was 3.4 dB for an algorithm with a speech gain
bias of −1.2 dB (i.e. it lowers the volume of the speech signal), in that case, the resulting IMSG is
presented in the result tables and plots as 4.6 dB = 3.4 dB − (−1.2 dB). This is done, because in
an actual application of the algorithm, we would also compensate at some place for the gain loss
introduced by the algorithm.
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Result plots The plots visualize the mean and the unbiased standard deviation

listed in the tables. The mean values are marked with an 'o' symbol and the unbiased

standard deviation is represented by the length of the bar around the mean. The

total length of each bar matches exactly two unbiased standard deviations (measured

from one to the other end of a bar).
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5.3 Discussion

In this section, the foregoing results will be analyzed, interpreted and evaluated

with respect to the aim of this work of tweaking speech codecs to inhibit howling

suppression.

No group di�erences in measurement data. Looking at the data in Tables

5.2, 5.3, 5.4, which allow us to compare the measurement data between di�erent

system setups, we can infer, that none of the setup categories was in�uencial to

the measurements despite the low count of 12 data points per tested algorithm.

Therefore, we will mainly rely on the overall results (Table 5.1) for the rest of this

discussion.

No di�erence between live test results to the results from simulation.

The validated simulation framework allowed for proper testing of an additional room

(living room) within the simulation. The resulting mean values are comparable to

the live test data and hence, do not lead to additional �ndings.

Frequency shifter reference has higher IMSG than reported in paper.

The frequency shifter algorithm that is used as a baseline for these measurements

shows an IMSG from +5.2dB up to 7.5 for frequency shifts between 2 Hz and 6 Hz.

The range that is reported by [BH10] for these shift amounts is 2.5 dB to 3.5 dB.

A possible explanation could be the di�erence in the stable feedback criterion that

was applied in measurements.

As explained above, in the scope of this thesis, the only criterion determining if

a system has a stable feedback depends on the energy in a late time frame. This

criterion works very well in a system with no algorithm under test running, as the

feedback mostly occurs at a single frequency that adds up or decreases its energy

over time. This can be evaluated easily.

In the case of the frequency shifter, even if the mentioned criterion is not full�lled,

the actual listening experience is the one of a very strange signal, when the gain

of the feedback loop is high but still stable. It might be, that in a conservative

measurement setup one would have determined the feedback to be unstable in these

cases, as it is the feedback loop that creates these sounds, that are very unpleasant.

In the case of this work, we needed consistency with the simulation framework and so

had to choose a criterion that is easy to evaluate, which might explain the di�erences

in the measurements.



5.3. DISCUSSION 61

Speex shows a signi�cant IMSG for low quality settings. For the ultra-low

quality mode 0 of Speex, the preliminary tests were successfully veri�ed as at it has

proven to provide an IMSG of 7.4 dB. In this mode, no pitch predictor is used.

This will subtract most of the pitch information out of the signal and hence, no

sinusoidal feedback can build up. This is exactly what can be heard when bringing

the algorithm to a gain of unstable feedback: The perceived sound is not sinusoidal

and instead sounds more like a pink noise signal that adds up in the feedback loop.

The reason for the IMSG of 3.5 dB for the modi�ed Speex quality mode 2 should

be very similar. In this mode, a pitch prediction is active, but it is weak and more

error prone than the prediction algorithms running at high quality modes. This

might be the reason, why the IMSG is lower than for quality mode 0, but higher

than for the modes 5 and 8.

Last to mention, that the tested high quality modes 5 and 8 of Speex do not

modify the stable feedback gain.

Negative e�ect on IMSG with original CELP implementation. In contrast

to Speex, the original implementation of the CELP codec shows a negative e�ect on

the IMSG. Compared to Speex, a main di�ernence in the implementation is the way

that the pitch predicor works. When fed with an enduring sinusoidal signal, the

original CELP produces a periodic clicking noise. This clicks might add additional

energy to the system when a sinusoidal feedback is occurrent and by this accelerating

the build up of signal energy in the feedback loop.

Noise shaping mixer increases the maximum stable gain, but this e�ect

is not substantive. As well as the low quality Speex modes, the noise shaping

mixer shows an increase in maximum stable gain, here by 1.8 dB with the Speex

noise shaping �lter settings and 1.9 dB with the orignial CELP noise shaping �lter

settings.

The reason for this positive value lies in the method of removing the speech gain

bias (See begining of this chapter on the calculation of the speech gain value.) from

the measurement results. As the speech gain for this algorithm is 1.8 dB2, it implies,

that in actual measurements, the measured e�ect was only 0.1 dB and then, after

removing the bias, we get to the high value of 1.9 dB IMSG. So actually, adding

the noise does not actually a�ect the feedback loop, it only changes the speech gain

21.8 dB is exactly the additional gain for an output signal, when uncorrelated noise with an
SNR of 3 dB SNR is added to an input signal, which can be proven by adding up the powers of
the to signals.
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of the tested module, which is why the numbers with removed bias show a positive

e�ect.

On the other hand, it is interesting to see, that for adding noise at 3 dB SNR,

the IMSG is at 1.8 dB. This means, that even if the low qualtiy Speex modes had

an SNR of 3 dB, we could not explain the feedback suppression e�ect only by the

introduced noise, because the e�ect is signi�cantly higher than 1.8dB. Hence, there

de�nitely must be a working principle besides adding noise to the signal, that causes

the feedback suppression within Speex .

No signi�cant IMSG for the tweaked ADPCM module. The tweaked AD-

PCM module shows an IMSG of 0.2 and 0.3dB for the two tested con�gurations.

With a standard deviation around 1.0 dB this is not signi�cant. It is interesting

to see, that the idea of �attening out the spectrum does not a�ect the feedback

loop signi�cantly. From a theoritical point of view, this should a�ect the MSG in a

positive way.

An explanation why this did not work out in the measurements might be the

low number count of 10 �lter coe�cients that was implemented. Such a low number

might not be su�cient to subtract sine waves from the signal that are at the (usually

high) frequency of sinusoidal feedback. For a sampling rate of 8 kHz, 10 samples

correspond to a pitch periodicity of 800Hz, so sine waves above this frequency can

not be canceled out by the analysis �lter.

So, even if in this work the ADPCM did not help with feedback suppression,

further research might lead to better results by using a longer prediction �lter.



6. Conclusion

This work tried to utilize the basic concepts of speech coding to suppress acoustical

feedback. The core result of this research is the following:

• The low quality settings of the Speex open-source speech codec increase the

maximum stable gain by more than 3 dB. The goal of maximizing the possible

e�ect of the codec on feedback suppression while also maintaining a reasonable

audio quality was reached by con�guring a new Speex quality mode that is a

mixture of the native Speex quality modes 2 and 3.

Besides these main results there are a few other noticable �ndings regarding the

research topic of feedback suppression:

• Each of the 13 algorithm under test con�gurations showed a standard devia-

tion lower than 1.6 dB for the increase of maximum stable gain. Therefore,

only a low number of measurements was needed to statistically verify that an

algorithm has a positive e�ect on the increase in maximum stable gain.

• There was no signi�cant di�erence in the measurements for di�erent system

con�gurations, meaning the variation of room size, microphone model or mi-

crophone positioning. We infer, that an algorithm that works well for feedback

suppression in only a few conditions will also work well in comparable system

setups.

• The frequency shifter algorithm might have an even higher a�ect on the in-

crease in maximum stable gain than reported by [BH10]. Further tests should

be carried out, in the best case with an enhanced stability detection criterion

that includes the perceived annoyance of the signal in the loop.
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Now that this thesis has � hopefully � answered several questions about the re-

search topic of feedback suppression, I am happy to end this work with two questions

that will might be able to drive further research in this �eld:

• Is there a way to �nd the exact working principle of the feedback suppression

in the Speex low quality modes?

• And if yes, can these �ndings be utilized to tweak the codec even more than

within this project?

�
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