
Orbits - a gesture-controlled video game for

psycho-acoustic tests.

Sascha Bienert

23rd February 2010



Eidesstattliche Erklärung

(Affirmation)

Hiermit versichere ich, die vorliegende Arbeit selbständig und unter aus-

schließlicher Verwendung der angegebenen Literatur und Hilfsmittel erstellt

zu haben. Die Arbeit wurde bisher in gleicher oder ähnlicher Form keiner

anderen Prüfungsbehörde vorgelegt und auch nicht veröffentlicht.

Sascha Bienert

Berlin, den 01. März 2010

2



Acknowledgements

3





Abstract

5



Contents

1 Interacting with Sound 9

1.1 Perception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.1 Perception of ecological properties . . . . . . . . . . . . 10

The ecological approach and everyday listening . . . . 11

Material, shape, size, velocity and interaction . . . . . 14

1.1.2 Continuous sound feedback . . . . . . . . . . . . . . . 19

1.2 Technical aspects . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.2.1 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.2.2 Synthesising Sound . . . . . . . . . . . . . . . . . . . . 26

1.2.3 Physically informed synthesis by means of a modal object 27

1.3 Video games with rolling objects — an overview . . . . . . . . 28

1.3.1 Sound feedback . . . . . . . . . . . . . . . . . . . . . . 28

1.3.2 Control & interaction . . . . . . . . . . . . . . . . . . . 28

2 The Game 30

2.1 Game concept . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.1.1 Appearance . . . . . . . . . . . . . . . . . . . . . . . . 30

2.1.2 The player’s task . . . . . . . . . . . . . . . . . . . . . 33

2.1.3 Possibilities to create tasks for tests . . . . . . . . . . . 35

2.2 Technical realisation and sound feedback . . . . . . . . . . . . 36

2.2.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . 36

Audio . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Video . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Accelerometer data . . . . . . . . . . . . . . . . . . . . 40

6



2.2.2 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2.3 Sound feedback . . . . . . . . . . . . . . . . . . . . . . 43

Rolling sound . . . . . . . . . . . . . . . . . . . . . . . 45

Sliding sound . . . . . . . . . . . . . . . . . . . . . . . 48

BLIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Inverted sound . . . . . . . . . . . . . . . . . . . . . . 49

3 The Source Code 50

3.1 The main files: orbits.hpp, orbits.cpp . . . . . . . . . . . . 51

3.2 Audio processing . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.1 The t params4coreaudio struct . . . . . . . . . . . . . 55

3.2.2 The t params4audio callback struct . . . . . . . . . 56

3.2.3 The t audio param struct . . . . . . . . . . . . . . . . 56

3.2.4 The audio initialisation process . . . . . . . . . . . . . 57

3.2.5 The audio callback function(s) . . . . . . . . . . . . . . 59

3.3 Video processing . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.1 Video callback functions . . . . . . . . . . . . . . . . . 63

3.3.2 The t video param struct . . . . . . . . . . . . . . . . 66

3.4 Important classes & structs . . . . . . . . . . . . . . . . . . . 67

3.4.1 The c scene class . . . . . . . . . . . . . . . . . . . . . 67

3.4.2 The c scene element class . . . . . . . . . . . . . . . 68

The t sonic behaviour struct . . . . . . . . . . . . . 70

The t movement behaviour struct . . . . . . . . . . . 71

The t graphical representation struct . . . . . . . 72

3.4.3 Creating a custom game . . . . . . . . . . . . . . . . . 73

The t game state struct . . . . . . . . . . . . . . . . . 74

The t step struct . . . . . . . . . . . . . . . . . . . . . 74

The init scenes() function . . . . . . . . . . . . . . . 75

4 Proposals and Improvements 81

5 Résumé 82



Bibliography 82

List of Figures 87



Chapter 1

Interacting with Sound

1.1 Perception

The human being is endued with five senses1 (Vision, Hearing, Taste, Smell,

Touch) as already described by Aristotle [1]. Amongst all of them vision and

hearing are the most important for human computer interfaces; by means of

them most of the communication between human and computer takes place

[2].

Sight is our main sense, 80% of all information that we perceive is sensed

by our eyes, but it is limited to the viewing cone. Eventually hearing gives

us the ability to “draw” the complete picture of our local environment. With

our ears we can sense information about objects that are hidden or outside

our field of vision. Furthermore we are able to perceive things that are not

visible, e. g. small insects, material properties or such abstract things as

music.

If one takes a textbook to read about the ear’s topology, functionality

and capabilities, its ability to deviate distance and azimuth of an auditory

source, and the perception of loudness, intensity and frequency are always

elaborately discussed. In recent years, a very interesting question has been

subject to various studies: How do we perceive ecological information such

1Modern physiology attributes more four senses to the human (such as equilibrioception
and thermoception).

9



as properties of the source that produced a sound? Sound is part of our

environment, almost every event of our natural surroundings, every activity,

involves sounds — sounds that include information about the underlying

physical incidents. However, besides the “natural” environment, we humans

spend more and more time in “artificial” environments, whose sounds have

to be generated artificially too.

In many cases perception is shaped by multi-modal influences. The size

of an object for example can be seen and felt. Taste and Smell also show

a close relationship; everybody remembers how strange things “taste” when

we suffer a cold and cannot smell. But what about the weight of things or

the textures of surfaces? It clearly can be felt by lifting or touching them.

It is an interesting topic to explore if there are other ways to perceive those

qualities. As things in computer games in most cases cannot be touched and

some properties clearly cannot be imparted by means of the visual sense (by

displaying them on the screen), it is worthwile to dedicate our intention to

the possibilities that lie in auditory perception.

Two related aspects have been subject to a number of scientific studies

over the past years: firstly, to which extent are humans able to recognise

properties of the sound source through auditory reception? And secondly,

can human performance at control tasks in human computer interfaces be

augmented by adding sound? Especially continuous sound is a sparsely in-

vestigated topic in the designing of human computer interfaces.

1.1.1 Perception of ecological properties

There are a number of papers about perception of sound-producing processes

of our environment2. Lederman (1979 [4]), Wildes & Richards (1988 [5]),

Gaver (1988 [6]), Lutfi & Oh (1997 [7]) and Klatzy, Pai & Krotkov (2000 [8])

addressed the perception of material, Lakatos et al. (1997 [9]), Carello et

al. (1998 [10]) and Kunkler-Peck & Turvey (2000 [11]) the shape and size of

objects, Houben, Kohlrauch & Hermes (2001 [12]) the perception of velocity

and Warren & Verbrugge (1984 [13]) the interaction between objects.

2An overview can be found in [3].

10



Vanderveer was the first to describe the ecological approach to auditory

perception (1979 [14]), an approach characterised by a focus on events of

our environment. William W. Gaver proposed the concept of two modes of

listening, which he called musical listening (the traditional approach: pitch,

loudness, duration, etc.) and everyday listening (1988 [6], 1993 [15] [16]).

New attributes and qualities of perception are of most interest, those that

tell something about the source of a sound-producing process or the process

itself (which object? what has happened to it?).

Besides objects and physical processes, there has also been research on

sounds caused by human beings. For instance, Repp (1987 [17]) investigated

the perception of the sounds of clapping hands and Li, Logan & Pastore

(1991 [18]) presented subjects the sounds of walking persons.

Those papers show that sounds play a roll when we explore our environ-

ment. However, most of them base upon sets of prerecorded sounds whereas

continuous (realtime) sound feedback has rarely been studied. It is a major

motivation of this thesis to establish a basis for studies on the perception of

realtime-generated sounds.

The ecological approach and everyday listening

J. J. Gibson (1950, 1966, 1979) was the major developer and proponent of the

ecological approach to perception [19]. Gibson’s approach competes with the

so-called “cue theory”, another theoretical approach. Both theories originate

from considerations about the (visual) perception of depth. Goldstein [19]

explains:

The cue theory focuses on identifying information in the retinal image
that is correlated with depth in the world [. . . ] and proposes a number of
types of cues that signal depth in a scene. [. . . ] In contrast, the ecological
approach focuses not on the information in the retinal image, but on the
information that exists “out there” in the environment.

Gibson pointed out that our environment contains constant information that

does not change when an observer changes position or moves through the

environment. He called that constant information invariant information.

Goldstein about Gibson’s approach:

11



Gibson’s emphasis on invariant information reflects his commitment to
studying perception that occurs in the natural environment (hence the term
ecological approach to perception). Gibson pointed out that, as people go
about perceiving their environment, they are usually moving, and therefore,
they need to use invariant information that doesn’t change every time they
observe their environment from a different point of view.

In addition to his assertion that the study of perception should be con-
cerned with how moving observers use invariant information to perceive,
Gibson made another assertion that we need to consider in order to fully ap-
preciate his approach. Gibson argued strongly against two important com-
ponents of the constructivist-based approach [. . . ]: the retinal image and
processing. [. . . ]

However, many (researchers) feel that information in addition to Gib-
son’s invariants are involved in perception, and that perceptual processing is
far too important a part of perceptual process to ignore. Many researchers
also feel that, for Gibson’s approach to be truly meaningful, it is necessary
to go beyond identifying information that is available for perception and to
determine whether that information is actually used for perception.

In [13] Warren & Verbrugge summarise: “(The) general perspective on

auditory perception may be called ecological acoustics, by analogy to the

ecological optics advocated by Gibson (1961, 1966, 1979) as an approach to

vision. The ecological approach combines a physical analysis of the source

event, the identification of higher order acoustic properties specific to that

event, and empirical tests of the listener’s ability to detect such information,

in an attempt to avoid the introduction of ad hoc processing principles to

account for perception (Shaw, Turvey, & Mace, 1981).” In [15] Gaver de-

scribes the continuum from event to experience (see fig. 1.1) and finds that

the emerging sound “provides information about an interaction of materials

at a location in an environment”.

Gaver established the concept of everyday listening (1988 [6], 1993 [15]

[16]). He defines everday listening “as the perception of events from the

sounds they make” and distinguishes it from musical listening, which he

describes as “the perception of structures created by patterning attributes of

sound itself” ([6], p. 3). In [15] he illustrates that difference:

Imagine that you are walking along a road at night when you hear a
sound. On the one hand, you might pay attention to its pitch and loudness

12



Figure 1.1: “The continuum from world to experience. A source event causes sound
waves: some radiate directly to an observation point, others are modified by
the environment before reflecting to the listener. Invariant patterning of the
acoustic array near the ear is picked up by the auditory system, providing
information for the experience of everyday listening” (Gaver [15])

and the ways they change with time. You might attend to the sound’s timbre,
whether it is rough or smooth, bright or dull. You might even notice that
it masks other sounds, rendering them inaudible. These are all examples
of musical listening, in which the perceptual dimensions and attributes of
concern have to do with the sound itself, and are those used in the creation
of music. These are the sorts of perceptual phenomena of concern to most
traditional psychologists interested in sound and hearing.

On the other hand, as you stand there in the road, it is likely that you
will not listen to the sound itself at all. Instead, you are likely to notice that
the sound is made by an automobile with a large and powerful engine. Your
attention is likely to be drawn to the fact that it is approaching quickly from
behind. And you might even attend to the environment, hearing that the
road you are on is actually a narrow alley, with echoing walls on each side.

This is an example of everyday listening, the experience of listening to
events rather than sounds. Most of our experience of hearing the day-to-day
world is one of everyday listening: we are concerned with listening to the
things going on around us, with hearing which are important to avoid and
which might offer possibilities for action. The perceptual dimensions and
attributes of concern correspond to those of the sound-producing event and
its environment, not to those of the sound itself. This sort of experience seems
qualitatively different from musical listening, and is not well understood by

13



Figure 1.2: “A hierarchical description of simple sonic events” (Gaver [15])

traditional approaches to audition.

Gaver was seeking to “develop an account of ecologically relevant per-

ceptual entities: the dimensions and features of events that we actually ob-

tain through listening”3 and “describe the acoustic properties of sounds that

convey information about the things we hear”4. Therefore he developed a

descriptive framework of the perceptual attributes and dimensions that char-

acterise the auditory perception of events and focussed on audible attributes

of source events. Fig. 1.2 shows a map of the space of everyday sounds.

“Sound-producing events are distinguished first by broad classes of materials

and then by the interactions that can cause them to sound. Most generally,

sounds indicate that something has happened, that an event has occurred,

that there has been an interaction of materials. All sounds, then, convey this

information.”

Material, shape, size, velocity and interaction

Lederman (1979 [4]) investigated the role of tactile and auditory information

in the perception of surface texture. Subjects were asked to judge the rough-

ness of aluminium plates numerically. Three conditions were presented: only

tactile, only auditory, tactile-plus-auditory. Auditory judgements were sim-

ilar, but not identical to corresponding haptic touch judgments. Roughness

estimates between the tactile and tactile-plus-auditory condition did not dif-

fer, i.e. subjects tended to use the tactile cues if both sources of information

were available. However, subjects were able to judge roughness using only

3“What in the world do we hear?” [15]
4“How do we hear it?” [16]

14



the sounds produced by touching the surfaces5.

Guided by a model of vibrating solids6 Wildes & Richards (1988 [5])

were searching for an acoustical parameter that characterizes material. The

coefficient of internal friction tanφ is an instrinsic parameter of solid material

that describes its dynamical behaviour7. Wildes & Richards derived two

related measures of internal friction in the acoustical domain: decay time te

and bandwidth Q−1. However, they did not study which role te and Q−1

play at the perception of material.

William W. Gavers (1988 [6]) dissertation is titled “Everyday Listening

and Auditory Icons” (q.v. page 11), and contains two empirical investigations

about the identification of 17 different environmental sounds ([6], chapter

3, p. 38 ff.) and categorisation of material of struck metal and wooden

bars of different lengths ([6], chapter 4, p. 46 ff.). In the first experiment

subjects were asked to describe presented sounds as detailed as possible.

Among these sounds were impacts sounds, crumpling sounds, paper sounds,

liquid sounds and complex sounds. Impacts and liquid sounds were always

identified. Crumpling can sounds were often confused with multiple impacts,

whereas crumpling paper was rarely confused with impacts. Subjects seemed

to be able to extract information from impact sounds “about the material

of sound-producing objects, as well as their hollowness and sometimes their

sizes” ([6], p. 40). The complex sounds also showed interesting results: “all

subjects accurately identified the razor sound as made by a machine, (but)

they were fairly uncertain about the exact nature of that machine” ([6], p.

42). Walking sounds, writing with chalk and opening/closing doors were

always correctly identified, whereas only one subject correctly recognised

an opened and closed file drawer. Gaver states that “[. . . ] accuracy of

perception is not an all or none matter, but depends on the required level

of generality. Sometimes subjects’ responses were accurate only in their

abstract similarities with the actual events, but other times they were correct

about quite detailed aspects of the events.” ([6], p. 39)

5In the auditory condition the subjects did not touch the surfaces themselves, the
experimenter moved his fingertips along onto the aluminium plates.

6standard anelastic linear solids
7tanφ is the measure of anelasticity.

15



Lutfi & Oh (1997 [7]) studied the discrimination of material in the sound

generated by an idealized struck bar, rigidly clamped at one end. “Fre-

quency, intensity, and decay modulus are, for a fixed geometry and fixed

driving force, uniquely determined by the material composition of the bar.”

Listeners were asked to discriminate changes in material composition. In one

half of the experiment they were presented two stimuli, one of them being

an iron sound, and the other either silver, steel or copper. In the second half

they were presented glass sounds with crystal, quartz and aluminium being

the alternatives. Upon each presentation a random pertubation in each of

the acoustic parameters was introduced. “For each material and procedure

a set of 100 waveforms was synthesised where the values of mass density

and elasticity for each waveform were selected independently and at random

from normal distributions.” Correlations with the listener’s response were

calculated and “reveal(ed) that listeners fail to make optimal use of the in-

formation in the acoustic waveform by tending to give undue weight, for a

given material change, to changes in component frequency”.

Klatzky, Pai & Krotkov (2000 [8]) investigated the relation between ma-

terial perception and variables that govern synthesis of contact sounds (fun-

damental frequency and frequency-dependent rate of decay). In the first two

experiments subjects judged the similarity of synthesised sounds with respect

to material on a continuous scale. The sounds were synthesised according to

the theory of clamped struck bars struck at an intermediate point. Stimuli

had the same values of frequency and decay, but in the second experiment

they were equalized by overall energy. As results did not differ significantly

in the two experiments they showed that decay rate, rather than total en-

ergy or sound duration, was the critical factor in determining similarity. In

experiment 3 subjects had to judge the difference in the perceived length of

the objects. It was shown that similarity judgments in the first two studies

were specific to instructions to judge material. In experiment 4 subjects had

to categorize the material of the objects using four response alternatives:

rubber, wood, glass and steel. The results demonstrated that judgments of

material and length difference both depend significantly on frequency and

decay, even though decay played a substantially larger role in material sim-

16



ilarity judgments than in length.

Lakatos, McAdams & Caussé (1997 [9]) investigated listeners’ ability

to discriminate geometric shape. “In cross-modal matching tasks, subjects

listened to recordings of pairs of metal bars (Experiment1) or wooden bars

(Experiment2) struck in sequence and then selected a visual depiction of the

bar cross sections that correctly represented their relative widths and heights

from two opposing pairs presented on a computer screen.” All the stimuli

were equalized in loudness. For the analysis a 75% performance criterion

across all trials was applied. Subjects that did not discriminate the geomet-

ric differences with at least 75% correct answers in a two-alternative forced

choice (2AFC) task were excluded from further analyses. For the metal bars

8.3% of the subjects were subsequently excluded, and 16.6% for the wooden

bars. Results were then analysed using a multidimensional scaling program

(MDS). A two-dimensional solution for the data related to the steel bars

was found to be the most appropiate. “The two dimensions appeared to be

related to the W/H ratio of the bars and spectral centroidLog Likelihood

(LogL) and Values of Information Criterion”. For the data related to the

wooden bars a stable one-dimensional MDS solution was found. Again, the

coordinates along this dimension correlated with the W/H ration of the bars.

In summary, the authors state that “the results suggest that listeners can en-

code the auditory properties of sound sources by extracting certain invariant

physical characteristics of their gross geometric properties from their acoustic

behavior”.

Carello, Anderson and Kunkler-Peck (1998 [10]) investigated the ability

to perceive the precise sizes of objects on the basis of sound. Subjects judged

the perceived length of dropping wooden dowels of different lengths onto a

hard surface. It was shown that the ordinal and metrical success (relation-

ship between acoustical and perceptual levels) was related to length, i.e. the

actual length is a predictor for length estimates. That followed an analysis

using three acoustical features: duration, amplitude and frequency to exam-

ine their account for perceptual performance and it was revealed that “none

of the simple regressions of perceived length onto these acoustic variables

was as successful as actual length in accounting for performance in the two

17



experiments individually or combined”. A kinematic analysis of the falling

rods “suggests the potential relevance of an object’s inertia tensor in con-

straining perception of that object’s length, analogous to the case that has

been made for perceiving length by effortful touch”.

Kunkler-Peck & Turvey (2000 [11]) investigated shape recognition from

impact sounds. In Experiment 1, the heights and widths of steel plates of

identical mass (and thus identical area) were varied8. The steel plates were

struck by a steel pendulum9. “A report apparatus [. . . ] consisted of four in-

dependently movable wooden dowels (two horizontal and two vertical), whose

positions could be adjusted along a single wire track [. . . ]”. Subjects were

asked to indicate either height or width of a presented plate10 by moving

two of the report dowels (either the horizontal or the vertical ones). Sub-

jects uniformly underestimated the actual dimensions, but ordered properly.

Furthermore, results suggest that the “participants’ responses were scaled

by a definite impression of [. . . ] height and width”. Simple regressions

of perceived dimensions or modal frequencies as predictors were computed

and showed correlations of at least 0.95. Thus “Experiment 1 revealed that

listeners could disciminate the heights and widths of vibrating rectangualr

objects”. In the second experiment participants were asked to scale the di-

mensions of steel, Plexiglas and wooden plates. Actual dimensions were not

precisely reproduced — as in experiment 1 they were underestimated — but

ordered correctly and subjects’ perceived dimensions showed definite scaling

again. Material was found to “modulate the perceptual measures of plate

geometry”. In Experiment 3 and 4 Kunkler-Peck and Turvey investigated

shape recognition directly. In Experiment 3 subjects were asked to judge

whether a vibrating plate is circular, triangular or rectangular. The plates

were made of steel11. “Participants were not given practice trials—they were

never provided feedback throughout the experiment.” For Experiment 3 the

authors found that “participants accurately identified the corrent shape at

a level well above chance”. In Experiment 4 plates of different shape (circu-

8A square, a medium rectangle and a long rectangle were used.
9The pendulum was always released from the same point at each trial.

10The plate was struck (and thus audible), but not visible to the subject.
11The plates were of the same material, mass and surface area.

18



lar, triangular, rectangular) and material (steel, wood, Plexiglas) were used

and participants were asked to judge shape and material. The material was

almost perfectly identified, and shape was correctly identified at a level well

above chance. In the analysis it was revealed “that there was a tendency for

participants to assiciate a partucilar material with a particular shape (wood

with circle, steel with triangle, and Plexiglas with rectangle)”.

Warren & Verbrugge (1984 [13]) investigated the identification of break-

ing and bouncing events. Comprising the ecological approach (q.v. page 11)

they distinguish between the structural invariant of an event (“the informa-

tion that specifies the kind of object and its properties under change” [13])

and the transformational invariant (“the information that specifies the style

of change itself” [13]). The authors explored “the acoustic consequences of

dropping a glass object and its subsequent bouncing or breaking” to “identify

the transformational invariants specific to the two styles of change and suf-

ficient to convey them to a listener.” Structural invariants (material, size,

shape) were not discussed. Experimental stimuli were recorded by dropping

different glass objects from different heights. Thus for each object a break-

ing and a bouncing sound was recorded. The authors verified the subject’s

ability to correctly identify these two kinds of events with the recorded stim-

uli. Thereupon two experiments with synthetic stimuli were conducted. The

bouncing sound was synthesised by quasi-periodic pulse trains generated by

recordings of glass tokens, and the breaking sound was synthesised by super-

imposing the same pulse trains using different damping coefficients. The sub-

jects were able to identify the events very accurately. The transformational

invariants for bouncing were found to be a single damped quasi-periodic se-

quence of pulses. In contrast, for breaking these invariants are a multiple

damped, quasi-periodic sequence of pulses.

1.1.2 Continuous sound feedback: related work

In this section I want to present some papers that make use of continuous

sound feedback, which beyond the musical context is a rather uncharted field

of research.

19



Rath & Rocchesso investigated the influence of continuous auditory feed-

back on the perception of the state of a manipulated object (2005 [20]).

They developed “a sound model for rolling interaction that enables the con-

tinuous control and immediate acoustic expression of the involved ecological

parameters” and that “runs in real time in its complete control-feedback

behavior”. The sound model is based on physical considerations (but in-

volves a degree of simplification and abstraction) and the sound is computed

in real time. Details about the sound model can be found in [21] and will

be discussed later in this work (q.v. page 45). The authors “embodied

the model into a simple control metaphor of balancing a ball on a tiltable

track”. Users have access through a physical representation of the balancing

track, a 1-meter-long wooden stick. This tangible audio–visual interface has

been called “Ballancer” and can be seen at figure 1.3. An identification test

showed that the “overall association of the synthetic sound with rolling was

high”. The test consisted of four scenarios. In the first scenario subjects

were asked to free-associate short sound examples “of a small ball rolling

on a plain, smooth, hard surface until coming to a rest” synthesised by the

model (virtual ball and synthesised sound and display). In the second scen-

ario subjects were blindfolded and had access to the balancing track, they

heard sound generated (in real-time) by the same sound model and were

asked the same question (blindfolded and synthesised sound). They were

instructed to carefully move their arm up and down and listen to the sonic

reaction of the device. Finally they were asked to identify what they heard.

In the third and fourth scenario the sound was not synthesised by the rolling

sound model, but a mechanical device was used (a glass marble rolling on a

track, please compare figure 1.3). Subjects were blindfolded in both tests. In

the third scenario subjects listened to the sound of the small marble and were

asked what they heard. In the fourth scenario these (blindfolded) subjects

were given access to the track, followed by the same question. The authors

subsume their findings in the following way:

Summarizing the results of the questions about the sounds and the
tangible-audible device, we can state that the subjects intuitively under-
stood the modeled metaphor. The combination of modeling everyday sounds

20



Figure 1.3: Ballancer with a glass marble rolling on its upper face’s aluminum track
(Rath & Rocchesso [20]).

and using a familiar control metaphor exhibits the advantage that virtually
no explanation and learning are necessary. With our approach, users can
immediately understand and react to transported information without being
instructed, in contrast to systems that use abstract sounds and controls. The
identification of the scenario is even clearer for the tangible-audible interface
than for the actual mechanical device that provides a physical realization of
the metaphor. This demonstrates the effectiveness of the cartoonification12

approach to sound modeling: Although subjects perceive the device as ficti-
tious, nevertheless it can quite reliably elicit an intended mental association,
even more clearly than the real thing.

In a performance test Rath & Rocchesso evaluated the question of “whether

users, besides identifying and appropriately using the sound model and con-

trol interface, actually perceive the dynamical ecological information con-

tained in the sound and make use of this information”. Subjects were asked

to perform a specific task, “consisting of moving—by balancing and tilting

the track—the virtual ball from a resting position at the left end of the track

into a 15-cm-long mark slightly to the right of the center and stopping it”.

12The term “cartoonification” is described in the article. A deeper discussion can be
found at Gaver [6]. Briefly, it comprehends (intended) simplification and exaggeration to
reinforce an illusion of substance.

21



This test was performed under various conditions of sensory feedback and the

movement data was recorded. During the test “feedback about the position

and velocity of the virtual ball [...] was given acoustically through sound from

the rolling model and/or visually on the computer screen, as a schematic rep-

resentation of the ball on the track”. The subjects were asked to perform the

task as fast as they could. “The graphical display [...] was realized in four

different sizes: 1/3, 1/6, 1/12, all of the 19-inch computer screen”. Finally,

the subjects were asked to solve the task without visual display and auditory

feedback only. Rath & Rocchesso found that “the average time needed to

perform the task improved significantly with the auditory feedback from the

model” for all display sizes. An analysis of the recorded user movements

revealed a “different, more efficient behaviour of acceleration and stopping

the virtual ball before reaching the target area”. Furthermore, all subjects

were able to solve the task with purely auditory feedback, without display.

In a more recent study (2008) Rath & Schleicher investigated the influ-

ence of continuous auditory feedback on various measures of performance

and quality of interaction in a control task (2008 [22]). They used the ex-

perimental tangible audio–visual interface Ballancer like described above. In

this study subjects were supplied with “optimal” visual feedback conditions:

the graphical display spanned the whole range of the control stick (1m) and

the virtual ball on the screen had two differently coloured halves (in the

previous experiement it was monochrome) so that the turning movement

itself may serve as an additional visual cue of ball movement (please com-

pare figure 1.4). In the previous research (as described above), the position

of the virtual ball was reflected through amplitude stereo panning and the

target area was marked by a different acoustic behaviour. By contrast, this

study “employs conditions of sonic feedback that exclude any possibility of

positional information in the sound”. More precisely, the authors specify:

“The momentary velocity of the virtual ball is used as the only input para-

meter. The sonic feedback does not depend on the controlled virtual ball’s

location in- or outside the target area and is entirely monophonic, i.e. does

not contain any attributes of localisation”. In a user test three sound con-

ditions were used: a rolling sound, an abstract sound and no sound. The

22



Figure 1.4: The Ballancer in the configuration with a wide-screen display spanning the
whole size of the 1–m physical control stickball (Rath & Schleicher [22]).

rolling sound model is the one described above — “a simplified physical

model of the interaction of the rolling object and the plane to roll on”. In

the second sound model, called abstract sound, any idea of realism is inten-

tionally ignored. Still, the purpose is to express the velocity of a controlled

movement. With two simplifications compared to the rolling sound model

have been made: firstly, interaction between ball and surface is disregarded

(the centre of the virtual ball moves like an ideal needle of a record player

that follows the profile of the groove), and secondly, the surface profile has

been replaced by a the shape of a lowpass-filtered sawtooth signal (primarily

being a bandpass-filtered noise at the rolling model). Subjects were asked to

move the virtual ball into a graphically marked target area as fast as pos-

sible — under the described sound conditions. The different conditions were

presented in different sets of 20 runs each. Across all subjects the order of

sets was counterbalanced with intent to “cancel out” training effects in the

comparison of different conditions of feedback averaged over all subjects. The

whole series of all conditions was repeated once for each subject. The first

half of the test is regarded as the “untrained” state and the second as the

“trained”. After a statistical analysis of their data the authors found that

23



“on average over all subjects the target reaching task is concluded faster with

additional auditory feedback than without” (for the very good visual feed-

back conditions of the wide–screen display used in this study). Apparently,

“the strength of the performance improvement through sound [...] interacts

with the actual type of auditory feedback (“rolling” or “abstract”) and the

factor of evolving time in the course of the experiment”. The task perform-

ance in the untrained series was significantly faster with rolling sound than

with no sound and the performance with abstract sound was also faster than

with no sound (but not as much). The trained state in the second half of the

experiment the abstract sound led to the best average (being significantly

shorter than without sound). The average performance with rolling sound

was still better than with no sound. In further analysis two characteristic

indices of quality of control movements in the recorded movement traject-

ories have been derived and analysed: the number of “ball oscillations” and

“inclinations swaps”. Both were seen to be smaller with sound in average.

Avanzini et al. explored the role of auditory cues in a cross-modal present-

ation with different sensory modalities (visual and tactile) [23]. In a control

task subjects were asked to rate the resistance of an object to motion based

on visual and auditory cues13. In one experiment also haptic feedback was

presented. The results are partially conflicting and not very strong in general.

In 2001 Müller-Tomfelde and Münch presented a work about modeling

and sonifying pen strokes on surfaces [24] to bring back the lost sound qual-

ities of otherwise silent electronic white boards or pen tablets. The sound

feedback provides information about the kind of surface, the pen and the way

of writing. The authors note the redundant character of these information

in the real world but also emphasise the potential use of such feedback in

virtual environments to make them feel more natural and coherent.

Müller-Tomfelde and Steiner also developed an interactive electronic white-

board with audio feedback called DynaWall R© [25]. In contrast to audio feed-

back at a standard computer environment the DynaWall is a team work place,

audio feedback of actions of a single person is presented to the whole group.

13A sound of friction was synthesised based on a physical description of the frictional
interaction between two facing objects.

24



It consists of computer projectors, touch-sensitive displays and loudspeakers

behind them. The audio enhanced interaction is achieved by three types of

feedback: gesture recognition feedback in form of gesture melodies (rythm

patterns), a haptic subsonic feedback (subsonic sine waves make the display

vibrate14) and a continuous sound feedback for moving objects constisting

of coloured noise15. They also experimented with different sound models to

imitate different properties of the surface like “chalk on slate”, “boardmarker

on a flipchart” or “a book on a table”. At the DynaWall people can “throw”

objects to other users who hear them coming before they can see them due

to their limited field of vision. The sonification of actions at the whiteboard

give the working group an overlook of what everybody is busy with.

1.2 Technical aspects

1.2.1 Sampling: a conventional method for discrete

and continuous feedback

The playback of sound recordings is called sampling. It is currently the most

deployed method to set something to sound — both singular events and

continuous processes.

Sounds in video games also almost solely consist of prerecorded, reworked

(if required) and finally played back sounds. Since the repeated playback of

recorded sounds for a series of successional discrete events (like the bouncing

of a ball) can quickly seem monotonous or unnatural, several techniques

to vary the sound are common. One of them is to employ a collection of

recordings, which for instance includes different volume levels of the same

event. Otherwise one can also playback one recording with different volume

levels or playback rate.

For continuous playback a so-called loop is used. At this, a sample is

treated in such a manner that it can be played back seamlessly without

14The sine wave is tuned with some harmonics to make the feedback also audible.
15A seamless sample of coloured noise is looped, a low-pass filter corresponds to the

users actions and is controlled in real-time.

25



breaks. To diversify the sound one can likewise crossfade other samples

during the loop, which then again run seamlessly in a loop, or one changes

playback speed and volume. For the case of a rolling sound in particular it

is important to avoid unwanted periodicities.

Although sampling is a way to sonify the behaviour of moving objects,

this procedure is nevertheless always restricted to the prerecorded material.

1.2.2 Synthesising Sound

An alternative for sampling is synthesising. There are various ways of syn-

thesising, in general they can be grouped into “signal-based” and “source-

model based” approaches, respectivly hybrids of those.

Signal-based means that the sound pressure signal, that is responsible for

the auditory percept, is at focus. Here various methods (additive–, substract-

ive synthesis, frequency modulation, . . . ) are used to synthesise a signal that

fulfills known psycho-physical criteria necessary to produce a certain percep-

tion. If one knows which properties of the sound pressure signal make us

perceive some specific event, one can synthesise such a signal and expect the

same perceptual result.

The second approach is to model the sound source. Describing the sound

source by mathematical means is an alternative way to describe the auditory

event, although the relationship between the mathematical description of

the source and the evoked preception might not be clear. Again, there are

different approaches to finally generate a sound based on a mathematical

description of the sound source behaviour. Obviously, one way is to describe

the physical processes as detailed as possible and expect that the quality of

perception comes with the quality of the simulation. Another approach is to

include known psycho-acoustic findings in the development of a sound source

model (to only simulate behaviour relevant for perception).

Synthesising a sound pressure signal based on physical considerations

about the behaviour of the underlying physical processes is termed “physical

modelling” or “physically informed synthesis”.

26



1.2.3 The approach in this thesis: Physically informed

synthesis by means of a modal object

The rolling sound model in this thesis is based on physical considerations

(q.v. page 45). Differential equations are the fundamental instrument if one

wants to describe the temporal and spatial progression of a physical system

and they are in terms of auditive perception the adequate approach. The

description of the system can be made pursuant to a number of requirements

of accuracy, richness of detail or simplicity. Besides the derivation of differ-

ential equations the development of digital numerical algorithms that apply

them is the most essential step. Technical considerations like computing time

(for real-time computing) and accuracy play a decisive role. In this case real-

time computation (besides low latency) is the dominating demand16. “Modal

synthesis” is the technique chosen in this thesis.

For the description of a physical system by means of modal parameters

it is essential that the state of the system can be described by a time-variant

state vector ~z(t) (in the “state space” Z). The temporal behaviour of the

physical system is then described in the form

z′(t) = Az(t) + fext(t) (1.1)

with A being the linear operator that maps A : Z −→ Z and fext(t) external

impacts like forces, pressure, etc. It is important to stress the linearity of A,

it is a mandatory precondition for the formulation of a modal description of

the temporal behaviour of the system. The basic principle to solve the last

equation is to describe A by means of its eigenvectors ~v. If ~z(t) lies inside

of an eigenspace of A to the eigenvalue λ and fext(t) = 0 (“homogeneous”

case) the equation simplifies to

z′(t) = λz(t) (1.2)

which can be solved by means of an exponential function: zt = eλtz(0). In

the case of a pair of conjugate-complex eigenvalues λ1,2 = r±ωi this describes

16The same applies for video rendering and reading the accelerometer data.

27



a damped sinusoidal wave of the form

x(t) = ert sin(ωt)x(0). (1.3)

In general it can be shown (with reservations) that every free oscillation of the

system described above consists of exponentially decaying oscillations[26].

1.3 Video games with rolling objects — an

overview

1.3.1 Sound feedback

There are quite a few video games on the market that involve the steering or

in some way interacting of/with a ball or ball-like object. They all include

sound to illustrate actions on the screen. Nevertheless, most modern games

restrict sound feedback to bouncing sounds, that is to say one can hear a

sound when the ball bounces against boards or the underground. Only a few

games (like “Marble Blast Gold” (2003), “Labyrinth” (2007), “Kororinpa”

(2007)) give a feedback about the state of motion in terms of a rolling sound.

In this respect “Labyrinth” (and similiar games) are an exception, because

here the rolling sound plays a decisive roll amongst all in-game sounds and

contributes decisively to the game experience. Mostly though, rolling sounds

(or bouncing) are masked by other sound effects or spoken word.

Sampling seems to be the established way to produce all those sounds in

video games.

1.3.2 Control & interaction

Except for few exceptions (“Marble Blast Gold”) the player does not directly

steer the ball, but tilts the game scenery and the ball reacts according to a

gravitational force component parallel to the surface (downhill-slope force).

In recent years classical controllers for video games, like gamepad, keyboard

our mouse, are to some extent enhanced or replaced with/by acceleromet-

28



ers. Depending on the task to fulfill in a video game an accelerometer can

establish a perfectly different experience for the player compared to a steer-

ing concept that relies on a keyboard. Interaction tasks that are geared to

real world paradigms, like turning, moving or shaking an object, seem to be

downright suited for controlling/steering via accelerometer. The situation of

a rolling object that is balanced by the player, the issue of this thesis, is one

of those cases. Many modern variants of “rolling-ball-games” make use of ac-

celerometer techniques: “Super Monkey Ball Banana Blitz” & “Kororinpa”

for Nintendo Wii, “Labyrinth” & “Super Monkey Ball” for the iPhone.

29



Chapter 2

The Game

2.1 Game concept

As indicated in the previous chapter, there are many aspects in human

psycho-acoustic perception that could be subject to further research in fu-

ture. Motivated by the Ballancer experiments (q.v. page 19) and inspired

by recent trends in the field of interactive video games, the idea to create an

experimental interface with game-like character for psycho-acoustical tests

came into existence. Thus, the main motivation of this work is to establish

a platform that facilitates those (psychomechanical) tests, in particular con-

cerning sound feedback and gestural control, in a playful manner. On this

background, continuous steering of a moving object is more at the centre

of interest in this work than cognitive capabilities like recollection, finding

a path, learning or orientation (as it is the case with a labyrinth game) —

continuous gestural control interaction and sound feedback is the main focus.

2.1.1 Appearance

Accelerometers in modern entertainment devices give the opportunity to de-

termine the inclination of the device (in this case a MacBook, which will

be discussed later, q.v. page 36). In this manner it can be used as an in-

put device for steering tasks in human-machine interaction. One apparent

scenario is to route an object on a plane or on a track. Indeed, there are

30



Figure 2.1: The Orbits game being played on a MacBook Pro.

quite a few games where the user has to balance an object (mostly a ball) in

a maze-like virtual world1. However, prioritising gestural control over cog-

nitive skills, we chose the scenario of objects tied to circular tracks moving

under the effects of gravity and friction. Tilting the tangible device causes a

period of oscillation around the equilibrium, until, due to friction, the objects

eventually come to rest. Each object can be steered to any place on the circle

by performing adequate balancing movements. The player can also make the

object rotate in a circular manner on the track. As denoted in the thesis’

title the game is called “Orbits”. Figure 2.1 shows the game running on a

MacBook Pro.

The first realisation of the scenario consists of two separate tracks with

two independently moving objects. Both circular tracks contain target areas,

1For example common marble games like “Labyrinth” (iPhone), “Super Monkey Ball”
(iPhone, Wii), “Kororinpa” (Wii).

31



Figure 2.2: Screenshots of two visual elements of the Orbits game.

but the challenge does not consist in finding them since they are clearly visible

and finding a path to reach these areas is trivial; please compare figure 2.2.

Using two tracks not only supplies possibilities to create different tasks

to accomplish for the user (as will be described below), but also enables

to present two different types of continuous auditory feedback at the same

time. The audio feedback consists of a number of different sounds, ranging

from rather realistic to abstract ones. Explorations of the influence of diverse

types of acoustic feedback on human performance in control tasks and user

32



experience is one central interest for which this application has been designed.

In the first prototype five different types of sound feedback have been realised:

1. a sound of a rolling ball,

2. a sound of a rolling ball on a surface with a pattern of two different

degrees of roughness,

3. a sound of an object sliding on a surface,

4. a band limited impulse train (BLIT),

5. a sound of single clicks with fixed spatial distance,

6. a sinusodial sound with inverted2 relation between velocity of the ball

and pitch.

For the visual appearance of the moving objects in the game three simple

examples have been chosen as graphical representation. A ball, rolling on a

circle, is our standard object. The second object is a cylinder which is sliding

on a circular rail. These two examples can be seen in figure 2.2). The third

object is a cone, sliding on a rail.

The object that is mainly used is the ball (primarily because of the focus

on rolling sound). Some other sounds (e.g. the sliding sound) may seem

unsuitable for the sonification of a ball’s movement, a supposition that can be

explored by means of the application. In this regard the sliding cylinders can

give an impression of the interdependency of auditive and visual perception

(for example by altering the objects but not the sound model or vice versa).

Besides their function to visually maintain (or contradict) auditory feedback

the cylinders are also useful to underline a stronger degree of friction.

2.1.2 The player’s task

As game logic and complexity was not the focus, we kept the game as

simple as possible in this regards, disclaiming usual methods of making

2“Inverted” in a sense that the manner of the feedback contradicts our experience about
how the pitch changes when velocity increases: low velocity — high pitch and vice versa.

33



games challenging: time limits, an increasing number of tasks and goals to

achieve. . . The principle task always remains the same (under varying condi-

tions): the player has to steer both objects (e.g. two balls) into their target

areas by tilting the device. The task is fulfilled once both balls are in their

target areas at the same time. When the task is fulfilled the target areas

change their position and the game continues.

There are different strategies to reach the goal. Besides carefully balan-

cing both balls, one obvious strategy is to let them roll more or less randomly

in circles until they by chance are in their target areas at the same time. By

decreasing the size of the target areas gradually (e.g. every time a task

is fulfilled) the second strategy becomes less effective and attentive careful

balancing is necessary.

On the other hand letting the balls circulate at the track demands a

movement pattern which is interesting as well. Periodically tilting the device

in a rotatory manner and thus sustaining the velocity of the ball is a steering

movement that clearly differs from a balancing task. It is here important to

mention that objects react in different ways to inclinations due to different

friction parameters whereby, with some skill, it is possible to let only one

ball circulate and keep the other one fixed (more or less) at the same place.

In contrast to balancing the ball, letting it rotate is a dynamical, periodical

process. The player may therefore rely more on the dynamical information

that he perceives aurally than on what can be seen at the screen. In this

respect the “resonance-like” behaviour of the balls movement at periodic

circular acceleration plays a decisive role. Of course the player can visually

perceive in which way the ball reacts to a rotary tilting movement, but such

kind of continuous, dynamical information is one strength of the auditive

perceptual channel (compare e.g. [22]).

Therefore, we finally thought about a way to force the player to perform

balancing and “rotation control” simultaneously and designed the following

scenario as part of the game: the size of the target area of one of two moving

objects (on parallel circular tracks) is determined by the velocity of the second

object. While the position of the target is constant its size increases with the

velocity of the object moving on the parallel track. Under these conditions,

34



in order to fulfill the task the ball that affects its neighbour’s target size

must move because a velocity of zero corresponds to a target size of zero.

Letting said object rotate is now not the only way to reach the task but

clearly (depending of course on the exact parameters of the coupling) the

most obvious and the player is more or less forced to apply the following

strategy:

• The faster the circulating ball moves the bigger becomes the target area

of the other ball.

• If the ball with the varying target size reached it’s goal the player has

to keep it there.

• He would keep it there just for a moment, because the circulating ball

frequently passes through it’s goal.

In this scenario a rotary inclination of the device is a typical gesture the

player performs to play the game — a circumstance that certainly supports

the idea of porting the application to a smaller, truly handheld device.

Finally, we implemented another game mode, that we expect to force the

player to waive random strategies. In this scenario, the objects (or maybe

just one of them) can only move in one direction. In a setup where both

objects can only move in opposing directions one has to balance carefully

and smart.

2.1.3 Possibilities to create tasks for tests

Altogether, so far a number of instruments have been realised, that may

be combined: a set of sound models, two visually different objects, friction

parameters to make them also “feel” different and targets that can vary in

position and size (also velocity-dependent target-size). Of course the point is

not to arbitrarily combine those building blocks which are all related to each

other. A higher setting of the friction parameter will rather suit a sliding

sound and the cylinder visualisation, just as the ball visualisation naturally

fits the rolling sound. Under the aspect of creating a preferably convincing

35



game one would try to set a combination that is as realistic as possible

whereas for psychoacoustical tests it is also interesting to choose unintuitive

(or even contradicting) combinations.

With some programming knowledge and after studying relevant sections

in the source code (which will be discussed in the following section) it is

possible to record desired data while a subject is playing the game. Such

data could include: the inclination of the device, position and velocity of the

objects, task times, etc. In the current state Orbits records and saves task

times and the conditions under which they were measured: sound model,

visual representation, friction . . .

2.2 Technical realisation and sound feedback

The game has been designed as a standalone application that should run on

all laptops of the MacBook/MacBook Pro series. These devices have been

chosen because of the built-in accelerometer (q.v. page 40), their computing

power (which is sufficient for real-time computed audio feedback) and fi-

nally because of the presence of common and well-documented programming

interfaces on this platform (and their availabilty at the Deutsche Telekom

Laboratories where this thesis has been written).

2.2.1 Architecture

The operation system (OS) on Apple’s computers is called Mac OS X and it is

based on the UNIX operating system. The native application programming

interface (API) for dealing with sound in Apple’s Mac OS X operating system

is “Core Audio” [27]. The audio processing of the application Orbits is

implemented as a “callback”3 architecture with Core Audio4, which means

that Core Audio instructs our program to render audio output and write it

into a buffer that can be referenced by an assigned memory address. It is

important to understand that we are not(!) telling Core Audio to play back

3(q.v. page 37 and 59)
4Here Core Audio’s “Audio Unit Framework” is used, a plug-in architecture that can

be used for effects and virtual instruments.

36



precasted audio samples — rather, audio output is continuously computed

and (frame-wise) written into an audio buffer.

Graphical rendering is done with “OpenGL”, a cross-platform API for

computer graphics. For scheduling of keystroke input and graphical out-

put the cross-platform free library “GLUT” is used. GLUT also supports

callback driven event processing, which means that we also have a callback

function for video processing (besides the function for audio).

Audio

Core Audio is designed to handle all audio needs in Mac OS X [27]. It can

be used to generate, record, mix, edit, process, and play audio (or MIDI

data). Core Audio covers a number of features that make it a strong API,

the most essential for this thesis are low latency through the signal chain,

and interfaces for audio synthesis and processing called “audio units”. Audio

units are plug-ins for handling or generating audio signals. Apple Inc. about

audio units [27]:

Audio units describe their capabilities and configuration information us-
ing properties. Properties are key-value pairs that describe non-time varying
characteristics, such as the number of channels in an audio unit, the audio
data stream format it supports (and) the sampling rate it accepts [. . . ]. Each
audio unit type has several required properties, as defined by Apple, but (one
is) free to define additional properties [. . . ]. Audio units also contain various
parameters, the types of which depend on the capabilities of the audio unit.
Parameters typically represent settings that are adjustable in real time, often
by the end user.

A signal chain composed of audio units typically ends in an output unit.
An output unit often interfaces with hardware [. . . ], but this is not a re-
quirement. Output units differ from other audio units in that they are the
only units that can start and stop data flow independently. Standard audio
units rely on a “pull” mechanism to obtain data. Each audio unit registers
a callback with its successor in the audio chain. When an output unit starts
the data flow (triggered by the host application), its render function calls
back to the previous unit in the chain to ask for data, which in turn calls its
predecessor, and so on.

37



My application contains such an output unit. It is the only audio unit

in use and its callback function renders the audio output directly without

calling on another audio unit’s callback function. A callback function is a

function that is passed to another function as an argument, and will be called

by this one under certain conditions. This means that in this case a function

(declared and defined in the code — the callback function) is passed to the

output unit. That function is capable of rendering audio data into an audio

buffer of specified length. Whenever the output audio unit decides that an

audio buffer needs to be rendered, it calls the callback function. The most

important thing to underline is that the callback function is the place where

single audio frames are computed in real-time, no prerecorded samples are

used. The way audio data is computed is discussed at page 43 and a section

dedicated to the source code of audio callback function can be found at page

59.

Video

An application that comprises 2D or 3D graphics, running on different hard-

ware and/or platforms, relies on cross-platform APIs for computer graphics.

OpenGL is such a cross-language, cross-platform specification. Today it is the

industry standard for high performance graphics5 [28]. Clearly, the Orbits

application includes 3D computer graphics. The underlying code is written

according to the OpenGL specification.

The “OpenGL Programming Guide” [29] is a prevalent reference on the

topic of OpenGL programming and has been my guide. I will not describe

every aspect of OpenGL here, since this is not a programming guide, but I

want to give a short overview about some basic principles.

OpenGL has been designed as a so-called “state machine”, which means

that functions are called without passing all necessary parameters. Instead,

the OpenGL state machine uses the same values until the according states

are changed. The reason for this design is that almost every change of the

drawing mode involves costly reorganisation of the graphics pipeline, which

5However, Direct3D is a prominent alternative on Windows operating systems.

38



is therefore avoided if possible. For example, thousands of vertices can be

rendered with the same colour, which is set only once in the beginning.

Sometimes a state in the state machine never changes (like the source of

light in the Orbits application).

Modeling, viewing and projection transformations are represented by

matrix multiplications in OpenGL [29]. The modeling transformation is used

to position and orient models (e.g. rotate, translate, scale). The viewing

transformation is analogous to positioning and aiming a camera. And even-

tually, specifying the projection transformation is like choosing a lens for a

camera: this transformation determines what the field of view or viewing

volume is (and therefore what objects are inside it). The projection matrix

also determines how objects are projected onto the screen (perspective pro-

jection or orthographic). Since matrix multiplications are (in general) not

commutative it is a crucial task to structure the code properly and keep track

of the transformations (note: OpenGL is a “state machine”).

OpenGL is designed to be independent of any window system or operating

system (it contains no commands for opening windows or reading user input).

However, it is impossible to write a graphics program without at least opening

a window. The OpenGL Utility Toolkit (GLUT) is a (support) library of

utilities for OpenGL programs [30]. It includes functions to perform window

definition and control or monitoring of keyboard and mouse input. Orbits

uses GLUT’s window control capabilities (for fullscreen video rendering and a

menu window) and instructs it to schedule (q.v. page 42) the video rendering

using a callback function. Furthermore, GLUT functions handle events from

the keyboard (for example to close the application).

One particular design characteristic of GLUT is the function

glutMainLoop(), it is GLUT’s event handling loop. This function never

returns, which is an obstacle if one wants to create its own event loop; and

besides that, GLUT cannot exit the event loop — circumstances that may

not be satisfactory for full-featured OpenGL applications. Both issues are

not critical for Orbits, which will be discussed in the scheduling section (q.v.

page 42).

39



Accelerometer data

An accelerometer is an “instrument that measures the rate at which the ve-

locity of an object is changing (i.e., its acceleration). Acceleration cannot

be measured directly. An accelerometer, therefore, measures the force ex-

erted by restraints that are placed on a reference mass to hold its position

fixed in an accelerating body” [31]. Accelerometers are increasingly being

incorporated into personal electronic devices. They are used to align the

screen depending on the direction the device is held6, they support motion7

or steering8 input to video games or they serve as pedometers9. Some laptops

feature an accelerometer to detect drops10, which is with respect to this thesis

of particular importance.

Since 2005 Apple uses accelerometers to protect the built-in hard drives

in their portable systems. This includes “all Intel -based Apple portables

such as the MacBook, MacBook Pro, MacBook Air, PowerBook G4 com-

puters starting with PowerBook G4 (12-inch 1.5GHz), PowerBook G4 (15-

inch 1.67/1.5GHz), PowerBook G4 (17-inch 1.67GHz), and iBook G4 com-

puters starting with iBook G4 (Mid 2005)” [32]. Apple calls this feature

“Sudden Motion Sensor”:

The Sudden Motion Sensor is designed to detect unusually strong vibra-
tions, sudden changes in position or accelerated movement. If the computer
is dropped, the Sudden Motion Sensor instantly parks the hard drive heads
to help reduce the risk of damage to the hard drive on impact. When the
Sudden Motion Sensor senses that the Apple portable’s position is once again
stable, it unlocks the hard drive heads, and you are up and running within
seconds.

Specifications about the accelerometer sensors used are hardly available.

Officially Apple does not support access to these built-in sensors to the pub-

6For example: smartphones, digital audio players, personal digital assistants, . . .
7Nintendo Wii et al.
8Sony PlayStation 3 et al.
9Notable manufacturers: Omron, Sportline, Garmin Foot. Personal electronic devices

incorporating pedometer functionality: Apple iPod Nano, Nike&iPod, Nokia 5500 Sports
Phone, Sony Ericsson W710 walkman phone, Nintendo DS, . . .

10Notable technologies: Active Protection System by Lenovo, Sudden Motion System by
Apple [32]

40



Figure 2.3: The Orbits’ calibration routine is strongly recommended before using the
application.

lic. Nevertheless, the internet discloses several examples of free software that

uses Apple’s accelerometer11. Some technical information about the sensors

can be found here: [33]. There are also two open-source libraries available:

SMSLib [34] and UniMotion [35]. However, we decided to use none of them.

Basically because we wanted to have access to the raw sensor data and im-

plement our own calibration algorithm.

Currently (2010) three different sensor types have been reported in Apple

portable computers, known as SMCMotionSensor, IOI2CMotionSensor and

PMUMotionSensor. They have different data types, the first 16-bit integer

and the latter two 8-bit integer, which means they are variably sensitive. This

is one obstacle that requires a calibration to use the application on different

hardware. The second difficulty is the orientation of the sensors. The x-, y-

and z-axis of those accelerometers can be mirrored depending on the model of

the notebook. The Orbits application has a built-in calibration routine that

is capable of graduating those differences. The calibration routine measures

sensor values in three specified positions of the device (please compare fig.

2.3) and then transforms all subsequent sets of sensor data (by means of a

matrix multiplication/base change).

It is strongly recommended to enter the calibration mode once before the

application is used. Calibration data is stored and will be loaded automat-

ically next time the application is lauched. Nevertheless, the Orbits applica-

tion possesses orientation data of some (few) MacBook/MacBook Pro models,

which means that if the application is launched on one of those models for the

first time, the axis orientation is automatically adjusted and the behaviour

11For example SeisMac from Suitable Systems, LiquidMac by Oriol Ferrer Mesia

41



of the game “feels” correct (though further calibration is suggested).

2.2.2 Scheduling

The application comprehends physical calculations (movement of objects),

real-time computed audio feedback and visual representation of a scene.

Scheduling of these tasks have to be carefully considered. This section gives

an overview about the basic structure of the program and how the single

processes are related to each other.

As described above, when the application is started it registers itself as a

client for audio (Core Audio) and video processing (GLUT ) and detects the

motion sensor. All physical simulation is computed with audio rate.

Regarding the physics there are basically two tasks to perform: calcu-

late the movement of the object along the track and synthesise the sound.

The rolling sound model is predicated on physical considerations of the in-

teraction between ball and surface (q.v. page 45). Besides the macroscopic

movement of the ball that can be seen, there is a microscopic behaviour that

can only be heard, both must be computed. One approach (actually the most

common, in combination with sample-based audio) would be to use a physics

engine for the calculation of the ball’s macroscopic movement with a defined

temporal resolution and synthesise audio feedback on the basis of the result.

In this case the quality of the feedback would strongly depend on the update

rate of the used physics engine. The opposite approach would be to unify

macroscopic and microscopic movement in one model to obtain both as the

output of the same algorithm, which would make movement and sound much

more coherent but on the other hand is also much more difficult to achieve.

In the Orbits simulation a method is chosen which is a compromise of these

two solutions. We make use of two separate models but both are always

calculated in parallel within the same cycle of the audio processing, which

means that we update the position of the ball with audio rate and instant-

aneously calculate the next sample frame of audio feedback in dependence of

the position and velocity parallel to the track.

Structure and scheduling are as follows: all physical objects and al-

42



gorithms of the current active simulation are contained in a data structure

that is called “scene”. In fact there is a number of different scenes with dif-

ferent objects, sounds, etc., but only one scene is active at a time (the others

are stored in memory, ready to be activated). Only the currently active scene

is updated, which means that the physical behaviour of the objects and the

sound output is computed (with audio rate). These updates are performed

within the audio callback function. The video callback function induces the

rendering of the scene by accessing relevant data computed in the audio loop.

The buffer size of our audio callback routine is fixed at 1024 samples and

the audio feedback is calculated with 44100Hz with the result, that the audio

callback function is called with about 43Hz. Each time the audio callback

function is executed the accelerometer data is read once, 1024 updates of

the scene are performed and the buffer is filled with samples. There is no

direct control about the exact moment when the audio callback function is

called, one only knows that it happens in average 43 times per second. By

relying on the callback cycle of the audio driver a certain jitter is unavoidable

which I however accept since an average update rate of 43Hz is quite high

for accelerometer data used for balancing control.

As already mentioned the video rendering is also executed by means of

a callback function, for which I chose a fixed rate of 50Hz. Since values

relevant for graphical output (object position. . . ) are computed in the audio

callback cycle the same remarks apply here as for updates of accelerometer

data.

2.2.3 Sound feedback

Sound feedback in the Orbits application is not just fancy supplement but

one of the central interests. The application is designed to facilitate new

ways to explore the effects of the sound on the player. Does sound enhance

his/her performance? Does it affect his attitude, his perception of the game?

As described (q.v. page 43), recent experiments with the Ballancer interface

showed that the perception of velocity plays a key role in this context, it can

improve a player’s performance in a control task. In addition it is interesting

43



to reconsider the influence of different degrees of abstraction of sound feed-

back for which reason a number of different sound models are employed in

Orbits.

As already mentioned this game is based on steering objects on plains

affected by gravity. Hence the scenario of a rolling ball is the starting point

of our considerations about sound models for the game, about their qualities

and their implementation. The “rolling sound model” considers the profile

and the vibration of the surface as well as the vertical interaction of the

surface and the rolling ball (all sound models are described on the subsequent

pages). It is our informal supposition that the detailed nature of this vertical

interaction plays a strong role in the auditory perception of rolling: it appears

that the mixture of short periods of microscopic bouncing and longer periods

of contact between the rolling object and the surface is an important factor

for sounds to be classified by human listeners as “rolling”. The first step

to simplify the rolling sound algorithm is therefore to disregard the vertical

interaction. The “sliding sound model” only considers the vibration of the

surface and the sweeping of the object across the surface’s profile.

One very specific scenario of sliding, as a next step, is given by the needle

of a record player. Clearly, if the needle of the record player drives faster

across the record we perceive the increasing velocity. Of course the profile of

the track on that record is the dominating factor, vibrations of the record are

hardly audible. On the basis of this metaphor we included a more abstract

sound model incorporating a periodic (highly artificial) surface profile that

produces a bandlimited signal when sampled (“BLIT”).

Finally we totally conflict with the starting point: we eliminate all ecolo-

gical influences and even contradict to our experience of how the pitch of a

sound of continuous interaction behaves. The “inverted sound” is a tone with

a sinusoidal waveshape and frequency inversely proportional to the velocity

of the object. The higher the velocity of the moving object (ball, cylinder)

the lower the frequency of the sine and vice versa.

44



Rolling sound

The rolling sound model affords a high degree of realism, it is the natural

acoustic complement of what can be seen on the screen when the balls are

rolling at their tracks. The rolling sound model embraces the vibrations of

the surface, the surface’s profile and the vertical contact interaction of the

vibrating surface and the ball. Details of the algorithm are described in

dedicated articles by M. Rath ([21] [26]), in the following I try to give an

idea of the main points.

In the Orbits-scenario two objects are interacting with each other: the

ball (resp. a cylinder) and the surface. There are different approaches to

describe the behaviour of vibrating and interacting objects; we chose the

modal approach (compare [26]) for a model of the inner resonance behaviour

of the vibrating surface. We did that on the assumption that the surface’s

vibration plays the dominant part in the sound that we hear when an object

is rolling or sliding across it while the vibration of the solid rolling object

itself (e.g. a marble) can hardly be heard directly. The modal description of

the surface (in the following “modal object”) is the source where our (rolling)

sound output comes from: the velocity of the surface is written into the audio

buffer.

If a force is applied to the modal object is starts vibrating and dies away

after some time due to inner friction. As the ball is bouncing it applies a force

to the surface. A rolling ball or a sliding object is continuously impacting

to the surface because natural surfaces are not perfectly smooth. There

are different approaches to model that contact. Regarding the profile as a

(force) input signal to the modal object is one way, discussed in the next

subsection. A more accurate approach is to include physical and geometrical

considerations: the rolling sound model.

The basic principle of the rolling sound has already been introduced in [21]

and implemented as a patch for Pure Data12. Recently an improved contact

model has been presented in [26]. In this thesis the improved algorithm

12A graphical programming language for the creation of interactive computer music and
multimedia works.

45



of [21] is implemented based upon the contact model of [26] written in the

programming language C++13. In the following I give a short summary

about the ideas and methods.

Despite some interesting psychoacoustic studies (e.g. [12]) the question

of how to exactly describe the acoustic features responsible for a sound event

to be perceived as “rolling” is still not perfectly answered. This observation

supports a physics-based approach in the synthesis of rolling sounds. We

look at “rolling” as a process of sustained bouncing, eventually microscopic

bouncing. The second aspect is that we allow the ball to penetrate the

surface, thus a contact is not a change of state at a discrete moment in time.

Contacts are continuing processes that have to be modelled. To sum up,

the interaction can be both continuous and sporadic: there are moments of

contact, in particular continuous contact, and moments when surface and

ball are not in contact.

The modelling of the contact is one key building block of the rolling sound

model. [26] introduces a method of energy-stable modelling of continuous or

repeated contact in dynamical situations, a method that is also applied here.

The basic idea is to use a modal description for the period of contact too. If

there is no contact the state of the surface is described by a modal object,

the ball’s state is stored separately. In case of contact, surface and ball are

regarded as one object, which is described by means of modal parameters

as well. The model of rolling includes frequent “switching” between both

configurations.

Besides physical considerations (improving the contact model) there are

also geometric aspects to consider. Although it is a constrain that the con-

tact only takes place at one contact point, the ball, of course, has a geometric

attribute that should not be disregarded: its radius. The profile of the sur-

face is simplified to a white noise distribution of profile points (with constant

horizontal distance, but scattered vertical position). One can imagine that

the ball cannot touch every point since it is too big to fill each gap. Therefore

the profile needs to be filtered. Instead of bandpass filtering (as in the next

13Object-oriented programming, portability and the speed of the compiled code were
the main reasons to chose C++.

46



Figure 2.4: The hypothetical trajectory of a rolling object as it would perfectly follow a
surface profile s(x) (Rath [21])

section) we have to filter the “profile signal” based on geometrical consider-

ations. The exact procedure is explained in [21] and for now called “rolling

filter”. A sketch from that paper can be seen in figure 2.4. To sum up, the

result is a profile signal consisting of arcs of circles which is the path that a

ball would follow if it was perfectly succeeding the surface’s profile.

Since the rolling sound model contains the modelling of contacts (and

resulting forces) based on physical considerations the profile is regarded as

a position-dependent (and thus timevariant) input parameter to the contact

model. The contact model described above involves a continuous computa-

tion of the distance between ball and surface. At this point the profile of the

surface is incorporated as a vertical distance offset. Besides several “white

noise variants” as profiles for surfaces the rolling filter technique also en-

ables more complex profiles like saw tooth surfaces14 that enable interesting

possibilities to imitate natural surfaces.

14combined with above-mentioned white noise “micro structure”. . .

47



Sliding sound

The first degree of abstraction is to neglect the vertical interaction between

the object and the surface. Instead of a precomputed profile we use bandpass

filtered white noise. The centre frequency of the filter is proportional to

the velocity of the ball, the bandwidth is kept constant. The vibration of

the surface is emulated by means of modal parameters as described in the

previous section.

In this model the vertical interaction between object and surface is not

considered, as well as the geometry of the object (e.g. the ball’s shape). We

only incorporate the surface’s profile and simplify the contact between object

and surface in various ways: 1. object and surface are always in contact, 2.

the object cannot penetrate the surface and 3. there is only one point of

contact. 1. and 2. imply that the object is perfectly strobing the outline of

the profile, hence we utilise the profile of the surface as (force) input signal

to the modal object (in a way similar to some previously used algorithms,

compare e.g. [36]). We exert a bandpass filtered white noise as signal. The

centre frequency of the filter is proportional to the (horizontal) velocity of

the ball, the bandwidth is kept constant; the sound model can be regarded

as a modal resonator. In accordance with our informal supposition on the

characteristics of contact sound the audible result resembles the sound of a

sliding object.

BLIT

The bandlimited impulse train is the second degree of abstraction. The

strobing of the profile is the idea behind this sound model. It disregards

vibrations of the surface as well as vertical interaction. A periodic profile is

the basis for the perception of a pitch. Like the needle of a record player

we strobe the profile, the perceived pitch depends on the speed of the needle

(resp. ball, cylinder). Important criteria for the profile are that it has to be

bandlimited but not sinusoidal and preferably easy to compute.

In 1975 Moorer15 introduced an economic method to synthesise band-

15Moorer mentions David Lewin of Harvard University (and maybe others) having made

48



limited complex audio spectra by means of Discrete Summation Formulae

(DSF) [37]. This synthesis technique is based on the possibility of expressing

certain sums of trigonometric functions in a closed forms that are much more

economic to compute than the sum itself. DSF allows the synthesis of band-

limited periodic signals. By varying parameters of the underlying formulae a

wide class of bandlimited waveforms, including a bandlimited impulse train

(BLIT), can be generated (as shown by Stilson and Smith [38], Välimäki [39]

and others).

For our specific purpose a restricted number of parameters in the BLIT

approach are sufficient and we make use the following formula which is a

simplified (by omitting phase parameters) version of [37], p. 3:

N∑
k=0

ak sin(kβ)) =

a sinβ−aN+1(sin((N+1)β)−a sin(Nβ))
1+a2−2a cos(β)

.

Here a is the “amplitude ratio” of the harmonics and influences the balance

of higher and lower frequencies while N is the number of components, thus

determining the bandwidth of the signal.

Inverted sound

The inverted sound provides the highest degree of abstraction. Still the pitch

is the way to sonify the velocity of the object, but here pitch and velocity are

inversely proportional, a certainly unnatural dependence. The second factor

that makes the sound artificial is the sinusoidal waveshape. The reciprocal

proportionality will result in a very high pitch for a large part of playing

situations. If the pitch is close to the upper boundary of the hearing range

it is adequate to synthesise a sine instead of a bandlimited signal, because

both can hardly be distinguished.

the same discovery independently at the same time since the underlying mathematical
formulae are quite old.

49



Chapter 3

The Source Code

I do not want to introduce every line of code in this section, but some parts

are worth explaining and especially helpful to fully understand the issues

discussed in chapter 2 (q.v. page 36). With the help of the source code, I

will depict the structure of the application from a different point of view.

Only the basic architecture will be discussed and no algorithms.

The source code has been written in C++. If you have basic programming

knowledge, you will probably not experience difficulties to understand the

code introduced below. In my opinion, the syntax of C++ is understandable,

even when you are not an expert. Therefore, I will refrain from translating

parts of the code into pseudo-code. In addition, to not confuse the reader, I

will present only excepts1 with (for comprehension) relevant parts2.

Due to the complexity of the project, it is, of course, split into separate

files. They are compiled and linked by means of a makefile3.

A complete documentation of the source code generated with Doxygen4

and the source code itself is included in the attachment of this thesis.

1Excerpts are marked with [...], which is not valid C++ code.
2For full, detailed comprehension I recommend to read the real source code. Due to

the excerpts, some things in the code snippets presented here do not make sense from a
programmer’s point of view.

3“In software development, make is a utility for automatically building executable
programs and libraries from source code. Files called makefiles specify how to derive the
target program from each of its dependencies.” (Wikipedia, [40])

4Doxygen is a source code documentation generator tool [41].

50



3.1 The main files: orbits.hpp, orbits.cpp

The main files of the application are orbits.hpp, including the declarations,

and orbits.cpp, including the definitions of all callback functions (which are

described in the following sections), a function to specify/create scenes and

the main() function (plus some other functions that will not be discussed

here). I will start my introduction to the source code with a brief discussion

of these two files. orbits.hpp:

1 [ . . . ]

2

3 struct t params4aud io ca l lback

4 {
5 t audio param∗ p audio param ;

6 c s c ene ∗∗ pp scene ;

7 t game sta te ∗ p game state ;

8 t mot i on va lue s ∗ p mot ion va lues ;

9 c mot ion sensor mac∗ p ms mac ;

10 } ;
11

12 struct t g l o b a l d a t a

13 {
14 t game sta te game state ;

15 c s c ene ∗ p scene ;

16 c s c ene ∗ a s c ene s ;

17 c s c ene e l ement ∗∗ aa e lements ;

18

19 c s c ene e l ement e l i n 0 ;

20 c s c ene e l ement e l i n 1 ;

21 c s c ene e l ement e l i n 2 ;

22 c s c ene e l ement e l i n 3 ;

23 c s c ene e l ement e l i n 4 ;

24 c s c ene e l ement e l i n 5 ;

25 c s c ene e l ement e l o u t 0 ;

26 c s c ene e l ement e l o u t 1 ;

27 c s c ene e l ement e l o u t 2 ;

28 c s c ene e l ement e l o u t 3 ;

29 c s c ene e l ement e l o u t 4 ;

30 c s c ene e l ement e l o u t 5 ;

31

32 t audio param audio param ;

33 t video param video param ;

34

35 t mot ion va lue s mot ion va lues ;

36 c mot ion sensor mac ms mac ;

37 c s c en e ca l i b r a t i on mode s c ene ca l i b ra t i on mode ;

38 int c a l i b r a t i o n f l a g ;

39

40 int main window ID ;

41 int g u i f l a g ;

42 c o r b i t s g u i ∗ p main gui ;

43 c g l u t s c r e e n t e rm i n a l g l u t t e rm ina l ;

44 c g l u t s c r e e n t e rm i n a l g l u t h i g h s c o r e t a b l e ;

45 c g l u t s c r e e n t e rm i n a l g l u t i n f o ;

46 c 2D sta tus ba r s t a tu s ba r ;

47 c 2D number 2D current t ime ;

48 c 2D number 2D average t ime ;

49

50 c moda l ob j e c t s imp l e n o t i f i c a t i o n s ound ;

51

52 int r e c o r d f l a g ;

51



53 int i n i t s c e n e s f r om r e c o r d f l a g ;

54 c savegame savegame ;

55 s t r i n g f i l ename ;

56 } ;
57

58 void read ms ( c mot ion sensor mac∗ p ms mac , t mot i on va lue s ∗ p mot ion va lues ) ;

59

60 void s e t r e c o r d s t a t e ( int r e c o r d f l a g ) ;

61 int s a v e c on f i g ( ) ;

62 int l o ad c on f i g ( ) ;

63 int open savegame ( char∗ f i l ename ) ;

64 int c lose savegame ( char∗ f i l ename ) ;

65 void c l o s e a p p l i c a t i o n ( ) ;

66

67 void aud i o c a l l b a ck f un c t i on ( t params4aud io ca l lback ∗ p params4audio ca l lback ,

68 int f r ame s ta r t , int frame end ,

69 void∗ l e f t c hanne l , void∗ r i gh t channe l ) ;

70

71 void ca l l back4co r eaud io (void∗ p params4aud io ca l lback va l , UInt32 inFrames ,

72 void∗ l e f t c hanne l , void∗ r i gh t channe l ) ;

73

74 [ . . . ]

75

76 void draw orb i t s (void ) ;

77 void r e d i s p l a y o r b i t s ( int value ) ;

78 void r e s h ap e o rb i t s ( int width , int he ight ) ;

79 void keyboard orb i t s (unsigned char key , int x , int y ) ;

80

81 [ . . . ]

82

83 void c a l i b r a t i o n c a l l b a c k ( int value ) ;

84 void mot i on s en so r ca l l ba ck ( int value ) ;

85

86 void initGL (void ) ;

87 void t o g g l e g u i (void ) ;

88 void t o g g l e f u l l s c r e e n (void ) ;

89 void i n i t s c e n e s (double t imestep ) ;

90 void open scene ( int i ) ;

91

92 void bu i l d h i g h s c o r e t a b l e ( ) ;

93

94 int main ( const int argc , char∗∗ argv ) ;

Two structs are declared in orbits.hpp: t global data (line 12) and

t params4audio callback (line 3).

t global data is a container for all global variables. It contains a

t game state struct (line 14, q.v. page 74), references to scenes (line

15 and 16, q.v. page 67) and scene elements (line 17 - 30, q.v. page

68), a t motion values struct (line 35) and a c motion sensor mac object

(line 36), several components of the graphical user interface (GUI) and a

c savegame (line 54).

The t params4audio callback struct contains relevant parameters for

the audio callback function (q.v. page 59 and page 56). Besides other para-

meters (number of frames, audio buffer memory address), the audio callback

function has one parameter that points to a specified memory address. This

52



pointer is dedicated to supply the function with all necessary data. Ob-

jects and variables declared elsewhere in the code are not known to the call-

back function. Since the callback function has to update the state of all ob-

jects, it needs references — that is the purpose of t params4audio callback

(one very ugly alternative is to declared those objects as global variables).

t params4audio callback contains a references to an t audio param struct

which contains parameters to render the audio output (line 5, q.v. page 56),

a reference to the current scene (line 6), the t game state struct (line 7),

the t motion values (line 8) and to the c motion sensor mac object (line

9).

Among the function declarations, the audio callback function (line 67) and

the graphics rendering callbacks (line 76 and 77) can be found. There are also

some other important functions (initGL(), init scenes(), read ms(), . . . )

declared in orbits.hpp and defined in orbits.cpp. They will be discussed

in the subsequent sections.

Thus, the only one function, that will be introduced here, is main(). The

main() function is the schedule of the initialisation process.
1 int main ( const int argc , char∗∗ argv )

2 {
3 srand ( time (NULL) ) ;

4 p g l oba l = new t g l o b a l d a t a ;

5

6 [ . . . ]

7

8 i f ( ! p g loba l−>i n i t s c e n e s f r om r e c o r d f l a g ) p g loba l−>f i l ename = ” l o c a l . sav” ;

9 i f ( l o ad c on f i g ( ) )

10 {
11 VERBOSE PRINT(”> l oad ing p r e f e r en c e s . . . s u c c e s s \n” ) ;

12 }
13

14 [ . . . ]

15

16 /∗ i n i t GL s t u f f ∗/
17 initGL ( ) ;

18 p g loba l−>g u i f l a g = 0 ;

19 p g loba l−>video param . f u l l s c r e e n f l a g = 0 ;

20 t o g g l e f u l l s c r e e n ( ) ;

21

22 [ . . . ]

23

24 /∗ i n i t audio ∗/
25 int r e turn code ;

26 i n i t s c e n e s ( 1 . /SAMPLE RATE) ;

27 t params4aud io ca l lback params4audio ca l lback ;

28 params4audio ca l lback . p audio param = &p globa l−>audio param ;

29 params4audio ca l lback . pp scene = &p globa l−>p scene ;

30 params4audio ca l lback . p game state = &p globa l−>game state ;

31 params4audio ca l lback . p mot ion va lues = &p globa l−>motion va lues ;

32 params4audio ca l lback . p ms mac = &p globa l−>ms mac ;

33

53



34 t params4coreaudio params4coreaudio = set params4coreaudio (SAMPLE RATE, AUDIO BUFFER SIZE ) ;

35 re turn code = c r e a t e aud i o un i t (&params4coreaudio , &params4audio ca l lback ) ;

36

37 i f ( r e turn code ) e x i t ( 1 ) ;

38 VERBOSE PRINT(”> Press [m] f o r main menu , [ o ] f o r opt ions or [ q ] f o r qu i t .\n” ) ;

39

40 Glow : : MainLoop ( ) ;

41 }

At first a t global data struct is created and p global is the reference

to it (line 4). This struct contains data and (still uninitialised) objects as

described above. A file name of local saved games is specified in line 8 and

a locally saved config file is loaded in line 9.

The next important step follows in line 17 (and subsequent lines).

initGL() is a function that sets up the graphical processing by GLUT,

which is discussed at page 62 and toggle fullscreen() switches to full-

screen mode. However, at this point of the program no window for OpenGL

rendering is open yet, because we cannot start rendering graphics before the

scenes are initialised.

The internal processing of the scenes (including the sound models and

physics of the objects, q.v. page 67) ultimately depends on the specifications

of the audio rendering environment, more precisely the sample rate. In line

26 init scenes() is called with that sample rate as a parameter5. In lines

27 - 32, the t params4audio callback struct (q.v. page 56) is initialised,

and in line 34 a t params4coreaudio struct (q.v. page 55). This may seem

confusing, but theses sctructs and their purpose is subject of the next section.

The final step to initialise the audio processing is to create an audio unit (q.v.

page 37) which is done by calling the create audio unit() function in line

38 (q.v. page 55).

Now the scenes have been initialised, the audio processing has started

(and thus accelerometer data processing, simulation of the physics, game lo-

gic, etc.) and the application is ready to render graphics and handle user

input (as keystrokes). Like mentioned previously, graphics rendering and the

event handling is done by GLUT, hence the last function call in main() is a

call is related to GLUT. Glow::MainLoop(); in line 40 starts the event pro-

5Strictly speaking, the paramter is the reciprocal of the sample rate, in this code called
timestep.

54



cessing loop. This indirectly starts the glutMainLoop(), which is explained

in more detail at page 62.

3.2 Audio processing

Orbits initialises an audio unit to process its audio output. The initialisa-

tion process of the audio unit is defined in core audio functions.cpp and

the callback function(s) are defined in main.cpp. Before I start to describe

the initialisation and processing routine step by step I would like to intro-

duce three structs that have been mentioned before: t params4coreaudio,

t params4audio callback and t audio param.

3.2.1 The t params4coreaudio struct

t params4coreaudio is declared in core audio functions.cpp:

1 struct t params4coreaudio

2 {
3 Float64 sample rate ;

4 UInt32 a u d i o b u f f e r s i z e ;

5 SInt32 num channels ;

6 SInt32 which format ;

7 UInt32 format ID ;

8

9 UInt32 f o rma t f l a g s ;

10 UInt32 by t e s i n a pa ck e t ;

11 UInt32 b i t s p e r chann e l ;

12 UInt32 byte s pe r f rame ;

13

14 UInt32 f rames per packe t ;

15

16 AudioUnit output un i t ;

17 } ;

t params4coreaudio contains all parameters of the audio unit (sample

rate, audio buffer size, number of channels, . . . ) and an AudioUnit ob-

ject. It is not necessary to go to much into detail at this point, the one

important thing to understand is that this struct is a container data type

to specify an audio unit and it contains an audio unit itself, which is ini-

tialised with these parameters in create audio unit() (q.v. page 57). The

t params4coreaudio struct is only created and used (once) to initialise the

output audio unit.

55



3.2.2 The t params4audio callback struct

The second important audio struct is called t params4audio callback and,

as showed before, declared in orbits.hpp:

1 struct t params4aud io ca l lback

2 {
3 t audio param∗ p audio param ;

4 c s c ene ∗∗ pp scene ;

5 t game sta te ∗ p game state ;

6 t mot i on va lue s ∗ p mot ion va lues ;

7 c mot ion sensor mac∗ p ms mac ;

8 } ;

As mentioned at page 52 the audio callback function expects one reference

to a memory address as a parameter. This memory address, a so-called

pointer, is eligible for election by the programmer and it is the one clean

way to reference to objects (created elsewhere in the code) from inside the

audio callback function. Since all physical processes are updated in the audio

callback function it obviously needs references to the objects involved.

This is the purpose of t params4audio callback. A reference to a

t params4audio callback struct is the pointer that is passed to the call-

back function. t params4audio callback contains references to a scene, to

the game state (q.v. page 74), the motion values, the sensor and a reference

to a t audio param struct.

3.2.3 The t audio param struct

The t audio param struct is declared in param 4 audio rendering.hpp and

it contains parameters that specify how to (audio-) render a scene and is

passed as an argument every time a scene has to be rendered:
1 struct t audio param

2 {
3 double volume ;

4 int mute f lag ;

5

6 int s t e r e o f l a g ;

7 double s t e r e o ho r i z on ;

8

9 [ . . . ]

10 } ;

It includes the volume of the application, a flag that specifies whether

the application is muted and two values regarding stereo. The stereo flag

indicates if stereo output has to be computed and stereo horizon specifies

56



the “stereo range”. Roughly spoken, if an object is at the total right edge of a

scene, the stereo horizon value specifies the volume of the left ear speaker.

3.2.4 The audio initialisation process

Now that the audio structs are introduced we can have a deeper look into

the audio chain. The first step (after setting up the structs in main.cpp) is

the audio initialisation process defined in core audio functions.cpp:

1 [ . . . ]

2

3 OSStatus c o r e aud i o p r o c e s s f un c t i o n (

4 void∗ p params4audio ca l lback , AudioUnitRenderActionFlags∗ ioAct ionFlags , \
5 const AudioTimeStamp∗ inTimeStamp ,\
6 UInt32 inBusNumber , UInt32 inNumberFrames ,\
7 AudioBuf fe rL i s t ∗ ioData )

8 {
9 ca l l back4co r eaud io ( p params4audio ca l lback , inNumberFrames ,

10 ioData−>mBuffers [ 0 ] . mData , ioData−>mBuffers [ 1 ] . mData ) ;

11 return noErr ;

12 }
13

14 int c r e a t e aud i o un i t ( t params4coreaudio∗ p params4coreaudio ,

15 void∗ p params4audio ca l lback )

16 {
17 [ . . . ]

18

19 e r r = OpenAComponent(comp , &p params4coreaudio−>output un i t ) ;

20

21 [ . . . ]

22

23 AURenderCallbackStruct input ;

24 input . inputProc = co r e aud i o p r o c e s s f un c t i o n ;

25 input . inputProcRefCon = p params4audio ca l lback ;

26

27 e r r = AudioUnitSetProperty ( p params4coreaudio−>output unit ,

28 kAudioUnitProperty SetRenderCallback ,

29 kAudioUnitScope Input ,

30 0 ,

31 &input ,

32 s izeof ( input ) ) ;

33

34 [ . . . ]

35

36 AudioStreamBasicDescr ipt ion streamFormat ;

37 streamFormat . mSampleRate = p params4coreaudio−>sample rate ;

38 streamFormat . mFormatID = p params4coreaudio−>format ID ;

39 streamFormat . mFormatFlags = p params4coreaudio−>f o rma t f l a g s ;

40 streamFormat . mBytesPerPacket = p params4coreaudio−>by t e s i n a pa ck e t ;

41 streamFormat . mFramesPerPacket = p params4coreaudio−>f r ames pe r packe t ;

42 streamFormat . mBytesPerFrame = p params4coreaudio−>byte s pe r f rame ;

43 streamFormat . mChannelsPerFrame = p params4coreaudio−>num channels ;

44 streamFormat . mBitsPerChannel = p params4coreaudio−>b i t s p e r chann e l ;

45

46 [ . . . ]

47

48 e r r = AudioUnitSetProperty ( p params4coreaudio−>output unit ,

49 kAudioUnitProperty StreamFormat ,

50 kAudioUnitScope Input ,

51 0 ,

52 &streamFormat ,

57



53 s izeof ( AudioStreamBasicDescr ipt ion ) ) ;

54

55 [ . . . ]

56

57 e r r = Aud i oUn i t I n i t i a l i z e ( p params4coreaudio−>output un i t ) ;

58

59 [ . . . ]

60

61 e r r = AudioOutputUnitStart ( p params4coreaudio−>output un i t ) ;

62

63 [ . . . ]

64

65 AudioDeviceID CurrentDevice ;

66 s i z e = s izeof ( Float64 ) ;

67 e r r = AudioUnitGetProperty ( p params4coreaudio−>output unit ,

68 kAudioOutputUnitProperty CurrentDevice ,

69 0 ,

70 0 ,

71 &CurrentDevice ,

72 &s i z e ) ;

73

74 [ . . . ]

75

76 e r r = AudioDeviceSetProperty ( CurrentDevice ,

77 NULL,

78 0 ,

79 false ,

80 kAudioDevicePropertyBufferFrameSize ,

81 s izeof ( p params4coreaudio−>a u d i o b u f f e r s i z e ) ,

82 &p params4coreaudio−>a u d i o b u f f e r s i z e ) ;

83 [ . . . ]

84 }

This code snippet is quite long (though shortened), but easy to un-

derstand. create audio unit() function in line 14 takes two paramet-

ers: a reference to a t params4coreaudio struct and a reference to an ad-

dress in memory named “p params4audio callback”. As described above

the first parameter describes the properties of the audio unit that will be

created. The second argument is a pointer of the void type. It is the

programmer’s responsibility to cast this address to whatever data type it

refers to. As described above, in this application it is a pointer to an

t params4audio callback struct.

In line 19 create audio unit() opens an audio unit — the one that is

stored in t params4coreaudio. Two important settings are made in line 24

and 25: the callback function is specified (core audio process function())

and the pointer that is passed to that callback function every time that it is

called (p params4audio callback). Both settings are applied in line 27.

The audio processing parameters stored in t params4audio callback are

passed on to the audio unit in lines 36 - 48. The audio unit is initialised with

these settings in line 57, and, finally, started in line 61.

58



The size of the audio buffer is not a property of the audio unit, but a prop-

erty of the audio rendering device. With respect to the Orbits application it is

not interesting to determine which device would that be6. For example, there

could be several audio processing units (sound cards) available. Instead, we

assume that there is at least one and we ask the system for a reference to

the current device in line 67. Now that we have a reference to the audio ren-

dering device (which will be the built-in sound card of the MacBook in the

standard case), we tell that device to render audio with a specified buffer size

in line 76 (a value which is stored in the t params4audio callback struct).

3.2.5 The audio callback function(s)

This topic may be a little bit confusing. Infact, there are several functions

involved in the audio callback process. Nevertheless, it is important to under-

stand that there is only one audio unit, only one audio process and only one

audio callback function call (which is then passed to subsequent functions.)

Technically, there is only one callback function: the

core audio process function(), defined above in line 3. This is the

function that the audio unit is calling on. As one can easily see in

line 9, the only thing this function does is calling another function:

callback4coreaudio(), defined in orbits.cpp:

1 void ca l l back4co r eaud io (void∗ p params4aud io ca l lback va l , UInt32 inFrames ,

2 void∗ l e f t c h anne l , void∗ r i gh t channe l )

3 {
4 aud i o c a l l b a ck f un c t i on ( p params4aud io ca l lback va l , 0 , inFrames ,

5 l e f t c hanne l , r i gh t channe l ) ;

6 }

This function is very short too. Its name indicates that it is the call-

back function for Core Audio. The reason is that Orbits supports differ-

ent sound processing environments. One other environment, though not

relevant for this thesis, is the JACK Audio Connection KIT (JACK) [42].

JACK is a cross-plattform audio processing environment (which enables Or-

bits to be compiled for other operating systems7). Therefore, another call-

6More precisely we do not care how many and which devices are out there.
7Currently, JACK is availabe for Linux, Mac OS X, Windows and Solaris/OpenSolaris.

However, one should keep in mind that the current version of Orbits relies on the built-in

59



back function is implemented in orbits.cpp: callback4jack() (not shown

here). Both8, callback4coreaudio() respectively callback4jack(), call

on audio callback function() — the audio callback function:

1 void aud i o c a l l b a ck f un c t i on ( t params4aud io ca l lback ∗ p params4audio ca l lback ,

2 int f r ame s ta r t , int frame end ,

3 void∗ l e f t c hanne l , void∗ r i gh t channe l )

4 {
5 read ms(&p g loba l−>ms mac , &p g loba l−>motion va lues ) ;

6 (∗ p params4audio ca l lback−>pp scene)−> s e t p i t c h y aw r o l l (

7 p params4audio ca l lback−>p motion values−>pitch ,

8 p params4audio ca l lback−>p motion values−>yaw ,

9 p params4audio ca l lback−>p motion values−>r o l l ) ;

10 stat ic double l e f t f l o a t ;

11 stat ic double r i g h t f l o a t ;

12 for ( int frame = f r ame s ta r t ; frame < frame end ; frame++)

13 {
14 (∗ p params4audio ca l lback−>pp scene)−>update ( ) ;

15

16 i f ( p params4audio ca l lback−>p audio param−>s t e r e o f l a g )

17 {
18 (∗ p params4audio ca l lback−>pp scene)−>r ender aud io (

19 p params4audio ca l lback−>p audio param ,

20 &l e f t f l o a t , &r i g h t f l o a t ) ;

21 }
22 else

23 {
24 l e f t f l o a t = (∗ p params4audio ca l lback−>pp scene)−>r ender aud io (

25 p params4audio ca l lback−>p audio param ) ;

26 r i g h t f l o a t = l e f t f l o a t ;

27 }
28 [ . . . ]

29

30 p g loba l−>no t i f i c a t i o n s ound . update ( ) ;

31 stat ic double n o t i f l o a t ;

32 n o t i f l o a t = p g loba l−>no t i f i c a t i o n s ound . g e t v e l ( )∗1000 ;

33

34 i f ( ! p params4audio ca l lback−>p audio param−>mute f lag )

35 {
36 l e f t f l o a t += n o t i f l o a t ;

37 r i g h t f l o a t += n o t i f l o a t ;

38 }
39 else

40 {
41 l e f t f l o a t = 0 . ;

42 r i g h t f l o a t = 0 . ;

43 }
44

45 i f ( p params4audio ca l lback−>p game state−>update ( ) )

46 {
47 p g loba l−>no t i f i c a t i o n s ound . app l y d i r a c r e p r e s en t ed c on t i nuou s f o r c e ( 1 . ) ;

48 [ . . . ]

49 }
50 [ . . . ]

51

52 static cast<Float32∗>( l e f t c h a nn e l ) [ frame ] = l e f t f l o a t ;

53 static cast<Float32∗>( r i gh t channe l ) [ frame ] = r i g h t f l o a t ;

54 }
55 }

accelerometer. Infact, a binary for LINUX can be compiled, but without accelerometer
the whole concept does not make sense (though mouse steering has been tested under
LINUX ).

8Note: of course Orbits would be compiled either with Core Audio or JACK support!

60



The audio callback function() can be regarded as the actual audio

callback function, since the other functions introduced above directly route

here. The first parameter is a reference to the t params4audio callback

struct presented above. The other parameters specify the size of the audio

buffer and references to memory addresses for the audio output9.

In the audio callback function one has to differentiate between commands

that are called once (buffer-wise) and operations that are executed at every

audio sample (with audio rate). As one can see, there is only one operation

that is executed once: read ms() (line 5). read ms() reads data from the

motion sensor, which is forwarded to the current scene in line 6.

The next block of code is a for-loop from line 12 to 54. These are the op-

erations that are carried out with audio rate. The loop begins with an update

of the scene in line 14. This computes the macroscopic physical behaviour

of the moving objects (balls, cylinders) with respect to the current accelero-

meter data. The behaviour of the current sound models (encapsulated in the

scene and its objects) is updated by the the function render audio() (q.v.

page 67) in line 18, respectively line 24 (this depends on the stereo setting).

In line 30 a notification sound is updated. Whenever the player success-

fully fulfills a task, the notification sounds. The notification itself is based

on the sound rendering objects used for the rolling sound, sliding sound, etc.

and therefore it needs to be updated with audio rate as well.

The game state is updated in line 45. This is explained at page 74.

Basically, it is checked if the balls are in their targets, and if so, what is the

subsequent target position or scene.

If one tracks what happens with the two variables left float and

right float in lines 20 (resp. 24 and 26) and 36 & 37, one can see that they

contain the audio output of one audio frame — the left and the right audio

channel. These two values are written into the audio buffers at the end of

every run of the loop — until the buffers are filled.

9The rendering can be done in mono or stereo, but in either case two channels are used.

61



3.3 Video processing

As described at page 39, the OpenGL graphics rendering and keystroke inputs

are handled by GLUT. Before one starts rendering polygons, lines or textures,

one has to setup a window for the rendering, register some callbacks and start

the event handling process.

If one compares the Orbits code with a standard tutorial about graphics

rendering with GLUT, one will notice two important differences. The thing

can be found in line 5 of the code below. The documentation on GLUT

[43] states that a the function glutInit() “initialize(s) the GLUT library

and negotiate(s) a session with the window system.”. However, this function

cannot be found in the Orbits code. The reason is that Orbits uses another

library — Glow — to handle a graphical menu (with button and sliders, etc.).

Glow needs control about the window initialisation and the event processing,

therefore Glow::Init() is called in line 5, which then initialises windows.

The event processing is the second difference between Orbits and other

Glut-based applications. When all necessary objects are initialised and all

audio and video setup has been made, it is the regular moment to start

the glutMainLoop(). As Glow needs control about the event loop, the

Glow::MainLoop() (q.v. page 51) is called instead.

Most of the setup for GLUT is done in the initGL() function in orbits.cpp:

1 void initGL (void )

2 {
3 int n g lu t a r g s = 0 ;

4

5 Glow : : I n i t ( n g luta rgs , NULL) ;

6 g lutIn i tDisp layMode (GLUT DEPTH|GLUT DOUBLE|GLUT RGBA|GLUT MULTISAMPLE) ;

7 glutInitWindowSize (WINDOW WIDTH, WINDOW HEIGHT) ;

8 g lutIn itWindowPos it ion (WINDOW POS X, WINDOW POS Y) ;

9 p g loba l−>main window ID = glutCreateWindow (NULL) ;

10

11 glutDisplayFunc ( draw orb i t s ) ;

12 glutReshapeFunc ( r e s hap e o rb i t s ) ;

13 glutTimerFunc (100 , r e d i s p l a y o r b i t s , 0 ) ;

14 glutKeyboardFunc ( keyboard orb i t s ) ;

15

16 [ . . . ]

17

18 glViewport (0 ,0 , p g loba l−>video param . window width , p g loba l−>video param . window height ) ;

19

20 glMatrixMode (GL PROJECTION) ; // S e l e c t The Pro j e c t i on Matrix

21 g lLoadIdent i ty ( ) ; // Reset The Pro j e c t i on Matrix

22

23 g luPe r spec t i v e (45 . 0 f , ( GLfloat ) p g loba l−>video param . window width/

24 ( GLfloat ) p g loba l−>video param . window height , 0 . 1 f , 1 0 0 . 0 f ) ;

25

62



26 glMatrixMode (GL MODELVIEW) ; // S e l e c t The Modelview Matrix

27 g lLoadIdent i ty ( ) ; // Reset The Modelview Matrix

28

29 /∗ Set up Light ∗/
30 glEnable (GL LIGHT0 ) ;

31 GLfloat l i g h t s o u r c e [ 4 ] = { 2 . 0 , −1.0 , 2 . 0 , 1 .0 } ;
32 GLfloat l i gh t ambient [ 4 ] = { 0 . 5 , 0 . 5 , 0 . 5 , 1 .0 } ;
33 p g loba l−>video param . l i g h t 0 x = l i g h t s o u r c e [ 0 ] ;

34 p g loba l−>video param . l i g h t 0 y = l i g h t s o u r c e [ 1 ] ;

35 p g loba l−>video param . l i g h t 0 z = l i g h t s o u r c e [ 2 ] ;

36

37 g lL i gh t f v (GL LIGHT0 , GL POSITION , &l i g h t s o u r c e [ 0 ] ) ;

38 g lL i gh t f v (GL LIGHT0 , GL AMBIENT, &l i gh t amb ient [ 0 ] ) ;

39

40 g lL i gh t f (GL LIGHT0 , GL CONSTANT ATTENUATION, 1 .0 f ) ;

41 g lL i gh t f (GL LIGHT0 , GL LINEAR ATTENUATION, 0 .2 f ) ;

42 g lL i gh t f (GL LIGHT0 , GL QUADRATIC ATTENUATION, 0 .08 f ) ;

43 }

As pointed out, the function starts the window initialisation via

Glow::Init() in line 5 (and sets some window properties in lines 6 -

8). Afterwards, the function registers several callback functions. In line

11 it registers draw orbits() as glutDisplayFunc(), which means that

draw ballacer() will be called whenever GLUT decides that the graph-

ics output needs to be rendered. Furthermore, a glutReshapeFunc(), a

“redisplay”-function (that is called by a time: glutTimerFunc()) and a

glutKeyboardFunc() is specifed. Their purpose is explained in the next

section.

As mentioned previously, one needs to specify how graphics content is

rendered into the graphics window (q.v. page 38). This is done in line 18

and 23 by setting a glViewport() and a gluPerspective().

It is important to consider that initGL() is only called once when the

application starts. All setup here is only done once. That also applies to the

last setup in initGL(): the source of light (lines 30 - 42). In connection with

the remarks about OpenGL as a “state machine” it has been noted briefly

that the light setup is one of the states that remains the same through the

entire life-time of the application.

3.3.1 Video callback functions

All video callback functions are declared in orbits.hpp and defined in

orbits.cpp. At first I will introduce the most obvious one — the rendering

callback function draw orbits():

63



1 void draw orb i t s (void )

2 {
3 [ . . . ]

4 p g loba l−>p scene−>r ende r v ideo (&p g loba l−>video param ) ;

5 [ . . . ]

6

7 p g loba l−> 2D current t ime . render (&p g loba l−>video param ) ;

8 p g loba l−> 2D average t ime . render (&p g loba l−>video param ) ;

9

10 p g loba l−>g l u t t e rm ina l . render (&p g loba l−>video param ) ;

11 i f ( p g loba l−>video param . d i s p l a y h i g h s c o r e s f l a g )

12 {
13 bu i l d h i g h s c o r e t a b l e ( ) ;

14 p g loba l−>g l u t h i g h s c o r e t a b l e . render (&p g loba l−>video param ) ;

15 }
16 i f ( p g loba l−>video param . d i s p l a y i n f o f l a g )

17 {
18 p g loba l−>g l u t i n f o . render (&p g loba l−>video param ) ;

19 }
20 p g loba l−>s t a tu s ba r . render (&p g loba l−>video param ) ;

21

22 glutSwapBuffers ( ) ;

23 }

This function calls the render video() function of the scene in line 4

and passes as a reference to a t video param struct as an argument to that

function (q.v. page 66). In lines 7 - 20 the function updates several elements

of the graphical user interface (number, text massages, . . . ) and finallt it calls

glutSwapBuffers(). Orbits uses two buffers to render graphical content —

while one video buffer is filled with content, the other one is displayed, and

vice versa. glutSwapBuffers() performs the necessary buffer swap.

Another callback function is reshape orbits(), is it called whenever the

size of the current graphics window changes:

1 void r e s h ap e o rb i t s ( int width , int he ight )

2 {
3 [ . . . ]

4

5 glViewport (0 ,0 , p g loba l−>video param . window width , p g loba l−>video param . window height ) ;

6

7 glMatrixMode (GL PROJECTION) ;

8 g lLoadIdent i ty ( ) ;

9

10 g luPe r spec t i v e (45 . 0 f , ( GLfloat ) p g loba l−>video param . window width/

11 ( GLfloat ) p g loba l−>video param . window height , 0 . 1 f , 1 0 0 . 0 f ) ;

12

13 glMatrixMode (GL MODELVIEW) ;

14 g lLoadIdent i ty ( ) ;

15 }

Besides adjusting the positions of some GUI elements (not shown in the

code above) reshape orbits() primarily resets the glViewport() (line 5)

and the gluPerspective() (line 10), depending on the new window size in

pixels (width, height).

64



In the beginning of this section, a function was mentioned that was called

by a glutTimerFunc(). glutTimerFunc() is a callback that is called only

once, when the specified time has elapsed. Since a glutTimerFunc() can call

itself when it is finished, it can be used a callback that is called on a regular

basis. redisplay orbits() is doing exactly that:

1 void r e d i s p l a y o r b i t s ( int value )

2 {
3 glutSetWindow ( p g loba l−>main window ID ) ;

4 g lutPostRed i sp lay ( ) ;

5 glutTimerFunc (1000/VIDEO FRAMES PER SECOND, r e d i s p l a y o r b i t s , 0 ) ;

6 }

redisplay orbits() calls the function glutPostRedisplay() (line

4) and then calls itself with a specified time in ms (line 5).

glutPostRedisplay() performs the actual displaying on the screen.

draw orbits() has filled the video rendering buffer with data and performed

a buffer swap, but that buffer is rendered on the screen only now — with a

fixed video rate (of 50Hz, q.v. page 42).

The fourth GLUT callback function keyboard orbits is rather long (and

in general not very interesting). I will only present a schematic draft of that

function here:

1 void keyboard orb i t s (unsigned char key , int x , int y )

2 {
3 switch ( key )

4 {
5 case 43 :

6 /∗ Key ”+” ∗/
7 p g loba l−>audio param . volume ∗= 1 . 2 5 ;

8 break ;

9

10 case 45 :

11 /∗ Key ”−” ∗/
12 p g loba l−>audio param . volume ∗= 0 . 8 ;

13 break ;

14

15 case 113 :

16 /∗ Key ”q” ∗/
17 c l o s e a p p l i c a t i o n ( ) ;

18 break ;

19 } ;
20 }

GLUT calls that function whenever a key has been pressed. The func-

tion performs tasks depending on the key stroke. In the example above it

raises/loweres the audio volume if +/- is pressed and closes the application

at q.

65



3.3.2 The t video param struct

Analogue to audio rendering, parameters that specify how a scene is rendered

are stored in a struct: the t video param struct (q.v. page 56 and page 63).

t video param is defined in param 4 video rendering.hpp:

1 struct t v ideo param

2 {
3 int window width ;

4 int window height ;

5

6 int f u l l s c r e e n f l a g ;

7 int default window width ;

8 int de fau l t window he ight ;

9

10 int d i s p l a y h i g h s c o r e s f l a g ;

11 int d i s p l a y i n f o f l a g ;

12

13 int f i x e d v i ew f l a g ;

14 double ang l e x ;

15 double ang l e y ;

16 double ang l e z ;

17 double zoom ;

18

19 double∗ p p i t ch ;

20 double∗ p yaw ;

21 double∗ p r o l l ;

22

23 double l i g h t 0 x ;

24 double l i g h t 0 y ;

25 double l i g h t 0 z ;

26 double r e f l e c t i o n t r a n s p a r e n c y ;

27

28 double s c e n e i n f i n i t y ;

29 int c i r c l e v e r t i c e s ;

30 int b a l l v e r t i c e s ;

31

32 [ . . . ]

33 } ;

As one can see t video param contains information about the (default)

size of the window (line 3 - 8), flags that indicate if highscores of information

has to be displayed (line 10, 11), the perspective and the distance of the

viewer (lines 13 - 17), the current inclination of the scene (lines 19 - 21) and

the position of the light (lines 23 - 25). And finally it also contains parameters

that specify how detailed things are rendered in lines 28 - 30 (e.g. how many

vertices has a circle).

In the draw orbits() callback function the t video param struct is passed

to the current scene as an argument every time that scene is rendered (q.v.

page 63). This is also analogue to the audio rendering (q.v. page 56).

66



3.4 Important classes & structs

The Orbits application has been created to provide a platform to setup a

custom test, based on the implemented sound models and graphical com-

ponents. Of course it it possible to implement yet another sound model or

scene element and use it in Orbits, but it would go too much into detail to

describe how to do that. In this regard, I recommend reading the project’s

documentation. There you will find information about the c sound model

class, which is used as an interface to implement custom sound algorithms.

In this section I want to give an overview about some essential modules

of the project and explain how they work together. If one wants to create

its own testing setup, one has to write a function similar to init scenes()

in orbits.cpp. This section should be useful to understand what happens

in init scenes().

3.4.1 The c scene class

The first class I want to introduce is c scene (in the following called scene).

A scene comprises everything one can see at the screen or hear from the

speakers. Everything that is needed to create a scene in Orbits is strictly

unitised. Creating a custom scene, does not mean that a new c scene class

has to be written or deviated through inheritance! Instead, single modules

are created and assigned to the scene, which will be shown at the following

pages. An excerpt of c scene.hpp (the class definition):

1 class c s c ene

2 {
3 protected :

4

5 int num elements ;

6 c s c ene e l ement ∗∗ a s c ene e l ement s ;

7

8 [ . . . ]

9

10 public :

11

12 c s c ene ( ) ;

13

14 void i n i t ( int num elements val , c s c ene e l ement ∗∗ a s c ene e l ement s va l ,

15 int∗ a v e l o c i t y g o a l s v a l , double underg round co lo r va l [ 3 ] ) ;

16

17 ˜ c s c ene ( ) ;

18

19 int underground on ;

67



20 double underground co lor [ 3 ] ;

21

22 virtual void r ender aud io ( t audio param∗ p audio param , double∗ p l e f t , double∗ p r i gh t ) ;

23 virtual void r ende r v ideo ( t v ideo param∗ p video param ) ;

24

25 void update ( ) ;

26 void s e t p i t c h y aw r o l l (double p i t ch va l , double yaw val , double r o l l v a l ) ;

27

28 void s e t e l ement ( int n element , c s c ene e l ement ∗ a scene e lement new ) ;

29 void s e t goa l po s w id th deg ( int n element , double goa l po s deg va l ,

30 double goa l w id th deg va l ) ;

31

32 int a l l i n s i d e ( ) ;

33

34 [ . . . ]

35 } ;

In terms of member variables, a scene consists of a number of

c scene elements (line 5 & 6, q.v. page 57) and as you can see in line

14 it is initialised with references to those elements. The scene also contains

the underground (or background) colour in line 20, since single elements do

not have a background.

The scene has two render functions: render audio() and render video()

(lines 22 & 23). As mentioned above, these functions have references to a

t audio param, respectively a t video param struct, which specify how a

single audio or video frame should be rendered.

set pitch yaw roll() (line 26) applies motion sensor data to the scene

and update() (line 25) updates the macroscopic behaviour of all objects

(scene elements).

Goal positions and widths can set for single scene elements with

set goal pos width deg() (line 29) and all inside() (line 29) checks if

all objects (in all scene elements) are inside the correspondig target areas.

As indicated ([...], there are a lot more functions, but these are the most

important.

3.4.2 The c scene element class

Scene elements are the building blocks a scene is made of. Analogue to the

scene, there is only one c scene element class, which can be fully customised

with various attributes. c scene element.hpp:

1 class c s c ene e l ement

2 {
3

68



4 private :

5

6 c sound model∗ p sound model ;

7 c mass on curve ∗ p mass on curve ;

8 c graph ic s module ∗ p graphics module ;

9

10 double con s t g rav ac c ;

11 double p i tch ;

12 double yaw ;

13 double r o l l ;

14

15 [ . . . ]

16

17 public :

18

19 c s c ene e l ement ( ) ;

20

21 void i n i t ( t s on i c b ehav i ou r son i c behav i ou r va l ,

22 t movement behaviour movement behaviour val ,

23 t g r a ph i c a l r e p r e s e n t a t i o n g r aph i c a l r e p r e s e n t a t i o n va l ,

24 double c on s t g r av a c c va l ) ;

25

26 ˜ c s c ene e l ement ( ) ;

27

28 void r ender aud io ( t audio param∗ p audio param , double∗ p l e f t , double∗ p r i gh t ) ;

29 void r ende r v ideo ( t v ideo param∗ p video param ) ;

30

31 void update ( ) ;

32 void s e t p i t c h y aw r o l l (double p i t ch va l , double yaw val , double r o l l v a l ) ;

33

34 void s e t goa l po s w id th deg (double goa l po s deg va l , double goa l w id th deg va l ) ;

35

36 int i s i n g o a l ( ) ;

37

38 [ . . . ]

39 } ;

A scene element contains three important objects: a c sound model, a

c mass on curve and a c graphics module (lines 6 – 8). The sound models

have been described in the previous chapter (q.v. page 43). Likewise, the

graphics modules have been mentioned (ball, cylinder). The c mass on curve

class describes the physical behaviour (with regard to gravity) of a point-mass

that moves along a curve. For now, it is not necessary to go too much into

detail with these objects. If one wants to develop a different sound model or

graphical object than the ones included in this work, then detailed knowledge

about these classes is important, because on has to write a class that inherits

from those.

For understanding how to create a custom scene with the currently exist-

ing instruments, three structs are much more interesting: t sonic behaviour,

t movement behaviour and t graphical representation (compare line 21).

As their names suggest, these structs contain information about the sonic and

movement behaviour of the scene element, as well as the graphical represent-

69



ation. They are used to create a scene element with the required properties

and will be explained in more detail below.

Analogue to the scene, the scene element has functions to update its state,

to render audio and video output and to setup a goal.

The t sonic behaviour struct

The sonic behaviour struct contains various parameters to describe sound

models as can be seen in the code below (lines 3 – 30):

1 struct t s on i c b ehav i ou r

2 {
3 enum sound model sound model type ;

4

5 /∗ r o l l i n g sound parameters ∗/
6 double b a l l r a d i u s ;

7 int num points ; double l ength ; double a s p e c t r a t i o ;

8 int num modes ; double∗ p f r e q s ;

9 double∗ p t e s ; double∗ p weights ;

10 double mass ; double mass pos ; double mass ve l ;

11 double sw i t ch po in t ; double∗ a k contac t ; double∗ a c con ta c t ;

12

13 /∗ r o l l i n g sound saw p r o f i l e parameters ∗/
14 double saw width ; double saw height ;

15

16 /∗ r o l l i n g sound pattern p r o f i l e parameters ∗/
17 double pattern1 width ; double pattern2 width ; double pa t t e r n 1 a s p e c t r a t i o ;

18 double pa t t e r n 2 a s p e c t r a t i o ;

19

20 /∗ s l i d i n g sound parameters ∗/
21 double band width ;

22

23 /∗ BLIT sound parameters ∗/
24 double a ; int N; double volume val ;

25

26 /∗ c l i c k sound parameters ∗/
27 double s tep width ;

28

29 /∗ gene ra l parameters ( used by some or a l l sound models ) ∗/
30 double t imestep ; double volume ; double p i t c h f a c t o r ;

31

32 void i n i t r o l l i n g s o u n d (double ba l l r a d i u s v a l ,

33 int num points val , double l eng th va l , double a s p e c t r a t i o v a l ,

34 int num modes val , double∗ p f r e q s v a l ,

35 double∗ p t e s v a l , double∗ p we ight s va l ,

36 double mass val , double mass pos val , double mass ve l va l ,

37 double sw i t ch po in t va l , double∗ a k con tac t va l ,

38 double∗ a c con ta c t va l ,

39 double t imes tep va l , double volume val ) ;

40

41 void i n i t r o l l i n g s o und s aw (double ba l l r a d i u s v a l ,

42 int num points val , double l eng th va l , double saw width val ,

43 double saw he ight va l , double a s p e c t r a t i o v a l ,

44 int num modes val , double∗ p f r e q s v a l ,

45 double∗ p t e s v a l , double∗ p we ight s va l ,

46 double mass val , double mass pos val , double mass ve l va l ,

47 double sw i t ch po in t va l , double∗ a k con tac t va l ,

48 double∗ a c con ta c t va l ,

49 double t imestep va l , double volume val ) ;

50

70



51 void i n i t r o l l i n g s o u n d p a t t e r n (double ba l l r a d i u s v a l ,

52 int num points val , double l eng th va l ,

53 double patte rn1 width va l , double patte rn2 width va l ,

54 double pa t t e r n 1 a sp e c t r a t i o v a l ,

55 double pa t t e r n 2 a sp e c t r a t i o v a l ,

56 int num modes val , double∗ p f r e q s v a l ,

57 double∗ p t e s v a l , double∗ p we ight s va l ,

58 double mass val , double mass pos val , double mass ve l va l ,

59 double sw i t ch po in t va l , double∗ a k con tac t va l ,

60 double∗ a c con ta c t va l ,

61 double t imestep va l , double volume val ) ;

62

63 void i n i t s l i d i n g s o u n d (double p i t c h f a c t o r v a l , double band width val ,

64 int num modes val , double∗ p f r e q s v a l , double∗ p t e s v a l ,

65 double∗ p we ight s va l ,

66 double t imes tep va l , double volume val ) ;

67

68 void in i t BLIT (double a val , int N val , double p i t c h f a c t o r v a l , double volume val ) ;

69

70 void i n i t i n v e r t e d s ound (double p i t c h f a c t o r v a l , double volume val ) ;

71

72 void i n i t c l i c k s o u n d (double l eng th va l , double s t ep width va l ,

73 int num modes val , double∗ p f r e q s v a l , double∗ p t e s v a l ,

74 double∗ p we ight s va l ,

75 double t imes tep va l , double volume val ) ;

76 } ;

One has to create a t sonic behaviour struct in order to initialise a

scene element, but it is not intended to specify all necessary field in the struct

manually (it is quite probable that something is missed and the application

crashes). On the contrary, there are designated functions to arrange the

struct. Every sound model is represented by one init-function with a set of

obligatory parameters (which prevents from missing one).

The t movement behaviour struct

The idea behind these structs is more or less the same: providing a con-

venient way to specify a custom scene element without the fussiness to

implement a separate scene element class for every possible setup. Hence,

t movement behaviour resembles t sonic behaviour in structure and use.

It contains parameters that describe a point mass and a movement curve (Or-

bits only contains circular curves, but could be extended with other shapes).

Again, the init functions are the most important part. Currently, there are

four functions to set up circular movement in both or just one direction.

Optionally, a geometry factor can be specified, that influences the moment

of inertia.

1 struct t movement behaviour

2 {

71



3 enum movement model movement model type ;

4

5 double c i r c l e r a d i u s ;

6

7 /∗ gene ra l parameters ( used by some or a l l movement models ) ∗/
8 double l ength ;

9 double mass ;

10 double geometry fact ;

11 double c f r i c ;

12 int d i r e c t i o n ;

13 double t imestep ;

14

15 void i n i t movement on c i r c l e (double c i r c l e r a d i u s v a l , double mass val ,

16 double c f r i c v a l , double t imes t ep va l ) ;

17

18 void i n i t movement on c i r c l e (double c i r c l e r a d i u s v a l , double mass val ,

19 double geometry fact , double c f r i c v a l ,

20 double t ime s t ep va l ) ;

21

22 void i n i t movement on c i r c l e one way (double c i r c l e r a d i u s v a l , double mass val ,

23 double c f r i c v a l , int d i r e c t i o n va l ,

24 double t imes t ep va l ) ;

25

26 void i n i t movement on c i r c l e one way (double c i r c l e r a d i u s v a l , double mass val ,

27 double geometry fact , double c f r i c v a l ,

28 int d i r e c t i o n va l , double t ime s t ep va l ) ;

29

30 } ;

The t graphical representation struct

The graphical representation comprises a ball and a cylinder. Various para-

meters regarding the colours, glossiness and size of the objects can be spe-

cified:

1 struct t g r a ph i c a l r e p r e s e n t a t i o n

2 {
3 enum graphics module graphics module type ;

4

5 /∗ t rack parameters ∗/
6 double c i r c l e r a d i u s ;

7 double l i n e p 1 x ; double l i n e p 1 y ;

8 double l i n e p 2 x ; double l i n e p 2 y ;

9 double l i n e w id th ;

10 double l i n e c o l o r [ 3 ] ;

11

12 /∗ goa l p o s i t i o n parameters ∗/
13 double goa l po s deg ; double goa l width deg ;

14 double g o a l b o r d e r c l o s e ; double g o a l b o r d e r f a r ;

15 double g o a l c o l o r [ 3 ] ;

16 double a l t e r n a t e g o a l c o l o r [ 3 ] ;

17

18 /∗ moving ob j e c t s parameters ∗/
19 double b a l l r a d i u s ;

20 double c y l r ad i u s 1 ; double c y l r ad i u s 2 ; double c y l l e n g th ;

21 double ob j e c t c o l o r [ 3 ] ;

22 GLfloat object ambient [ 4 ] ;

23 GLfloat o b j e c t d i f f u s e [ 4 ] ;

24 GLfloat ob j e c t s p e cu l a r [ 4 ] ;

25 GLfloat o b j e c t s h i n i n e s s ;

26

27 void i n i t b a l l o n c i r c l e (double l i n e c o l o r v a l [ 3 ] , double g o a l c o l o r v a l [ 3 ] ,

72



28 double a l t e r n a t e g o a l c o l o r v a l [ 3 ] , double o b j e c t c o l o r v a l [ 3 ] ,

29 GLfloat ob j e c t amb i en t va l [ 4 ] , GLfloat o b j e c t d i f f u s e v a l [ 4 ] ,

30 GLfloat o b j e c t s p e c u l a r v a l [ 4 ] , GLfloat o b j e c t s h i n i n e s s v a l ,

31 double c i r c l e r a d i u s v a l , double l i n e w id th va l ,

32 double goa l po s deg va l , double goa l w idth deg va l ,

33 double b a l l r a d i u s v a l ) ;

34

35 void i n i t c y l o n r i n g (double l i n e c o l o r v a l [ 3 ] , double g o a l c o l o r v a l [ 3 ] ,

36 double a l t e r n a t e g o a l c o l o r v a l [ 3 ] , double o b j e c t c o l o r v a l [ 3 ] ,

37 GLfloat ob j e c t amb i en t va l [ 4 ] , GLfloat o b j e c t d i f f u s e v a l [ 4 ] ,

38 GLfloat o b j e c t s p e c u l a r v a l [ 4 ] , GLfloat o b j e c t s h i n i n e s s v a l ,

39 double c i r c l e r a d i u s v a l , double l i n e w id th va l ,

40 double goa l po s deg va l , double goa l w idth deg va l ,

41 double c y l r ad i u s 1 va l , double c y l r ad i u s 2 va l ,

42 double c y l l e n g t h v a l ) ;

43

44 [ . . . ]

45 } ;

3.4.3 Creating a custom game

Finally, I will explain briefly how to create a custom test setup, including

the required number of scenes and scene elements with sound models, graph-

ical representations and movement behaviour. This setup is done in the

init scenes() function in the main files of the application (orbits.hpp,

orbits.cpp). Before the source code of that function will be discussed, one

important part of the program needs to be introduced: the game logic.

Game logic comprises setting as the number of scene, the chronological

order of scenes, the target sizes, positions, number of targets, etc. — in

short, the schedule of the game (respectively user test). This schedule is

administered in a struct, the t game state struct.

Single “game levels” are called steps, they specify game settings (like

target sizes and positions) for one scene. In this regard, it is important to

stress the difference between scenes and steps. A scene comprises the visual

and auditive representation, whereas a step defines the tasks to fulfill in this

scene. For instance, a scene can occur several times in game schedule, each

time with different degree of difficulty, number or size of targets, etc. Steps

are represented by a t step struct.

73



The t game state struct

This struct checks if the task is fulfilled, it changes target positions and

proceeds to the next step when appropriate. Consequentially, it also measures

the task times (which will be saved in a file).

The game state struct holds references to the current active scene (line

3), the complete array of all scenes (line 4) and a savegame (line 5):

1 struct t game s ta te

2 {
3 c s c ene ∗∗ pp ac t i v e s c en e ;

4 c s c ene ∗∗ pa scenes ;

5 c savegame∗ p savegame ;

6

7 int num steps ;

8 int n cu r r en t s t ep ;

9 t s t e p ∗ a s t ep s ;

10

11 double t ime game star t ;

12 double t im e cu r r e n t s t e p s t a r t ;

13 double t im e c u r r e n t t a r g e t s t a r t ;

14

15 double time game ;

16 double t ime cu r r en t s t ep ;

17 double t ime cu r r en t t a r g e t ;

18

19 l i s t <double> l t ime s ;

20

21 double t im e l a s t s t e p ;

22 double t im e l a s t t a r g e t ;

23

24 void i n i t ( c s c ene ∗∗ pp ac t i v e s c en e va l , c s c ene ∗∗ pa scene s va l ,

25 int num steps val , t s t e p ∗ a s t ep s va l ,

26 c savegame∗ p savegame val ) ;

27

28 int update ( ) ;

29

30 [ . . . ]

31 } ;

Besides several variables to measure task times (lines 11 - 22), the struct also

contains an array of t steps in line 9 (please compare: init function() in

line 24).

The update() function in line 28 updates the game state and is called

from within the audio callback function (q.v. page 59).

The t step struct

A step can be regarded as a set of settings that specify the conditions of

the task to fulfill by the player/subject. As you can see below, it contains a

reference to the scene, that it used in the step (line 3), the number of scene

74



elements (in Orbits currently always two elements are used) and parameters

that specify the targets (lines 6 - 9):
1 struct t s t e p

2 {
3 c s c ene ∗ p scene ;

4 int num elements ;

5

6 int num targets ;

7 int n cu r r en t t a r g e t ;

8 enum target width mode∗ a target width mode ;

9 double∗ a ta rge t w id th ;

10

11 void i n i t ( c s c ene ∗ p scene va l , int num targets va l ,

12 enum target width mode∗ p target width mode va l ,

13 double∗ p ta r g e t w id th va l ) ;

14 } ;

The number of targets in the step (num targets, the target

widths (a target width array) and a target mode can be spe-

cified. The target mode can be chosen amongst these values:

FIXED TARGET SIZE, INCREASING TARGET SIZE, DECREASING TARGET SIZE

and RANDOM TARGET SIZE (please compare enum target width mode.hpp

whicg is part of the source code of this thesis).

The init scenes() function

Finally, this is the most essentail step: initialising all the structs and objects

and configure a custom game/user test. The init scenes() function in

orbits.cpp does all that.

At the following pages I will explain how to create a game, including the

following conditions: one set of rolling sound parameters, two ball sizes, two

circle sizes (an inner circle and an outer circle) and one set of parameters

that specify movement behaviour.

Under these conditions, the following structs need to be initialised:

1. four sound model structs (1 rolling sound x 2 ball sizes x 2 circle sizes)

2. four graphical representation structs (2 ball sizes x 2 circle sizes)

3. two movement behaviour structs (1 movement behaviour x 2 circle

sizes)

These structs are used to create two scenes, which both consist of two

scene elements (a small and a big circle). The first scene is built using the

75



smaller balls, the second scene uses bigger balls. Finally a game schedule

is created (t game state) with four steps. Every scene appears two times

(which sums to four steps), but the target size mode differs.

I chose this simple setup to demonstrate the use of all structs and objects

introduced above, and I hope it is a useful guide to create own games/tests.

The following code samples are excerpts from the Orbits’ init scenes()

function10:
1 void i n i t s c e n e s (double t imestep )

2 {
3 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
4 ∗ de f i n e co l ou r s

5 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
6

7 [ . . . ]

8

9 i f ( p g loba l−>i n i t s c e n e s f r om r e c o r d f l a g )

10 {
11 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
12 ∗ open savegame

13 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
14

15 [ . . . ]

16

17 }
18 else

19 {
20 double i n n e r c i r c l e r a d i u s = 0 . 1 ;

21 double o u t e r c i r c l e r a d i u s = 0 . 2 ;

22 double b a l l r a d i u s = 0 . 0 15 ;

23 double ba l l mass = 0 . 0 2 ;

24

25 double i n n e r s i z e f a c t = 1 . ;

26 double o u t e r s i z e f a c t = 1 . ;

27

28 double con s t g rav ac c = −9.81;

Here, at first some colours are defined and it is checked whether we load

scenes from a recorded savegame. In case we do not, the first parameters are

specified — the sizes of circles and balls (the sizes of balls will be changed in

subsequent steps). Sound parameters for the rolling sounds are specified in

the following lines:
1 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 ∗ sound parameter

3 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
4

5 const int num modes = 2 ;

6 double f r e q 0 s [ num modes ] = { 300 . , 5000 . } ;
7 double t e s [ num modes ] = { . 0015 , .003 } ;
8 double weights [ num modes ] = { 15 . , 8 . } ;
9

10 [ . . . ]

10The source code attached to this thesis might look slightly different in some aspects,
as this is only meant to be an example.

76



11

12 double sw i t ch po in t = .00001 ; //INFINITY ;

13 double a k contac t [ 2 ] = {1 . , 2 . } ;

14 double a c con ta c t [ 2 ] = {1 . , 1 . } ;

15

16 [ . . . ]

17 /∗ r o l l i n g f i l t e r p r o f i l e ∗/
18 double dpp = 0 .0005 ; // d i s t ance between p r o f i l e po in t s

19 double a s p e c t r a t i o = 0 . 0 8 ;

20

21 double i nn e r l e ng th = 2∗M PI∗ i n n e r c i r c l e r a d i u s ;

22 int inner num points = ( int ) ( i nn e r l e ng th /dpp)−1;

23 double ou t e r l eng th = 2∗M PI∗ o u t e r c i r c l e r a d i u s ;

24 int outer num points = ( int ) ( ou t e r l eng th /dpp)−1;

25

26 [ . . . ]

All rolling sound models that are created below are based on these paramet-

ers. The same applies to movement and graphics parameters:

1 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 ∗ movement parameter

3 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
4 double g e ome t r y f a c t s o l i d b a l l = 5 . / 7 . ;

5 double r o l l i n g c f r i c = −0.015;

6

7 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
8 ∗ graph i c s parameter

9 ∗
10 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
11 double l i n e w id th = 0 . 0 05 ;

12 double goa l po s deg = 0 ;

13 double goa l width deg = 90 ;

14

15 [ . . . ]

Now that all properties are set up, it is time to initialise

the structs (t sonic behaviour, t graphical representation,

t movement behaviour). At first, the inner circle structs are initial-

ised (note the inner size factor in line 6 & 24):

1 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 ∗ i n i t s t r u c t s

3 ∗
4 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
5

6 i n n e r s i z e f a c t = 1 . ;

7 t s on i c b ehav i ou r i n n e r r o l l i n g s i z e 1 ;

8 i n n e r r o l l i n g s i z e 1 . i n i t r o l l i n g s o u n d ( b a l l r a d i u s ∗ i n n e r s i z e f a c t ,

9 inner num points , i nne r l eng th , a sp e c t r a t i o ,

10 num modes , &f r e q0 s [ 0 ] , &t e s [ 0 ] , &weights [ 0 ] ,

11 ba l l mass ∗ pow( i n n e r s i z e f a c t , 3 . ) ,

12 i n n e r s i z e f a c t ∗ b a l l r a d i u s + .005 , 0 ,

13 swi tch po int , &a k contac t [ 0 ] ,

14 &a c con ta c t [ 0 ] , t imestep , 1 . ) ;

15 [ . . . ]

16

17 t g r a ph i c a l r e p r e s e n t a t i o n i nn e r g r aph s i z e 1 ;

18 i nn e r g r aph s i z e 1 . i n i t b a l l o n c i r c l e ( grey08 , telekom , magenta , telekom ,

19 telekom ambient , t e l ekom d i f f u s e ,

20 te l ekom specu lar , sh in in e s s ,

21 i n n e r c i r c l e r a d i u s , l i ne w idth , goa l pos deg ,

77



22 goa l width deg , b a l l r a d i u s ∗ i n n e r s i z e f a c t ) ;

23

24 i n n e r s i z e f a c t = 2 . 0 ;

25 t s on i c b ehav i ou r i n n e r r o l l i n g s i z e 2 ;

26 i n n e r r o l l i n g s i z e 2 . i n i t r o l l i n g s o u n d ( b a l l r a d i u s ∗ i n n e r s i z e f a c t ,

27 inner num points , i nne r l eng th , a sp e c t r a t i o ,

28 num modes , &f r e q0 s [ 0 ] , &t e s [ 0 ] , &weights [ 0 ] ,

29 ba l l mass ∗ pow( i n n e r s i z e f a c t , 3 . ) ,

30 i n n e r s i z e f a c t ∗ b a l l r a d i u s + .005 , 0 ,

31 swi tch po int , &a k contac t [ 0 ] ,

32 &a c con ta c t [ 0 ] , t imestep , 1 . ) ;

33 [ . . . ]

34 t g r a ph i c a l r e p r e s e n t a t i o n i nn e r g r aph s i z e 2 ;

35 i nn e r g r aph s i z e 2 . i n i t b a l l o n c i r c l e ( grey08 , telekom , magenta , telekom ,

36 telekom ambient , t e l ekom d i f f u s e ,

37 te l ekom specu lar , sh in in e s s ,

38 i n n e r c i r c l e r a d i u s , l i ne w idth , goa l pos deg ,

39 goa l width deg , b a l l r a d i u s ∗ i n n e r s i z e f a c t ) ;

The first two sound models and graphical representations are initialised. The

same procedure follows now for the outer circle radius, again two sound

models and graphical representations are created (one for each ball size —

line 1 & 20):

1 o u t e r s i z e f a c t = 1 . 0 ;

2 t s on i c b ehav i ou r o u t e r r o l l i n g s i z e 1 ;

3 o u t e r r o l l i n g s i z e 1 . i n i t r o l l i n g s o u n d ( b a l l r a d i u s ∗ o u t e r s i z e f a c t ,

4 outer num points , oute r l ength ,

5 a sp e c t r a t i o , num modes , &f r e q0 s [ 0 ] ,

6 &t e s [ 0 ] , &weights [ 0 ] ,

7 ba l l mass ∗ pow( o u t e r s i z e f a c t , 3 . ) ,

8 o u t e r s i z e f a c t ∗ b a l l r a d i u s + .005 , 0 ,

9 swi tch po int , &a k contac t [ 0 ] ,

10 &a c con ta c t [ 0 ] , t imestep , 1 . ) ;

11 [ . . . ]

12 t g r a ph i c a l r e p r e s e n t a t i o n ou t e r g r aph s i z e 1 ;

13 ou t e r g r aph s i z e 1 . i n i t b a l l o n c i r c l e ( grey08 , telekom , magenta , telekom ,

14 telekom ambient , t e l ekom d i f f u s e ,

15 te l ekom specu lar , sh in in e s s ,

16 o u t e r c i r c l e r a d i u s , l i ne w idth ,

17 goa l pos deg , goa l width deg ,

18 b a l l r a d i u s ∗ o u t e r s i z e f a c t ) ;

19

20 o u t e r s i z e f a c t = 2 . 0 ;

21 t s on i c b ehav i ou r o u t e r r o l l i n g s i z e 2 ;

22 o u t e r r o l l i n g s i z e 2 . i n i t r o l l i n g s o u n d ( b a l l r a d i u s ∗ o u t e r s i z e f a c t ,

23 outer num points , oute r l ength ,

24 a sp e c t r a t i o , num modes , &f r e q0 s [ 0 ] ,

25 &t e s [ 0 ] , &weights [ 0 ] ,

26 ba l l mass ∗ pow( o u t e r s i z e f a c t , 3 . ) ,

27 o u t e r s i z e f a c t ∗ b a l l r a d i u s + .005 , 0 ,

28 swi tch po int , &a k contac t [ 0 ] ,

29 &a c con ta c t [ 0 ] , t imestep , 1 . ) ;

30 [ . . . ]

31 t g r a ph i c a l r e p r e s e n t a t i o n ou t e r g r aph s i z e 2 ;

32 ou t e r g r aph s i z e 2 . i n i t b a l l o n c i r c l e ( grey08 , telekom , magenta , telekom ,

33 telekom ambient , t e l ekom d i f f u s e ,

34 te l ekom specu lar , sh in in e s s ,

35 o u t e r c i r c l e r a d i u s , l i ne w idth ,

36 goa l pos deg , goa l width deg ,

37 b a l l r a d i u s ∗ o u t e r s i z e f a c t ) ;

38

39 [ . . . ]

78



Two structs are still missing. Like mentioned above, two t movement behaviour

structs are needed, one for each circle size:

1 t movement behaviour i nn e r r o l l i n g mov ;

2 i nn e r r o l l i n g mov . i n i t movement on c i r c l e ( i n n e r c i r c l e r a d i u s ,

3 ba l l mass ∗ pow( i n n e r s i z e f a c t , 3 . ) ,

4 g e ome t r y f a c t s o l i d b a l l ,

5 r o l l i n g c f r i c , t imestep ) ;

6

7 t movement behaviour ou t e r r o l l i n g mov ;

8 ou t e r r o l l i n g mov . i n i t movement on c i r c l e ( o u t e r c i r c l e r a d i u s ,

9 ba l l mass ∗ pow( o u t e r s i z e f a c t , 3 . ) ,

10 g e ome t r y f a c t s o l i d b a l l ,

11 r o l l i n g c f r i c , t imestep ) ;

12

13 [ . . . ]

When all structs are created, initialising scene element is an easy step. Four

scene elements are created with the structs initialised above:

1 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 ∗ i n i t scene e lements

3 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
4

5 p g loba l−>e l i n 0 . i n i t ( i n n e r r o l l i n g s i z e 1 , i nne r ro l l i ng mov ,

6 i nne r g r aph s i z e 1 , c on s t g rav ac c ) ;

7 p g loba l−>e l o u t 0 . i n i t ( o u t e r r o l l i n g s i z e 1 , oute r ro l l i ng mov ,

8 ou t e r g raph s i z e1 , c on s t g rav ac c ) ;

9

10 p g loba l−>e l i n 1 . i n i t ( i n n e r r o l l i n g s i z e 2 , i nne r ro l l i ng mov ,

11 i nne r g r aph s i z e 2 , c on s t g rav ac c ) ;

12 p g loba l−>e l o u t 1 . i n i t ( o u t e r r o l l i n g s i z e 2 , oute r ro l l i ng mov ,

13 ou t e r g raph s i z e2 , c on s t g rav ac c ) ;

14

15 [ . . . ]

The next step is to create the two scene. All scenes are stored in one array in

Orbits (line 5, below), in this case, of course, the array has the length 2. To

create a scene one has to pass a list of scene elements to the scene’s init()

function. This list is created in line 7 of the code below:

1 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 ∗ i n i t s cenes

3 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
4

5 p g loba l−>a s c ene s = new c s c ene [ 2 ] ;

6 c s c ene e l ement ∗ s c e n e e l em en t s l i s t [ 2 ] ;

7 int a v e l o c i t y g o a l s [ 2 ] = {−1, −1};
8

9 s c e n e e l em en t s l i s t [ 1 ] = &p globa l−>e l i n 0 ;

10 s c e n e e l em en t s l i s t [ 0 ] = &p globa l−>e l o u t 0 ;

11 p g loba l−>a s c ene s [ 0 ] . i n i t (2 , s c e n e e l emen t s l i s t , &a v e l o c i t y g o a l s [ 0 ] , white ) ;

12

13 s c e n e e l em en t s l i s t [ 1 ] = &p globa l−>e l i n 1 ;

14 s c e n e e l em en t s l i s t [ 0 ] = &p globa l−>e l o u t 1 ;

15 p g loba l−>a s c ene s [ 1 ] . i n i t (2 , s c e n e e l emen t s l i s t , &a v e l o c i t y g o a l s [ 0 ] , white ) ;

16

17 [ . . . ]

The two scenes are initialised in lines 11 and 15 of the code above.

79



Now these scenes can be used to create a game schedule. Four steps are

created In the following code, the first two steps have a fixed target size. The

third and fourth step are set up with decreasing target size. As one can see

in lines 15, 22, 29 and 36 the two scenes are used two times. The last step

to initialise the game is to call the game state’s init() function (line 35):

1 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 ∗ i n i t game

3 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
4

5 int num steps = 4 ;

6 t s t e p ∗ a s t ep s = new t s t e p [ num steps ] ;

7

8 enum target width mode a target width mode [ 2 ] ;

9 double a ta rg e t w id th [ 2 ] ;

10

11 a target width mode [ 0 ] = FIXED TARGET SIZE ;

12 a target width mode [ 1 ] = FIXED TARGET SIZE ;

13 a ta rg e t w id th [ 0 ] = 30 ;

14 a ta rg e t w id th [ 1 ] = 30 ;

15 a s t ep s [ 0 ] . i n i t (&p g loba l−>a s c ene s [ 0 ] , 4 , &a target width mode [ 0 ] ,

16 &a ta rge t w id th [ 0 ] ) ;

17

18 a target width mode [ 0 ] = FIXED TARGET SIZE ;

19 a target width mode [ 1 ] = FIXED TARGET SIZE ;

20 a ta rg e t w id th [ 0 ] = 30 ;

21 a ta rg e t w id th [ 1 ] = 30 ;

22 a s t ep s [ 1 ] . i n i t (&p g loba l−>a s c ene s [ 1 ] , 4 , &a target width mode [ 0 ] ,

23 &a ta rge t w id th [ 0 ] ) ;

24

25 a target width mode [ 0 ] = DECREASING TARGET SIZE;

26 a target width mode [ 1 ] = DECREASING TARGET SIZE;

27 a ta rg e t w id th [ 0 ] = 30 ;

28 a ta rg e t w id th [ 1 ] = 30 ;

29 a s t ep s [ 2 ] . i n i t (&p g loba l−>a s c ene s [ 0 ] , 4 , &a target width mode [ 0 ] ,

30 &a ta rge t w id th [ 0 ] ) ;

31

32 a target width mode [ 0 ] = DECREASING TARGET SIZE;

33 a target width mode [ 1 ] = DECREASING TARGET SIZE;

34 a ta rg e t w id th [ 0 ] = 30 ;

35 a ta rg e t w id th [ 1 ] = 30 ;

36 a s t ep s [ 3 ] . i n i t (&p g loba l−>a s c ene s [ 1 ] , 4 , &a target width mode [ 0 ] ,

37 &a ta rge t w id th [ 0 ] ) ;

38

39 p g loba l−>game state . i n i t (&p g loba l−>p scene , &p g loba l−>a scenes , num steps ,

40 a s teps , &p g loba l−>savegame ) ;

41

42 [ . . . ]

43 }
44 [ . . . ]

45 } ;

80



Chapter 4

Proposals and Improvements

81



Chapter 5

Résumé

82



Bibliography

[1] David Kaufmann. Gedenkbuch zur Erinnerung an David Kaufmann.
hrsg. von M. Brann und F. Rosenthal, Breslau, 1900. This is a
posthumous bibliography of David Kaufmanns work. This thesis refers
to Kaufmanns work “Die Sinne. Beiträge zur Geschichte der Physiolo-
gie und Psychologie im Mittelalter. Aus Hebräischen und Arabischen
Quellen”, Budapest, 1884.

[2] Markus Dahm. Grundlagen der Mensch-Computer-Interaktion. Pearson
Studium, Muenchen, 2006.

[3] Bruno L. Giordano. Everyday listening: an annotated bibliography. In
Davide Rocchesso and Federico Fontana, editors, The Sounding Object,
pages 1–14. Mondo Estremo, Firenze, Italy, 2003.

[4] S. J. Lederman. Auditory texture perception. Perception, 8:93–103,
1979.

[5] R. P. Wildes and W. A. Richards. Recovering material properties from
sound. Natural Computation, pages 356–363, 1988.

[6] William W. Gaver. Everyday listening and auditory icons. PhD thesis,
University of California, San Diego, 1988. Chair-Norman,, Donald A.

[7] R. A. Lutfi and E. L. Oh. Auditory discrimination of material changes in
a struck-clamped bar. J. Acoust. Soc. Am., 102(6):3647–3656, December
1997.

[8] Roberta L. Klatzky, Dinesh K. Pai, and Eric P. Krotkov. Perception
of material from contact sounds. Presence: Teleoper. Virtual Environ.,
9(4):399–410, 2000.

[9] S. Lakatos, S. McAdams, and R. Caussé. The representation of auditory
source characteristics: simple geometric form. Perception & Psychophys-
ics, 59(8):1180–1190, 1997.

83



[10] C. Carello, K. L. Anderson, and A. J. Kunkler-Peck. Perception of
object length by sound. Psychological Science, 9(3):211–214, May 1998.

[11] A. J. Kunkler-Peck and M. T. Turvey. Hearing shape. J. of Experimental
Psychology: Human Perception and Performance, 26(1):279–294, 2000.

[12] M. Houben, A. Kohlrausch, and D. Hermes. Auditory cues determining
the perception of the size and speed of rolling balls. In J. Hiipakka,
N. Zacharov, and T. Takala, editors, Proceedings of the 7th International
Conference on Auditory Display (ICAD2001), pages 105–110, Espoo,
Finland, 2001. Laboratory of Acoustics and Audio Signal Processing and
the Telecommunications Software and Multimedia Laboratory, Helsinki
University of Technology.

[13] William H. Warren and Robert R. Verbrugge. Auditory perception
of breaking and bouncing events: a case study in ecological acoustics.
Journal of Experimental Psychology: Human Perception and Perform-
ance, 10(5):704–712, 1984.

[14] N. J. Vanderveer. Ecological Acoustics: Human perception of envir-
onmental sounds. PhD thesis, Georgia Institute of Technology, 1979.
Dissertation Abstracts International, 40, 4543B. (University Microfilms
No. 80-04-002).

[15] W. W. Gaver. What in the world do we hear? an ecological approach
to auditory event perception. Ecological Psychology, 5(1):1–29, 1993.

[16] W. W. Gaver. How Do We Hear in the World? Explorations in Ecolo-
gical Acoustics. Ecological Psychology, 5(4):285–313, Apr. 1993.

[17] Bruno H. Repp. The sound of two hands clapping: An exploratory
study. The Journal of the Acoustical Society of America, 81(4):1100–
1109, 1987.

[18] X. Li, R. J. Logan, and R. E. Pastore. Perception of acoustic source
characteristics: Walking sounds. The Journal of the Acoustical Society
of America, 90(6):3036–3049, December 1991.

[19] E. Bruce Goldstein. Sensation and Perception. Brooks/Cole Publishing
Company, Pacific Groove, CA, USA, 4 edition, 1996.

[20] Matthias Rath and Davide Rocchesso. Informative sonic feedback for
continuous human–machine interaction — controlling a sound model
of a rolling ball. IEEE Multimedia Special on Interactive Sonification,
12(2):60–69, April 2005.

84



[21] Matthias Rath. An expressive real-time sound model of rolling. In Pro-
ceedings of the 6th ”International Conference on Digital Audio Effects”
(DAFx-03), London, United Kingdom, September 2003.

[22] Matthias Rath and Robert Schleicher. On the relevance of auditory
feedback for quality of control in a balancing task. Acta Acustica united
with Acustica, 94(1):12–20, January 2008.

[23] Federico Avanzini, Davide Rocchesso, and Stefania Serafin. Friction
sounds for sensory substitution. In S. Barrass and P. Vickers, edit-
ors, Proceedings of the 10th International Conference on Auditory Dis-
play (ICAD2004), Sydney, Australia, 2004. International Community
for Auditory Display (ICAD), International Community for Auditory
Display (ICAD).

[24] Christian Müller-Tomfelde and Tobias Münch. Modeling and sonifying
pen strokes on surfaces. In In Proceedings of the COST G-6 Conference
on Digital Audio Effects (DAFX-01), pages 6–8, 2001.

[25] Christian Müller-Tomfelde and S. Steiner. Audio-enhanced collabora-
tion at an interactive electronic whiteboard. In J. Hiipakka, N. Zacharov,
and T. Takala, editors, Proceedings of the 7th International Conference
on Auditory Display (ICAD2001), pages 267–271, Espoo, Finland, 2001.
Laboratory of Acoustics and Audio Signal Processing and the Telecom-
munications Software and Multimedia Laboratory, Helsinki University
of Technology, Laboratory of Acoustics and Audio Signal Processing and
the Telecommunications Software and Multimedia Laboratory, Helsinki
University of Technology.

[26] Matthias Rath. Energy-stable modelling of contacting modal objects
with piece-wise linear interaction force. In Proceedings of the 11th ”In-
ternational Conference on Digital Audio Effects” (DAFx-08), Espoo,
Finland, September 2008.

[27] Apple Inc., 2010. http://developer.apple.com.

[28] Khronos Group, 2010. http://www.opengl.org.

[29] Opengl, D. Shreiner, M. Woo, J. Neider, and T. Davis. OpenGL(R) Pro-
gramming Guide : The Official Guide to Learning OpenGL(R), Version
2 (5th Edition). Addison-Wesley Professional, August 2005.

[30] Khronos Group. Glut - the opengl utility toolkit, 2010.
http://www.opengl.org/resources/libraries/glut/.

85



[31] Encyclopædia Britannica Online, 2010. http://www.britannica.com.

[32] Apple Inc. Apple portables: About the sudden motion sensor, 2008.
http://support.apple.com/kb/HT1935.

[33] Amit Singh. Mac os x internals: A systems approach, 2005.
http://osxbook.com/software/sms/.

[34] Suitable Systems. Smslib, 2010. http://www.suitable.com/tools/smslib.html.

[35] Unimotion. http://unimotion.sourceforge.net/.

[36] K. van del Doel, P. G. Kry, and D. K. Pai. Foleyautomatic: Physically-
based sound effects for interactive simulation and animation. In Proc.
ACM Siggraph 2001, Los Angeles, Aug. 2001.

[37] James A. Moorer. The synthesis of complex audio spectra by means of
discrete summation formulae. Journal of the Audio Engineering Society,
24 (Dec.):717–727, 1975. (Also available as CCRMA Report No. STAN-
M-5).

[38] Tim Stilson and Julius Smith. Alias-free digital synthesis of classic
analog waveforms. In Proceedings of the 1996 International Computer
Music Conference - Hong Kong, San Francisco, CA, USA, 1996. ICMA.

[39] Vesa Välimäki. Discrete-time synthesis of the sawtooth waveform with
reduced aliasing. IEEE Signal Processing Letters, 12(3 (Mar.)):214–217,
2005.

[40] Inc. Wikipedia Foundation. make (software), 2010.
http://en.wikipedia.org/wiki/Make (software).

[41] Dimitri van Heesch. Doxygen, 2009. http://www.doxygen.org/.

[42] Jack audio connection kit, 2009. http://jackaudio.org/developers.

[43] Inc. Mark J. Kilgard, Silicon Graphics. The opengl utility toolkit (glut)
programming interface, 1996.

86



List of Figures

1.1 Continuum from world to experience (Gaver 1993) . . . . . . . 13
1.2 A hierarchical description of simple sonic events (Gaver 1993) 14
1.3 Ballancer with a glass marble rolling on its upper face’s alu-

minum track (Rath & Rocchesso [20]). . . . . . . . . . . . . . 21
1.4 The Ballancer in the configuration with a wide-screen display

spanning the whole size of the 1–m physical control stickball
(Rath & Schleicher [22]). . . . . . . . . . . . . . . . . . . . . . 23

2.1 The Orbits game being played on a MacBook Pro. . . . . . . . 31
2.2 Screenshots of two visual elements of the Orbits game. . . . . 32
2.3 The Orbits’ calibration routine is strongly recommended be-

fore using the application. . . . . . . . . . . . . . . . . . . . . 41
2.4 Hypothetical trajectory of a rolling object . . . . . . . . . . . 47

87




